
57

The Role of Semantics in Games
and Simulations

TIM TUTENEL and RAFAEL BIDARRA

Delft University of Technology

and

RUBEN M. SMELIK and KLAAS JAN DE KRAKER

TNO Defense, Safety and Security

Powerful graphics hardware is enabling strong improvements in both the appearance and the

complexity of virtual worlds for games and simulations. However, current practices in the design

and development of virtual worlds mostly resemble high-tech variants of traditional handcrafts,

resulting in increasingly unbearable design costs.

In this article we state that an essential key to overcoming these problems lies in the enrichment

of object models with several kinds of semantic data. We discuss numerous and promising uses

for semantic information in virtual worlds, and show, for many of them, how previous results of

recent research can be successfully applied. We also identify the fundamental challenges in this

new cross-disciplinary area, and point out a number of open issues lying ahead, including the

need for (i) a suitable way of specifying semantic data, providing a powerful vocabulary that is

useful and usable for all disciplines involved in game design and development; (ii) a seamless

integration of semantic data integrated with procedural generation techniques, in order to provide

designers with a new and powerful generation of tools; and (iii) a consistency maintenance among

evolving objects in a changeable environment, for which powerful constraint-solving methods will be

instrumental.

We conclude that, as the expectancy for future games and simulations steadily shifts from

improved graphics and appearance towards improved character behavior, plausible realism and

coherent gameplay, embedding the game world and its objects with richer semantics is going to

play a crucial role. We can therefore expect that, in the near future, increasing research efforts and

influential results will be emerging in this new exciting area.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling—Geometric algorithms, languages, and systems; H.5.1 [Information

This research was supported by the GATE project, funded by the Netherlands Organization for

Scientific Research (NOW) and the Netherlands ICT Research and Innovation Authority (ICT

Regie).

Authors’ address: T. Tutenel and R. Bidarra, Faculty of Electrical Engineering, Math-

ematics and Computer Science, Delft University of Technology, The Netherlands; email:

timt@graphics.tudelft.nl, r.bidarra@ewi.tudelft.nl; R. M. Smelik and K. J. de Kraker, Model-

ing and Simulation Department, TNO Defense, Safety and Security, The Netherlands; email:

{ruben.smelik, klaas jan.dekraker}@tno.nl.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1544-3574/2008/12-ART57 $5.00 DOI = 10.1145/1461999.1462009 http://doi.acm.

org/10.1145/1461999.1462009

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

57:2 • T. Tutenel et al.

Interfaces and Presentation]: Multimedia Information Systems—Artificial, augmented, and
virtual realities; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism; D.3.3

[Programming Languages]: Language Constructs and Features—Constraints

General Terms: Design, Experimentation, Languages

Additional Key Words and Phrases: Semantics, virtual environments, constraint solving, modeling,

games and simulations

ACM Reference Format:
Tutenel, T., Bidarra, R., Smelik, R. M., and de Kraker, K. J. 2008. The role of semantics in games

and simulations. ACM Comput. Entertain. 6, 4, Article 57 (December 2008), 35 pages. DOI =
10.1145/1461999.1462009 http://doi.acm.org/10.1145/1461999.1462009

1. INTRODUCTION

Rapid advancements in graphics hardware performance are making it possible
to support1 a much higher level of detail in virtual worlds for current video
games and simulations, thus increasing the market pressure to boost their
complexity and extension. Hence, creating such virtual environments costs an
increasingly large amount of time and money. However, many methods cur-
rently used in this task are very labor-intensive and, in essence, resemble
high-tech variants of handicrafts. They can become very complex when edit-
ing huge worlds, as we can observe in the screenshot of the Crytek Sandbox 2
editor in Figure 1. Even worse, the resulting models often consist of little more
than annotated geometric representations of the environment and of the ob-
jects embedded in it. In particular, much of the designers’ intent in guiding the
whole design process is not captured anywhere in the model and so gets lost,
making it very cumbersome to iteratively modify a design, or simply to reuse
elements from previous designs. Finally, using rigid object representations, as
for example pure geometric mesh models, further hinders current attempts to
achieve object dynamic behaviors or in-game adaptivity in the virtual world.

In the last decade, more and more research has been done on modeling tech-
niques that incorporate extra design information in the representation of ob-
jects, thus going beyond the mere geometric data. The successful application of
such techniques, for example in the area of CAD/CAM [Bidarra and Bronsvoort
2000], gives us a good basis to conclude that any solution to the above problems
will have to include a richer representation of the virtual worlds and of each
of its objects. This extra, nongeometric information falls under what we in this
article will call world (and object) semantics.

According to Wikipedia, “semantics (Greek sēmantikos, giving signs, sig-
nificant, symptomatic meaning, from sēma (σ η̃μα), sign) refers to aspects of
meaning, as expressed in language or other systems of signs.” Thus in generic
terms, semantics denotes the meaning of a word or sign. Applied to virtual en-
vironments, we define semantics as the information conveying the meaning of
(an object in) a virtual world. Ultimately, by including semantic information in
their representation, we aim at defining life-like behavior for virtual objects.
A semantically rich object representation, therefore, goes beyond its basic ge-
ometric model by associating it with data that embeds a substantial amount
of knowledge about itself and possibly its surroundings. For example, besides

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

The Role of Semantics in Games and Simulations • 57:3

Fig. 1. Editing huge game worlds in the Crytek Sandbox 2 editor1 can become very complex.

its geometry, an object can have various parameters defining, for example, its
appearance, physical properties, roles, behavior and, even more importantly,
which services it can provide. Virtually every imaginable object plays some
role(s) in its environment: objects offer services to other objects or characters in
the world. An object can offer cover for a soldier, a lighter or a matchstick can
provide fire, which offers services like heat and light, and batteries, solar cells,
or a wall plug can offer power for electrical appliances under specific conditions.
Accordingly, some objects will rely on the services of other objects to offer their
own services. Expectedly, this association of information will typically result
in highly interactive objects and, ultimately, help overcoming the drawbacks
pointed out above.

Moreover, when semantic data is linked to procedural generation techniques,
the power, quality, and realism of these techniques can be improved as well as
extended to automatically propagate semantic information to the procedurally
created worlds and objects. This combination will give designers very power-
ful tools with which they can create larger and more complex worlds, without
having to spend a proportional amount of extra time.

In this article we first provide a detailed overview of what semantic in-
formation in virtual worlds entails, distinguishing different levels in this

1Crytek Sandbox 2 editor is a level editing tool for Crysis, from developer Crytek

(http://www.crytek.com/).

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

57:4 • T. Tutenel et al.

semantics, and pointing out which kind of information is useful at each level
(Section 2). We next discuss how object relationships and rules can be described
and maintained in changeable worlds by utilizing constraint-solving (Section 3).
Finally, we give an overview of the contribution of semantics to virtual worlds,
both in the design phase (Section 4) and in the runtime phase (Section 5).

2. LEVELS OF SEMANTIC SPECIFICATION

Normally, we see an object represented in a virtual world “through the vertices
and rendered triangles” of its geometric model. But subconsciously, we trans-
form this “physical object” to an abstract concept, in much the same way as we
do in real life: when we look at a tree, we see “beyond” the branches and the
leaves and just think about the concept of tree.

However, although most of the reasoning we do focuses on this abstract view
of an object, very little of this abstract layer is currently integrated in game
worlds. The objects very often remain nothing more than geometric elements
consisting of textured triangles in the virtual world.

A virtual world not only needs to look realistic, it also needs to feel realistic.
A user of a virtual environment application needs to be able to interact with
a virtual object just as one would do with the real-world counterpart of that
object. A semantically rich world provides the information—the vocabulary—
necessary to create realistic and compelling interaction.

We distinguish three levels in virtual world semantics. The most basic level is
the object level. An object contains a number of physical or functional properties
that are specific to that object. On a higher level, we have the relationships
between different objects. Objects can, for example, be mutually related by class,
inclusion, proximity, coordination, or many other kinds of relations. And on an
even higher level, we find more global semantics, as for example time, weather,
and climate properties. We see the examples of these semantic levels in the
scene of the military simulation game Armed Assault in Figure 2. For example,
we see the sandbag bunker, providing “cover functionality,” the barbed wire
which is related to the road to block vehicles, and the location of the checkpoint
near the crossroads is one of strategic importance in the world. These three
levels of semantics will now be covered in more detail.

2.1 Object Semantics

The first level where a more descriptive approach is needed is the object level.
Objects need to transcend the geometry level and more information needs to
be incorporated into the object’s description. Many properties of real-world ob-
jects should be represented in their virtual counterparts to allow an algorithm
to perform some kind of reasoning on the objects (e.g., the physical attributes
define whether or not the object is too heavy to carry, or the functional infor-
mation is necessary to decide if an AI character can use the object to reach a
goal). Object properties might be basic attributes like physical and material
characteristics. But also more high-level elements, like the functionality of the
object, its influence on other objects and its interaction possibilities, should be
defined.

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

The Role of Semantics in Games and Simulations • 57:5

Fig. 2. A scene from the military simulation game Armed Assault2 that can potentially contain

loads of semantic information: the building rooftops are ideal look-out positions from where the

troops on the ground can be protected, the sandbag bunker is an excellent cover position, the barbed

wire is strategically located to block the road and the checkpoint location near the crossroads is

also of strategic importance in the world.

An example of such objects are Kallmann and Thalmann’s [1998] “smart ob-
jects” which contain information about the possible interaction methods that
can be executed on them. Peters et al. [2003] take the notion of smart objects
further by creating objects with information about the functionality of the ob-
jects, how NPCs (non-player characters) can interact with them, and where
important features of the object are situated. The objects include information
about the location where a character needs to stand to interact with the ob-
ject and where he or she should look at while performing a specific action (e.g.,
when interacting with a computer, the character should look at the screen while
typing something on the keyboard).

As more information is represented, the design of such objects will initially
take more time and effort than the usual design of plain geometric objects.
To avoid having to define each property of each object in the virtual world,
Ibanez-Martinez and Delgado-Mata [2006] introduce a system that defines ob-
ject data more efficiently. They introduced an architecture that provides a gen-
eral common level on which to build specific semantic representations. The
common-level data bundles information that is useful in all virtual environ-
ment applications, such as the position and dimensions of an object. Another
advantage of this approach is that it takes work out of the hands of designers

2Armed Assault (http://www.armedassault.com/), from the developer Bohemia Interactive

(http://www.bistudio.com/).

