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ABSTRACT

Game developers are often faced with very demanding requirements on huge numbers of agents moving naturally through
increasingly large and detailed virtual worlds. With the advent of multi-core architectures, new approaches to accelerate
expensive pathfinding operations are worth being investigated. Traditional single-processor pathfinding strategies, such
as A� and its derivatives, have been long praised for their flexibility. We implemented several parallel versions of such
algorithms to analyze their intrinsic behavior, concluding that they have a large overhead, yield far from optimal paths,
do not scale up to many cores or are cache unfriendly. In this article, we propose Parallel Ripple Search, a novel parallel
pathfinding algorithm that largely solves these limitations. It utilizes a high-level graph to assign local search areas to CPU
cores at “equidistant” intervals. These cores then use A� flooding behavior to expand towards each other, yielding good
“guesstimate points” at border touch on. The process does not rely on expensive parallel programming synchronization
locks but instead relies on the opportunistic use of node collisions among cooperating cores, exploiting the multi-core’s
shared memory architecture. As a result, all cores effectively run at full speed until enough way-points are found. We show
that this approach is a fast, practical and scalable solution and that it flexibly handles dynamic obstacles in a natural way.
Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION AND PREVIOUS
WORK

As virtual game worlds grow increasingly larger, pathfind-
ing has once again come into the spotlight. The basic moti-
vation for this is that being a computationally expensive but
indispensable component in many games, any performance
gains here will typically bring about noticeable improve-
ments. In this line, more attention is currently being paid
to re-designing pathfinding algorithms, so that they better
suit current multi-core architectures.

Classic pathfinding algorithms, such as A� and its many
derivatives, have been long praised by game developers for
their flexibility and completeness. A� is a best-first search
strategy that relies on a cost computing function f.n/ D
g.n/C h.n/ for providing rough cost estimations of a path
running through a node n of a search graph [1]. Function
g.n/ represents the currently known cost for reaching node
n from the start node S , and heuristic estimation function
h.n/ is often implemented by using a cheap “guesstimate”
of the remaining travel distance, such as a Manhattan or
Euclidean distance, between node n and the goal node G.

This heuristic function effectively controls how A� floods
its search space. Moreover, h.n/ results in optimal paths as
long as it remains “admissible;” that is, it never overesti-
mates the true cost for an actual path between node n and
the goal node G.

The A� algorithm utilizes the f.n/ function to maintain a
sorted Open list of most promising search candidates while
it iterates through the search space, which is also its most
computationally expensive component. For each iteration,
the algorithm will remove the most promising candidate
and place on the list all its not yet visited neighbors. If a
neighbor node was already in the Open list, A� will per-
form a crucial “correction step:” it determines if a cheaper
path was possible through the candidate node and, if so,
modifies its entry accordingly in the Open list.

As the flood boundary grows, the algorithm takes
increasingly more time to find each successive node that
forms the desired path. Empirically, the node that is
halfway down the resulting path is closed at roughly a
third of the total time taken to find the complete path. This
sorting component has also proven a road block for paral-
lelization attempts because it institutes a data dependency
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that would generate much communication overhead on dis-
tributed processing architectures. Many past attempts have
already been made to eliminate this need for sorting on
single-processor architectures such as Iterative Deepening
A� (or IDA� for short) [2] but have not resulted in easier
distributed processing schemes.

A late addition to the family of A� derivatives, which we
used extensively in this research, is called Fringe Search
(FS); see [3]. FS avoids the need for a sorted candidate list
by simply keeping track of all nodes at its search boundary
(or “fringe”) and opening those that are less expensive than
a certain threshold value, which is iteratively incremented.
Although this now forces the algorithm to scan through
a large unsorted Now list from begin to end, it gains its
speedup by making the actual visitations extremely cheap.
Each node that has an f.n/ value higher than the threshold
value will simply be moved to a Later list. Each new iter-
ation starts by simply swapping the Now and Later lists,
and the node/list manipulations themselves can be imple-
mented very effectively using simple pointer logic. Nor-
mally, one will choose the lowest f.n/ value in the current
Now list as the new threshold value. This will make FS
behave in the exact same way of a classical A� implemen-
tation, which will keep opening the most promising node
first, but now without having to explicitly sort node lists
before each pass (in the same way that IDA� forgoes this).

In most FS-based pathfinding approaches that we dis-
cuss in this article, manipulating the value of this thresh-
old proved to be very useful, because it allowed FS to
open multiple nodes per pass. In practice, this means
that we sort the node lists “less thoroughly” and instead
just open a larger number of most promising nodes all
at once. As we will see, although this modification no
longer guarantees optimal paths, in practice it significantly
increases performance while still yielding paths of a fairly
high quality.

