EGVE Symposium (2008)
B. Mohler and R. van Liere (Editors)

A Proposal for a
Procedural Terrain Modelling Framework

R.M. Smelik !, T. Tutenel 2, K.J. de Kraker ', R. Bidarra 2

"Modelling & Simulation Department, TNO Defence, Security and Safety, The Netherlands
2Computer Graphics & CAD/CAM Group, Delft University of Technology, The Netherlands

Abstract

Manual game content creation is an increasingly laborious task; with each advance in graphics hardware, a higher
level of fidelity and detail is achievable and, therefore, expected. Although numerous automatic (e.g. procedural)
content generation algorithms and techniques have been developed over the years, their application in both games
and simulations is not widespread. What lacks is a unifying modeling framework that combines these techniques
in a usable manner. We propose to develop a new, high-level framework for automatic generation of virtual worlds
(e.g. game levels, simulation terrain) that requires intuitive user input and results in a rich 3D terrain model.

Categories and Subject Descriptors (according to ACM CCS): 13.5 [Computer Graphics]: Computational Geom-
etry and Object Modelling 1.6.7 [Simulation and Modelling]: Types of Simulation — Gaming 1.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism — Fractals 13.5 [Computer Graphics]: Applications

Keywords: automatic generation of virtual worlds, simulation terrain, game-level design, procedural modelling

1. Introduction

Creating a terrain for a (serious) game or simulation is a la-
borious, repetitious task. While the first 3D game levels were
small indoor maps that could easily be designed by hand,
current game levels increasingly consist of outdoor terrain,
and their size and visual fidelity grow with the advancements
in hardware.

Military simulators have always used large outdoor ter-
rain databases, but their level of detail was originally low; in
some cases limited to a coarse terrain based on a DEM-file
with a 2D satellite image draped across. Nowadays, much
more attention is paid to the details of 3D terrain, e.g. veg-
etation and man-made structures. This increase in detail is
necessary in order to achieve the level of fidelity that ground-
based simulators need. It gives cues of sizes and distances in
the terrain, essential for immersion and situational aware-
ness [Wel05]. Moreover, it strongly influences a tactical sit-
uation (cover, line-of-sight).

For both games and simulations, the effort in time and
money required for designing terrain by hand has become so

(© The Eurographics Association 2008.

high, that it is desirable to automate the design process as
much as possible.

A promising approach to automating terrain construction
is to use procedural content generation methods. Over the
years, numerous procedural methods for generating, among
other things, terrain and terrain features have been devel-
oped. Classical examples are height (or elevation) map gen-
eration algorithms, based on noise or fractals (e.g. [Mil86,
Per85]), or more physically based: thermal or hydraulic ero-
sion, plate tectonics, ridges and rivers (e.g. [EWM™03], see
[Ols04] for a good overview of different methods). Much
progress is made in automatic distribution of vegetation
and plant model construction, using e.g. species, ecosys-
tems and resource competition for distribution, and gram-
mar systems for simulating plant growth [DHL*98]. Proce-
dural methods are not limited to natural terrain: for gener-
ation of urban environments (cities, road networks, build-
ings with their facades and interiors), see e.g. [MWH*06,
WWSRO03, HBWO06]. These examples show the potential of
current procedural methods: They can be used to automate



R.M. Smelik, T. Tutenel, K.J. de Kraker, R. Bidarra / A Proposal for a Procedural Terrain Modelling Framework

terrain construction. However, the application of procedural
methods currently suffers from two important drawbacks:

1. It is not clear how to tune individual procedural algo-
rithms to work well together; there is no tool or integrat-
ing framework that combines these various algorithms in
a usable way.

2. The parameters of these algorithms and tools (e.g. noise
octaves, persistence) often require an in-depth knowledge
of the algorithm to predict the effect of a parameter on
the outcome. A user is virtually unable to declare his in-
tentions; he typically has little control over the generation
process and is forced to use a trial and error approach, as
was noted in e.g. [SSO5].

These drawbacks indicate that current procedural methods
alone are not yet enough for automating terrain construction.
An ideal terrain modeller is to be able to generate a large va-
riety of realistic, natural terrains, controlled by a small num-
ber of intuitive user input parameters, while still allowing the
user to perform detailed fine-tuning of the generated terrain,
or (partial) regeneration. This shifts the paradigm from man-
ual terrain construction into terrain declaration. In order to
approach this ideal modeller, we identify requirements for
an integrating terrain modelling framework and describe the
workflow of such a modeller.

