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ABSTRACT
Adaptive games are expected to improve on the pre-scripted and
rigid nature of traditional games. Current research uses player and
experience modeling techniques to successfully predict some game-
play adjustments players desire. These are typically deployed to
adapt AI behavior or to evolve content for simple game levels. In
this paper we propose a generation framework aimed at creating
personalized content for complex and immersive game worlds. This
framework, currently under development, captures which content
provided the context for a given personal gameplay experience. This
model is then used to generate content for the next predicted expe-
rience, through retrieval and recombination of semantic gameplay
descriptions, i.e. case-based mappings between content and player
experience. Through its integration with existing player and expe-
rience modeling techniques, this framework aims at generating, in
an emergent way, game worlds that better suit players. Dynamic
game content, which responds to the player performance, has the
ability to personalize player experience, potentially making games
even more unpredictable and fun.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Modeling packages, Object hierarchies

General Terms
Algorithms, Design

Keywords
adaptive game worlds, procedural content generation, semantics

1. INTRODUCTION
Typically, most computer games feature a pre-scripted gameplay.

Their content, rules, narratives and environments are all created
during development, as finished static elements. Later, dynamic
players will interact with these, learning and adjusting themselves
to one of the many gameplay experiences that were predicted and
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pre-designed. Static pre-scripted game components have become
a standard solution so that games can remain robust, testable and
controllable.

However, partly as a result of such rigidness, the expected game-
play might not be the most appropriate for pleasing a large number
of potential players. This can be apparent, for example, in two sta-
tistical facts: the low average rate of players who buy and complete
games (20 - 25%) [7] and the male-dominated nature of games.
Static game content typically is one of the many explanations for
such a lack of gameplay appeal. Even for those players who suit the
game, problems can occur. For example, such pre-scripted nature
can make game outcomes more easily anticipated, since all possible
interactions can be explored. Even worse, if players can predict
certain outcomes, their progress can be often achieved by repeatedly
exploiting a successful strategy.

In an attempt to account for player individuality, games often in-
clude minor variations that depend on players profiling themselves.
For example, by customizing the difficulty level, players are classi-
fying themselves as one of the available pre-defined low-resolution
stereotypes, e.g. beginners or experts. However, this discrete ap-
proach implies that such games might fail in appealing to players
who do not know how to profile themselves or who do not identify
themselves with any of the available classifications.

All issues above indicate that, by contrast, a more dynamic game-
play could simultaneously: (i) encourage a more flexible, personal
and unpredictable player experience, and (ii) widen the appeal of
games to a larger audience. Recently, several researchers [5, 2, 13]
have proposed adaptive games as a solution to achieve this dynamic
gameplay and both of these goals. The main idea is to cater the
game experience to the individual user and, ultimately, adapt game
components, in a dynamic fashion, to better suit players.

Although a recent field, significant contributions already allow to
accurately model players’ skills, preferences and styles in a variety
of game genres. Moreover, research in experience modeling is
already enabling assessment and prediction of gameplay experiences.
This sort of technique is also successful in adapting game narratives,
non-player characters (NPC) behavior, scenarios for serious games
or evolving game content for simple 2D level structures.

In this field, we are especially interested in the adaptation of more
complex and immersive game worlds. This focus is driven by three
motivations: (i) adaptive game worlds can offer new unexplored
possibilities for affecting player experience, (ii) the research cou-
pling between adaptivity and game world generation, which seems
natural to us, is mostly lacking, and (iii) this coupling can allow
designers to better author adaptive games.

In this paper, we describe the conceptual scheme of a procedural
generation framework for adaptive game worlds. Its implementation
is currently underway and preliminary results can be considered



very promising. Our aim is to generati game world content that
can provide the context for personalized dynamic gameplay. Such
contextualized content can be made independent of the game nar-
rative, although compatible and coherent with it. Firstly, as will be
discussed later (Sections 3 and 4), this solution applies naturally
to games that either have simple narratives or are tightly bound to
learning aims. Secondly, for more intricate plots, generation can be
specified to occur within self-contained plot events, focusing on the
way to achieve an outcome and not the (narrative) outcome itself.

In order to represent the personal gameplay value of game worlds,
we use semantics, i.e. a declarative modeling approach that embeds
the world and its objects with all information beyond their geometry
[29]. Deploying gameplay semantics will not only allow us to steer
procedural mechanisms, but also enable an interactive design of this
type of adaptivity.