Recent path finder parallelization attempts [4,5] have
mainly focused on translating A� variants into shaders,
so that they can run on graphics processing units or sim-
ilar vector processors. These schemes benefit either from
taking workload off the main CPU or by running pathfind-
ers for a large amount of agents in parallel. Although
such approaches have been very successful, these also
have the drawback that they take up precious resources
that one would rather devote solely to rendering graphics.
Also, from a practical point of view, a game-play program-
mer will have to take extensive measures to apply such
pathfinding approaches without serious disruptions of the
rendering pipeline. For multi-core architectures, specifi-
cally, the world simulation and rendering logic are often
running in separate threads that are uniquely assigned to
specific cores.

A more traditional approach has been to parallelize
A� and related algorithms and make them more suit-
able for distributed computing on CPU clusters and grids
[6–8]. Although these attempts have demonstrated bene-
ficial advantages, they also require more “exotic” hard-
ware and software approaches such as Message Passing

Interface that are highly uncommon on virtually any gam-
ing hardware platform up to this date. For practical pur-
poses, these approaches are thus unsuitable and have
currently no real relevance in the game development
industry.

In conclusion, there is a definite need for simple and
portable variants of the A� algorithm that successfully and
efficiently exploit today’s multi-core architectures. This
article first describes and compares a number of parallel
pathfinding implementations, focusing on the efficiency of
their multi-core use. They all rely on the underlying hard-
ware to implicitly perform the necessary synchronizations,
without any blocking. We then introduce a novel algorithm
called Parallel Ripple Search (PRS) that can easily scale
with the number of available CPU cores. It requires no
special libraries or hardware interfacing, nor any special
synchronization primitives.

2. PARALLEL PATHFINDING
IMPLEMENTATIONS

In this section, we describe our investigation on a number
of parallelized variants of A� (actually, of FS, for the first
two algorithms discussed) to study how they perform on
multi-core architectures. Please refer to [9] for a detailed
discussion of each algorithm, including its pseudo-code.
This study gave us significant insight on how to effectively
utilize the computing potential of these architectures for
pathfinding purposes.

2.1. Parallel Bidirectional Search

The most obvious strategy to use two CPU cores for
pathfinding is to have them start at each path extremity,
search towards each other and let them “meet halfway;”
hence, the name Parallel Bidirectional Search (PBS). As
the main strategy of A� is to keep opening the most promis-
ing node, we can consider all nodes at the boundary of
the flood area “most” optimal (although this is not always
strictly true). Whenever we hit a node flooded by an oppo-
site core, we can immediately complete the path using
the alternate core’s pathfinding metadata. There is no need
for expensive mutexes; both cores can just check a shared
“break flag” in main memory to see if they should stop
because the other core found a collision or gave up.

An example path found using PBS is shown in Figure 1.
On the left, we see that a collision was detected some-
where halfway, when both cores have performed, in par-
allel, virtually the same amount of work. Connecting the
two “half-paths” together yields a path that is only slightly
more expensive than the most optimal path. Most discrep-
ancies relative to A� are not erroneous when taking the
flow of the full path into account but rather the result of
a different bias because of the reversed search direction.
The insignificant loss of optimality is because PBS stops
the search just a bit too soon, when it detects a collision.
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Figure 1. (Left) With the use of Parallel Bidirectional Search (PBS), two cores flood towards each other until a collision is detected.
The full path is then constructed by linking both “halves” together at the collision node. (Right) PBS path overlaid with the optimal

A� path, whereby the red cells denote path deviations. Clearly, much less nodes are flooded by PBS than by A�.

Often, the area around the collision node does not get fully
flooded, so potentially there might be cheaper nodes in this
area, which will no longer be discovered. However, this
deviation is generally very low given a fairly uniform travel
cost between neighboring nodes.

We can, therefore, conclude that, strictly speaking, PBS
is no longer optimal, but it is still complete; that is, it
will find a path if it exists. In worst-case scenarios where
no collision occurs, PBS is basically reduced to a normal
A� search.

