
Accepted Manuscript

Semantic crowds

Nick Kraayenbrink, Jassin Kessing, Tim Tutenel, Gerwin de Haan, Rafael
Bidarra

PII: S1875-9521(14)00003-2
DOI: http://dx.doi.org/10.1016/j.entcom.2013.12.002
Reference: ENTCOM 102

To appear in: Entertainment Computing

Please cite this article as: N. Kraayenbrink, J. Kessing, T. Tutenel, G. de Haan, R. Bidarra, Semantic crowds,
Entertainment Computing (2014), doi: http://dx.doi.org/10.1016/j.entcom.2013.12.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.entcom.2013.12.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.entcom.2013.12.002

Semantic crowds

Nick Kraayenbrink∗, Jassin Kessing, Tim Tutenel, Gerwin de Haan, Rafael Bidarra∗∗

Computer Graphics and Visualization Group, Delft University of Technology, Delft, The Netherlands

Abstract

Recent advances in crowd simulation techniques have led to increasingly realistic agent and group behavior. As many crowd
simulation solutions typically target only specific types of environments and scenarios, numerous special-purpose methods and
systems have emerged that are unsuitable for other contexts. Solving this situation demands a higher-level approach that takes
re-use and re-configuration of crowds as a priority, for adequate application in a broad variety of scenarios, virtual environments
and interaction with the entities present in that environment. In this article, we propose semantic crowds, a novel approach
that allows one to specify and re-use the same crowds for virtually any environment, and have them use the objects available
in it in a meaningful manner. To have the agents autonomously interact within any virtual world, we avoid in them explicit
object-related information. Instead, this knowledge is stored in the objects themselves, which can then be queried, according
to an agent’s needs. To facilitate creating such crowds, we developed an interactive crowd editor that provides high-level
editing parameters for defining crowd templates. We illustrate the flexibility of semantic crowds by means of three cases, in
which we let the same crowd populate quite differently configured airport terminal environments. These examples also high-
light that this modular approach easily combines with your custom implementations of agent behavior model and/or motion planner.

Keywords: crowd simulation, crowd specification, reusable crowds, agent behavior, semantic virtual worlds

1. Introduction

Real-time crowd simulation is becoming increasingly im-
portant for a large variety of applications, such as games and
simulation systems for training and education. For example, en-
tertainment and serious games can expect a fair amount of crit-
icism, if they feature rather unpopulated and empty cities and
other environments. Recent advances in crowd simulation tech-
niques have enabled more and more realistic agent and group
behavior deploying, among other things, elaborate behavioral
models, complex motion planning algorithms and impressive
physics systems.

However, these improvements come at a price: most crowd
simulation solutions are either too generic and high-level, or
they are pretty much ‘hard-wired’ and customized, typically
targeting only a few specific types of environments and sce-
narios. The former likely leads to repetitive, ‘canned behavior’,
the latter to an ad-hoc, specialized crowd, only suited for a very
narrow application domain. In both cases, we are faced with a
large variety of special-purpose methods and systems that are
hard to re-configure and re-use in other contexts.

Avoiding these drawbacks requires a totally different ap-
proach, one that primarily supports and promotes the specifi-
cation, configuration and re-use of crowds. In this article we
propose one such approach, called semantic crowds, that has
two main characteristics: (i) it allows one to specify once, and

∗Current affiliation: Google inc., Mountain View, CA, USA
∗∗Corresponding author. E-mail address: r.bidarra@tudelft.nl

re-use with minimal modifications, the same crowds in virtu-
ally any environment; and (ii) in each environment, the agents
in these crowds are able to use whatever objects are available in
a meaningful manner.

We argue that, in order to successfully apply such specifi-
cations, or crowd profiles, in a broad variety of scenarios and
virtual environments, the latter have to contain more than just
pure geometry: they have to be extended with semantics. In the
fields of linguistics, computer science and psychology, seman-
tics is the study of meaning in communication. When focus-
ing on virtual environments, we call semantics ‘all information
conveying the meaning of a virtual world and its entities’ [1].
In this definition, entities encompass everything that can exist
inside a world. Semantic virtual worlds, thus, consist of enti-
ties that ‘know’ not only about their shape and materials, but
also about their attributes, roles, functions, services, etc. Such
entities have the potential to strongly improve the quality and
variety of interactions with an avatar, be it of a player or of any
agent from a crowd [2].

In order to have the agents in a semantic crowd plausibly
and autonomously interact within any virtual world, we mini-
mize the information in the agents relative to what objects do
and how to use them. Instead, that information is stored in
the objects themselves, which the agents can then purposefully
query, based on what they want to achieve.

For the specification of crowds and agent behavior, we in-
tegrate several concepts, results and methods known from the
literature. The novel contribution of our work lies mainly in
that the same crowd, once specified, can be applied to whatever

Preprint submitted to Elsevier January 15, 2014

different virtual environments, while its agents always exhibit
plausible yet very different behaviors without having to be ‘re-
wired’ themselves. In other words, we are making such crowds
effectively reusable.

This article is structured as follows. We first survey pre-
vious work related to the specification of both virtual environ-
ments and crowds (Section 2). Next we elaborate on the es-
sential aspects of semantics, particularly on its contribution to
crowd and environment definition (Section 3). We then intro-
duce the main concepts of the semantic crowd model, both in
its demographics and in its agents (Section 4), and describe the
main features of our prototype framework, including an inter-
active crowd editor that provides high-level editing parameters
for defining crowd profiles (Section 5). Finally, we illustrate the
potential and flexibility of semantic crowds by means of three
demonstration cases (Section 6).

2. Related Work

This section surveys a selection of previous work regarding
the representation and generation of virtual environments and
crowds.

2.1. Virtual Environments

Beyond geometric data, virtual environments may also con-
tain information about objects, which actions these can perform
or how they can be used by agents. A Virtual Environment (VE)
presenting this kind of information is normally referenced as an
Intelligent Virtual Environment [3], Informed Environment [4]
or Semantic Virtual Environment [5].

Thomas and Donikian [6] propose a model of virtual en-
vironments using structures suitable for behavioral animations.
Using this knowledge, autonomous virtual actors can behave
like pedestrians or car drivers in an urban environment.

Through the concept of synoptic objects [7], Badawi and
Donikian describe an informed environment using objects
which contain a synopsis of interactions that they can be
subjected to. Using a set of seven basic actions, the objects
can describe the interaction process to any agent using them.
Smart objects [8] were a successful proposal for adding
semantics to virtual objects, dealing with many of the possible
user interactions in a VE. They were primarily devised for
manipulation, animation, and planning purposes. Gutierrez,
Vexo and Thalmann [9] present an object representation based
on the semantics and functionality of interactive digital items
within a VE. Each object participating in a VE application is
not only a 3D shape, but a dynamic entity with multiple visual
representations and functionalities. In this way, it is possible
to dynamically scale and adapt the object’s geometry and
functions to different scenarios.

Research in artificial intelligence proposed the notion of
ontologies, to overcome the lack of shareable and reusable
knowledge bases [10]. Ontologies define the meaning of
objects and the relations between them. Using this concept to
define a world knowledge base, Grimaldo et al. [11] propose
a semantics-based framework for simulation of groups of

intelligent agents. Agents can use the information provided
to enhance both agent–object and agent–agent interactions.
An object taxonomy is used to classify the interactive objects
and to specify their properties. Ontologies are also used to
define social relations among agents in order to display socially
acceptable decisions.

A semantic model for representing multi-layered complex
environments is presented by Jiang et al. [12] and is composed
of three different levels: a geometric level, a semantic level,
and an application level. The geometric level contains a 3D
model of the environment that is used for visualization and to
extract semantic information that will feed the next semantic
level. This semantic level comprehends a structure map, a topo-
logic map and a height map which are used to identify or query
semantic information of the environment. The final layer (ap-
plication level) is responsible for providing efficient interaction
between pedestrians and the environment. The crowd model
used in their work is a modified version of the original model
proposed by Treuille et al. [13].

2.2. Virtual Crowds

Virtual groups have been studied since the early days of be-
havioral animation. There are two main approaches used in the
literature: agent-based models and force-based models. The
first approach is based on modeling of virtual agents, which
interact among themselves and have some level of autonomy
and individuality. The second approach –force-based models–
provides more global control and handles high density crowds.
These methods normally yield crowd simulations that resemble
particles rather than human animation. In this subsection, we
survey existing approaches for crowd models.

Two seminal papers are examples of agents-based model:
Reynolds [14] simulated flocks of bird-like entities, or boids,
obtaining realistic animations by using only simple local rules;
Tu and Terzopoulos [15] created groups of artificial fishes
endowed with synthetic vision and environmental perception,
which control their behavior. In both papers, only small groups
were simulated, and high density crowds were not treated.
Another example of agents-based models was presented by
Musse and Thalmann [16], who proposed an approach with
hierarchically structured crowds having different levels of
autonomy. In their model, the behavior is based on a set of
rules dealing with the information contained in groups of
individuals, e.g. individual and group knowledge about the
world, individual and group states as well as their intentions.
Ulicny and Thalmann [17] proposed a model for crowd simu-
lation based on combination of rules and Finite State Machines
for controlling agents’ behaviors in a multi-layer approach.
The model proposed by Farenc et al. [18] describes the
coordination between smart objects, intelligent environments
and the virtual crowd. This work describes crowds of virtual
people which were controlled by the objects in order to act, and
could read the environment in order to evolve in the simulation.
In this case, the virtual agents were less autonomous and more
controlled by the environment. Not focused on crowds, but on
groups of a few virtual agents, the model proposed by Abaci et

2

al. [19] describe an extended version of smart objects for AI
and planning purposes.