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

57:6 • T. Tutenel et al.

by automatically calculating some of these application-independent properties
(e.g., the dimensions of an object based on the object model). This decreases
the time a designer needs to spend manually annotating features. To remain
application-independent, the common level only contains low-level information
and the designer can later add more specific data, depending on the applica-
tion. Basically, the user needs to enter the object type, which is used to generate
properties like width, height, location, and orientation automatically, based on
the geometric model of the object.

Techniques like these, that reduce the amount of manual annotation or
tweaking of object properties, are very important, since the addition of seman-
tic data should not have a negative influence on the time and effort designers
spend creating their virtual worlds. Many aspects such as object dimensions
can be generated based on the geometry. But we need even more properties
than dimensions and orientation only in order to create a powerful system.
For example, by only defining a material for an object, a substantial amount
of physical properties can be automatically derived. A more complex design
system is necessary that includes methods like these in order to create seman-
tically rich virtual worlds without significantly increasing the design time. In
the next sections we will show that, in many cases, semantically rich objects
actually save much time in the design process as well, so the time necessary to
add this semantic information is well spent.

Objects containing interaction information, for example the smart objects
by Peters et al. [2003], could aid in the creation of vast and highly interactive
virtual worlds. If designers could be provided with fast and efficient tools to
incorporate actions in objects, game worlds could be created that are completely
interactive. For this, all objects should contain information about the ways a
user can interact with them: what actions can the user perform on the object
(e.g., pick up, throw, drink, read, wear) and what other objects are necessary
to perform this interaction (e.g., a key to open a door or a striking surface to
light a matchstick). When performing an action on an object, this object will
provide services to the user or to its surroundings. Wearing a coat will provide
warmth only to the one who is wearing it, but a campfire will provide warmth
to everyone within a certain range. A detailed classification of these properties
and services is necessary to explicitly define them. It can also be integrated in
tools to quickly edit the properties of an object by allowing the designer to pick
a related object class. From this related class, information can be inherited to
eliminate the need to define every detail over and over again.

2.2 Object Relationships

Objects in a scene contain certain relationships between each other. These re-
lationships can be between instances of objects, for example, geometric rela-
tionships in a scene, or between object classes. Different objects may share
similar properties (e.g., have the same material, but they may also be simi-
lar on a functional level, for example a candle and a flashlight can both offer
light).

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

The Role of Semantics in Games and Simulations • 57:7

A first and important relationship is that of inheritance. Two different objects
that have the same ancestor will share some similar properties but will be
in another child branch in a hierarchy tree. This kind of relationship can be
expressed in a taxonomy, of which a very detailed example can be found in the
feature classification model of Bitters [2002]. But next to a hierarchy based on
properties, more detailed relationships can be defined.

In Levison’s [1996] Ph.D. dissertation, we see an example of a functional
hierarchy. The dissertation describes a system that enables the decomposition
of a high-level task into a set of action directives. The objects have information
about how they can be manipulated. They contain “sensible” knowledge, which
is basic knowledge like its size, position or temperature, but also “symbolic”
knowledge (e.g., about its functionality). The system uses a hierarchical class
structure where every child class inherits all functionality of its parent classes.
The lower a class is in the functional hierarchy, the more specialized the func-
tionality becomes. An example of this is the class Thing. This class is broken
up into Object and Artifact. Artifact, in turn, is subdivided in Tool, Container,
Cover, and Support. Artifact is the category that defines all man-made objects.
Tool is a tool that contains a function it can perform, for example a hammer or
a screwdriver.

This kind of information about the functionality of an object is very useful
in virtual environments. When creating a virtual world, the functionality of an
object can help in deciding which objects should be placed where. When a level
designer creates (e.g., a workplace of a furniture builder as a part of the game
world), his workload could be significantly reduced if the world editor contained
a method to logically place some woodworking tools in that virtual workplace.
Obviously, the interaction part of the game could benefit from this functional
data too, as we explained in Section 2.1.

Huhns and Singh [1997] use ontologies with different types of relationships
between objects. Next to the basic data-modeling relationships, that is, inheri-
tance, aggregation, and instantiation; they also cover relationships like owns,
causes, and contains. The system for which they proposed this idea was intended
to handle communication between software agents with different knowledge
domains. This could be a customer agent communicating with a travel agent
about a trip. The travel agent can give details about a certain flight with a
777 type plane that might not be present in the knowledge base of the cus-
tomer agent. But because of the relationships, the travel agent can inform the
customer agent that this 777 has airplane as a parent object, and since the cus-
tomer agent will have the general term airplane in its knowledge base, he will
understand the information of the travel agent. This kind of information can be
used by the AI system of a game or simulation, but it could also be a source to
provide meaningful and life-like interaction to the user. For example, when the
user needs to find a power source and the virtual world contains information
that a car contains an engine and that an engine is a type of a power source, this
car engine could be used without the designer having to define this explicitly.
In this way, virtual worlds become more interactive, and can thus lead to more
emergent behavior.

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

57:8 • T. Tutenel et al.

2.3 World Semantics

Next to the object level we can also define semantic information on a more
global level. To identify vegetation types inside a region, parameters like soil
fertility, and soil nutrients play a role but also climatic circumstances like tem-
perature and rainfall should be taken into account. These parameters are not
related to specific objects but to an area in the world or perhaps the entire
world.

We see this approach in the work of Deussen et al. [1998] that consists of
an ecosystem simulation model to populate an area with vegetation. The input
of this simulation model is terrain data, ecological properties of plants, and,
optionally, an initial distribution of plants. Based on this data and taking into
account rules for competition for space, sunlight, and soil resources, a distribu-
tion of plants inside an area is generated. When a designer has the ability to
include these kinds of properties in the world, many physically-based models
could integrate them to create a more realistic world.

Semantic world data is also very useful when designing adaptive virtual
worlds. These are worlds that adapt to global parameters (e.g., weather con-
ditions and time) or evolve based on the user interaction (e.g., clearing forests
and constructing buildings) in strategy games. Global game world parame-
ters like weather and time have a huge influence on the virtual world in its
entirety as well as on the individual objects. When we look back at the veg-
etation example above, we see that an ecosystem model could, for example,
also be applied to calculate changes in a virtual forest. Trees become older,
new trees and plants appear, and others die. In a strategy or empire-building
game where resources need to be gathered from forests, this could add not
only realism but also strategic difficulties (cutting down trees faster than the
growth of the forest will deplete wood resources). Depending on seasons, the
geometric appearance of plants and trees change but also their properties,
for example the resources they offer. In summer time, fruit grows on trees
and can be gathered to feed the population in a strategy game. Corn fields
can create an excellent hiding place from enemies when the crops are fully
grown.

Weather and time also have an influence on materials, for example surfaces
begin to reveal cracks in the paint, unprocessed wood becomes weaker, and
metallic objects start to rust. These parameters can be taken into account just
to add visual realism: for example, modeling paint cracks [Paquette et al. 2002]
or aging and weathering effects on textures [Lu et al. 2007]; but at the functional
level can also alter the role of an object in a game. A young, strong, wooden plank
will be perfect to attack an enemy while an old, mossy branch will break more
easily, and is therefore useless as a weapon.

Finally, we can also include contextual information in world semantics. Ex-
amples are parameters like the economic or living conditions or how safe
inhabitants feel. This kind of information is more important in games such
as city-builders or strategy games; but also in military simulation safety
levels, and, in general, the state of the global economy can play a role as
well.

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

The Role of Semantics in Games and Simulations • 57:9

2.4 Discussion

Careful consideration needs to be given to creating the methods for generating
and editing semantic data. For this, the use of a system as that proposed by
Ibanez-Martinez and Delgado-Mata [2006] can be interesting, since it tries to
automatically generate numerous values of the semantic data level to reduce
the design time. The types of calculated data should however be extended. If a
designer did not only choose the object type but also the material of the parts,
the weight and other physical properties of the object could be generated. This
way, without the designer having to enter a huge amount of parameters for
every single object, the game would know, for example, if an object picked up
by the player’s character is heavy enough to injure an opponent (and if it is not
too heavy to pick up in the first place).

Algorithms simulating physical phenomena, as for example, the ecosystem
simulation model of Deussen et al. [1998], can be significantly improved in
semantically rich worlds. When detailed information about the soil of a terrain,
the climatic conditions, the growth cycle of the plants, and information about
other plants in the environment are included into these kind of algorithms, a
more realistic effect can be acquired.

In this section we discuss various forms of object and world semantic data
useful for inclusion in virtual worlds. Obviously, not all information is of prac-
tical use in every game genre or in every simulation, but any flexible system
should at least enable the integration of a variety of this data, from physical
attributes to contextual properties.

Once semantic information has been incorporated into such rich object repre-
sentations, we face an even bigger challenge in the maintenance of that seman-
tics as virtual worlds evolve. Similarly, relationships that were defined among
different objects need to be maintained when changes are made to the world.
These changes can take place not only during the design phase (e.g., when area
parameters are changed or objects are moved), but also at runtime in adaptive
worlds, for example an explosion can break the structure of an object and affect
its services. Moving objects might result in conflicts, since specific physical laws
are perhaps not met in the new location, for example a tree that is moved to an
area that has too high a slope or has too few soil nutrients to feed such a tree. To
maintain these laws, a system is required that can in real-time maintain rela-
tionships and detect and possibly solve conflicts between objects or between an
object and the environment. We believe that such a solution can be found with
the help of constraint-solving techniques. In the next section we will discuss
the close connection between semantic data and constraints and review how
constraint-solving techniques apply to virtual environments.

3. MAINTAINING SEMANTICS USING CONSTRAINTS

Since semantic relationships between objects need to be maintained while edit-
ing a scene, many objects will be influenced by other objects. For example, when
a road with some lamp-posts alongside is displaced, all lamp-posts should likely
be moved as well. And if the road is made longer, more lamp-posts will need to
be placed alongside the road. So together with the specification of semantics in

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

57:10 • T. Tutenel et al.

the virtual world, we also need mechanisms that maintain this semantics in a
changing environment.