This paper is structured as follows: in Section 2 we briefly survey
adaptivity in games and position our research. In Section 3 our
semantic generation framework is described in detail. In Section 4,
we discuss possible scenarios where we anticipate this framework
will successfully apply. We finalize with our conclusions and future
work in Section 5.

2. ADAPTIVITY IN GAMES
The definition of an adaptive game can be extracted from the

early proposals from Charles [2], Magerko [13] and many others:
adaptive games recognize and comprehend their players’ interaction,
and intelligently alter themselves to adapt to the in-game needs or
goals of their players, improving their gameplay experience.

The idea of creating adaptive games is not new. Several attempts
have been made in recent years, both in the industry and in acade-
mia. Some examples in commercial games are Remedy’s Max Payne
player-centred dynamic difficulty adjustment mechanism, Ninten-
do’s Mario Kart rubber-band AI or Valve’s Left 4 Dead adaptive
procedural narrative.

Academic research typically tries to focus on more global and
abstracted approaches, far from the ad-hoc nature of commercial
games. The architectural principles that should be behind generic
game adaptivity have already been discussed by several researchers
[2, 13, 33]. We have outlined them in Fig. 1. In essence, game
logs, recording the players’ performance, are used to create models
of players’ skills, preferences or style. Given a game state, these
models can also be used to assess and predict the players desired
experience of the next game state. Depending on the approach, both
player and experience models can be used, in conjunction or not, to
steer an adaptation and generation engine. This engine adjusts or
generates the appropriate game components to better suit the player,
i.e. adapted to the models’ data.

Adaptive games typically require this two-step methodology:
player modeling and content generation. This means that a cou-
pling between both of them is not only natural, but required for
adaptivity to work. As stated in Section 1, we are investigating the
architecture of a semantic-based generation engine of virtual worlds,
for adaptive games. One of our goals is to enable a loose coupling to
existing player and experience modeling methods, so that our gener-
ation framework can be integrated and applied in several domains.
It is therefore highly relevant to survey not only adaptation and gen-
eration techniques, as done in our recent and more in-depth survey
[12], but also what steers them, i.e. player and experience modeling,
as well as what we propose to support them, i.e. semantics.

2.1 Related work on player modeling
With player modeling, gameplay information and metrics are

processed to create knowledge about the behavior of the player.
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Figure 1: Overview of game adaptivity architectural principles:
player and experience modeling steer adaptation and genera-
tion of personalized game components

Several techniques, typically used in adaptive games, have already
been proposed to model some aspects of player behavior. One of
them is supervised machine learning. Through analysis of a training
data set, consisting of correctly modeled players, a classifier function
is inferred by a learning algorithm (e.g. artificial neural networks,
decision trees). This classifier function can then be used to model
players from real game data sets. Machine learning has been used to
model player skills in platform games [8] and shooting games [16],
and preferences in strategy games [25].

Unsupervised machine learning has also been proposed in this
domain. Player clustering, i.e. identifying and aggregating corre-
lated gameplay data, has been applied to classify player styles and
preferences [20]. Beyond machine-learning, other approaches have
been proposed. With case-based player modeling, individual cases,
typically built manually, encode a combination between player met-
rics and associated model features. During gameplay, player metrics
are compared with the different cases and similar retrieved cases
are used to create a player model. With vector-based player models,
pre-created heuristic functions are used to calculate scalar values,
accounting for model features, from game metrics. Case-based
and vector-based approaches are able to model, respectively, player
preferences in interactive narratives [23] and player skills in serious
games [32].

From surveying the above related work on player modeling, we
can conclude that, presently, models typically capture player skills
(e.g. shooting proficiency), preferences (e.g. for items used, actions
taken) or styles (e.g. explorer, achiever). A generation framework,
which aims at seamless integration with player modeling techniques,
should be aware of these types of model features.

2.2 Related work on experience modeling
Experience modeling techniques aim at evaluating and predicting

player experience. Gameplay information and the game state are
analyzed to determine how the game is or can be experienced. It is
not uncommon or incorrect to consider experience modeling as a
type of player modeling. We avoid this debate by clarifying that for
us, as defined in Fig. 1, player modeling relates to player behavior
and experience modeling relates to player experience.