More recently, Kapadia et al. [20] proposed a multi-actor
simulation in which actions, modifiers, constraints and behav-
iors can be expressed in a scripting language. These are used in
a behavior state machine for the actors. To actions, cost effects
can be defined and by expressing a minimize or maximize on
particular costs in a behavior the most desired actions are cho-
sen. Allbeck [21] introduced the CAROSA tool for authoring
NPCs. The framework contains an ‘Actionary’ which includes a
database of parameterized actions and objects. Both can be de-
fined independent of a particular application or scenario. These
actions and objects are built up hierarchically. A scheduler can
be used to link particular actions to a time and place. Stocker
et al. [22] introduce an approach where dynamically occuring
events describe what types of actions their virtual humans can
execute. Additionally they introduced the idea of agent prim-
ing to further restrict and simplify action choice. Since contexts
can be described in which events occur, a contextual behavior
is achieved.

The second class of crowds in literature is concerned with
force-based models. Bouvier and collaborators [23] have stud-
ied crowd movements with adapted particle systems. In their
work, the motion of people is modeled with charges and de-
cision fields, which were based on the interactions between
electric charges and electric fields. Helbing and collaborators
[24, 25] presented a model to simulate groups of people in panic
situations. Helbing’s model is physically-based, and crowd
movement is determined by attraction and repulsion forces be-
tween simulated agents and the environment. Both models are
examples of force-based methods that deal with high density
crowds, where virtual agents are homogeneously treated as par-
ticles. Braun et al. [26] extended this model by adding individ-
uality to agents and including the concept of groups, focusing
on panic situations. Despite the interesting results, this latter
model does not present facilities to provide individual control.
In addition, physically-based models as proposed by Bouvier et
al. [23], Helbing and Molnar [24] lack simplicity and robust-
ness, and any changes in resulting behavior should be addressed
by changes in the equation that represents the global control.
Treuille et al. [13] proposed a real-time crowd model based on
continuum dynamics. In their model, a dynamic potential field
integrates global navigation with moving obstacles, by model-
ing the spatial motion of agents as a function of crowd density.
This model presents very interesting results, but it also lacks
local control and simplicity: changes in the model are hard to
achieve because of its complexity.

Finally, some hybrid methods describe models to combine
local and global control, e.g. Pelechano et al. [27] described a
crowd model by applying a combination of psychological and
geometric rules, with social and physical forces. This model
is focused on panic situations, and many parameters should be
calibrated in order to exhibit expected behaviors.

In summary, some of the simulation methods presented in
literature are classified as agent-based models. While this pop-
ular approach brings some behavioral advantages in obtained
results, it lacks of control flexibility in high dense crowds. On

the other hand, the model described in [13] is one example of
a force-based model. It presents interesting assumptions deal-
ing with individuals and groups with common goals. However,
the downside is the complexity of the method and the lack of
individual control.

The semantic crowds approach we introduce here builds
upon various concepts presented above. Actions, described in
a semantic library for the purpose of gameplay specification as
well as interaction between entities, have effects on entities’ at-
tributes and state. By creating ambitions and goals that describe
the preferred target state or target value of these attributes, we
can query the semantically enriched game worlds to find suit-
able ways of reaching these goals. The main difference with ex-
isting approaches is that we strongly limit the information that
needs to be specifically defined for the agents behavior. For
this, we re-use gameplay and interaction specification from our
semantic database and therefore, when defining agent behavior,
we can focus on the desired state of these agents. A variety of
ways in which the semantically enriched game worlds can pro-
vide solutions to reach this state is available for use in the se-
mantic database. In most other frameworks available, specific
scripts, parameters or functions need to be defined not only for
the behavior of the agents but also for the actions, effects or
events that are used by the agents.

3. Semantics

In this section, we elaborate on the semantics required for
both virtual environments (3.1) and agents (3.2).

3.1. Semantics for Virtual Environments

Virtual worlds are populated with objects that are described
by various properties, by an appearance and, increasingly of-
ten, by some physics as well. In addition, an object can exhibit
some basic behavior, usually defined by scripts that, for exam-
ple, can prescribe how to move, what animation to trigger, or
how to interact with other objects. We developed a semantic
model that provides a shared knowledge base among all these
components (presentation, physics and behavior).

We define a semantic game world as ‘a virtual environment
that is populated with entities (either objects or agents) that are
enriched with semantics’ [28]. This semantics facilitates that
all information in the world is kept consistent. Not only is this
valid for the external appearance of an entity, but also for its in-
ternal behavior, and its relations with other entities. This opens
up new possibilities to reason about the world. Virtual world
designers, for example, can use semantics to create the world,
aided by information about where entities should be located.
On the other hand, intelligent agents can plan their actions in
run-time based on the entities they can use in the virtual world,
thus more closely resembling real world behavior. In a seman-
tic game world, entities change dynamically in sensible ways
one expects them to, while remaining coherent with their nat-
ural behavior.

When more entities behave like in real life, both players and
agents can achieve their goals in multiple ways. For example,

3

in order to satisfy their hunger, agents might eat a snack, buy
food in a nearby shop, or order a meal in a restaurant, assuming
these entities were specified in a proper way.

The main concepts in our semantic world model are entities
(e.g. substances, living entities, or spaces), of which charac-
teristics are expressed in attributes, e.g. the hunger level of a
human or the price of some merchandise. Among the physical
entities we distinguish spaces from physical objects. A space
is a bounded region without a direct physical presence, e.g. a
parking lot. In contrast, physical objects do have a physical
presence and consist of a particular type of matter, e.g. a table
consisting of wood. Attributes from that matter, e.g. the flam-
mability, are inherited, resulting in more specialized semantics
that can be used for physics.

Many relationships can be expressed between these entities,
e.g. ownership (a traveller owns his luggage). In addition, spa-
tial relationships (e.g. cupboard is typically placed against a
wall) can be used to automatically generate floor plans [29],
room layouts [30] and consistent buildings [31].

The generic behavior of entities in our model is expressed
through the concept of services, defining ‘the capacity of enti-
ties to perform particular actions’ [2]. Basic components of an
action are its requirements and its effects. The effects determine
what the action brings about, while the requirements determine
when the action may be performed. For example, when some-
one inserts a coin into a vending machine, it will return a snack,
which can be eaten to reduce the level of hunger.

3.2. Semantics for Agents

In order to simulate agents in a semantic game world, the
concept of desire has been introduced in our semantic model.
A desire describes the intent of an entity with regard to its state,
and can be either relative or absolute. Absolute desires describe
the state or the range of states the entity wishes to be in, and the
set of states that satisfy these desires will not vary over time.
For example, an agent may have the desire to have at least 10
coins. In contrast, relative desires describe changes that the en-
tity wishes to apply to its state, and thus the set of states that sat-
isfies these desires can change when the entity’s state changes.
For example, for an agent to ‘obtain another hat’, it does not
matter how many hats the agent already has, only by having
one more will the desire be fulfilled.

By querying their (known part of the) world, agents will
be able to find actions whose effects have an influence on their
current desires. From each action requirement, a new desire
can be generated to satisfy it, for which actions can then be
found that may help satisfy that desire. Actions may also have
a reaction as one of its effects (the attempted start of another
action), and, as such, agents may also include in their search
actions performed by other entities.

4. A model for semantic crowds

The proposed semantic crowds approach comprises two
major components: the crowd model and the agent model.
The crowd model contains the global composition of a crowd

in different demographics, as well as the ratio in which they
are present. For each of these demographics, a semantic agent
model describes their specific behavior. The next subsections
will elaborate on both the crowd model and the semantic
agents.

4.1. Crowd Model

The semantic crowd model consists of two independent
components: the crowd profile and the crowd socket. The
crowd profile defines all environment-independent aspects of
the crowd. The crowd socket configures all aspects required to
insert the crowd into a concrete environment.

4.1.1. Crowd Profile
In this section, we discuss the crowd profile of our model.

We work from the bottom up, from one level above the agents
themselves, up to the entire crowd. Note that with our definition
of crowd, there can be more than one crowd acting in a single
environment. We use the term population for the entire set of
agents in an environment.

Demographic. A demographic is a group of agents that have
something in common, and it has often been used before in vir-
tual crowd definitions, such as [32]. What they have in com-
mon depends on the used agent model. For example, the de-
mographic ‘heavy smokers’ may contain agents that will often
stop to light a cigarette or maybe buy tobacco.

A demographic always contains a set of conditions, which
constrain when an agent can belong to it, e.g. only when a mar-
ket is busy enough will pickpockets appear. Other demograph-
ics may allow only a few agents to be part of it (e.g.: a soccer
field may only contain 11 agents of each team). By using these
conditions when authoring a crowd, ‘special’ agents (such as
the prime minister, or an agent that will cause a ruckus) can be
inserted into the environment using the same mechanic as the
rest of the crowd.