Once you accept loosing strict optimality, we found that
there is room for further performance improvements. As
discussed in the previous section, with each pass through
its Now list, FS utilizes a threshold value to determine
which nodes to process. Normally, the lowest f.n/ value
is selected to imitate the same processing order of candi-
date nodes as a classic A� would. In this research, how-
ever, we found that by increasing the minimal threshold
value by a fixed ThresholdRelaxation constant, we obtain
significant performance improvements with only minor
additional degradations in path quality. This threshold
relaxation enables FS to open more nodes during each
pass, which means we not only have more work carried
out in parallel but also enable the algorithm to flood out-
wards faster, which in turn results in earlier collisions.
By “artificially” incrementing the threshold, we basically
decide to sort the Now list “less thoroughly,” which may
of course result in less optimal node selections during
each pass. Throughout all our experiments, we empirically
found out that a ThresholdRelaxation value of 5 proved to
be the “sweet spot,” resulting in a speedup factor of 1.5
up to 2.5 and still resulting in paths that were just 1%
more expensive.

Figure 2 presents the control diagram of our implemen-
tation of the PBS algorithm.

Figure 2. Detailed diagram of the Parallel Bidirectional Search
algorithm.
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2.2. Distributed Fringe Search

Our second attempt towards parallelization speedup was
to use the FS’s Now and Later lists to literally distribute
“work” among multiple CPU cores. As mentioned previ-
ously, during each pass through the Now list, FS performs
some very simple tests to determine if new nodes should
be processed. This processing mostly involves adding new
nodes to the Later list. The main idea behind the new algo-
rithm we came to call Distributed Fringe Search (DFS) is
thus to distribute the Now list over all available cores, have
them process their share, merge the individual Later lists,
swap this with Now and start all over again. A nice feature
of FS is that the Now and Later lists do not need any sort-
ing; thus, distributing them is very easy. Also, each core
can compute the smallest f.n/ value it has found locally,
so that the master core can collect them and only needs to
do a few comparisons to determine the cost threshold that
should be used next for all cores.

The main advantage of DFS is that it can effectively
utilize more cores, being no longer limited to two cores,
as PBS. Although this is a great strength, it is also its
Achilles’ heel. By distributing nodes “arbitrarily” over
multiple cores, we have lost the ability to perform the
“correction step” as a normal A� and/or FS implementa-
tion would do.

This is illustrated in Figure 3, where we see a very sim-
ple graph that is being flooded with A� in the direction
from node A to node D, the actual goal being a node G
somewhere far off. Beginning at step 1, we see that node
A has been opened at some point in time. In step 2, A�

decides to close it and open its neighboring nodes B and
C . When these nodes are placed on the Open list, we con-
nect them with their parent node A because currently these
both suggest to be the shortest path available. Then, in
step 3, it turns out that node B has the lowest f.n/ value
(we are being pulled in the direction of goal node G) and it
is closed. By doing this, nodeD will be opened and linked
back to its parent node B again. However, it turns out that
traveling from B to D is actually very costly, but because
A� relies on the h.n/ function to do its look-ahead guess-
ing, this will not be noticed. With d.n/ being the true cost
between nodes n and G, we only need to guarantee that
h.n/6 d.n/ for A� to be admissible. If we take h.n/ to be,
for example, the Euclidean distance, then we might quite
often strongly underestimate the true travel cost (especially
when all sorts of artificial penalties have been applied). So
when, in step 4, node C is finally closed, we actually need
to check if there are any nodes in the Open and Closed lists
that we should link to if that would result in a lower total
travel cost; in this case, we need to appoint node C as the
parent of node D.

Note also that after this “correction step,” A� needs to
sort its Open list again to make sure we always keep select-
ing the most promising node. For DFS, however, we cannot
perform this correction because when closing a particu-
lar node, we never know for sure that neighboring nodes
are also present in the part of the Now list that is being

Figure 3. An example of how A� floods through a graph in
the direction of goal node G. Each time a node is closed, we
need to determine if meanwhile better paths have become avail-
able. This “correction step” is crucial to properly reconstruct the

path later.

processed by the CPU core. Forcefully implementing the
required A� correction step would require us to stall other
cores while we access their flooding data, which is of
course very detrimental and should thus not be attempted.
As a result of all these, it is no longer guaranteed that DFS
will find the cheapest path; that is, DFS is not optimal, as
we can clearly see in Figure 4.