2. Modelling Workflow Requirements

This section identifies high-level requirements that follow
from analysing how terrain and game level designers cur-
rently work. Figure 1 shows the typical terrain modelling
process. Manual terrain modelling for games and simula-
tions is usually a process of iterative refinement. A game
level designer often starts out with a sketch of the terrain,
which indicates the overall view and the location of im-
portant terrain features (see sketch arrow), although some-
times an idea or storyboard is the only starting point for the
modelling process. Terrain features may be distinctive ter-
rain elements (e.g. a mountain), but could also be related
to game flow or training objectives. Following this, the de-
signer builds a 3D terrain from coarse, e.g. a height map, to
refined, with buildings, trees, shrubs, see construct and con-
struct and refine arrows. This is done in an experimental man-
ner (involving e.g. undo / redo). The final terrain model will
be remotely based on the sketch, but typically much has been
changed in the process. An accurate 3D view of the terrain is
essential, as the designer visually evaluates both the suitabil-
ity and the aesthetics of the terrain (constantly), and because
the process involves a great deal of detailed fine-tuning.

Manual terrain modelling is a lengthy and laborious pro-
cess; we want to speed up and automate this process without
disturbing the creative working method of designers, and we
want to make procedural methods accessible to users that
have no intimate knowledge of the underlying algorithms.
For this, we propose a framework that fits the current mod-

elling process, see Section 3, but employs procedural meth-
ods for terrain generation to accelerate it. To overcome the
drawbacks that hinder the adoption of procedural methods,
stated in the introduction, a procedural modelling framework
has to fulfil the following high-level requirements (and any
more detailed requirement that can be derived) on the work-
flow, usability, and the control the user has over the terrain
generation:

1. Terrain Sketching: The framework should require high-
level user input in the form of a terrain sketch, or rough
layout of the terrain. Here, the level designer should be
able to declare whereabout important, sizeable terrain fea-
tures are located.

2. Framework Usability: The user input should consist of in-
tuitive, result-oriented parameters, which are mapped to
the typical procedural algorithm parameters.

3. Terrain Generation: After the designer has declared the
terrain he has in mind, the framework should generate a
high-resolution terrain that follows the user-specified fea-
tures at large, but has, on a small scale, a high level of
detail and variations. It should adequately match the orig-
inal specifications; by itself, it should not (randomly) in-
troduce features that have a large impact on the terrain
(e.g. a mountain appearing in the middle of a grassland).

4. Terrain Editing: The workflow should support further
manual editing and fine-tuning, as well as regenerating
(areas of) the terrain.

5. Terrain Visualisation: The framework should provide a
clear 3D view of the terrain.

6. Framework Results: The terrain model should be ex-
portable to a format usable in games and simulations.

3. Terrain Modelling Framework

Figure 2 gives an overview of the proposed modelling work-
flow, that supports the typical design process:

1. Layout of the terrain by the user, using a rough terrain
map and global terrain parameters (sketch arrow);

2. Procedural generation of a layered, detailed terrain map
((re-)generate arrow). Further refinement of this map by
the user (modify arrow);

3. Automatic export to, among other things, a 3D terrain
model (export arrow).

Terrain Designer

construct construct and refine
+ sketch

Sketch Coarse 3D Terrain Model

ansr2

Refined 3D Terrain Model

Figure 1: An overview of the current modelling workflow.

(© The Eurographics Association 2008.



R.M. Smelik, T. Tutenel, K.J. de Kraker, R. Bidarra / A Proposal for a Procedural Terrain Modelling Framework

ﬁ Terrain Designer
modify )
#esign

(re-) generate )

/|

Rough Terrain Map

Layered Terrain Map

Urban Layer

Road Layer

Vegetation Layer

Water Layer

Earth Layer
export

3D Terrain Model

Figure 2: An overview of the proposed terrain modelling workflow.