Demographic Slice. A demographic slice is a description of
demographics that covers at most the entire crowd. One can
think of this as the distribution of agents in demographics when
a cross-section of the crowd is made. Each demographic is cou-
pled with a percentage indicating how many agents in the cross-
section are part of that demographic.

A demographic slice can be seen as a specialized view of
the crowd. For example, a slice may detail the distribution of
agents regarding their shopping behaviors in a mall; 30% shop-
a-holics, 40% shoppers for groceries, 16% impulse buyers 1%
thieves, and the other 12% passers-by (having no interest in any
of the shops).

Agents can be part of multiple demographics contained in
the same demographic slice. However, for each slice, if each
agent could exhibit at most only one of its demographics, there
is a configuration of ’selected’ demographics that match the dis-
tribution defined in the slice. For example, given the example
slice above, another slice may also contain the demographic
‘impulse buyers’, this time with 30% coverage. This means

4

Crowd

Slice 1: shopping behavior

Demographics 1: Shop-a-holics
30%

Ambition 1 (0.7):
Increase number of purchases
Ambition 2 (0.5):
Purchase groceries

Demographics 2: Impulse buyers
25%

Ambition 1 (0.5):
Purchase impulse items
Ambition 2 (0.7):
Purchase groceries

Demographics 3: Grocery shoppers
45%

Ambition 1 (1.0):
Purchase groceries

Slice 2: age groups

Demographics 1: Adults
75%

Ambition 1 (0.8):
Purchase groceries
Ambition 2 (0.5):
Decrease thirst

Demographics 2: Kids
25%

Ambition 1 (0.7):
Increase fun level
Ambition 2 (0.5):
Decrease thirst

Figure 1: Example of the structure of a crowd using our agent model.

that part of the agents in the ‘impulse buyers’ demographic will
also be in one of the other demographics contained in the slice
described above.

Demographic slices may also contain conditions, which
serve to limit the section of the crowd through which the
cross-section slices. Such conditions make the authoring of
crowds easier.

Since the demographics themselves have conditions, a de-
mographic slice also contains an indicator on how to handle
cases where the demographic is not enabled. If a demographic
is disabled, it will either be treated as if it was unassigned space
in the slice, or the other demographics will be ‘enlarged’ such
that the slice covers the same percentage of the crowd.

Crowd. A crowd is a collection of demographic slices, to-
gether with a ‘default demographic’. Because the slices do not
need to cover the entire crowd, it may happen that an agent is
part of none of the demographics from the slices, in which case
it will be part of that default demographic.

A crowd also contains a distribution of agent attributes.
Several attributes must always be present, such as age group
(kid, adult or elder), gender and preferred movement speed.
The used agent model may impose other required attributes.
These distributions describe the general distribution of at-
tributes across the crowd, and can be ‘overridden’ in each
demographic.

A diagram of the structure of a crowd profile example can
be seen in Figure 1.

4.1.2. Crowd Socket
In order to place a crowd in each concrete environment,

some information on that environment is required, be it en-
riched with semantics or not. We now discuss the crowd socket
component of our crowd model, and, in particular, how crowd
models, as defined above, can be inserted in concrete environ-
ments. The specifications listed below are the bare minimum
required, and can be extended to facilitate extra features of the
used agent model.

Agent Object Type. First and foremost, to insert a crowd into
an environment it must be known which type of entity will rep-
resent agents (e.g. a generic human, a police officer or a car).
This must be a physical object, since agents need to have a posi-
tion and orientation. Because a single environment may contain
multiple types of crowds at once, the object type can be speci-
fied for each used crowd. Attributes of the ‘controlled’ entities
may be set using the agent attribute distributions in the crowd
and demographics.

Spawn Spaces. The crowd socket will typically also specify
where in the environment the agents will come (or spawn) from.
Each type of spawn space must be specified individually, and a
desired spawn rate needs to be specified. In the environment,
each space of the given type will be treated as a spawn space, so
the specification should be as specific as possible. For example,
if the space ‘doorway’ is given as a spawn space, all doorways
in the environment will become spawn spaces.

The complementary type of space, where the agents leave
the environment, does not have to be specified in the crowd
socket. Since not all exits need to be spaces, they have to be de-
fined in the semantics by actions that remove the agent from the
environment. The reason for this choice is that leaving should
be an action, meaning that the agent must want to leave and
simply being in the space designated as ‘exit’ does not neces-
sarily mean that the agent intends to leave.

Spawn Rate & Conditions. For each type of spawn space,
the desired spawn rate must be specified, which can be either a
fixed value or a random distribution. This is the minimum time
that will elapse between two agent spawns.

Conditions may also be imposed on the spawn space to pre-
vent agents from spawning. For example, agents might only
spawn when the door is open, or while there are less than 500
agents in the environment.

4.2. Semantic Agents

This section discusses our particular agent model, which ul-
timately makes use of the semantics present in the environment.

5

Select Ambition Ambition
changed?

Find ways to fulfil
ambition

Yes

Find next action to
perform

No

No Should I
perform the

action?

Perform the action

Yes

Wait for the action
to be performed

No

Update Ambition
Urgencies

Ambition is
possible?

Yes

Figure 2: Overview of a single round in the ‘thought process’ of a semantic agent.

Aside from its global structure, including a specification of the
accompanying type of demographic, we also discuss the global
agent thought process.

4.2.1. Agent Model
Our agent model is a variant of the BDI (Beliefs, Desires,

Intentions) agent model, first introduced by Bratman [33].
Agents have a set of goals that they wish to fulfil, each one
containing one or more semantic desires (as introduced in
Section 3.2). For each goal, they also have an urgency valuation
function, or rather a way of determining how urgent each of
the goals are. The combination of goal and urgency valuation
function is what we call an ambition. Aside from assigning
a numerical value to the urgency, the valuation function also
determines if the ambition should be taken into consideration
at all (for example, whatever happens, an agent should only
buy a jacket once).

The set of ambitions in an agent are emphdesires in BDI,
while emphbeliefs are implicitly present in the form of a world
view; a description of the part of the environment that the agent
knows about. Intentions are represented by the ambition se-
lected by the agent and the paths it found to satisfy it.

In the type of demographic specific for this agent model,
a set of these ambitions is specified along with a probability.
This probability indicates the chance an agent, randomly picked
from all agents in the demographic, has that ambition. We also
introduced two extra attributes for all agents: determination and
distractibility. The higher the determination of an agent, the
more likely it is that it will fulfil the ambition it selected before
attempting to fulfil another one.

By letting a demographic specify a set of possible ambi-
tions, we differentiate ourselves from works such as [32]: in-
stead of explicitly specifying where the agents will go at what
times, we specify what the agents want to accomplish when
certain conditions are met.

To make further use of ambitions, we also extended the
crowd socket for our agents. Aside from the basic information,
one can also specify actions that insert ambitions into agents,
along with an insertion strength. Whenever those actions are
successfully performed on an agent, the agent has a chance (de-

termined by the insertion strength, as well as the agent’s dis-
tractibility) to gain another ambition. Such a behavior of ac-
tions most closely resembles advertisements: they are designed
to make agents want to do things they would never have thought
of on their own.

4.2.2. Agent Thought Process
An overview of the ‘thought process’ of our agents can be

seen in Figure 2. Note that this flow diagram only indicates the
steps an agent will take when it is actually allowed to do some-
thing. If it is already performing an action, or certain actions
are being performed on it, this whole process is not performed.

Update Ambition Urgencies. First, the agent re-evaluates all
its current ambitions, and determines which ambitions may be
considered.

Select Ambition. Here, the ambition with the highest urgency
is selected. If the previously selected ambition has a high ur-
gency as well, that ambition may be selected instead, depend-
ing on the agent’s determination; the higher this determination,
the higher the discrepancy in urgency values can be, before the
agent switches ambitions.

Find Ways to Fulfil Ambition. If the selected ambition is dif-
ferent from the one the agent was trying to fulfil in the previous
round, it needs to find out how to achieve its new ambition. The
agent will query its world view for entities able to perform an
action affecting one of the desires in its ambition. For each of
those, desires are generated for its requirements, and so forth.
This search only stops when all possible paths are found.

Find Next Action to Perform. Once both the ambition to
achieve, and the ways to achieve it, are known, the agent can se-
lect the action to perform next. The action selection mechanism
will not try to find the optimal way of achieving that ambition:
since the state of the environment can change while the agent is
trying to fulfil it, finding that optimal path is unfeasible.

Our agents use an action selection mechanism based on ex-
pected action cost. One could see this as the agents being lazy

6

and short-sighted; they desire the least amount of effort, but will
not take into account the amount of effort future actions might
cost. A more graceful way of putting it is that agents opt for
immediate gratification for instant feedback, instead of think-
ing of the long-term benefits. If multiple actions have the same
cost, the agent will randomly select an order.

If there is no possible next action, the ambition cannot be
fulfilled in a way know to the agent. In that case, a new am-
bition will be selected, with the current ambition taken out of
consideration. On the other hand, if the agent did find an action
that should be performed next, there are three possibilities:

1. If the agent is the actor of the action, the agent should
perform the action.

2. If the agent is the target (either the direct target or indi-
rect target), it should most likely wait for the action to be
performed.