Another drawback of DFS is that it is also no longer
possible to keep track of the “parent–child” relation of
nodes during flooding (as illustrated previously for normal
A�), although this information is needed to reconstruct the
resulting path. The solution, therefore, is to use (i) a shared
buffer in which all cores write to signal flooded nodes
to each other (for which we only need to raise Boolean
flags) and then (ii) a separate “private” buffer for each core
to store g.n/ values to evade race conditions that might
otherwise actually prove problematic. The final path can
then be correctly reconstructed by starting at the goal node
G and then searching our way back to the start node S by
repeatedly traversing towards the neighboring node with
the lowest g.n/ value found in any of the private buffers.
Although this sounds discouraging, it is, in practice, not
critical; we found surprisingly few cases of “over-flooding”
(nodes tagged “Multiple Cores,” in Figure 4(left)). Mostly,
nodes only have a single g.n/ computed for them, so no
expensive floating-point comparisons are needed to find the
lowest one.

The overall load balance seems fairly good (see
Figure 4(left)), although we have noticed that there is
always one core that seems to be doing most of the work.
That core has often flooded most of the areas in which the
final path was found, suggesting that this is likely due to
the A� heuristic function: this function is designed to pull
the search towards the goal node, and as long as this goes
on “unhindered,” it will always favor nodes for that partic-
ular core. The other cores will often be searching through
“branches” elsewhere that later on turn out to be dead ends.
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Figure 4. (Left) The load balance achieved by Distributed Fringe Search. (Right) With the loss of the corrective property, Distributed
Fringe Search ends up with less than optimal paths. Note that the deviations with the optimal A� path are also just a matter of

different bias; the actual additional path cost was only roughly 2%.

Figure 5. Detailed diagram of the Distributed Fringe Search
algorithm.

Figure 5 presents the control diagram of our imple-
mentation of the DFS algorithm. Conceptually, the DFS
approach sounds promising because it allows us to dis-
tribute the workload quite naturally over all available cores.
In practice, however, the results obtained are less spec-
tacular. After some profiling, it turned out that a signifi-
cant amount of time is still wasted on cores waiting for
each other, suggesting that the load balancing is still far
from optimal.

2.3. Parallel Hierarchic Search

Another attractive way to utilize multi-core architectures
is to have each core find small segments of the total path.

Small searches whereby the segment’s goal node is rela-
tively close to its start node are significantly faster because
far less nodes will become flooded. To do this, however,
we need to guess where some way-points will be located
in the search space so that, as it were, we can “connect
the dots” between them. This can only be properly carried
out if we employ a high-level graph representation of the
actual graph to search through. With this high-level graph,
we can roughly guess how the full path will traverse the
search space and obtain way-points from it, hence the name
Parallel Hierarchic Search (PHS).

There are many techniques to obtain such high-level
graphs, ranging from manually adding way-points to auto-
mated schemes such as “Probabilistic Roadmap Method”
[3,10,11]. For our PHS implementation, we created a grid
randomization algorithm with a top-down approach, which
generates “chambers” that are linked with smaller corri-
dors, which are then filled with randomly placed obstacles;
see Figure 6 for an example. This enabled us to easily gen-
erate many correct high-level hierarchies so that we could
run large test batches.

Each node in the high-level graph is linked to a corre-
sponding anchor node in the actual graph that needs to be
searched. The first step in the PHS algorithm is to find a
path through the high-level graph and then finding sub-
paths connecting the consecutive anchor nodes. Doing this
will, however, never results in an immediately natural look-
ing path because the anchor nodes might be needlessly off
course. So a “beautification” step is applied by construct-
ing new way-points halfway at the found path segments
(by just picking the middle node of the path-segments
sequence of solution nodes). The idea behind this is that
it will help us find “shortcuts” between the high-level way-
point anchor nodes. We found that just a single beautifica-
tion iteration already yields quite acceptable results.

Parallelizing the algorithm is basically a matter of hav-
ing the master core generate the way-points and then letting
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Figure 6. An example of our randomly generated search space, consisting of interconnected “chambers.” The high-level graph is
represented in blue.

all the cores try to construct the path segments. To enable
the cores to gain access to the path segments information
buffer, we are forced to employ a more expensive “critical
section” that is provided by the operating system. This will
allow safe access to selecting a path segment and return-
ing a pointer to found path segment solutions (cores are
not allowed to clear these solutions until all processing has
been completed, so that the master core can safely access
them). We can give each core its own copy of the graph so
that there will be no cache collisions during the searches
themselves. Figure 7 presents the control diagram of our
implementation of the PHS algorithm.