To guide the procedural modelling process, the user sup-
plies a sketch of the terrain he has in mind, in the form of a
parameterized rough terrain map. Based on this rough terrain
map a layered, detailed terrain map is automatically gener-
ated. This map contains, among other things, elevation in-
formation, and natural and man-made terrain features. The
designer is able to manually edit the layered map. Where de-
sired, areas of the map can be regenerated. Finally, the lay-
ered map is automatically exported to a 3D terrain model.
The process is iterative: the user can go back and forth
between the rough and detailed map, and manually refine
the layered, detailed terrain. This fits the creative working
method designers are used to.

Below, we discuss the workflow from sketch to a 3D ter-
rain model in more detail. The designer of a new terrain (of
e.g. 5 x 5 km) starts with a grid-based rough terrain map (e.g.
50 x 50 cells). A cell in this grid will later be amplified to a
large square piece of terrain (e.g. 100 x 100 m). The idea
of procedurally expanding a small grid map was proposed
in [RP04]. The user assigns to each grid cell an ecotope (de-
scribing the type of terrain, e.g. some specific kind of desert,
hills or forest), as used in e.g. [Hag06]. Additional proper-
ties of terrain cells can be defined by the designer (e.g. tree
density). On top of this terrain grid, the designer places ma-
jor terrain features with their own properties, e.g. a city with
its population size.

After the designer has specified a rough layout of the ter-
rain he has in mind, the framework expands it to a highly
detailed terrain. The designer can edit this terrain manually
in a way resembling common terrain editors. But he can also
choose to regenerate certain areas of the terrain. Care is to be
taken to preserve manual changes, when areas of the terrain
are regenerated. The framework should also prevent the user
from distorting other areas of the terrain, when editing some
area. This requires a layer mechanism: as is the case in, for
instance, image editing software like Photoshop, using in-
dependent layers improves the adaptability of the designed

(© The Eurographics Association 2008.

terrain, because changes to one layer do not distort other lay-
ers (e.g. moving or deleting a river does not leave a ground
elevation artefact). As depicted in Figure 2, we suggest five
layers for the terrain map: two man-made layers and three
natural layers. They are stacked as follows:

Man-made terrain layers:

1. Urban Layer: cities, towns, farms;
2. Road Layer: highways, local roads, bridges.

Natural terrain layers:

3. Vegetation Layer: bushes, trees;
4. Water Layer: rivers, lakes, oceans;
5. Earth Layer: elevation and soil types.

Based on the rough layout of the terrain, each layer is to
be generated using suitable and in most cases existing proce-
dural methods, tailored to the layer. The framework should
generate smooth transitions between terrain ecotopes; e.g.
from a forest to a plain, the tree density will slowly decline.
On each layer, the designer can perform manual adjustments
using layer-specific tools (e.g. road layout or elevation mod-
ification tools). To be able to determine the suitability of the
terrain, the user must have both a schematic 2D and 3D view
of the terrain or individual layers.

Naturally, a layer will be influenced by other layers. There
are numerous interactions between layers and each type of
interaction must be detected and solved. For instance, veg-
etation must not appear at locations where buildings are lo-
cated. When a river on the Water layer crosses a highway on
the Road layer, a bridge can be introduced or the road can be
rerouted (see Figure 3).

After the designer has tuned the terrain to his satisfaction
and the framework has solved any layer interactions, the ter-
rain should be exported to a usable format, with the five ter-
rain layers merged into one terrain model. Elevation correc-
tions (flattening, see e.g. [LB06]) of the Earth layer will have
to be performed to accommodate for these terrain features.



R.M. Smelik, T. Tutenel, K.J. de Kraker, R. Bidarra / A Proposal for a Procedural Terrain Modelling Framework

road river

\ bridge

Figure 3: Interaction between Water and Road layers.

This 3D terrain model is created automatically and defined
according to a well-known standard (e.g. OpenFlight, COL-
LADA). Export options are different levels of fidelity (low
for a flight simulator vs. high for a infantry trainer) or a nav-
igation map for a Computer Generated Forces package.

4. Conclusions and Future Work

We have presented high-level requirements and proposed a
workflow for a procedural terrain modelling framework. It
fits an iterative design process, and supports experimentation
and incremental improvements. Based on high-level user in-
put in the form of a rough layout of the terrain, the frame-
work provides automated terrain generation using procedu-
ral methods, resulting in a detailed 3D terrain map. For the
generation, we can combine many of the existing procedu-
ral algorithms in a new, coherent, and useful way. The de-
tailed terrain map can be manually edited and fine-tuned,
and exported into a format usable in games and simulations.
The framework can also be used to augment geospecific GIS
source data with geotypical detail in a 3D terrain model.