3. If the agent is neither, it cannot know when the action has
been performed, except possibly by detecting the results
of the effects of that action. The agent will assume the
action will be performed soon, and will select a different
action instead.

5. Framework

We have implemented the crowd and agent models de-
scribed in the previous section, along with an interactive
editor for both. This section discusses the resulting prototype
framework. First, an overview of the system will be given,
along with descriptions of each component. Then, the editors
for the two models are introduced.

5.1. System Overview

A schematic overview of our system can be seen in Figure
3. The dashed boxes indicate components that can be replaced
by custom versions relatively easily. The rest of this section will
give a more detailed description of the various components.

5.1.1. Simulator
The simulator is the central part of the framework, and con-

nects the various components. It will not do anything significant
itself; it only propagates the data between the different compo-
nents, and allows the components to interact.

It does however contain the simulation update-loop. The
first step is letting the semantic virtual world know to update
all spawn triggers, to see if any more agents should be added
to the environment. After that, the semantic virtual world is
updated to make the environment state up-to-date. The agents
themselves are updated afterwards, and finally the navigation
engine is requested to update the position of the agents.

5.1.2. Agent Engine(s)
The agent engines take care of the agent update process, and

is thus specific for the used agent model. For our agent model,
the engine does not need to do much more than delegate the up-
date process to each of the agents. However, if the agent model

requires some form of communication between agents that can
not be handled using semantics, the accompanying agent engine
should handle that.

Detecting actions that insert ambitions into agents is the
only extra inclusion in our agent engine. This detection could
also be part of the agents themselves, but that would mean that
the agents already know what ambitions they may eventually
get, which is less plausible.

Visualizer

Simulator

Semantic virtual world

Agent engine(s) Agent

Navigation engine

Figure 3: Schematic overview of our framework. The full ar-
rows represent components requesting an update, the dashed
arrows represent components querying other components. The
dashed boxes represent components that are easily interchange-
able in our approach. For example, our approach is independent
of the specific algorithms for navigation of an agent towards a
target position.

5.1.3. Agent
The abstract agent, as defined in our simulator, requires

three properties to be specified by the model-specific imple-
mentations. These properties are all related to the movement
of the agents; visual information of the agents is assumed to be
specified in the semantic representation that the agent controls,
and any other information is specific for each agent model:

Motion Type. Each agent must indicate if it takes care of the
movement by itself, or if the navigation engine should handle
it. This value need not stay the same throughout the life span of
the agent.

Target Position. To let the navigation engine know where to
send the agent, each agent specifies its target position. This
will not be used internally if the motion type indicates that the
navigation engine should leave this agent alone.

Preferred Movement Speed. This property is by default the
value obtained from the crowd profile. However, if the agent
model decides that the agent is in a hurry, or very tired, adjust-
ing this value will let the navigation engine know to adjust the
movement speed (when possible).

The agent can query the semantic virtual world to find ways
to fulfil an ambition.

5.1.4. Navigation Engine
The navigation engine handles the locomotion of the agents,

based on their orientation and target position. Any collision

7

avoidance should be handled here, although collision detection
should be left to physics handlers provided to the semantics.

We chose to allow only a single explicit motion engine,
to encourage simulating all movement with a single approach.
Having multiple navigation engines makes it much harder to
create a realistic simulation. If a different engine is still required
for part of the agents, it can still be achieved by incorporating
navigation into the agent engine.

The navigation engine used in our system is a small wrapper
around a path planner using Explicit Corridor Maps [34].

Figure 4: Screenshot of the Crowd Profile Editor.

5.1.5. Visualizer
The visualizer is not strictly a component in the simulation

system, since even without it the simulation will work. The
simulator gives access to the semantic virtual world as well as
the agents controlling the entities in that environment, which is
all that is required to visualize what is happening in the simula-
tion.

5.2. Crowd Editor

To aid in the creation of crowds and their addition to seman-
tic virtual worlds, we have created interactive editors for Crowd
Profiles and Crowd Sockets. To emphasize the independence of
the two components of our crowd model, they are separate ed-
itors. The editors are also specifically built to create crowds of
agents using our semantic agent model.

5.2.1. Crowd Profile Editor
The Crowd Profile editor allows the user to create a crowd

profile from the bottom up, as well as to load an existing crowd
and edit it at will. A screenshot of the editor can be found in
Figure 4, displaying the editing tab for ambitions.

General structure. The left column of the editor provides
aggregated lists of goals, ambitions, demographics and demo-
graphic slices, and provides easy access to them at any point in
the editing process for either selection or drag and drop func-
tionality. These components also all have a label, which must
be unique, in order for them to be more easily distinguishable
for the human eye. The rest of the editor displays what the user
is currently editing. If the editing requires the indication of one
of the components in the left column, the user only needs to

drag and drop the desired component into the appropriate loca-
tion.

Goals. Some agents may have the same goals, but with differ-
ent ambitions wrapped around them. For example, most agents
only want to go in a roller coaster once or twice, while fans
want to go as many times as possible. To this end, the goals can
be defined and edited separate from the ambitions.

The desires for a goal can be added, removed and edited
freely. Although the same desires may also be used in multiple
goals, we chose not to support this in the editor because the
desire definitions are almost trivial. Desires will be displayed
with a type and a number to be able to distinguish between them
while editing.

Desires. When adding a desire to a goal, the user first chooses
which type of desire. These can be desires for the agent to be
in a particular state or for an agent’s attribute to be higher than,
lower than or equal to a particular value. One can also express
a desire for the agent to be in a particular type of space (e.g. the
baggage claims area of an airport) or to simply leave the world.
States, attributes or spaces can be chosen from the semantic li-
brary. This means that whenever e.g. new attributes are added
to entities in the semantic library, these are immediately acces-
sible in the crowd editors.

Ambitions. To set the goal of an ambition, the user only needs
to drag and drop the appropriate goal from the list on the left
side of the editor. Alternatively, the user may create a new goal
that is automatically inserted into the ambition by using the con-
text menu.

The urgency valuation function is split up in two parts. The
first is a function that assigns an urgency to the ambition (sim-
ply the ‘urgency function’), the other is a set of rules (condi-
tions) that determine if the ambition should be considered. The
urgency function of the ambition can only be defined by en-
tering the function as text. The format of this function is very
similar to mathematical expressions in most programming lan-
guages.

The conditions of the ambitions are again similarly defined
as the desires of goals. One of the condition types uses a similar
function format as the urgency function in order to access the
attributes of the agent. The only difference is that the condition
function requires the result to be a boolean instead of a number.
Both functions are stored as-is, although only if their format is
valid will they result in a function that returns a non-null value.
In addition, the user can also put an occurance condition for the
ambition and a condition on whether or not another ambition is
already achieved. For the latter, the user simply drags and drops
an ambition and chooses whether this one should or should not
be achieved first.

Demographics. The definition of a demographic for our agent
model makes the editing rather straightforward. Ambitions can
be added to the demographic using drag and drop. Once the am-
bition is placed in the demographic, the probability can be spec-

8

ified (see also the screenshot in Figure 4). The demographic
conditions also work the same as the ambition conditions.

However, each demographic may also override the agent at-
tribute distributions by virtue of the specific agent attributes de-
termination and distractibility (as introduced in Section 4) and
preferred movement speed (these are not to be confused with
the semantic attributes). A simple checkbox lets the user indi-
cate that the demographic overrides the attribute distribution of
the crowd. Once that is checked, the user can create a tree that
defines these distributions. The tree itself only specifies the age
group and gender of the agent, but the user can decide in which
order. Because of the tree structure, the distributions of the at-
tribute do not need to be independent. Aside from a probability
for the agent to ‘select’ it, each node in the tree may contain a
distribution for the other three agent attributes. These distribu-
tions only hold for agents that ‘selected’ that path in the tree, so
if the distributions are placed in the root node, all agents with
the demographic will use that distribution.

Demographic Slice. The way demographics are put into
slices is the same as ambitions are put into demographics. The
user only needs to drag and drop the demographics from the
left column onto the indicated spots. The coverage percentage
of each demographic is also inserted in the same way, albeit
with values that range from 0 to 100. If a demographic has
conditions the user can indicate will be able to indicate how
to handle unsatisfied conditions. The conditions that limit the
coverage of the slice are handled in the same manner as the
other conditions in this editor.

The Crowd. Most of the editing of the crowd itself works ex-
actly the same as the editing of its components. The list of slices
is reminiscent of the list of demographics and the list of ambi-
tions in the demographic slice and demographic definitions re-
spectively. The default agent attribute editor is the same as the
one used in a demographic.

For a single demographic, an extra spot has been reserved
at the bottom. This demographic is the ‘default’ one, and need
only be set if none of the slices covers the entire crowd. Finally,
at the top there is room to enter the label of the crowd.

5.2.2. Crowd Socket Editor
Because of the simplicity of the crowd socket for our agent

model, this editor is much smaller than the one for the crowd
profile. There are two main content collections that need to be
filled: crowd sources and ambition inserters.

The file resulting from this editor will also contain the data
found in the output of the crowd profile editor. We could have
just kept references to the crowd profile files, but that would
mean the files could not be moved once made. It also has the
benefit that only one file needs to be loaded when actually in-
serting the crowd in the environment.