Experience modeling was recently surveyed in [33], where three
types of approaches were identified: subjective, objective and game-
play based. The difference between these is the type of player data
they rely on to evaluate and characterize gameplay, respectively: (i)
data expressed voluntarily by players (e.g. self reports), (ii) data
obtained from alternatives modalities of player input (e.g. motion or
eye tracking), and (iii) data obtained through normal player inter-



action, i.e. game metrics. The techniques described in the previous
section are being applied in many of these approaches, with models
linking player data and experience.

For this paper, it is more relevant to survey which types of player
experience are modeled. The difficulty experienced by a player is
one of them, being a straightforward way of accounting for player
satisfaction. Several researchers [8, 26, 10] (and the commercial
games above) model the difficulty perceived by players and predict
the optimal challenge level. More complex experience models have
been recently proposed. Pedersen et al. [18] built quantitative
models that can predict player experience as being: fun, challenging,
boring, frustrating, predictable or anxious. Other affective states
like engagement have also been researched [1]. In serious games,
player experience is oriented towards the gradual fulfillment of
learning goals. As such, experience is typically modeled, implicitly,
by monitoring and evaluating in-game learning goals [17].

The surveyed research allows us to identify the experience model
features to consider in an adaptation and generation framework:
challenge level, affective states (e.g. fun, boredom) and learning
goals (e.g. treating victims).

2.3 Related work on adaptation and genera-
tion

Adaptation and generation methods are still less researched than
modeling techniques. This happens because user modeling is a
unified and broad research field. In contrast, the different game
components able to be adapted can relate to many different research
questions from different fields.

NPC behavior is the most common aspect being researched for
adaptive games. Techniques like agent organizations [32], dynamic
scripting [26] or case-based reasoning [6] are able to successfully
adapt NPC behavior to better suit players (e.g. their skills). Narra-
tives, quests and scenarios have also been made adaptive. Typically,
these are dynamically generated by a central manager which ana-
lyzes player data and recombines predefined basic elements into
complete quests [27], scenarios [14] or narratives, these last ones
as surveyed in [21]. As for generation of game environments, some
research has been done in simple and linear level structures. Pro-
cedural content generation has already been proposed for adapting
racing tracks, using evolutionary algorithms [28] or platform games
levels, using exhaustive search of generated content [22].

All surveyed approaches are strongly coupled to their integrated
user models, and are dedicated to specific game types. Also, im-
mersive 3D game worlds are still not being considered [12]. We
can therefore conclude that there is plenty of room for researching
adaptation and generation that: (i) is abstracted from modeling tech-
niques and game types, and (ii) focus on complex and immersive
game worlds.

2.4 Related work on virtual world semantics
Semantics in virtual worlds is a recent research field. Its mo-

tivations can be traced back to the early proposals by Deussen et
al. [4] for an ecosystem simulation model to generate an area with
vegetation. Its input data, i.e. terrain and plant properties, and its
production rules, i.e. space, soil and sunlight competition, raised a
discussion for the need of more complete and ubiquitous information
on virtual worlds and objects.

In this direction, smart objects were proposed [9], containing
information about the possible interactions that can be executed
on them. Peters et al. [19] took the notion of smart objects fur-
ther by creating objects with information about their functionality,
how NPCs can interact with them, and where important features of
the object are situated. Research in Virtual Reality (VR) has also

been exploring semantic representations, specifically to apply in
the design of virtual environments. Latoschik et al. [11] proposed
Semantic Entities, an object modeling method where the actions
and functions of virtual objects can be specified and applied. In
the same direction, De Troyer et al. [3] introduced a conceptual
modeling approach for creating VR worlds, where designers can
specify high-level concepts on how complex objects are composed
and moved.

Our own previous work on semantic modeling explores these
ideas further, by considering, in an integrated manner, both geomet-
ric constraints/relationships and functional information (we leave
its detailed discussion for Section 3). Additionally, our semantic
representation has been applied not only during runtime (as Peters’
smart objects), but also to procedural content generation and layout
solving (thus reassuming Deussen’s requirements). We feel that it
is a natural step to further integrate this approach with semantic
information about the gameplay value of game worlds, and match it
with player data.