The most effective and promising approach to handle this is to use constraint-
solving methods. Relationships between objects, but also the behavior of an
object, can be expressed in rules or constraints. However, since semantic data
is a very broad subject, these constraints can significantly vary from each other.
This section discusses what types of constraints are necessary to express the
semantics we need in virtual environments and the techniques that currently
exist to solve these types of constraints. We also review where constraints are
currently being used in virtual environment applications.

3.1 Constraint Types

In the previous section we described three levels of semantics: object semantics,
object relationships, and world semantics. All these aspects can be expressed
with the help of constraints, which are rules on one or more constraint vari-
ables that need to be satisfied. We distinguish a number of different constraint
types. First of all we have basic numerical constraints: algebraic equations that
need to be satisfied. We also need geometric constraints that express geometric
concepts like the distance between objects or an object’s dimensions. Certain
physical properties of an object can be calculated with the help of physical laws,
and can often be expressed in an algebraic equation with extra parameters, for
example gravity or temperature. Properties of objects can also change over time,
and for this we need time constraints. In some cases these can be incorporated
into the physical law constraints by making time a parameter in the physical
equations; but there should also be conditional rules that express whether or
not a property or a certain behavior is available on a given time or date. Finally,
we have distribution or variation constraints. These express how many objects
in a given area need to be present or at which ratio different objects should
be distributed (e.g., a forest containing 40% pine trees and 60% birch trees).
We now review the three semantic levels from the previous section and what
constraint types are particularly interesting on each level.

Semantic properties of individual objects can be expressed with time and
physical law constraints. If the material properties of an object are specified,
physical law constraints could be deduced from them, like the degradation of
material over time or the maximum load an object can bear. Time can also
influence the services an object provides. In the previous section we gave the
example of trees that produce fruit during summer and corn crops that offer
cover when fully grown. This can be expressed in a conditional time constraint.

On the level of object relationships, constraints can really prove their worth.
At the beginning of this section we discussed the hierarchical structure of a road
concept. When describing a road, many constraints can be applied. We want to
express, for example, the width of the road and the pavement or the distance be-
tween the lamp-posts to the side of the road. These are geometrical constraints,
which actually form the basis for constraint solvers in virtual environments
because finally we need to define positions and orientations for objects in the
world; but also numerical constraints like how many lamp-posts per kilometer

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

The Role of Semantics in Games and Simulations • 57:11

Fig. 3. A schematic overview of the constraint-solving techniques.

of road are necessary. We could also transform this to a physical law by express-
ing how much lumen is required for the road. This is an easy way to express
that we want more lamp-posts or more powerful lamps on larger roads or roads
with multiple tracks. Other examples of numerical constraints are the number
of rooms a building should contain or how many windows per room.

To express the world semantics level, different types of constraints can be
applied as well. The vegetation of an area can be expressed with variation and
distribution constraints. However, it is also possible to use physical laws to
create an ecosystem simulation, as described in the previous section. Another
example of how physical laws can be helpful at the world level is adaptation
to weather conditions. A region with an earth surface will become mud when
rain starts to pour. The properties of this surface will therefore change due to
the transition from earth to mud. When soldiers run through the mud, it will
be harder and slower for them to do so, and they will be more prone to falling.

We discussed the different types of constraints necessary to express semantic
information in virtual worlds. In the following section, an overview is presented
of what techniques can solve these constraints.

3.2 General Constraint-Solving

A constraint-solving technique tries to find some or all solutions for a set of
constraints. Many of such techniques have been developed in the past; we will
cover the main categories [Dohmen 1995; Hoffmann and Joan-Arinyo 2005]. A
schematic overview of the different approaches is found in Figure 3.

The first major division can be made between constraint variables with finite
domains and those with infinite domains. Finite domains have the advantage in
that, in the worst case, every possible solution can be evaluated. The finite do-
main constraint problems are mostly solved in two ways: via search techniques
and solution synthesis [Tsang 1993]. The search techniques are based on back-
tracking algorithms in which a possible value is chosen for a variable, and

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

57:12 • T. Tutenel et al.

recursively every variable is filled until some constraint no longer holds. Then
the algorithm steps back and chooses another value for the variable. Especially
when just one solution needs to be found in a loosely constrained problem, this
technique is adequate, since few backtracks will be necessary to find a solution.

In solution synthesis, a solution for all constraints on a subset of variables is
generated. With this solution, a new solution is determined for the constraints
of all variables in the first subset plus one new variable. By employing this
method, all possible solutions are found.

Infinite domain problems require a different approach. Since variables can
have infinite values, a problem can potentially have infinite solutions. When
the constraints consist of algebraic constraints, a solution can be found by look-
ing at the degrees of freedom of each variable [Leler 1988]. When a variable is
restricted by many independent constraints, it is said to have few degrees of
freedom. The variables with few degrees of freedom are solved based on already
known variables and connected constraints. After this, the results are propa-
gated to the variables with more degrees of freedom. This is a local technique,
since it tries to solve a problem by solving local sub-problems first.

In problems that contain loops, these techniques do not suffice. A constraint
problem can be expressed in a graph where the variables are nodes and the
constraints are the edges between the nodes. If a graph that represents a prob-
lem in this way contains a loop, the local propagation does not work anymore
because some variables can be determined by multiple paths in the graph. To
handle these problems, global techniques are necessary.

The global techniques can be analytical or graph-based. The analytical
solvers can be further divided into numerical and symbolical solvers. An ex-
ample of a numerical technique is relaxation [Hillyard and Braid 1978] that
starts with initial guesses for variables. These guesses are assessed on their
errors with each constraint and new guesses are made that eventually con-
verge to a solution for which the errors are within an acceptable range. Other
numerical techniques include Newton-Raphson and homotopy continuation.
Both methods can find the roots of a nonlinear function. The Newton-Raphson
method starts from an initial guess and then iteratively calculates closer ap-
proximations. These approximations do not necessarily converge to the solution
however, so the method does not always find a suitable result. Homotopy con-
tinuation techniques [Choi et al. 1996; Lamure and Michelucci 1996] try to find
the roots of a set of nonlinear functions by creating an interpolation function
between this set and another set of functions close to the original set for which
the solution is known.

Symbolic solvers use algebraic elimination rules to reduce a system of poly-
nomial equations to an easier one. An often-used technique is transforming the
system into an equivalent triangular system, called a Gröbner basis, with the
same solution as the original system, but which is easier to solve with back-
substitution and univariate root-solving [Buchberger 1985; Kondo 1992].

Many different graph-based-solving techniques have been researched. The
constructive methods (e.g., Bouma et al. [1995] and Hoffmann and Joan-Arinyo
[1997]) are often used to solve constraints in computer-aided design, since CAD
drawings can usually be expressed by a sequence of basic construction steps.

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

The Role of Semantics in Games and Simulations • 57:13

The constraints are satisfied by incrementally constructing the drawing. The
top-down techniques recursively split a construction problem into smaller prob-
lems until a problem is found with a known solution. The bottom-up techniques
start by solving subproblems and then combine these to solve the main problem.

Other graph-based techniques use a propagation approach. In degrees of
freedom propagation [Glenn 1991], the degrees of freedom limited for each
constraint are fixed and the remaining degrees of freedom are propagated to
the other constraints.

Geometric constraints can also be defined as specifications of geometric op-
erations. These geometric operations are executed incrementally and indepen-
dently of other constraints. They only need the results of previous operations
to execute the next operation on.

When we take a look at the previous section, we recollect that many different
constraint types are necessary in systems that maintain semantics. We not only
need geometric constraints but also numeric constraints. Some of the variables
will have finite domains, yet others infinite domains. Physical law constraints
especially could contain constraints that influence many variables at once. But
the end result will be a modeled scene, hence the solver will probably be geo-
metrically based, that is, all objects need to get a fixed position in the resulting
scene.

The combination of different constraint types has been achieved in some
generic constraint solvers. In his PhD dissertation, Fernández [2004] (see also
Fernández and Hill 1998]) explains the necessity for a generic constraint solver
for logic programming. The main disadvantage he indicates for specialized
solvers in constraint logic programming (CLP) applies to constraint-solving
in virtual environments as well. When a constraint type is not supported by a
solver, it needs to be transformed into one that is supported. Perhaps the sup-
ported domains can only handle finite sets or perhaps the possible constraint
types are too limited. A generic system that allows the addition of new con-
straint types (as we discuss next) is therefore more declarative, since domains
or types that are not yet supported can be added to the solver.

Fernández proposes a unified framework that includes all the domains for
which specific CLP systems are available (integer values, Boolean values, real
numbers, and sets of values). But the system also provides for a glass-box con-
straint system in which it is easy to add new customized constraints by the user.
Moreover, for these custom constraints, the user is not limited to the domains
that were integrated in the system, but can also define new domains and, for
each new constraint on these new domains, specific propagation behavior. In
Figure 4 we can see how this double glass-box approach is structured. This
approach allows for much more flexibility, as opposed to previous black box
approaches. The implemented system does have an important drawback, how-
ever: using logic programming to solve geometric constraints is significantly
less efficient than other methods specifically targeted to the geometric domain,
and, according to the author, the architecture used for the implementation is
not the most efficient one either. The idea of a glass-box system is interesting,
but this logic-based implementation is inefficient in the context of semantic
virtual world constraints.

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

57:14 • T. Tutenel et al.

Fig. 4. The glass box approach proposed by Fernández over both constraints and domains.

(Figure 1.3 from Fernández [2004]).

In geometric modeling applications the generic constraint-solving idea is
useful as well, as shown in the work of Le Roux et al. [2001]. In their solver for
a declarative modeling application, both constraints and domains are generic.
The search algorithm uses a nonrecursive backtracking system and generic
dynamic heuristics. To test the system, they created a scene with 30 objects
(a TV, walls, tables, etc.) with description constraints such as “the screen is on
the table, table1 is to the right of table2” etc. The description was internally
translated into 210 variables and 245 basic constraints. Their paper mentions
that to allow inequality constraints, they chose a voxel array, which obviously
does not scale well, and hence is not immediately usable.

These and other systems show that a generic solution is flexible and offers
a significant advantage in ease-of-use over specific solvers; but the main draw-
back of this approach is the loss in efficiency. A logic-based system is quite
slow in solving geometric problems. Specialized algorithms can obviously find
solutions faster since they can apply heuristics or algorithms only usable on a
specific domain for example. The general idea behind these systems is useful to
keep in mind, but the loss of efficiency needs to be overcome, since the amount
of constraints in a virtual world can become very large.