Crowd Sources. A crowd source is a combination of a crowd
profile, a spawn space and spawn trigger. The space can be
entered by typing the name of the space, or by browsing through

a loaded database to prevent typing errors. In order to enter the
spawn rate, the user first has to select what type of distribution
the spawn rate should have. After that, only one or two values
are necessary to instantiate the spawn rate.

The definition of conditions works similar to all other con-
ditions used in the Crowd Profile editor. However in this case
there are two sets of conditions. The first set will prevent the
spawn trigger from updating, the second set will prevent it from
notifying the spawn space that an agent should be spawned.
This split allows for a greater variability in the crowd sources.
For example, a (small) revolving door will deposit an agent in
the environment every 2 seconds. When the door is broken (and
cannot revolve), no agent will be spawned. However when a
broken door is fixed, the revolution of the door continues where
it left off, instead of continuing wherever it would have been if
it was never broken. In other words, the crowd source of the
revolving door should have an update condition that the door
is not broken, with possibly a spawn condition to prevent the
environment from becoming overfull. The latter can be inter-
preted as agents staying in the ‘wedges’ of the revolving door,
leaving as they come, before they even enter the environment,
because they found it too full.

To load the crowd, the user must browse to the file generated
by the crowd profile editor. Alternatively, the file can be loaded
by dragging the file onto the indicated location.

Ambition Inserters. The editing tab for ambition inserters is
similar to the format of the crowd profile editor. On the left side
are lists with ambitions and goals, which are automatically pop-
ulated with those found in any crowd used in the crowd sources.
On the right side are tabs for those ambitions and goals, as well
as a tab with all inserters.

Each ambition inserter requires, aside from an ambition and
insertion strength, a reference to a type of action and the entity
type of the actor. This pair represents the actual inserter; when-
ever an entity of the given actor type performs the given action,
the given ambition will be attempted to be inserted. The user
can also indicate how many times the insertion should be at-
tempted.

6. Results

To demonstrate the viability and merits of the proposed ap-
proach, three cases have been created, wherein different envi-
ronments were populated with the same crowd. Section 6.1
introduces the crowd template used in all three cases and de-
scribes the setup of the basic environment, which the two first
cases, discussed in Sections 6.2 and 6.3, expand upon. Section
6.4, in turn, describes the third case, which is the application of
the same crowd template on a different, much larger and more
complex environment. Please refer to the accompanying media
of this article for several videos on the simulations performed
for these three cases.

6.1. Basic Setup
In this section, we introduce a basic environment, the crowd

to be used throughout the section, including its environment

9

(a)

(b)

Figure 5: Floor plan (a) and heatmap (b) of the basic setup. In
the heatmap, different colors are used for different age groups:
blue traces are elderly, red traces are adults, and green traces
are kids. The rooms shown are: (A) a bank, (B) a hotel, (C) a
cafe, (D) a hidden garden with plum trees, and (E) an arcade
hall. The cyan areas in the hallways are spawn spaces.

specific settings, and the initial results of populating the former
with the latter.

6.1.1. The Environment
Layout and Semantics. The environment represents a section
of an airport before customs. It is a hallway with benches on
one side, on which agents can rest, and several establishments
on the other side, including a bank (A), hotel (B), cafe (C), a
hidden garden with plum trees (D), and an arcade hall (E). An
ATM is also present in the hallway, at the entrance of the hotel.
This floor plan can be seen in Figure 5a.

The agents enter from the cyan spawn spaces at the left and
right sides of the environment, and can exit there as well. They
can also ‘exit’ into the hotel, but in order to do so, they have
to check in first. Checking in can be done at the front desk of
the hotel, but requires a credit voucher from the bank. In order
to use the lounge chairs in the hotel lobby, an agent must be
checked in as well. To use the services of the arcade hall and
the coffee shop, money is required, which can be retrieved at
the ATM or at the bank. The plums from the trees are free.
The arcades increase the enjoyment of an agent, having drink
sates thirst and slightly increases the need to go to the toilet,
and eating plums greatly increases that need. The cafe and the
bank are only usable by adults and elderly.

Crowd Socket. There is only a minimal configuration
required for this environment. The cyan spawn spaces at the
ends of the hallway are specified, along with their spawn rate.
Furthermore, the specific semantic entity that represents the
agent is defined. Finally, the maximum number of agents in
the environment is set to 50, because with any more agents the
doorways might become clogged very fast.

6.1.2. The Crowd Profile
Throughout the three cases in this section we will use ex-

actly the same crowd profile. In doing so, we wish to make our
point that virtual environments enriched with different seman-
tics are able to induce rather different behaviors on the same
crowd. In other words, you don’t need to ‘re-program’ the
agents to have them act or react to different environments or
stimuli.

The distribution of the agents’ genders is set to be equal,
but in the age group distribution, adults are more likely than
elderly and children: approximately 15% will be children, 15%
will be elderly, and the other 70% will be adults. The average
walking speed decreases with the age, but their determination
and distractibility are equally distributed.

Every agent has a small ambition to leave the environment,
such that they will never be standing still, as well as the ambi-
tion to go to the toilet when they need to. The latter increases
an agent’s urgency when it ‘fills up’. Most children (80%) will
want to do something fun before they leave, while only 10%
of the adults have that ambition, and none of the elderly. All
adults and elderly have the ambition to rest when they get tired,
but elderly get tired much faster than adults. Half of the adults
and three-quarters of the elderly enter the environment in search
of a drink, and half of the adults who do not want a drink aim
to check in at the hotel. All these specifications, regardless of
how likely and sensible they are, serve to clearly illustrate how
elaborate a crowd description can be.

6.1.3. Analysis
A heatmap of the simulation of this basic setup can be seen

in Figure 5b. The easiest observation to make from this map
is that the agents make no use of the available plums at all.
This is exactly what is expected though, as the effect of the
plums does not positively influence any of the ambitions that
the agents have. The agents will also never exhibit the ambition
to relieve themselves, as there is nothing in the environment that
they can use for that purpose.

Another general observation is that the agents will approx-
imately equally distribute themselves over the various objects
giving the same service. As discussed in Section 4.2, the choice
of actions that agents choose to perform is based on the ex-
pected ‘cost’ when performing those actions. Because the cal-
culation of the expected cost is rather crude, it is not necessarily
the object closest to the entrance that gets used the most.

The heatmap also shows several agents that at some point
sat on the benches. Because the average life time of an agent
in the environment is low, only elderly agents have rested
on the benches, adults left before they got tired. The hotel
lounge chairs are unused in this sample. Because the benches
are spread out over the environment, agents will find it much
easier to just sit on a bench, than going through the process of
checking in.

Our agents take into account only one ambition at a time.
Thus agents will not combine the ambition to check in to the ho-
tel with the ambition to rest; whatever is deemed more urgent
will be achieved first. Something similar could be observed
with regard to the coffee shop and arcade hall. If an agent

10

(a)

(b)

Figure 6: Floor plan (a) and heatmap (b) for Case 1. The
heatmap uses the same color scheme as the heatmap in Figure
5. The rooms shown are: (A) a bank, (B) a hotel, (C) a cafe, (D)
a hidden garden with plum trees, and (E) an arcade hall. The
cyan areas in the hallways are spawn spaces.

wants to visit and make use of both establishments, the agent
will need to use the ATM twice (or go to the bank once) to get
enough money. However, agents will never get more money if
they believe they have enough to start satisfying their current
ambition. Thus an agent may visit the ATM before going to the
coffee shop, after which it needs to go to the ATM again before
going to the arcade hall.

As long as one does not try to follow the individual agents,
the system creates a fairly realistic ‘background crowd’. Of
course, if more detailed behavior is desired, the semantics
and/or crowd definition will need to be extended accordingly.

6.2. Case 1: Hurdles as preconditions
For this first case, we slightly adapted the basic environ-

ment described above, in order to highlight the strength of the
semantics in the world and in its objects. The same crowd is
used, and the modifications to the environment were so minor
that the crowd socket can remain the same. We first describe
the environment changes, after which we discuss the results of
having the crowd move through the new environment.

6.2.1. The Environment
This environment is mostly the same as the environment

from Section 6.1. However, in order to use the bank counters,
a ticket is required from the bank’s front desk in the bottom-
left corner of the bank. A similar change has been applied to
the arcade hall: in order to use the arcade machines, coins are
needed. Money can be traded in for coins at the machine near
the entrance, outside of the arcade hall. An updated floor plan
can be seen in Figure 6a.

6.2.2. Analysis
Since the same crowd is used in this environment, we still

see mostly the same behavior. However, as can be seen from

the heatmap in Figure 6b, there are some significant differences.
The major difference is that a disproportionate number of agents
is using the front desk of the bank. Because getting a ticket is
very easy, agents will (usually wrongly) assume that using the
bank is faster than using the ATM. There are some agents that
still use the bank after they got a ticket, but those are the same
agents as the ones that checked in at the hotel a few moments
later.