Figure 8 shows an example of a path generated using the
PHS algorithm. We can clearly see that PHS only floods
nodes in the near vicinity of the final path and does not
fan out into a “leaf”-shaped flood space as A� would do.
The algorithm was about 1.6 times faster than a classic
A� approach, but this came with a penalty: the resulting
path has a noticeably higher cost and has a less “smooth”
appearance. In the middle of the figure, we can see that the
high-level path is distanced quite far away from the optimal
path, as could be expected. Finally, on the right, we see that
the load balancing is fairly acceptable. Many nodes have
been flooded by multiple cores, but this is again due to the
second phase smoothing. Because cores will process new
path segments when they are done with the previous one,
we will see some nodes being flooded by different cores in
different phases.

In general, the results obtained with PHS are rather dis-
parate. In some cases, we can obtain very good speedups,
and in other cases, we do not. The overall path quality
leaves much be desired; often, the paths will stray quite
a bit from the optimal path, further contributing to increase
the search duration.

3. ALGORITHM EVALUATION AND
COMPARISON

In all preceding experiments, no special attempts have
been made to “optimize” the parallel algorithms, other
than those dictated by common sense. Moreover, they all
use established basic libraries, such as the CCC Standard
Template Library, expressly chosen for their stability rather
than for their performance.

We obtained our measurements from a total of 2000
samples, by finding 100 random paths in 20 random maps.
For each sample, we measured the time taken to find a path
between two randomly selected nodes from a 400 by 400
eight-way connected uniform grid, internally represented
by a directed graph. A Euclidean distance was used as
A� search heuristic. Each sample was repeated five times
for each algorithm so that cache content would “stabilize.”
The best result of all the taken samples was then taken
as the ultimate measurement result. All threads and pro-
cesses were running on highest priorities. All samples have
been taken on a 2.4 GHz Intel Core2 Quad CPU running
Windows XP Pro SP2.

Because FS plays such a prevalent role in our experi-
ments, wherever possible we have used this algorithm as
an A� alternative. Therefore, FS has also been included in
all measurements so that we can clearly tell if the speedup
is due to the parallelization and not just the fact that FS was
used instead of a classic A� implementation.

The measurement results are shown in Figure 9. For very
short paths, the results are mixed, which means that the par-
allelization overhead is probably too high compared with
the amount of work that has to be carried out. As the path
length increases, the parallelized algorithms start to outper-
form the classic A� implementation extensively. Still, PHS
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Figure 7. Detailed diagram of the Parallel Hierarchic Search
algorithm.

is the “main loser,” as it has the worst overall performance,
probably because of requiring a mutex and “beautification”
iteration. It has also by far the worst path cost overhead,
ranging from 20% up to 45%.

For DFS, we can conclude that it is only worthwhile
on longer paths; otherwise, the normal FS implementation
still (slightly) outperforms it. Apparently, it is only for the
longer paths that cores manage to get work done with-
out interfering too much with each other’s caches, which
makes sense, because the flooded areas will be much larger
and further spaced apart. DFS can yield up to 2,2 speedup
relative to a classic A� implementation. As expected, its
qualitative output is hampered by the fact that DFS has lost
its corrective property in a far more significant degree than
that of PBS: it has up to 4% additional path cost.

For PBS, the loss of its corrective property is only accu-
mulated near the area of the collision node, which is gen-
erally very small. This clearly makes PBS a winner on all
fronts: up to an impressive speedup of 6,7 relative to A�,

while generating paths that, on average, are less than 1%
more expensive than the optimal A� path.

The analysis of all these results is summarized in Table I.
We conclude that

(1) Cache penalties have by far the largest impact on
these algorithms’ performance on multi-core archi-
tectures. The longer we can prevent cores to flood
nodes in each other’s areas, the better the perfor-
mance will be. PBS clearly does this best because
both cores start their search at the maximum possi-
ble distance apart from each other.

(2) High-level graphs tend to “malform” paths inter-
polated from them and require quite some “post-
processing” to smoothen them out.

(3) High-level paths can seriously thwart the path finder
when dynamic obstacles are in the way.

4. PARALLEL RIPPLE SEARCH

In this section, we present a novel algorithm called PRS,
which capitalizes on the results of the experiments men-
tioned previously, to combine the strengths of all those
algorithms while minimizing their weaknesses.

Algorithm

Parallel Ripple Search requires a high-level graph to guess
where the final path will be located in the search space and
uses it to position the cores at roughly equidistant way-
points. However, in contrast to PHS, the cores will now find
path segments by doing a normal A�-like flood towards
their nearest neighbors instead. Like ripples in a pond, at
some point their flood boundaries will overlap, and we can
use these collisions to link the path segments together into
the full path; see Figure 10.