3. GENERATION FRAMEWORK
In the previous section, Fig. 1 outlined the architectural principles

typically used to support adaptive games. We are specially interested
in researching within this field from an adaptation and generation
perspective. Our aim is to develop a generation framework able to
create game worlds that can provide the potential and the context
for personalized dynamic gameplay. We use the terms potential and
context since we believe it is never up to the content alone to fully
realize experiences. The player and the game engine are responsible
for fulfilling that potential. The goal for this framework is then to
maximize the appropriateness of the generated content, to enable
the fulfillment of personalized experiences.

In this section we describe the conceptual scheme of our frame-
work, whose implementation is underway. Fig. 2 schematically de-
scribes our proposal for this generation framework for adaptive game
worlds. It focuses on generating adaptive game worlds, stemming
from our goal of investigating new ways of potentially affecting
gameplay. As seen in Fig. 2, the generation process can be inte-
grated with player and experience modeling techniques, as the ones
surveyed in the previous section. Our aim is that this framework can
be seamlessly reused with distinct user modeling methods.

With our approach, semantics encoding the gameplay value of
game worlds is deployed atop geometry. This semantic information
can be compared, using mechanisms similar to case-based reasoning,
with outputs from the integrated player and experience modeling
methods. This comparison and retrieval allows us to predict what
should be the content capable of providing the next desired player
experience. Using semantics we can: (i) explore the link between
adaptive game worlds and procedural content generation, and (ii)
consequently, enable game designers to control the generation pro-
cess and author adaptivity. In the next paragraphs we will further
detail our semantic generation framework.

3.1 Semantic library
This generation framework builds on our previous work on se-

mantics in game worlds [29]. We define semantics, in the context
of game worlds, as all information about the world and its objects,
beyond their geometry. This includes object properties, high-level
attributes and functional information, as well as interrelationships
among different objects.

Each object in our game worlds typically carries all its semantics.
They belong to some class of a semantic library [30], a hierarchical
class database, partly based on the WordNet [15] ontology. This
library allows game designers to specify semantics, atop geometry,
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on game worlds. This semantics can be used to control and constrain
algorithmic procedures that generate specific world content. This
semantic level provides designers with a powerful front-end that
generates and steers an underlying procedural level, while encap-
sulating the complexity of the latter. This approach has already
been successfully deployed, e.g. in interior layout solving [30] and
building generation [31], as shown in Fig. 3.

Designers use a library editor to specify semantics on each class.
Two types of classes are present: entities and abstractions. Entities
refer to what is possible to instantiate in a game world (e.g. physical
objects, materials, substances). Abstractions are either characteris-
tics of entities (e.g. attributes, states, services) or of sets of entities
(e.g. groups, scenes). Associating entities and abstractions allows
us to specify for each game object a set of attributes, including func-
tional information, as well as geometric relationships with objects
of other classes.

Building upon this approach, a new layer of gameplay seman-
tics is required, so that the semantic library classes can include
knowledge on how they can affect player experience. For this,
we designed a set of gameplay abstractions: player skill, player
preference, player style, experience, game genre and actor. Each
gameplay abstraction can be associated with classes of the semantic
library. The basic idea is to characterize semantic classes in terms of
their gameplay value to players. Typically, a designer would create
gameplay semantics by adding this type of abstractions on each
class. To do so, they will use the the following scheme, available
for each class, where allowed values for Z, W, Y, X, V and U are
already encoded in the semantic library:

Class A:
can provide gameplay experience(s) Z
to players with: skill(s) W, preference(s) Y, style(s) X
when owned by actor(s) V
in game genre(s) U

We propose these gameplay abstractions since they naturally
derive from the conclusions described in Section 2, i.e. they match
the main features in player and experience modeling. Also, as
exemplified in Section 4, they can be further parameterized using

scalar values. Each class in the semantic library can be altered to
include several associations as the above. For example, a baseball
bat can provide different experiences in sport or fighting games,
when owned by the player or NPC.

The nature of the semantic library allows high flexibility when
creating gameplay semantics. Since this can be defined for each
class, both entities and abstractions can be considered. As such,
gameplay semantics can be defined for a variety of different aspects,
as, for example, physical objects, groups of entities or even generic
attributes or states. Furthermore, the semantic library allows multi-
ple levels of specification, where property values can be constrained
or instantiated. This allows us to define and restrain gameplay se-
mantics to different levels of class property values (e.g. to all sizes
of an object vs. to a specific size).