Figure 7: Floor plan for the extended environment of Case 2.
This environment contains ads, which give agents ambitions
that are not specified in their profile. These ads are marked
in red. The rooms shown are: (A) a bank, (B) a hotel, (C) a
cafe, (D) a hidden garden with plum trees, (E) an arcade hall,
(F) a toilet (G for males, J for females), (I) a juice shop, (K) an
art gallery, (L) a burger restaurant and (M) another hotel. The
cyan areas in the hallways are spawn spaces.

It is also apparent that agents often walk back and forth be-
tween the coin machine and the arcade cabinets. Agents are
not able to satisfy their ambition to have ‘enough’ fun with just
one or two plays, and their coins will usually run out before the
ambition has been satisfied. Because we made our agents opt
for instant satisfaction, rather than finding the optimal route to
satisfy all ambitions, they will not hoard enough coins in order
to keep playing until they are done. Instead, only one batch of
coins is bought at a time, and a new batch is only bought when
the current batch runs out.

Since this environment is only slightly different from the

11

Figure 8: Heatmaps for Case 2. The left map uses the same color scheme as the heatmaps in Figure 5 and 6; in the right map, blue
traces are males and pink traces are females.

original environment, having the same crowd run in this sim-
ulation gives only a little taste of the strength of semantics for
crowd simulation. By changing the way tasks have to be solved,
without changing anything to the agents themselves, we show
that for deploying semantics, it does not matter how convoluted
the path towards the goal of the agents is. It also does not mat-
ter in how many ways the agents can fulfil their ambitions, nor
what type of objects the agents need to use, nor how those ob-
jects can be used.

6.3. Case 2: The power of ads
This second case uses a larger environment, where we in-

troduce ads, which will induce agents to do things that were not
specified in ther crowd definition. Section 6.3.1 describes the
differences between the new environment and the one used in
Case 1, and Section 6.3.2 discusses the resulting crowd behav-
iour in this new environment.

6.3.1. The Environment
Layout and Semantics. This environment is an extension of
the environment used in Section 6.2, as can be seen in the floor
map in Figure 7. The top hallway is the same as before, al-
though there are less benches on the bottom wall to accommo-
date the new hallways. Ads are marked in red.

The central block contains a toy store (F), toilets (G for
males, J for females), juice shop (I) and an art gallery (K). The
toy store will provide fun for kids as they visit it, while the art
gallery does the same for adults and elderly. An ad placed in
the left hallway will entice agents to buy something at that toy
store, although none of the agents will shop there automatically.

The toilets, separated by gender, finally provide the agents with
a way to relieve themselves.

Near the entrance of the toy store is a sign with information
on the plum trees, thus acting as an ad for this fruit. In the same
hallway an ad for drinks is located, which means that kids may
also want a drink if they pass by that ad. A fountain can also be
found close by (H), although it only has an aesthetic function.

The bottom hallway contains a burger restaurant (L) and
another hotel (M). An extra ATM is placed in front of the new
hotel, and a generic ad for food is placed in front of the burger
restaurant. The same ad is also placed in the left hallway.
Agents can enter and leave from the left and right ends of the
top an bottom hallways, and an ad for the hotel chain is also
located at the exit near the burger restaurant.

With the addition of ads, this environment needs some more
configuration before agents can use all of it. For each type of ad
entity, we specify what kind of ambition they want the agents
to have. For the plum ad, the agents will want to eat at least one
plum before leaving the environment. The food ads will make
agents want to eat something before they leave; in this case that
will have to be either a plum or a burger at the restaurant. The
toy store ad and hotel ad are fairly self-explanatory: they will
make the agents want to buy something at the toy store and
check-in to one of the hotels respectively.

6.3.2. Analysis
Behavioural Evaluation. Now that the environment contains
ads, the crowd ends up doing what it would never think of be-
fore, as shown on the heatmaps in Figure 8. Since the plum trees
are not on the route for anything else, the fact that agents are

12

Figure 9: The floor plan of the arrivals and departures section of the airport. P indicates that a passage is a passport control; C,
customs; and E, escalators. The arrows indicate one-way passageways. The areas of the hallways behind the dark green lines are
spawn spaces.

walking near them gives enough evidence that the plum trees
are now being used. The burger restaurant is eerily quiet, but
that is because it costs so much: plums will also sate the hunger
of the agents, so they would rather eat a few plums than go to
the restaurant.

Another interesting observation is that, while the art gallery
can be used by elderly, they never actually use it. This has a
simple explanation, since, according to the crowd profile (see
Section 6.1.2), the elderly agents do not have the ambition to
do something fun before leaving the environment and there are
no ads that will make them want to visit the gallery either.

In conclusion, now that the environment is significantly
larger, the power of semantics is even more visible. Without
changing anything in the crowd profile, we can let the crowd
roam through this environment with just as much realism as in
the smaller environments.

Performance Analysis. In Case 1, we could simulate ap-
proximately 175 agents without getting a noticeable lag in
performance. In Case 2 that same amount of lag occurred at
around 100 agents. The main bottleneck for this volume of
agents is the process of an agent finding all possible ways to
satisfy its ambition. This process is influenced by the amount
of actions the agent can take on each entity type. The number
of instances of each entity type does not play a role in this
process, since the graph is built using the entity types, not all
their instances. Therefore enlarging the world and adding many
more instances of existing entity types will not slow down this
process. Optimizing the performance was outside the scope
of this project, however it is clear that some relatively simple
improvements could increase performance significantly. For

example, reusing graphs between multiple agents, instead of
recreating them every time, would decrease the influence of the
agent count a lot.

6.4. Case 3: airport case

This final case drastically changes the circumstances, by in-
troducing a completely new and considerably larger environ-
ment. In doing so, the original crowd profile from the previous
cases can be tested on its portability to such a different environ-
ment. In addition, this case illustrates the rest of the functional-
ity of our prototype simulator.

6.4.1. The Environment
Layout and Semantics. Even though the environment is sig-
nificantly different from that in the previous cases, it still rep-
resents part of an airport, this time, the section of the airport
for arrivals and departures. This is where agents can check in
and board a plane, or disembark, collect baggage and leave the
airport. Its floor plan can be seen in Figure 9.

As can be seen on the floor plan, one-way passageways have
been introduced, such as passport control and the customs, but
also escalators and turnstiles.

The environment contains two boarding gates at both cor-
ners in the top, which are composed of two one-way spaces:
the outermost spaces are where agents pass the customs and
board the plane (the departure space), the innermost spaces are
where agents exit the plane (the arrival space).

There are also two check-in areas, the two (outermost) pur-
ple spaces on the middle row. That same row contains the bag-
gage claim area, which is the middle purple space. The entrance

13

in the lower center is an entrance from (and exit to) the train sta-
tion. The other two entrances lead to the main airport entrance,
possibly past the hallways from the previous two cases.

The row of establishments between the gates are: a cafe,
a jewelry store, a liquor store, a casino, and another cafe. On
the left side of the baggage claim are toilets, on the right side
is an elevated section with a post office and a restaurant. This
section is accessible by both the escalators (between the post
office and the restaurant) and by a set of stairs (on the other
side of the restaurant). The establishments at the bottom row
include a clotheing shop, a flower kiosk, a train ticket kiosk, a
snack bar, a news stand and a third cafe.

The semantics in the environment is as follows.

Miscellaneous Stores Most ‘stores’ (jewelry, liquor store,
clothes store, restaurant, snack bar, flower kiosk, train
ticket kiosk and news stand) have one counter, where
agents can buy their respective goods (the restaurant only
serves food). Each of the counters requires the agent to
have a certain amount of money, and set a flag that the
agent has bought something there when the exchange
was successful.
At the post office, agents can deliver a letter or postcard
to be posted. This service also costs money, although
only a little amount. The cafes only serve drinks,
providing agents a decrease of their thirst.

Casino Since there is no ATM in this environment, the casino
is the only place where agents can possibly get more
money. The three casino tables all work the same; they
require some money, and the return value is based on
chance. There is a 20% chance of the agent winning a
small amount, and a 2% chance of winning a big amount.
All other times the agent loses its inlaid money.

Toilets The toilets work exactly the same as in the previous
environment.

Check-In The check-in desks require the agent to have a plane
ticket, and have the result that the agent has checked in.
Below both check-in areas are two terminals that allow
the agents to check-in faster. However these cannot be
used if the agent has additional baggage. The agents will
only be able to pass the passport controls near the check-
in counters once they are actually checked in.

Gates The customs at the gates can be passed whenever an
agent is checked-in and past passport control. The re-
quirements for agents to be checked in was made to pre-
vent arriving agents from taking another plane (as if this
particular airport would not support direct transfers).

Baggage Claim The baggage claim area is where the agents
can claim their baggage. If an agent has any baggage to
pick up, it can only go past the passport control here after
that baggage has indeed been picked up.

Other The escalators can be either on or off. This environment
contains no semantics that adjust this state, but it can be

toggled during the simulation, if desired (see Figures 10
and 11).
In order to use the exit by the train station, a train ticket
is required.

Two types of agent entities simulate people departing and
people arriving. Both have the same attributes, although
arriving people will have different default values for some
of them. There are four numerical attributes present; money,
hunger, thirst and toilet need. The value of hunger and thirst
will increase gradually over time. All four attributes get a
random initial value. Most of the other attributes have to do
with inventory control, such as ‘bought jewelry’, ‘has baggage’
and ‘has plane ticket’, but also state control, such as ‘is checked
in and ‘is past passport control’. Arriving people will never
have a plane ticket, while only half of the departing people will
have one.