3.3 Constraint-Solving in Virtual Environments

In the scope of this article, the field of declarative modeling is interesting be-
cause it combines constraint-solving and modeling in virtual environments.

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

The Role of Semantics in Games and Simulations • 57:15

Gaildrat [2007] provides an extensive overview of issues in declarative model-
ing Declarative modeling of virtual environments tries to offer a simple design
process for nonprofessional users that can help them create complex scenes
based on specific rules (e.g., create scenes in a specific architectural style). To
achieve this, it uses both constraints and semantic knowledge, that is, implicit
constraints, to guide the user. This semantic knowledge is represented by prag-
matic and functional properties of the objects.

Gaildrat considers three phases in these modeling systems; but the descrip-
tion and generation phases are the most interesting in the context of this ar-
ticle. In the description phase, the designer uses different types of properties
to express his mental image of the scene. Semantic knowledge can solve the
ambiguity and imprecision of the description, for example, object positions can
vary according to context. Plates on a kitchen counter will be stacked waiting
for the washing up, but on a dining table they will be spread out in front of each
chair. To achieve this, practical and functional knowledge is used in the gener-
ation process. The descriptions need to be translated into a set of constraints
in order to find a solution. Le Roux et al. [2004] reviewed a number of possi-
ble constraint-solving methods, and concluded that the search tree approach
is well-suited for problems in the generation phase. The reasons given are the
flexibility of the approach, the fact that it can generate all solutions, and the
possibility of user intervention in branch pruning.

In scene composition and manipulation, constraints are applied as well
[Goesele and Stuerzlinger 1999; Xu et al. 2002]. Xu et al. present a system
that helps a designer with the placement of objects in a scene by using pseudo-
physics and placement constraints based on a hierarchical database in which
objects have an orientation constraint with respect to their parent object and
have properties indicating whether or not these objects can physically support
other objects or be supported by other objects. Goesele and Stuerzlinger [1999]
use a similar system, in which hierarchical groups of objects are created that
can maintain their local constraints when the group is manipulated. These
scene-composition techniques are discussed in more detail in Section 4.1.

3.4 Discussion

Considering the different domains and constraint types required for virtual
world modeling, it is obvious that a powerful, integrated constraint-solving
system that can cope with different kinds of constraints is necessary.

As discussed above, a generic constraint solver could be the solution, as it
would not only allow different types of domains (finite-infinite domains, 2D-
or 3D-domains, etc.), but also different types of constraints. Together, these
could provide a robust and flexible vocabulary, since implicit constraints and
custom domains can then be described more easily. The great disadvantage
of this generic approach is execution speed. A specialized solver can utilize
certain characteristics of a specific domain or of a specific constraint type to
find solutions faster than its generic counterparts.

Another possible approach might be a high-level tool that provides a de-
signer with different types of constraints to express the rules and behaviors of

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

57:16 • T. Tutenel et al.

the virtual world and its objects, while internally transforming all constraints
to a specific type. In virtual environment applications, the most likely candi-
date would be the geometric constraint type. This would mean that existing
geometric-solving methods can be employed [Bouma et al. 1995; Glenn 1991;
Hoffmann and Joan-Arinyo 1997] and that more implicit constraints should be
mapped to constraints allowed by these techniques. This could keep the ad-
vantage of flexibility for the user, but also have the speed advantage of specific
solvers. However, it is unlikely that the same level of flexibility can be provided
as with a generic constraint solver. In fact, even in a generic approach, the im-
plicit to explicit conversion is still not completely solved [Gaildrat 2007]; hence
it is clear that it would be even more difficult when a more limited range of
explicit constraint types is available.

There are several characteristics of modeling virtual worlds that alleviate
part of the problem of the large amount of constraints and their complexity.
For one, the geometric hierarchy between object instances makes it possible to
find the solutions hierarchically. For example, there will be some constraints
between terrain elevation and soil properties and the buildings on the terrain.
Inside the building, there will also be a number of constraints among the
rooms, walls, and other objects. But since the interior constraints are not
directly influenced by the exterior constraints between terrain and buildings,
it is possible to first decide on the location of the buildings by using the exterior
constraints and then move on with solving the insides of the buildings based
on interior constraints.

Overall, a good solution for the constraint-solving integration problem, pro-
viding all functionality described in this section, still has to be found. Tech-
niques used in declarative modeling approaches do provide a good basis, but the
issues on transforming implicit to explicit constraints are far from completely
solved. Moreover, the efficiency of generation methods still needs significant
improvement.

4. APPLYING SEMANTICS IN THE DESIGN PHASE

When designing a virtual world, for example in a level editor for games, seman-
tic data can alleviate the process by automating tasks of the modeling process.
The constraint-solving techniques, discussed in the previous section, can main-
tain the relationships in the design phase and thereby support the designer so
he or she can do the work better and more quickly.

But semantic information can also be applied when generating a scene pro-
cedurally. More realistic scenes could be created if the generation algorithm
took the properties and constraints of the objects that need to be placed into
account.

4.1 Manual Scene-Editing

Geometric constraints have been regularly used in applications where objects
need to be placed or moved to speed up the design process. Besides the typical
physical constraints, Xu et al. [2002] use semantic-based constraints as well.
The system has a semantic database. Each object in the scene belongs to a

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

The Role of Semantics in Games and Simulations • 57:17

Fig. 5. A scene of 300 objects laid out in less than 10 minutes with the help of the Constraint-Based

Automatic Placement Systems or CAPS. (Figure 1 from Xu et al. [2002]).

specific database class that can contain parent classes and child classes. The
objects of the parent classes are those that can physically support the class,
and the objects of the child classes can be supported by the class. A plate is an
example: its parents are tables and counters and its children are food, utensils,
and plates. Two flags define whether or not the class can support objects not in
the child classes or can be supported by objects not in the parent classes. The
example scene in Figure 5 contains 300 objects, but was laid out in less than
10 minutes with the help of this system.

Smith et al. [2001] use offer and binding areas on objects. The binding areas
can be connected to offer areas of other objects. These areas do not need to
be part of the object geometry. By using what they call “virtual constraints”
an empty area of an object might be a binding or offer area. An example is
the space underneath a table between two legs, where chairs can be put. This
space can thus be an offer area where the binding area of the chairs can be
constrained. These constraint types lead to a hierarchical structure, that is,
constraints between parents and children, but some properties of objects need
constraints between siblings. A couple of chairs in a waiting room (which would
be all children on the floor of the waiting room) typically stand next to each other
in a line. When one of the chairs is moved, the others need to follow. For this
behavior, dual constraints are offered that can express constraints between
siblings.

The WordsEye system [Coyne and Sproat 2001] is a text-to-scene conver-
sion system that allows the user to describe a scene using natural language.
The descriptive sentences are converted into constraints between the proper-
ties of the objects in the sentence. The system contains an extendable database
of objects with a geometry file and other properties. These properties might

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

57:18 • T. Tutenel et al.

Fig. 6. Both the plants and trees in a terrain and the roads and buildings in a city can be realis-

tically modeled with procedural generation techniques: (left: Figure 16 from Deussen et al. [1998];

right: Figure 18 from Müller et al. [2006b]).

be a skeleton-structure for humans and animals, shape displacements (e.g.,
emotions on a human face) or object parts that might be used in a sentence
(e.g., a car contains headlights, doors, etc.). Another property is the color part.
This is the part of the object that should be colored when the user defines a
color (e.g., a blue flower should have blue petals, but the stem should remain
green). Every object also has a default size, opacity parts (the glass of a win-
dow) and functional properties (a car or a bike are road vehicles, so when a
user says “John rides to town,” one of the road vehicles should be chosen).
Finally, there are the spatial tags, which are 3D shapes that define areas of an
object like “under,” “on top of” or “in”. When spatial relations are applied using
these spatial tags, ambiguous results may be achieved. When someone says
“the elephant is under the chair,” he or she may mean that a small elephant is
somehow underneath the chair, but may also mean that the chair is on the back
of the elephant. This kind of ambiguity is solved in a way that needs the least
resizing.

We see that many of these techniques already use semantic information
about objects to aid the designer in placing objects in a 3D scene. The objects
that are placed are instantiations of classes, and the properties of these classes
can be constrained. Spatial relationships between objects are frequently used,
too, since they avoid having to move every single object when they are somehow
linked together. And as we saw in the WordsEye system [Coyne and Sproat
2001], these semantic properties can also enable the user to design the virtual
world in a descriptive manner.

4.2 Procedural Scene Generation

Numerous techniques exist to algorithmically generate parts of a virtual en-
vironment. The encompassing term for these techniques is procedural content
generation. There are algorithms that can generate terrains and add plants,
trees, and rivers to it as well. Streets, buildings, and interiors can be created
automatically as well. In Figure 6, we see some convincing results of techniques
to procedurally model vegetation in terrain and roads and buildings in a city.

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

The Role of Semantics in Games and Simulations • 57:19

We will review where semantic data assists these techniques and where it could
improve them.

The basis for a terrain is often an elevation or height map. Numerous frac-
tal techniques (e.g., Perlin noise, midpoint displacement) have been used to
generate a random but realistic looking height map. Other techniques try to
mimic real physical phenomena. Some take a fractal height map as a basis and
transform it with erosion algorithms based on wind or water streams. Some
techniques also work the other way around: they create a river network and
create a height map based on that network.

Erosion techniques can be implemented with the help of cellular automata
[D’Ambrosio et al. 2001; Musgrave et al. 1989]. Musgrave et al. [1989] use this
to simulate different erosion types. For instance, hydraulic erosion is caused
by rain falling on the terrain, flowing to lower areas, and causing erosion. Soil
information is used to create more realistic results: water flow will influence
areas with a soft soil the most. Another type of erosion is thermal weathering,
which is a process where surface material from higher areas falls down on
lower areas, thus creating taluses. Semantic terrain data on the hardness of
the soil and the depth and hardness of the bedrock could improve this technique
further. D’Ambrosio et al. [2001] also use many different types of soil data in
their cellular automata model, including parameters like vegetation density
and water depth. It is obvious that to procedurally create a realistic landscape,
this semantic information is vital.