Our research is now focussed on the realisation of such
a framework, which poses several important design chal-
lenges. A large number of complex interactions between
the five layers will emerge, and solving an interaction be-
tween two layers may have side-effects for other layers. For
some interactions, simple rules will suffice (e.g. remove trees
that are in the way of man-made terrain elements); in some
cases, constraint solving methods might be necessary to cor-
rectly place terrain features (e.g. maintaining road connec-
tions when regenerating a mountainous terrain).

Another challenge is to map the terrain (feature) param-
eters to the different procedural terrain generation algo-
rithms. Most algorithms have several parameters, the values
of which greatly influence the quality of the generated con-
tent. When the algorithms are combined, finding adequate
parameters will be even more difficult.

Because of the increasing demands in virtual world mod-
elling, we believe it is essential to move from the paradigm
of terrain construction towards declarative terrain mod-
elling. Although it is a challenging task, we expect that the
realisation of a procedural terrain generation framework will
contribute to this paradigm shift.

Acknowledgments This research has been supported by
the GATE project, funded by the Netherlands Organization

for Scientific Research (NWO) and the Netherlands ICT Re-
search and Innovation Authority (ICT Regie).

References

[DHL*98] DEUSSEN O., HANRAHAN P., LINTERMANN
B., MECH R., PHARR M., PRUSINKIEWICZ P.: Realis-
tic modeling and rendering of plant ecosystems. In SIG-
GRAPH ’98: Proceedings of the 25th annual conference
on Computer graphics and interactive techniques (New

York, NY, USA, 1998), ACM Press, pp. 275-286.

[EWM*03] EBERT D. S., WORLEY S., MUSGRAVE
F. K., PEACHEY D., PERLIN K.: Texturing & Modeling,
a procedural approach, 3" ed. Elsevier, 2003.

[Hag06] HAGGSTROM H.: Real-time generation and ren-
dering of realistic landscapes. Master’s thesis, University
of Helsinki, August 2006.

[HBWO06] HAHN E., BOSE P., WHITEHEAD A.: Persis-
tent realtime building interior generation. In Sandbox *06:
Proc. of the ACM SIGGRAPH Symposium on Videogames
(New York, NY, USA, 2006), ACM, pp. 179-186.

[LB0O6] LATHAM R., BURNS D.: Dynamic terrain mod-
ification using a correction algorithm. In IMAGE (July
2006).

[Mil86] MILLER G. S. P.: The definition and rendering of
terrain maps. SIGGRAPH Comput. Graph. 20, 4 (1986),
39-48.

[MWH*06] MULLER P., WONKA P., HAEGLER S., UL-
MER A., GooL L. V.: Procedural modeling of buildings.
In SIGGRAPH '06: ACM SIGGRAPH 2006 Papers (New
York, NY, USA, 2006), ACM, pp. 614-623.

[Ols04] OLSEN J.: Realtime procedural terrain genera-
tion. Technical Report, University of Southern Denmark,
October 2004.

[Per85] PERLIN K.: An image synthesizer. SIGGRAPH
Computer Graphics 19, 3 (1985), 287-296.

[RPO4] RODEN T., PARBERRY I.: From artistry to au-
tomation: A structured methodology for procedural con-
tent creation. In Proceedings of the 3rd International Con-
ference on Entertainment Computing (Eindhoven, The
Netherlands, September 2004), pp. 151-156.

[SS05] S. STACHNIAK W. S.: An algorithm for automated
fractal terrain deformation. Computer Graphics and Arti-
ficial Intelligence 1 (May 2005), 64-76.

[Wel05] WELLS W. D.: Generating enhanced natural en-
vironments and terrain for interactive combat simulations
(genetics). In VRST ’05: Proceedings of the ACM sym-
posium on Virtual reality software and technology (New
York, NY, USA, 2005), ACM Press, pp. 184-191.

[WWSR03] WONKA P., WIMMER M., SILLION F., RIB-
ARSKY W.: Instant architecture. In SIGGRAPH ’03: ACM
SIGGRAPH 2003 Papers (New York, NY, USA, 2003),
ACM, pp. 669-677.

(© The Eurographics Association 2008.