The high potential of PRS is that when we find enough
collisions, we can “short-circuit” and find connecting paths
through previously flooded areas (for which we know that
a path must exist). There is a good chance that these areas
might still be (partially) lingering in a core’s cache, so that
accesses can be fast. This algorithm is also able to deal
with dynamic obstacles much better than PHS could. If
way-points turn out to be (partially) blocked, then this will
just mean that adjacent ripples will not collide (not now,
at least). So although it might take longer before a colli-
sion occurs with a ripple located further away, we will no
longer run the risk of pulling the path in weird directions.
Another advantage of this new approach is that we can uti-
lize many more cores, basically one for each segment of
the high-level path, thus overcoming the main restriction
of PBS.

The cores that flood from the start node S and goal node
G process what we could call the “essential” ripples: we
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Figure 8. A path generated by the Parallel Hierarchic Search algorithm. (Left) Substantially less nodes have been flooded than with
classic A�, but the resulting path is not as optimal and smooth. (Middle) The high-level graph and path used to form the resulting

path. (Right) The flooding progress per core.
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Figure 9. (Left) Overview of average pathfinding duration. Note how Parallel Bidirectional Search (PBS) can outperform a classic A�

implementation almost seven times. (Right) Overview of average path cost overhead, relative to the length of the optimal path found
by classic A�. (Parallel Hierarchic Search (PHS) results are omitted, as they can raise up to 45%). FS, Fringe Search; DFS, Distributed

Fringe Search.

call them the essential cores, as opposed to all other non-
essential cores. In a worst-case scenario, whereby none of
the non-essential ripples ever collide with the two essential
ones, PRS will basically have degraded to a PBS, which
was shown to perform very well.

The algorithm is roughly described by the following
steps:

� Find a high-level path P between start node S and
goal node G.

� Two cores are assigned to the way-points at both ends
(S and G) of path P .

� Depending on the number of edges in path P , we try
to assign other cores at fairly equidistant way-points;
these cores will form the “non-essential ripples.”

� Phase 1: All cores start flooding the search space until
enough collisions have been found to form a complete
path:
� Essential cores search towards each other’s local

start node (basically like PBS).
� The remaining non-essential cores search towards

the local start nodes of their direct neighbors.
� The master core will examine all the reports from the

cores and determines which cores need to generate
their path segments between which collision nodes.
Note that some cores might have become superfluous
or may need to be linked in a non-sequential order
(it can happen!).

� Phase 2: All relevant cores construct their local paths
and report these back to the master core.

� The master core assembles the final path.
� All cores perform a final cleanup.
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Table I. Summary of strengths and weaknesses of the three parallel pathfinding implementations.

PBS: DFS: PHS:
Parallel Bidirectional Distributed Fringe Parallel Hierarchic

Search Search Search

Speed increase over classic A� 2,5–6,7 1,6–2,2 1,2–1,6
Path cost overhead < 1% 3%–4% 20%–45%
Scalability Bad: two cores only Two or more Two or more (but

potentially much more
effective than DFS)

Extra memory required Low High Medium
Load balancing Very easy: both cores Hard, so we are always Medium, the quality of

always run at full bound by the slowest the high-level graph
speed CPU core will automatically

improve this
Cache “friendliness” Very friendly Very unfriendly Fairly friendly
Implementation Very easy and intuitive More involved, needs Fairly easy (closer to

many more “classic”
synchronization parallelization).
moments, requires
special techniques to
optimize

Other Any A� variant can be – Requires high-level
used graph

During phase 1, the essential cores basically perform a
normal FS towards the way-points of their neighbor cores.
Their searches start, of course, at either start node S or
goal node G, and not at the start or goal way-points of the
high-level path. The search will continue until either a path
can be constructed or there are no more nodes available,
which means we have to give up. Collisions with the “non-
essential” cores are analyzed to determine if a full path
can be constructed, but they will not stop the cores. With
some luck, we might be able to bypass some non-essential
cores or maybe link up directly with the other essential
core itself.

The “non-essential” cores use a slightly different heuris-
tic for cost estimation function. This function is initially

Figure 10. Symbolic illustration of Parallel Ripple Search: a path
is constructed by first flooding the search space between start
node S and goal node G at “equidistant” positions. As soon as
enough “ripple collisions” have occurred, we can use them to

construct the full path.

biased to flood towards the local start nodes of the
adjacent cores:

h.n/Dmin.Estimate.LocalSi�1; n/;

Estimate.LocalSiC1; n//

Estimate() is a cost estimation function, such as the
Euclidean distance. As soon as a first collision with a direct
neighbor has been detected, we switch to a normal heuris-
tic that will only flood in the opposite direction, towards
the other neighbor’s local start node. Once we have col-
lided with that one as well, but determined that a full path is
not yet constructed, we just keep flooding with the original
heuristic function again. This will make the flood boundary
expand in all directions again that in turn might find other
collisions that prove to be more beneficial. Only when a
non-essential core runs out of nodes will it abort the search.
This event does not explicitly have to be reported back to
the master core in any way; it might just mean that our
initial guess using the high-level path was “wrong” and
that the non-essential core started its search in an area that
became isolated because of dynamic obstacles.