To utilize these erosion techniques, the terrain generation algorithms should
generate more than just elevation data and terrain types; detailed soil infor-
mation including the parameters of the soil material and the bedrock should be
generated as well. The same semantic information could also be applied to the
distribution of vegetation, as we already explained in Section 2.3. In general,
we can state that most procedural generation techniques that mimic physical
behavior behave optimally in semantically rich virtual environments. More-
over, this data will also be useful in automated techniques for human-made
structures like roads or buildings.

To add roads to a terrain, numerous and various techniques have been re-
searched, of which we discuss four. The simplest technique is the squared grid
[Greuter et al. 2003], which basically generates streets in a grid that result in
square blocks, which are subdivided into building lots on which buildings can
be placed. Displacement noise can be added to the grid points to create a less
repetitive network.

Another approach is template-based. Sun et al. [2002] generate a road map
based on different road patterns, and for each pattern a corresponding template:
a population-based template, a raster and radial template, or a mixed template.
The main arteries of the road map are the highways. They cover the whole city
and bear the main transportation flow, and always take on certain patterns.
They are then checked for validity (tracks over oceans are discarded, diverted,
or kept and transformed into a bridge). Roads are often curved naturally to
avoid large gradients or obstructions due to different altitudes.

Parish and Müller [2001] use a technique based on L-systems to create their
road network. The L-system is goal-driven and the goals are the population

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

57:20 • T. Tutenel et al.

density (i.e., the roads try to connect places with large populations) and specific
road patterns. Examples of such patterns are the raster or checkerboard pattern
or the radial pattern.

Instead of using L-systems to create a road network, Lechner et al. [2003]
take an agent-based approach, which also divides the city into components.
Besides the common components like residential, commercial and industrial
areas, it also has special components like government buildings, squares, and
institutions. It takes a terrain as input and starts off at a seed position. Then
the two agents, the extender and the connector, start their work. The extender
tries to find unconnected areas in the city. When it finds an area that is not
yet connected to the existing road system and is not too far from the existing
road network (to avoid placing roads where no buildings will be placed), it will
find the best path to connect the area with the existing network. The connector
agent will start from a point on the existing network and will randomly search
for another spot on the network within a certain radius. It then checks how far
one needs to travel on the existing network to reach that randomly chosen spot.
If the travel time is too long, a direct road segment is added to that spot.

We noticed above that many different approaches are used to procedurally
create a roadmap. Almost all of them need data about the terrain in order to
avoid, for example, very steep roads or roads on rivers and lakes. Sun et al.
[2002] and Parish and Müller [2001] also use information such as population
density to generate roads between highly populated areas. But the informa-
tion on population density could also help decide the number of lanes or the
automatic placement of speed bumps and other speed-limiting structures in
residential areas. In the previous section, the idea of using geometric object
relationships to place roadside objects like lamp-posts was discussed. In combi-
nation with procedural generation of the roadmaps, this yields powerful tools
with which terrains can be automatically fitted with a road network complete
with numerous roadside objects. The number of lanes can influence the types
and number of lamp-posts; the layout of the roads can be used to place traffic
lights and road signs automatically; and the placement of bus stops, mailboxes,
and parking spots could be decided based on information like the population
density and the type of district.

The procedural road and city techniques define the areas where buildings
need to be placed; the buildings can be generated procedurally as well. Most
of these techniques use basic building blocks to generate the buildings. The
method described by Yong et al. [2004] uses building components to create
vernacular–style southeast Chinese houses. They use a grammar consisting
of semantic components. The system divides the urban area into hierarchical
components such as streets, gates, windows, walls, and roofs. Through a number
of control rules valid buildings can be created in a realistic building style. The
rules define, for example, how a component like a wall can be split up into
smaller components with window or door components in between. Another rule
will determine how a street is divided into a road with buildings on both sides of
the road. By applying these grammar rules, a typical ancient southeast Chinese
town can be created rather realistically, since this style of town is very rigidly
structured.

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

The Role of Semantics in Games and Simulations • 57:21

Müller et al. [2006a, 2006b] start with a union of several volumetric shapes
which define the basic outline and the outer walls of the building. The walls
are then divided into floors and the facades of these floors are subdivided into
walls, windows, and doors by means of a grammar system. In a final step, the
roof is constructed on top of the building.

Another example of a shape grammar approach is Wonka et al.’s [2003] In-
stant Architecture system. This technique uses a 3D design grammar that al-
lows for a uniform framework to design the entire structure. A specific building
style can be acquired by setting this as an attribute of the start symbol for
the building. The attributes are propagated to the subparts of the building.
Sometimes a style needs to be different within one building (e.g., an apartment
building with shops on the ground floor), but usually the same style is prop-
agated to the entire building. Although small differences between floors are
necessary, the subparts of one floor need to be coherent. On the end symbols,
these attributes will be transformed from a high-level building style to very
specific material information. Hence this technique is very useful when one
wants to create semantically rich models.

The shape and look of a building cannot be chosen at random, however. There
are physical properties that need to be considered (e.g., is a building of a cer-
tain height suited for placement on a specific soil type); but attributes like the
purpose of the building can also influence its appearance, and some techniques
already take this into account. However, there are other parameters that are
(currently) missing. As an example, to decide what type of buildings should be
placed and how they should look, we could take the wealth of the residents
of a district into account (e.g., impoverished neighborhoods could have old or
damaged row houses while wealthy neighborhoods could have smart-looking
villas). As we mentioned, the purpose of a building influences the outside ap-
pearance and structure, e.g. more windows in an office or balconies on apart-
ment buildings, but it has even more influence on the interior layout of the
building.

To generate the interiors of buildings, some techniques that work gradually
have been developed. They start off with a rough shape and step-by-step fill it
with smaller parts [Hahn et al. 2006], or they start from small basic units and
combine them to generate the entire building [Martin 2006; Rau-Chaplin et al.
1996; Rau-Chaplin and Smedley 1997].

The LaHave House Project [Rau-Chaplin et al. 1996; Rau-Chaplin and
Smedley 1997] uses a shape grammar and a tile library to create a design
engine that can generate a library of many different base house designs. The
tiles in the tile library are individual rooms and walls. The system uses a hier-
archy of shape grammars for each stage of the building. The base element is a
tray which is a combination of atomic elements such as machines, rooms, bays,
and end-bumps. A combination of different trays forms a floor-plan, which is
transformed to a zoned plan by the Functional Zoning system that, for example,
identifies the public and the private parts of a house. The public part is situated
near the front entrance and includes rooms like the hallway, the kitchen, or the
living room, while the private part of a house contains the bathrooms and bed-
rooms. Next, the number of floors, the width of the zones, and the roof shapes

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

57:22 • T. Tutenel et al.

are added to the plan. Finally, a specific function is assigned to each area (e.g.,
kitchen, study).

Hahn et al. [2006] describe a lazy generation scheme that allows a seamless
walkthrough of a building interior and the use of only a fraction of the memory
that a model of the entire interior would require. The technique generates only
those rooms of a building that are visible in the current camera view. There are
a number of generation rules that are used by the system. Examples of such
rules are that every region should be accessible because dead space will only
confuse users trying to explore the entire building. In most cases, private rooms
should be accessible from a public room or hallway.

The generation process takes place in multiple stages. First the building
setup is generated, including everything that affects multiple floors, like eleva-
tors or staircases. Then this setup is divided into uniformly spaced floors, and
each one gets hallways assigned. These can be straight segments or rectangu-
lar loops when a floor is wide enough to allow it. The remaining space forms
room clusters. Hallways are added until the room clusters are small enough.
The room clusters are then divided into rooms and objects are placed inside
them.

The work of Martin [2006] on building procedural interior generation is based
on graphs. Each node corresponds to a room, and each edge corresponds to a
connection between rooms (e.g., a door). To generate the graph, a grammar
is used with a user-defined rule set to fit the local and global semantic room
information. First, undefined public rooms (rooms that do not yet have semantic
data about their function) are added, starting from the front door. Then, these
public rooms get a purpose (a dining room, living room, etc.). Subsequently,
private rooms are added to the public ones and, finally, stick-on rooms like
closets or pantries are added to the graph. Then the graph is transformed to a
2D graph in which every node gets a 2D position. Based on the desired size of
the room, “pressure” is attached to each room node to make them expand. The
more pressure is assigned to a room, the more space it will take up in the final
building plan.

Many of the rules that are used in the grammar systems for these interior-
generation systems are in fact semantic constraints. When, for example, the
privacy level of a specific room type is known, it could be used more efficiently
to position rooms from public to private, instead of using rules to first place
all public rooms and then all private rooms as in Martin [2006]. The purpose
of a building plays an important role in the interior as well, for example the
size of an office space will depend on what job needs to be performed in that
office; the number of rooms in a house will depend on the family situation
of the residents; and the layout of a shop and the type of racks will depend
on the goods that are being sold. It is important to note that many of these
techniques focus on a few specific building types like office spaces or residential
homes, but with the help of semantic constraints, an all-purpose algorithm
should be developed that handles multiple building types, which will allow for
combining them (e.g., shops on the first floor with a living area on the second
floor).

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

The Role of Semantics in Games and Simulations • 57:23

4.3 Discussion

Both manual and procedural world-modeling techniques can be improved by
introducing semantic information. Objects in a level editor have relationships
with each other, which are significant and need to be maintained while edit-
ing the world. In the procedural generation field, we see that besides the help
semantics offer to the individual techniques, the data generated and used on
one level can also be used when other levels of the virtual world are proce-
durally generated. Terrain data is important when placing vegetation, roads,
and buildings; and the high-level city parameters are useful when designing
its buildings. Moreover, it became clear that when a world is procedurally gen-
erated, a lot of semantic data can be generated automatically as well. We iden-
tified several techniques that could derive material information for buildings,
soil information for terrains, and functional data for buildings while generat-
ing the models automatically. In the next section we also note the importance
of this kind of data at runtime. So it would be very interesting to capture this
information, which is readily available in these generation techniques, to use at
runtime.

Whenever the properties cannot be generated automatically, the user should
be able to enter them manually in an efficient way. Such manual edits can be
done more easily by using object templates and the inheritance relationship
that is applied to the object classes. Object templates define abstract classes
with general attributes, and can be applied to newly created object classes. This
way the user of the editor only needs to enter some parameters in the object
template when creating a new class. By declaring an inheritance relationship
between an existing class and a new class, the new class can also inherit the
attributes and parameters of the parent class. To minimize editing time, only
data that is unique for the new class needs to be entered.