Crowd Socket. The ‘departing’ crowd will be spawning from
the main entrances and the train station. The main entrance
will spawn a new agent (of type ‘departing human’) on average
every 0.4s, while the train station will spawn one approximately
every second. From the entrances at the gates the ‘arriving’
crowd will spawn, and will produce one agent (of type ‘arriving
human’) every 0.5s.

For practical reasons, crowd sources have a condition that
will prevent more than 50 agents being in the environment at
any one time. Preliminar tests showed that this amount resulted
in a reasonably crowded environment.

6.4.2. The Crowd Profile
Two crowd profiles have been made for this environment;

one for the crowd arriving at the airport from a plane, and one
for the crowd that arrives through other means and may want to
depart using a plane. The attribute distribution of the two pro-
files is the same. The determination is set to 0, so that agents
will always try to do what is most urgent. The average (pre-
ferred) movement speed is 2ms−1, with a minimum of 1ms−1

and maximum of 6ms−1. The amount of money an agent ini-
tially has is random.

The arriving crowd has three demographic bands; one for
every arriving agent, and two for men and women, respectively.
30% of all arriving agents will have the ambition to communi-
cate with home, and half of all arrivals will want to check the
local new (these groups may overlap). The desired method of
leaving the airport splits the arriving crowd in two: 50% of the
agents will want to use the train, while the other 50% want to
use the front door (to leave by car, bus, taxi, etc.). Agents that
want to use the train will also have the more generic ambition to
leave sometime, as they may not have enough money to actually
buy a train ticket. The latter ambition has a very low urgency
though, so it will only be adopted if there is no other possi-
bility. The band ‘everyone’ contains two sub-bands; one band
is for the desired mode of transportation described above, while
the other describes which agents are hungry and/or thirsty. 28%
will be thirsty people, 17% will be hungry people, and 8% will
be hungry and thirsty people. Hungry agents will want to eat

14

Figure 10: Heatmap for the dedicated crowd of Case 3 with the escalators on. The color scheme for the agents is different this time,
as the age group is of little importance in this simulation. Male agents are painted blue, while female agents are painted red.

Figure 11: Heatmap for the dedicated crowd of Case 3 with the escalators off. The color scheme is the same as the one used in
Figure 10. The exposure time of this heatmap is much shorter than in Figure 10.

15

something at some point; it does not matter what or how much
it fills them up. Agents belonging to the hungry (or thirsty)
demographic, will have the ambition to keep their hunger and
thirst low. If an agent is in any of these demographics, it will
also have the ambition to go to the toilet when necessary.

The two gender-dependent bands have a similar structure.
Each contain only one demographic, that covers all of the
agents in that band. Of the men, 30% will have the ambition
to buy liquor, and 10% will have the ambition to buy some
jewelry. All men will have the ambition to buy some flowers.
In contrast, 60% of the women will want to buy some clothes,
while only 15% have the ambition to buy some jewelry.

The departing crowd is structured similarly as the arriving
crowd. It also has three bands, also with the same purpose. The
band for women is exactly the same, while the band for men
only has one difference; only 30% of all departing men will
have the ambition to buy some flowers, instead of all men.

The band for all departing agents is also similarly struc-
tured. It still has a sub-band that determines if agents are hun-
gry or thirsty, which has the same distributions as well. How-
ever every departing agent will have both the ambition to leave
by plane, as well as to leave sometime by any means, where
the latter again has a low urgency compared to the former. Be-
cause not all agents have a plane ticket, those who do not, would
have no way to leave if the generic ambition to leave was not
present. Aside from these ambitions to leave, 40% will want to
buy a newspaper before that.

6.4.3. Analysis
Behavioural Evaluation. This simulation was run twice. The
first run used the dedicated crowd, just described in Section
6.4.2, specifically created for this environment. The second run
used the original crowd profile defined in Section 6.1.2, evi-
dently, with an adjusted crowd socket, so that the crowd would
only spawn from the front door, and the spawn rate has been
increased significantly.

Dedicated Crowd. The first that one notices when look-
ing at the long-exposure heatmaps in Figures 10 and 11 is that
the traffic in the baggage claim area is significantly higher than
the combined traffic in both check-in areas. This has to do with
the conditions set on the crowd sources for the simulation. The
conditions require that at most 50 agents are present in the en-
tire environment. Once an agent leaves, the spawn spaces are
treated on a first-come, first-serve basis. Incidentally, it turns
out that the spawn spaces at the gates are updated first, so they
often get the first chance to spawn a new agent, after which
there will be no more room left for agents to spawn from the
front door and the train station.

With the current setup, the only way of circumventing this
‘bias’ would be not to use a limit on the environment-wide
agent count but on the number of agents spawned per spawn
source. Unfortunately, this brings other problems, since the
agents coming from the train station and from the entrances
could be considered as the same crowd, even though they are
generated by different crowd sources. By combining both a to-
tal agent limit (for the departing crowd) and a per-crowd-source

agent limit (for the arriving crowd), the desired result may still
be achieved with regard to the ratio of the agents in the bag-
gage claim and check-in areas. However, a similar problem
might subsequently emerge for the distribution of agents emerg-
ing from the train station and from the front doors, for which a
more elaborate ordering mechanism would be required.

Furthermore, agents will only consider passing through a
connection between spaces if the condition has been satisfied.
For example, agents will first stop at the passport control before
passing through it, even if their objective does not explicitly re-
quire them to have their passport checked. They will also never
attempt to pass through a connection that only allows passage
in the opposite direction.

Original Crowd. When the crowd profile specified for
Cases 1 and Case 2 is used (see Figure 12), it is evident that
only a few of the available services are used, where only the
bathrooms are used intentionally. The other services, such as
the check-in desk and train ticket counter, are only used be-
cause the agents want to leave by any means.

Normally, one would expect agents to never use the toilets
on the ‘transit-side’ of the airport. However because the ex-
pected cost that agents use to choose their action only takes into
account euclidean distances, the desired toilet is sometimes ‘on
the other side’. For the same reason, the left gate is occasionally
used as an exit. Because the gate is so close to the toilets, the
noise in the action cost function will sometimes make an agent
think it is ‘cheaper’ to board a plane than to exit via the front
door if they want to leave the environment.

One can also see a lot of agents that appear to stand still at
the entrances. However those are agents that spawned, and im-
mediately exited. Because in this environment only their desire
to go to the toilet when necessary can be fulfilled, those who
do not need to go, have only the ambition ‘leave’ by any means
left. And since they are already in a proper position to leave,
they do so right away. When having the spawn rate at approx-
imately one agents per 0.12s (for both entrances), at most 15
agents were walking around at any time.

Performance Analysis. In Case 1 and Case 2 (Section 6.2
and 6.3), our prototype simulator could easily handle 100-175
agents at a time before taking more than a few milliseconds to
update all agents. In Case 3, however, at around 35 agents the
simulator was experiencing lag, especially when a new agent
was spawned.

Adding a barrier in the middle of the environment, in the
form of passport controls, increased the number of necessary
queries in this final simulation, which causes the drop in per-
formance. If an agent tries to use an object on the other side
of the barrier, it first builds the graph to use that object. After
finding a possible path, it finds that it needs to pass one of the
passport controls, which leads to another graph being built. If
that does not succeed the agent will try to find another path, not
using the passport controls, which is impossible. Subsequently
the next instance of the desired object (or the desired object for
the next ambition) is checked, which could very well be on the

16

Figure 12: Heatmap for the crowd profile from Cases 1 and 2, spawn in this environment. The color scheme used paints the agents
by age group again.

other side of the barrier as well. Thus the entire chain of queries
is done again, and doomed to fail if all desired objects are on
the other side of the impassable barrier. Implementing this de-
tection and pruning algorithms would likely bring a substantial
optimization, however that was outside the scope of this project.

The framework running all these cases was completely writ-
ten in C#. The tests were run on an Intel R© CoreTM 2 Duo CPU
E6850 @ 3.00GHz running Windows 7.

7. Conclusions

Many crowd simulation solutions often target domain-
specific environments, using special-purpose methods that are
hard to re-configure or re-use in other contexts. We proposed
semantic crowds, a novel approach designed from the outset
with crowd re-use and re-configuration in mind. It integrates
several existing research concepts and results within a struc-
tured model that allows one to easily define crowd templates
in a very flexible and powerful way, and re-use them with
minimal modifications for virtually any environment, in which
the objects available are spontaneously used in a meaningful
manner. This is achieved by (i) having the objects in a virtual
environment be extended with semantics, beyond just pure
geometry, and (ii) having each agent query the environment to
find whatever objects are deemed suitable to fulfil its desires.

We briefly described our prototype system, including an in-
teractive crowd editor that provides high-level editing parame-
ters for defining crowd templates. These consist of a crowd
profile, describing all its environment-independent aspects (e.g.
its demographics), and a crowd socket, defining how it is sup-
posed to be ’attached’ to each particular environment (e.g. its
spawn spaces and rate). We showed the power and portability

of semantic crowds by illustrating how one same crowd profile
flexibly adapts its behavior to quite differently configured en-
vironments, containing a wide variety of objects with distinct
semantics.