Once enough collisions have been detected and the mas-
ter core has determined which cores will take part in the
full path, we can start phase 2. During this phase, it is
up to the corresponding cores to construct their local sec-
tions of the final full path. Synchronization between cores
can all be carried out using spin locks to ensure that there
is no unintentional operating system overhead. Now, for
essential cores, it is very easy to construct their local path
segments. As discussed earlier, the A� algorithm keeps
track of a “parent node” for each node that it floods to
link back towards its original start node. We thus only need
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to look up the collision node and follow the parent links
back to what will either be the original start node S or goal
node G.

For non-essential cores, we need to employ a different
approach. We cannot use the parent links because these
will always lead us back to the local start node at the loca-
tion of the corresponding high-level path anchor node. As
discussed previously for PHS, we need a smoothing phase
in an attempt to “iron out” the potential outlier that is the
high-level path node itself. Especially if dynamic obstacles
blocked our way, we need to make sure that the high-level
path will not pull the resulting path way off course. For
this, we do a new pathfinding session to find a suitable
path between the two collision nodes that will ultimately
“bridge the gap” between the neighbors of the core. We
can, however, significantly speed up this process by sim-
ply limiting the flood area to nodes that have been flooded
before. This information is often directly available via “vis-
ited flags” in the nodes themselves, and thus, the only extra
cost is the pathfinding session itself. Note that because the
flood areas will ideally be relatively small, a large amount
of data will already be in the core’s cache, thus making
such re-visits a very fast process. Once all local path seg-
ments have been obtained, the master core simply needs
to copy them into a single buffer, making sure that no
duplicate entries from the collision nodes are copied.

The overall implementation time of PRS was signifi-
cantly longer compared with PBS, but not as long as that of
DFS, provided that we already have the means for gener-
ating high-level paths. PRS requires more synchronization
moments, and we do need to keep track on how to safely
access memory without having race conditions causing real
problems. The cores always share one memory pool in
which they will write their unique core IDs for each node
they flood. In this way, other cores can detect when they
trod on each other’s toes and handle collisions. If we limit
the size of the IDs to a single byte, we can be sure enough
that writing them is “atomic” and the chance on race con-
ditions is actually very small. And even then, if this does
happen, the cores are bound to detect the collision during
their next iterations as they further flood into each other’s
“body mass.” For more details, please refer to Figure 11,
which presents the control diagram of our implementation
of the PRS algorithm.

Figure 12 shows an example of a path obtained with the
PRS algorithm, 60% faster than a classic A�. The differ-
ences between both paths are small, mainly because the
high-level path has managed to make a very good “guess.”

Parallel Ripple Search is also more robust and can much
better handle unexpected obstacles on the high-level path,
as shown in Figure 13. If dynamic obstacles block choke
points such as doorways, then PRS will circumvent these
automatically, because any non-essential core that is flood-
ing the area behind it will take longer to collide with other
cores while it is attempting to “find its way out.” This delay
in collisions provides a “natural optimization effect,” in
the sense that other cores that are positioned more favor-
ably are more likely to collide first and, thus, bypass the

Figure 11. Detailed diagram of the Parallel Ripple Search
algorithm.

unfavorably positioned ones. As pointed out earlier, in
extreme cases, whereby a non-essential core is flooding
a completely isolated area, no core will ever collide with
it, and we can even abort its futile search attempts when
enough collision have already been found to construct a full
path. The local path findings during phase 2 also enable us
to deal with dynamic obstacles efficiently and considerably
smoothen out the resulting path. The secondary effect of
this effect is that it will suppress a “gravitation” towards the
anchor nodes of the high-level path (which proved so prob-
lematic for PHS). Granted, our approach gives no abso-
lute guarantees that all artifacts are most optimally dealt
with. However, throughout our experiments, we empiri-
cally ascertained that mostly the heuristic function very
favorably directs the flood boundaries.

Finally, the quality of the paths found is in general
good, although they are still influenced by the route and
orientation of the high-level path.