When we look at game worlds we see more possibilities for semantic data
in level editors. For example, in many editors it is still necessary to manually
define all areas that are off limits for NPCs. It would be much easier to employ
semantic data to define basic rules where an NPC can or cannot walk (e.g.,
areas with a slope above a certain percentage are off limits).

We can also think of using semantic data and constraints to specialize the
procedural generation techniques for games, for example to generate specific
constraints based on the limitations in the movements of the player’s character.
We can define how far and how high the character can jump and how quickly
he can move from one area to the next. Coupled with path-finding algorithms,
this data can alter the virtual world to make sure the character is able to
reach all important locations without requiring testers to try this out for every
location. If a building is too high to jump on, an object that fits the environment,
that is, not just a random object but one that is logical in the given location,
could be placed somewhere along the wall, or a shed might be added to the
building in order to let the character climb the shed and subsequently climb the
building.

Before semantic information can be effectively applied in procedurally
generated worlds, another important issue needs to be handled first. Many

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

57:24 • T. Tutenel et al.

stand-alone techniques exist for terrains, for roads, for vegetation or for build-
ings, but a unifying approach is lacking that seamlessly combines and accom-
modates for most of these techniques. This will give designers the opportunity
to quickly create (parts of) virtual worlds, which they can further develop into
full-fledged worlds for games or simulations or, for example, as quick proto-
types to test new gameplay elements. A declarative framework is proposed
by Smelik et al. [2008] that can combine these techniques in a layered-based
approach.

As mentioned above, the semantic data can also play an important role while
playing the game, which is discussed in the next section.

5. APPLYING SEMANTICS AT RUNTIME

When a game world is built up and is being used, the semantic data can improve
many aspects of the game. Much more immersive results can be accomplished
if abstract knowledge of the game state is known; for example, which area or
what building plays a crucial role in a military strategy. There can also be a
benefit from the semantic data to improve existing techniques in the field of AI
and interaction with the user.

Current virtual worlds are mainly static during the game. They do not evolve
over time and they do not adjust to variable conditions. Semantics can bring
these worlds to life by adding rules about how certain objects react to changes
in the world. Rules can be added on how objects change depending on the time
of day (e.g., store opening hours, or time of the year, e.g., trees will loose their
leaves in autumn). With the relationship constraints discussed earlier, objects
could dynamically adjust to the changes of related objects. In this section we
show, with the help of existing work, where semantics can improve virtual
worlds at runtime.

5.1 Object and Scene Interaction

Although many games already have immense virtual worlds for the player to
explore, the player can only interact with a small number of the objects in it.
If interaction can take advantage of semantic data embedded into the world
objects, game developers could add much more interaction into their games
without much extra work.

In the field of object interaction, semantics has already been used by
Kallmann and Thalmann [1998] to define which interaction techniques can be
used on the objects in a virtual world. Information is added to objects to define
how a user can interact with that specific object. Each movable part of an object
has its own geometry, and these parts are stored in a hierarchy. A description
for the possible movement of each part is described as well. A hand posture file
defines which gestures are necessary to interact with the object. When the user
wants to interact with a drawer, for example, he or she can perform a pulling
gesture and the drawer opens based upon the end position of the gesture and on
the physical constraints on the drawer (a drawer can typically be moved along
just one axis); in this article such objects are called “smart objects”.

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

The Role of Semantics in Games and Simulations • 57:25

Fig. 7. The interface in which the smart objects, in this case a smart desk, are modeled.

(Figure 1 from [Kallmann and Thalmann 1999]).

In later work, Kallmann and Thalmann [1999] extend the phase where
the smart objects are modeled. They define four different interaction-features:
First, the intrinsic object properties are stored, like the specific movements of
the object parts. The interaction information is the location of interactive object
parts and the hand shapes associated with those interactions (e.g., a grasping
shape on the handle of a drawer). In Figure 7 we see how this interaction infor-
mation is modeled in this system. The possible behaviors of objects are available
as well; they depend on the object state: a door can only be closed if it is open.
Finally, the expected user behavior is modeled, too. This is associated with the
object behaviors, and used to show the user where he or she should put his/her
hand.

The application presented by Kallmann and Thalmann uses gestures as in-
put; but we can see the importance of this interaction information in games
and simulations played with mouse and keyboard, as well game controllers. It
is still interesting to know what kind of actions can be executed on an object
and what the result of these actions will be.

5.2 Adaptive Environments

The types of adaptive environments we are going to discuss in this section are
environments adapting to global parameters (e.g., weather conditions), and to
the user’s performance. We also take a look at techniques that can extend the
game world procedurally to create almost infinite worlds or to create worlds
based on the player’s style.

Lanctot and Verbrugge [2004] present a generic model for efficiently chang-
ing a virtual environment automatically. The examples to which the technique

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

57:26 • T. Tutenel et al.

was applied are a weather system, in which a terrain changes according to
wind and rain, and a reputation system in which agents respond to actual
player behavior. The model starts with a terrain that consists of a map of grid
tiles. Every grid has a number of parameters, depending on the type of imple-
mentation. These parameters are altered based on events in a grid tile or in
the neighborhood of the grid tile. This technique is comparable to cellular au-
tomata where the cells are changed iteratively based on the neighboring cells.
The first example where the weather conditions generate the adaptation can
obviously benefit from semantic data on the climate, the soil, and the vegetation
(discussed elaborately in other sections).

Adaptive environments can also achieve player-centered gameplay. Charles
et al. [Charles and Black 2004; Charles et al. 2005] have researched the notion
of games adapting to the level and playing style of the individual player. Instead
of working with user studies before and during the development of the game,
they propose in-game adaptation to a player’s profile and to the evolving skill
level of the player. This can help create continuously challenging situations,
but also avoid the player getting stuck at a certain level. The adaptation can go
two ways: the first is to create several predetermined states that can be chosen
on the basis of the player’s performance; the second way is really learning from
the player’s behavior and transforming the game based on that. The second
way is obviously more powerful, but does have a disadvantage. The game can-
not be tested as exhaustively as other games, since unexpected results could
emerge from the transformation. The idea of this approach is to, for example,
change the number of opponents or the difficulty of the opponents based on
the player’s skill level. But this skill level might depend on many factors, and
here semantic data might contribute to these systems. Perhaps a player of a
strategy war game plays on an average level in most cases, but might perform
rather badly in specific circumstances (e.g., in missions in urban settings or
when the player needs to attack an area on a hill). This means that properties
of the environment need to be taken into consideration when adapting to the
player level; but without extensive knowledge about the environment this is not
possible.

The Charbitat system [Nitsche et al. 2006] generates game spaces procedu-
rally. It can generate game worlds on-the-fly, based on the style of the play-
ers. The game itself represents a kind of dream world that is based around
the five elements of Taoism. Charbitat uses a game world divided into tiles of
500 × 500 meters with their own seed value. A height map is generated with
this seed value and is combined with some filters to generate rivers, lakes,
cliffs, and coastlines. Based on the main element of a tile, objects related to
that element are placed in the tile (e.g., a fire-themed tile will contain mostly
fire-themed objects and creatures). Based on the actions the player performs in
the game, weights are defined for each element and used to generate the next
tile. An example of a Charbitat world and the Java back-end that shows its
structure can be seen in Figure 8.

Another example of a technique that can extend a virtual world on-the-fly
is given by Greuter et al. [2003]. The buildings of the “pseudo-infinite” city
are generated based on a random number generator seeded by the position

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

The Role of Semantics in Games and Simulations • 57:27

Fig. 8. In the Charbitat game, the game world grows adaptively to the user’s behavior in the game.

The Java backend shows the growing world in a tiled height map. (Figures 1 and 3 from Nitsche

et al. [2006])

of the building; the technique to generate the buildings was discussed in
Section 4.2. Only those buildings are generated that are absolutely necessary,
meaning the buildings that are located within the viewing frustum. The city
model is a simple 2D grid layout, which means that no special techniques need
to be used to generate the streets. This, however, does decrease the level of
realism, since only grid-shaped cities can be modeled.

We could also apply these runtime procedural generation techniques to im-
prove the previously mentioned player-centered games. Instead of merely ad-
justing the number of enemies, the world itself could adjust to the player’s skill
levels (e.g., more objects providing cover could be placed). In simulations, virtual
worlds can be generated with a specific problem that needs training: a driving
simulator can generate many crossroads where the right priority applies if the
trainee has problems with those.

5.3 Improving Immersive Elements

The graphical details of the models and environments continues to improve,
adding to the realism of the game; but to truly immerse the player in a virtual
world, other elements need to be perfected as well. We now give a couple of ex-
amples where such immersive elements can be improved by means of semantic
information.

Unrealistic and unexpected behavior of NPCs can really spoil the immer-
sion level of a virtual environment. Peters et al. [2003] apply the concept of
“smart objects” on the automatic generation of animations for AI agents. The
objects have user slots that characters need to go to in order to interact with
the object. They need to run through a procedure of ordered usage steps (e.g., a
bartender needs to wait for the customer to finish an order before beginning to
pour), and each of these steps has information about whether someone can chat
while performing an action or where the character needs to look during a usage
step.

A world with semantically rich objects can provide AI systems with mean-
ingful input. We already gave the example of Huhns and Singh [1997] who

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

57:28 • T. Tutenel et al.

Fig. 9. The Death Kitchen tries to look ahead and searches for the most dangerous response to a

user’s action. (Figure 2 from Lugrin and Cavazza [2006]).

utilized ontologies to facilitate the communication between agents with dif-
ferent knowledge domains. Lugrin and Cavazza [2006] present a method sup-
porting the AI-based simulation of object behavior. A prototype of the system
was created called the Death Kitchen, in which a kitchen is trying to inflict
as much damage on the player as possible by making the environment react
in the most dangerous ways. The objects in the kitchen and the available ac-
tions are classified in an ontology. Functional reasoning is used to generate the
possibly dangerous situations for the player, as shown Figure 9. The objects
and sub- objects are structured hierarchically, and all have information about
their functionality. This delivers a powerful intelligent environment that can
be useful in various AI methods, but also in handling user interactions with
the objects, and hence is a good example of how semantic data can improve
gameplay.