We believe the power of this semantic crowd model will
become increasingly apparent as more experiments and exten-
sions are performed on this basis, in order to refine or enrich
crowd behavior and overal appearance. An interesting chal-
lenge, for example, is to explore better methods of controlling
and balancing agent’s (short and long term) ambitions, as well
as their dynamics under the influence of ambition inserters. For-
tunately, this modular approach to reusable crowds can easily
combine with many custom implementations of agent behav-
ior model and motion planner, possibly providing more fine-
grained control or more realistic and detailed paths.

We can, therefore, expect that in the near future new, even
richer, crowd models will profitably be developed that further
build upon these high-level semantic features.

Acknowledgements

We thank Fernando Marson and Soraia Musse for their
valuable contribution to our research on the generation of
semantic virtual environments, previously used in a short
version of this article [35]. We also thank Roland Geraerts
[34] and Atlas Cook IV, for kindly providing us with their path
planner library and promptly assisting us with its integration in
our prototype. Finally, we thank the anonymous reviewers for
their constructive comments.

17

References

[1] T. Tutenel, R. Bidarra, R. M. Smelik, K. J. de Kraker, The role of seman-
tics in games and simulations, Computers in Entertainment 6 (4) (2008)
1–35.

[2] J. Kessing, T. Tutenel, R. Bidarra, Services in game worlds: A semantic
approach to improve object interaction, in: ICEC ’09: Proceedings of the
8th International Conference on Entertainment Computing, LNCS vol.
5709, Springer-Verlag, 2009, pp. 276–281.

[3] M. Luck, R. Aylett, Applying artificial intelligence to virtual reality: Intel-
ligent virtual environments, Applied Artificial Intelligence 14 (1) (2000)
3–32. doi:10.1080/088395100117142.

[4] N. Farenc, R. Boulic, D. Thalmann, An informed environment dedicated
to the simulation of virtual humans in urban context, Proceedings of Eu-
rographics’99 18 (3) (1999) 309–318.

[5] K. Otto, F. U. Berlin, Towards semantic virtual environments, in: Work-
shop Towards Semantic Virtual Environments, 2005, pp. 47–56.

[6] G. Thomas, S. Donikian, Modelling virtual cities dedicated to be-
havioural animation, Computer Graphics Forum 19 (3) (2000) 71–80.
doi:10.1111/1467-8659.00399.

[7] M. Badawi, S. Donikian, The generic description and management of
interaction between autonomous agents and objects in an informed virtual
environment, Computer Animation and Virtual Worlds 18 (4-5) (2007)
559–569.

[8] M. Kallmann, D. Thalmann, Modeling objects for interaction tasks, in:
Proceedings of the Eurographics Workshop on Animation and Simula-
tion, 1998, pp. 73–86.

[9] M. Gutierrez, F. Vexo, D. Thalmann, Semantics-based representation of
virtual environments, International journal of computer applications in
technology 23 (2) (2005) 229–238.

[10] T. R. Gruber, A translation approach to portable ontology specifications,
Knowledge Acquisition 5 (1993) 199–220.

[11] F. Grimaldo, M. Lozano, F. Barber, G. Vigueras, Simulating socially intel-
ligent agents in semantic virtual environments, The Knowledge Engineer-
ing Review 23 (04) (2008) 369–388. doi:10.1017/S026988890800009X.

[12] H. Jiang, W. Xu, T. Mao, C. Li, S. Xia, Z. Wang, A semantic environ-
ment model for crowd simulation in multilayered complex environment,
in: Proceedings of the 16th ACM Symposium on Virtual Reality Soft-
ware and Technology, VRST ’09, ACM, New York, NY, USA, 2009, pp.
191–198. doi:10.1145/1643928.1643972.

[13] A. Treuille, S. Cooper, Z. Popović, Continuum crowds, ACM Trans.
Graph. 25 (2006) 1160–1168. doi:10.1145/1141911.1142008.

[14] C. W. Reynolds, Flocks, herds and schools: A distributed be-
havioral model, SIGGRAPH Comput. Graph. 21 (1987) 25–34.
doi:10.1145/37402.37406.

[15] X. Tu, D. Terzopoulos, Artificial fishes: physics, locomotion, perception,
behavior, in: Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’94, ACM, New York,
NY, USA, 1994, pp. 43–50. doi:10.1145/192161.192170.

[16] S. R. Musse, D. Thalmann, Hierarchical model for real time simulation of
virtual human crowds, IEEE Transactions on Visualization and Computer
Graphics 7 (2001) 152–164. doi:10.1109/2945.928167.

[17] B. Ulicny, D. Thalmann, Crowd simulation for interactive virtual envi-
ronments and VR training systems, Computer Animation and Simulation
2001 (2001) 163–170.

[18] N. Farenc, S. R. Musse, E. Schweiss, M. Kallmann, O. Aune, R. Boulic,
D. Thalmann, One step towards virtual human management for urban en-
vironment simulation, in: Proceedings of the ECAI workshop on intelli-
gent user interfaces, Vol. 3, Citeseer, 1998.

[19] T. Abaci, J. Ciger, D. Thalmann, Planning with smart objects, in: Pro-
ceedings of the 13th International Conference in Central Europe on Com-
puter Graphics, Visualization and Computer Vision: WSCG, 2005, pp.
25–28.

[20] M. Kapadia, S. Singh, G. Reinman, P. Faloutsos, A behavior-authoring
framework for multiactor simulations, Computer Graphics and Applica-
tions, IEEE 31 (6) (2011) 45–55.

[21] J. M. Allbeck, Carosa: A tool for authoring npcs, in: Motion in Games,
Springer, 2010, pp. 182–193.

[22] C. Stocker, L. Sun, P. Huang, W. Qin, J. M. Allbeck, N. I. Badler, Smart
events and primed agents, in: Intelligent Virtual Agents, Springer, 2010,
pp. 15–27.

[23] E. Bouvier, E. Cohen, L. Najman, From crowd simulation to airbag de-
ployment: particle systems, a new paradigm of simulation, Journal of
Electronic Imaging 6 (1) (1997) 94–107. doi:10.1117/12.261175.

[24] D. Helbing, P. Molnar, Self-organization phenomena in pedestrian
crowds, Arxiv preprint cond-mat/9806152.

[25] D. Helbing, I. Farkas, T. Vicsek, Simulating dynamical features of escape
panic, Nature, Vol. 407, pp. 487-490, 2000doi:10.1038/35035023.

[26] A. Braun, S. R. Musse, L. de Oliveira, B. Bodmann, Modeling individ-
ual behaviors in crowd simulation, in: Computer Animation and Social
Agents, 2003. 16th International Conference on, IEEE, 2003, pp. 143–
148. doi:10.1109/CASA.2003.1199317.

[27] N. Pelechano, J. Allbeck, N. Badler, Controlling individual agents in
high-density crowd simulation, in: Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, Eurographics
Association, 2007, pp. 99–108.

[28] J. Kessing, T. Tutenel, R. Bidarra, Designing semantic game worlds, in:
PCG 2012: Proceedings of the 3rd workshop on Procedural Content Gen-
eration for Games, 2012.

[29] T. Tutenel, R. M. Smelik, K. J. de Kraker, R. Bidarra, Using semantics
to improve the design of game worlds, in: Proceedings of AIIDE ’09, the
5th Conference on Artificial Intelligence and Interactive Digital Entertain-
ment, Stanford, CA, USA, 2009.

[30] T. Tutenel, R. Bidarra, R. M. Smelik, K. J. de Kraker, A semantic scene
description language for procedural layout solving problems, in: Proceed-
ings of AIIDE ’10, the 6th Conference on Artificial Intelligence and In-
teractive Digital Entertainment, Stanford, CA, USA, 2010.

[31] T. Tutenel, R. M. Smelik, R. Lopes, K. J. de Kraker, R. Bidarra, Generat-
ing consistent buildings: a semantic approach for integrating procedural
techniques, IEEE Transactions on Computational Intelligence and AI in
Games 3 (3) (2011) 274–288.

[32] D. de Paiva, R. Vieira, S. R. Musse, Ontology-based crowd simulation
for normal life situations, in: Proceedings of Computer Graphics Inter-
national Conference, IEEE Computer Society, Los Alamitos, CA, USA,
2005, pp. 221–226. doi:10.1109/CGI.2005.1500421.

[33] M. E. Bratman, Intention, Plans, and Practical Reason, Harvard Univer-
sity Press, 1987.

[34] R. Geraerts, Planning short paths with clearance using explicit corridors,
in: Proceedings of Robotics and Automation (ICRA), 2010 IEEE Inter-
national Conference on, IEEE, 2010, pp. 1997–2004.

[35] N. Kraayenbrink, J. Kessing, T. Tutenel, G. de Haan, F. Marson,
S. R. Musse, R. Bidarra, Semantic crowds: reusable population for
virtual worlds, in: Proceedings of VS-GAMES 2012 - 4th Interna-
tional Conference on Games and Virtual Worlds for Serious Applica-
tions, Procedia Computer Science 15C, Genoa, Italy, 2012, pp. 122–139.
doi:10.1016/j.procs.2012.10.064.

18