5. PERFORMANCE

We have repeated for PRS the same experimental mea-
surements previously described for the other parallel algo-
rithms. As PBS was clearly the best alternative so far, here
we will limit the discussion to FS, PBS and PRS to keep a
clear overview.
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Figure 12. Path generated with the Parallel Ripple Search algorithm. (Left) Comparison with the classic A�. (Middle) The high-level
path used and the way-points used to start off the non-essential cores. (Right) Each core has flooded roughly the same amount of

nodes. The yellow nodes indicated collisions.

Figure 13. Example of how the Parallel Ripple Search algorithm still manages to bypass unexpected obstacles on the high-level path
(middle). In this case, two cores did not manage to collide with each other (right), and thus, only the other cores contributed to the

resulting path. A comparison with the classic A� implementation (left) shows that both paths were virtually identical.
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remains fairly constant for all variants.
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From Figure 14, we conclude that PBS is still a very
strong candidate on short to medium path lengths. Above
roughly 200 nodes, PRS finally starts to capitalize on the
fact that it can utilize more than two cores, at which the
speedup factor is in the range 2,5–10 compared with clas-
sic A�. Up to that point, PRS has too much overhead
and/or cannot utilize all its cores when not enough way-
points are found in the high-level graph. Regarding path
quality, we can see that PRS generates paths that are on
average about 4% more expensive. This deviation is par-
tially because the algorithm relies on the collisions to be
favorable (which is, of course, not always the case), and
also on the use of the FS ThresholdRelaxation constant,
so that it expands faster outwards [12]. Also, in contrast
to classic A�, we do not explicitly search for better nodes
around collision nodes. The cost overhead for PBS is very
low, less than 1% on average, which makes it an excellent
alternative for short to medium length paths. The fact that
PRS seems to have a “constant” overhead factor indicates
that although the algorithm is “probabilistic” in nature, it
is still able to make good enough “guesses” on a consistent
basis. This is directly linked to the quality of the high-level
graphs, which is therefore an essential component of any
successful PRS implementation.

6. CONCLUSION

We have implemented a number of parallel pathfinding
algorithms to investigate their behavior and performance in
multi-core architectures. We concluded that all these algo-
rithms exhibit one or more weaknesses; for example, they
have a large overhead, yield far from optimal paths, do
not easily scale up to many cores or are cache unfriendly.
The latter was found to be crucial, as currently available
multi-core CPUs have good cache look-ahead prediction,
as long as shared pages do not get written into too often. In
other words, for these architectures, data separation is key
to efficient pathfinding.

In this article, we proposed PRS, a novel parallel
pathfinding algorithm that largely solves the aforemen-
tioned limitations. Basically, the algorithm employs (i) two
“essential cores” to flood at the path extremities (like PBS
does) and (ii) all other available “non-essential cores” to
flood local search areas, starting at “equidistant” inter-
vals on a high-level path. These cores then use A� flood-
ing behavior to expand towards each other, yielding good
“guesstimate points” at border touch on. As a result, all
cores effectively run at full speed until enough way-points
have been found.

Like most other parallel algorithms, PRS sacrifices some
path quality for speed: it runs roughly 2,5 up to 10 times
faster than a classic A� implementation, with only an aver-
age minor penalty of 4% in path cost. This inevitable loss
of optimality justifies the use of the FS variant, which is
instrumental to further improve performance by means of
its threshold relaxation: not only is more work carried out

in parallel, it also expands flood boundaries faster, resulting
in earlier collisions.

The PRS algorithm does not rely on any expensive
parallel programming synchronization locks or mutexes
but instead relies on the opportunistic use of node colli-
sions among cooperating cores, exploiting the multi-core’s
shared memory architecture. As a result, PRS is easily
portable to different platforms that provide symmetric mul-
tiprocessing architectures and/or embedded systems that
do not provide concurrent programming primitives other
than threads.

Future research should focus on, at least, two directions.
First, it would be worthwhile improving the quality of the
high-level path, enabling PRS to make better guesstimates
on where the non-essential cores should best start flooding
from. Second, new performance gains should be achieved
by further reducing cache collisions between cores, for
example, by re-arranging the memory location of nodes to
better reflect their real-world topology.

In conclusion, the PRS algorithm (i) is a fast and prac-
tical pathfinding solution for large and complex maps, (ii)
it flexibly handles dynamic obstacle in a natural way, and
(iii) it guarantees good scalability facing the increasing
amount of cores of present day hardware.
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