Abaci et al. [2005] describe a system in which “smart objects” are applied
to planning in virtual environments. As an example Abaci et al. describe the
problem of an agent moving a box to another room. If the agent needs to open
a door while moving the box, it can be planned automatically by this system
via the use of these “smart objects”. The basic idea is that the virtual character
does not need to know how he or she can interact with every possible object,
since he/she can “ask” the object which capabilities it has got. The planning
system uses this information to map high-level plans to a sequence of low-level

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

The Role of Semantics in Games and Simulations • 57:29

tasks. All these techniques show that a rich semantic world can lead to much
more realistic behavior for AI characters, which in turn significantly increases
the believability of a virtual environment. Moreover, the characters would look
more intelligent if they could navigate in a logical way; for example, not just take
the shortest path towards an enemy, but search for slower and less dangerous
routes. This means that, to find more realistic and plausible paths, existing
path-finding techniques should integrate semantic data about the environment,
as recently proposed by van Driel [2008].

When we focus on entertainment games, a big influence on the immersive
experience is how a scene or an event is shown to the user. Game designers try
to create stories as compelling as in movies, and to achieve this, cinematogra-
phy based on movies plays an important role. In dynamic environments such
as games this is not as straightforward. Several such virtual cinematography
techniques have been researched [Amerson and Kime 2000; Charles et al. 2002;
Tomlinson et al. 2000]. Many of these virtual cinematography approaches in-
corporate the film idioms used in movies. Scenes expressing specific situations
have a particular structural style. Since people are familiar with scene struc-
tures from movies, game stories can be told more clearly when these structures
are used in cinematography systems. It is impossible to decide which objects
and events are important to focus on based solely on information alone; the
system needs to know which objects could be useful to the player in upcoming
events, or which locations pose a threat.

Many games already include some form of adaptive background music, but
this is usually done by playing a specific song for a specific action. Users grow
accustomed to these songs, and can therefore predict what is about to happen
based on the song being played. A much more detailed and flexible system
could improve the user experience significantly. For example, Magenta [Casella
and Paiva 2001] is an architecture that automatically composes background
music based on the emotional state of the environment. When semantic data
is available in a scene, this data could help determine the emotional state of
a situation or a character. Such techniques could then aid in the generation of
accompanying background music.

5.4 Discussion

Many of the currently developed techniques work satisfactorily, but each one
uses its own ad hoc data. AI programmers include waypoints or other tags into
the world and gameplay programmers add interaction data, but it would be
much more efficient to use common knowledge and share it among the various
modules of the game engine. Since in the previous section we discussed that this
knowledge was already useful during the design phase, the necessity for such a
common knowledge level becomes even clearer. The semantic data captured in
the objects and in the virtual environment during the design step could, if prop-
erly designed, be integrated in many runtime modules of the game as well. The
functionality of an object is an example of this. This can be used in intelligent
object placement during the design phase, but also in planning algorithms and
in interactions with the user at runtime. The numerous examples discussed

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

57:30 • T. Tutenel et al.

in this section show that there is definitely a necessity for more “intelligent”
virtual environments which can give proper information to the user (i.e., via
the interaction module), to the AI system, and to other modules such as ren-
dering and sound to create more immersive games. For the data to be usable
in all these modules, we do need some form of generic specification that defines
the semantic information in an explicit way. This is an important issue that
needs to be resolved, because availability of semantics in multiple fields will
bring about an enormous advantage, but creating such an explicit and generic
specification is far from straightforward.

6. CONCLUSIONS

One of the most noticeable differences between former games and current
games, besides greatly improved graphics, is the exponential growth of game
worlds. Creation of larger virtual worlds obviously requires much more time,
effort, and, therefore, money. We have discussed the possibilities of more exten-
sively deploying semantic information in that process, significantly reducing
costs, and creating new opportunities for designers of such large worlds. We
also discussed how procedural generation techniques can be used to create
more realistic and satisfactory results, and how the use of semantic constraints
can help designers in their irreplaceable task of manually editing game worlds.
In particular, the manipulation of huge worlds with recurring patterns (e.g.,
open terrains or cities) and with many interrelated objects can strongly benefit
from the combination of procedural generation techniques with semantically
rich objects.

The advantages of deploying semantically richer worlds in games and simu-
lations are manifold. More lifelike character behavior increases the realism of
virtual worlds, leading to a more immersive and compelling gameplay. Also, as
huge worlds can be generated in which one can interact with almost every imag-
inable object, interaction within these worlds will become more elaborate and
engaging. When objects embed knowledge about the services they can provide,
the player can be justly provided with many more plausible ways of interacting
with them (e.g., drink the water, soak your cap, use it to extinguish the fire,
clean up the goggles, wash smudged tissue, or dissolve chemicals). In current
games, we already notice a growing trend towards more elaborate interaction.
For example, many action games try to enable the player to use elements of the
environment as a weapon. Yet these interactions are still mainly hard-coded, so
if the designer did not think of it, the player cannot do it. Embedding functional
knowledge in objects can be achieved in the near future, and will enable more
emergent gameplay and interaction, thus not only increasing the immersion
level but the re-playability also. Later on, this kind of service-based interaction
can lead to authentic sandbox-style games. Nowadays, sandbox games already
allow a certain degree of freedom, but this is still limited by the designer’s
imagination. Interaction between two or more objects is still seldom used, ex-
cept perhaps in really ad hoc ways in certain point-and-click adventures. This
will, however, require some sort of robust service system that supports the de-
scription of services and can handle their conditions of use and effects, as we

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

The Role of Semantics in Games and Simulations • 57:31

discussed in Section 2.1. In any case, there remains the problem of stability and
robustness, since emergent gameplay will, by definition, bring forth unexpected
behavior and perhaps unforeseen issues.

We discussed some techniques that are currently used to automatically gen-
erate virtual worlds. Many of them could benefit significantly from seman-
tic information in object classes that are to be placed in the procedural en-
vironments. At the moment, procedural techniques are already being used in
game-level editors on a limited scale. They are used in specific tools, for ex-
ample, level designers can use brushes that distribute some trees within the
brush area instead of having to place them one by one. On a short-term ba-
sis, this could be further extended by creating more such tools that take over
small repetitious chores. When we look further ahead, a combination of these
tools and other procedural generation algorithms will evolve into tools that
produce complete levels on the basis of designer descriptions, which can be
used as prototypes or as the starting point for the designer to produce a fin-
ished level instead of having to start from scratch. The existing procedural
techniques seem suitable to accomplish this, but a combining framework is
still missing. On a longer term, this could grow into random map generators
which could be used as an extra playmode. This has been done in the past for
real-time strategy games, but with new and improved procedural generation
techniques will likely become available for many more game genres. Another
important milestone for the long term is the step towards fully adaptive and
growing worlds. To maintain consistency in the relationships between objects
in the game world, and between old sectors and new sectors in growing worlds,
will require specialized constraint-solving techniques, as we discussed in
Section 3.4.

An important advantage of automatically generating (segments of) a virtual
world is the fact that much of the respective semantic data can be automatically
generated as well. Based on the properties, rules, and relations defined in the
classes of a library, procedural techniques can automatically instantiate val-
ues for the attributes of objects of these classes, possibly as a function of some
instance properties, as for example its size and weight. Furthermore, when
manually modifying any of these objects in a virtual world, all relations and
properties previously specified are to be maintained and, if necessary, propa-
gated according to the semantics of each editing operation. We discussed many
constraint systems that could aid in this process, but a fitting generic solution
is not readily available yet, and it will likely take more research and time.
Altogether, these facilities will effectively help taking tedious work out of the
designers’ hands, while allowing for very detailed and highly customizable vir-
tual worlds.

Moreover, a virtual world impregnated with knowledge is also an excellent
way to further enrich AI and planning algorithms. AI subsystems can use se-
mantic information to better plan actions of the NPCs. In this way, for example,
instead of scripting that an AI character should walk to a given soda-vending
machine once in a while, a behavior can be created where the character checks
the closest object that can quench thirst, whether it is a drinking fountain,
a vending machine, or a water tap. An important challenge here, however, is

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

57:32 • T. Tutenel et al.

the development of a generic specification layer for sharing the appropriate
semantic data with all its potential client modules (e.g., AI, animation, ren-
dering, physics, etc.). Among other problems, this will likely collide with many
current practices, including the use of own ad hoc data and hard-coded scripts
for expressing object behavior, features, and so on; however, as we noticed in
Section 5, several research examples have proven that the use of semantic infor-
mation can definitely bring about a considerable enrichment in many of these
fields. A semantics-based AI system would be most useful if developed closely
together with a service-based interaction system. If objects contain semantic
information about how a player can interact with them, the AI system can use
similar data in, for example, navigation and planning algorithms. However, the
problems with the emergent behavior discussed above will be harder to handle
in AI systems, since they generally require more extensive testing. Therefore,
achieving proper use of semantics in AI algorithms will likely take longer than
in user interaction.

In conclusion, there are numerous and rather promising uses for semantic
information in virtual worlds. Many issues are still to be resolved, of which
the first is the need for a generic and explicit way of defining and specifying
semantic data, providing a powerful vocabulary that is useful and usable for
all disciplines involved. Subsequently, the consistency of evolving objects in a
changeable environment needs to be maintained, in which powerful constraint-
solving methods are required. Finally, semantic data will need to be seamlessly
integrated and deployed with procedural generation techniques, in order to
provide designers with a new and powerful generation of tools.

Nowadays, the strongest expectancy for future games and simulations is
steadily shifting from improved graphics and appearance towards convincing
and believable gameplay. Embedding the game world and its objects with richer
semantics will undoubtedly play a crucial role in this process, and we can there-
fore expect that in the near future increasing research effort and influential
results will emerge from this new and exciting area.

REFERENCES

ABACI, T., Cı́GER, J., AND THALMANN, D. 2005. Planning with smart objects. In International Con-
ferences in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG),

25–28.

AMERSON, D. AND KIME, S. 2000. Real-time cinematic camera control for interactive narratives.

In Proceedings of the AAAI Conference.

BIDARRA, R. AND BRONSVOORT, W. F. 2000. Semantic feature modelling. Computer Aided Design
32, 3, 201–225.

BITTERS, B. 2002. Feature classification system and associated 3-dimensional model libraries for

synthetic environments of the future. In Proceedings of I/ITSEC Conference (NTSA).

BOUMA, W. ET AL. 1995. Geometric constraint solver. Computer Aided Design 27, 6, 487–501.

BUCHBERGER, B. 1985. Grobner bases: An algorithmic method in polynomial ideal theory.

CASELLA, P. AND PAIVA, A. 2001. MAgentA: An architecture for real time automatic composition

of background music. In Proceedings of Intelligent Virtual Agents: Third International Workshop
(IVA), Springer, Berlin.

CHARLES, D. AND BLACK, M. 2004. Dynamic player modelling: A framework for player-centered

digital games. In Proceedings of the International Conference on Computer Games: Artificial
Intelligence, Design and Education, 8–10.

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

The Role of Semantics in Games and Simulations • 57:33

CHARLES, D. ET AL. 2005. Player-centered game design: Player modelling and adaptive digital

games. In Proceedings of DiGRA 2005 Conference: Changing Views – Worlds in Play.

CHARLES, F., LUGRIN, J. L., CAVAZZA, M., AND MEAD, S. J. 2002. Real-time camera control for inter-

active storytelling. In Proceedings of the 3rd International Conference on Intelligent Games and
Simulation (GAMEON).

CHOI, S. H., HARNEY, D. A., AND BOOK, N. L. 1996. A robust path tracking algorithm for homotopy

continuation. Computers & Chemical Engineering 20, 6–7, 647–655.

COYNE, B. AND SPROAT, R. 2001. WordsEye: An automatic text-to-scene conversion system. In

Proceedings of the International Conference on Computer Graphics and Interactive Technologies,

ACM, New York, 487–496.

D’AMBROSIO, D., DI GREGORIO, S., GABRIELE, S., AND GAUDIO, R. 2001. A cellular automata model

for soil erosion by water. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and
Atmosphere 26, 1, 33–39.

DEUSSEN, O. ET AL. 1998. Realistic modeling and rendering of plant ecosystems. In Proceedings of
the 25th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York,

275–286.

DOHMEN, M. 1995. A survey of constraint satisfaction techniques for geometric modeling. Com-
puters and Graphics 19, 6, 831–845.

FERNÁNDEZ, A. J. 2004. A generic, collaborative framework for interval constraint solving. In

Departamento de Lenguajes y Ciencias de la Computacion., Univ. of Malaga, Malaga, Spain,

p. 269.

FERNÁNDEZ, A. J. AND HILL, P. M. 1998. A design for a generic constraint solver for ordered

domains. In Proceedings of the Types for Constraint Logic Programming Post Conference
Workshop.

GAILDRAT, V. 2007. Declarative modelling of virtual environments: Overview of issues and ap-

plications. In Proceedings of the International Conference on Computer Graphics and Artificial
Intelligence, 5–15.

GLENN, A. K. 1991. Using degrees of freedom analysis to solve geometric constraint systems.

In Proceedings of the First ACM Symposium on Solid Modeling Foundations and CAD/CAM
Applications, ACM, New York.

GOESELE, M. AND STUERZLINGER, W. 1999. Semantic constraints for scene manipulation. In Pro-
ceedings of the Spring Conference on Computer Graphics.

GREUTER, S., PARKER, J., STEWART, N., AND LEACH, G. 2003. Real-time procedural generation of

”pseudo infinite” cities. In Proceedings of the First International Conference on Computer Graphics
and Interactive Techniques in Australasia and South East Asia, p. 87.

HAHN, E., BOSE, P., AND WHITEHEAD, A. 2006. Persistent realtime building interior generation.

In Proceedings of the ACM SIGGRAPH Symposium on Videogames, ACM, New York, 179–

186.

HILLYARD, R. C. AND BRAID, I. C. 1978. Characterizing non-ideal shapes in terms of dimensions and

tolerances. In Proceedings of the 5th Annual Conference on Computer Graphics and Interactive
Techniques, ACM, New York, 234–238.

HOFFMANN, C. M. AND JOAN-ARINYO, R. 1997. Symbolic constraints in constructive geometric con-

straint solving. J. Symbolic Computation 23,2–3, 287–299.

HOFFMANN, C. M. AND JOAN-ARINYO, R. 2005. A brief on constraint solving. Computer-Aided Design
and Applications 2, 5, 655–663.

HUHNS, M. N. AND SINGH, M. P. 1997. Ontologies for agents. IEEE Internet Computing 1, 6,

81–83.

IBANEZ-MARTINEZ, J. AND DELGADO-MATA, C. 2006. A basic semantic common level for virtual en-

vironments. Int. J. Virtual Reality 5, 3, 25–32.

KALLMANN, M. AND THALMANN, D. 1998. Modeling objects for interaction tasks. In Proceedings of
the 9th Eurographics Workshop on Animation and Simulation (EGCAS), 73–86.

KALLMANN, M. AND THALMANN, D. 1999. Direct 3D interaction with smart objects. In Pro-
ceedings of the ACM Symposium pn Virtual Reality Software and Technology, ACM, New

York.

KONDO, K. 1992. Algebraic method for manipulation of dimensional relationships in geometric

models. Computer Aided Design 24, 3, 141–147.

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

57:34 • T. Tutenel et al.

LAMURE, H. AND MICHELUCCI, D. 1996. Solving geometric constraints by homotopy. IEEE Trans.
Visualization and Computer Graphics 2, 1, 28–34.

LANCTOT, M. AND VERBRUGGE, C. 2004. Locally-adaptive virtual environments in persistent-state

multi-player games. In Proceedings of the Game On 5th International Conference on Intelligent
Games and Simulations, 89–96.

LE ROUX, O., GAILDRAT, V., AND CAUBET, R. 2001. Using constraint propagation and domain re-

duction for the generation phase in declarative modeling. In Proceedings of the Conference on
Information Visualisation.

LE ROUX, O., GAILDRAT, V., AND CAUBET, R. 2004. Constraint satisfaction techniques for the gener-

ation phase in declarative modeling. In Geometric Modeling: Techniques, Applications, Systems
and Tools, Kluwer, Amsterdam, 194–215.

LECHNER, T., WATSON, B. A., WILENSKY, U., AND FELSEN, M. 2003. Procedural city modeling. In

Proceedings of the First Midwestern Graphics Conference.

LELER, W. 1988. Constraint Programming Languages: Their Specification and Generation.
Addison-Wesley Longman, Boston, MA.

LEVISON, L. 1996. Connecting planning and acting via object-specific reasoning. Univ. of

Pennsylvania.

LU, J. ET AL. 2007. Context-aware textures. ACM Trans. Graphics 26, 1.

LUGRIN, J. L. AND CAVAZZA, M. 2006. AI-based world behaviour for emergent narratives. In Proceed-
ings of the 2006 ACM SIGCHI International Conference on Advances in Computer Entertainment
Technology, ACM, New York.

MARTIN, J. 2006. Procedural house generation: A method for dynamically generating floor plans.

In Proceedings of the Symposium on Interactive 3D Graphics and Games.
MÜLLER, P. ET AL. 2006a. Procedural 3D Reconstruction of Puuc Buildings in Xkipché.

MÜLLER, P. ET AL. 2006b. Procedural modeling of buildings. ACM Trans. Graphics 25, 3, 614–

623.

MUSGRAVE, F. K., KOLB, C. E., AND MACE, R. S. 1989. The synthesis and rendering of eroded fractal

terrains. In Proceedings of the 16th Annual Conference On Computer Graphics And Interactive
Techniques, ACM, New York, 41–50.

NITSCHE, M. ET AL. 2006. Designing procedural game spaces: A case study. In FuturePlay
2006.

PAQUETTE, E., POULIN, P., AND DRETTAKIS, G. 2002. The simulation of paint cracking and peeling.

In Proceedings of the Graphics Interface, 59–68.

PARISH, Y. I. H. AND MÜLLER, P. 2001. Procedural modeling of cities. In Proceedings of the
28th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York,

301–308.

PETERS, C., DOBBYN, S., AND MAC NAMEE, B. 2003. Smart objects for attentive agents. In Proceed-
ings of the International Conference in Central Europe on Computer Graphics, Visualization and
Computer Vision.

RAU-CHAPLIN, A., MACKAY-LYONS, B., AND SPIERENBURG, P. 1996. The LaHave House Project: To-

wards an automated architectural design service. In Proceedings of the International Conference
on Computer-Aided Design (CADEX), 24–31.

RAU-CHAPLIN, A. AND SMEDLEY, T. J. 1997. A graphical language for generating architectural forms.

In Proceedings of the 1997 IEEE Symposium on Visual Languages, 260–267.

SMELIK, R. M., TUTENEL, T., DE KRAKER, K. J., AND BIDARRA, R. 2008. A proposal for a procedural

terrain modelling framework. In Proceedings of the 14th Eurographics Symposium on Virtual
Environments (EGVE).

SMITH, G., SALZMAN, T., AND STUERZLINGER, W. 2001. 3D scene manipulation with 2d devices and

constraints. In Proceedings of the Graphics Interface 2001.

SUN, J., YU, X., BACIU, G., AND GREEN, M. 2002. Template-based generation of road networks for

virtual city modeling. In Proceedings of the ACM Symposium on Virtual Reality Software and
Technology, ACM, New York, 33–40.

TOMLINSON, B., BLUMBERG, B., AND NAIN, D. 2000. Expressive autonomous cinematography for

interactive virtual environments. In Proceedings of the Fourth International Conference on Au-
tonomous Agents, ACM, New York, 317–324.

TSANG, E. 1993. Foundations Of Constraint Satisfaction. Academic Press, San Diego, CA.

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

The Role of Semantics in Games and Simulations • 57:35

VAN DRIEL, L. 2008. Semantic navigation in video games. M.Sc. thesis, Delft University of Tech-

nology.

WONKA, P., WIMMER, M., SILLION, F., AND RIBARSKY, W. 2003. Instant architecture. ACM Trans.
Graphics 22, 3, 669–677.

XU, K., STEWART, J., AND FIUME, E. 2002. Constraint-based automatic placement for scene compo-

sition. In Proceedings of the Graphics Interface Conference.
YONG, L., CONGFU, X. U., ZHIGENG, P., AND YUNHE, P. 2004. Semantic modeling project: Build-

ing vernacular house of southeast China. In Proceedings of the ACM SIGGRAPH International
Conference on Virtual Reality Continuum and its Applications in Industry, ACM, New York,

412–418.

Received March 2008; revised July 2008; accepted July 2008

ACM Computers in Entertainment, Vol. 6, No. 4, Article 57, Publication date: December 2008.