3.2 Semantic gameplay descriptions
As we described in the previous paragraphs, and as illustrated

in Fig. 2, game designers create gameplay semantics atop a game
world semantic library. Our generation framework accesses this
information through semantic gameplay descriptions, containers
listing links between semantic classes (i.e. game world content)
and player experience. The aim of semantic gameplay descriptions
is to compare them with the observed behavior and experience of
a particular player, at stages that require content generation. An
example of semantic gameplay descriptions is shown in Fig 4.

Semantic gameplay descriptions are inspired on case-based rea-
soning. They are meant to encode valid combinations between
content and the gameplay experiences they can provide, for a given
set of preconditions. In our case, these preconditions relate to player
features (e.g. αδ in Fig. 4) and game genres (e.g. G1 in Fig. 4). Se-
mantic gameplay descriptions emerge from the semantic library (see
Fig. 2) at design stage, for each new adaptive game. The gameplay
semantics of each library class is analyzed and semantic descrip-
tions are created and assembled accordingly. The logic is simple:
analyze library classes, identify and aggregate preconditions, create
respective gameplay descriptions and add the applicable classes and
respective experience to them. The accuracy of semantic gameplay
descriptions is therefore dependent on the knowledge specified by



Figure 3: Interior layout example, generated using the seman-
tic library [31]

game designers.
Any class from the semantic library can potentially be used in a

gameplay description (e.g. objects, scenes, groups) not only with
different levels of instantiation (i.e. with attribute values already
specified, constrained or not) but also linked to different ways of
creating its geometry (e.g. geometric models, procedures).

3.3 Content utility model
To be able to compare semantic gameplay descriptions with player

behavior and experience, we need to not only model these, but also
the content that enabled and provided the two aspects.

For this, we introduce content utility modeling, supported by two
steps: (i) integration with player and/or experience modeling and
(ii) monitoring the relevant content which enabled player behav-
ior/experience. We plan to incorporate external methods, like the
ones surveyed in Section 2, to create and maintain player/experience
models, rather than creating our own. As discussed before, these
models typically include, player behavior features and experience
features, not only describing which experience was observed but
also which should be the next. Their integration is achieved by a
model translator, a component which converts the format of the
player/experience models’ output to the format of our semantic
player/experience features. If complex experience modeling is not
needed for integration (for example, for difficulty level adjustments),
the model translator can be built to encode the behavior (even if
static) of the model left out.

Content utility models are responsible for relating player/expe-
rience features with the relevant content that enabled them. To do
so, we propose a virtual game observer that monitors and selects
content appropriate to incorporate in the content utility model. It
is critical that this observer only selects content which, with a high
degree of confidence, contributed for the conclusions from the play-
er/experience models. Otherwise, our new model would include
incorrect data.

As seen in Fig. 2, the game observer accomplishes this by mon-
itoring both the game world and the integrated models. For this
to be possible, we devised a set of criteria for selecting relevant
content, which spans both domains. Regarding the game world,
the observation criteria account for content that was interacted by:
players, NPCs and the game engine. The nature of these interactions
accounts for the use of objects and the occupation of spaces, in the
same time interval as what was processed by the integrated models.
Regarding the integrated models, a single criteria accounts for the
content that is directly related with the game metrics they use. The
idea is to observe which game metrics, measured by the model,

Figure 4: Example of semantic gameplay descriptions, with no-
tation consistent with Fig. 2

reflect content interaction and include the content related to those
metrics. For example, if a player modeling method monitors the
number of walls broken by the player, the game observer should
monitor and include broken walls in the content utility model. The
game observer needs to be customized for every instance of a new
game or a new integrated modeling technique, so that these criteria
are totally fulfilled.

We are confident that these criteria, monitoring game world inter-
action and the player models, are enough to account and capture all
relevant content which provided the observed gameplay.

3.4 Generator
The generator (see Fig. 2) is responsible for the creation of game

worlds, by applying all the information modeled in our framework.
In an approach inspired by case-based reasoning, it tries to match
the content utility model with gameplay descriptions. The plausible
assumptions are that: (i) if gameplay descriptions include valid
content-experience combinations, and (ii) if the content utility model
associates content, player features, and experience, all measured for
a given moment, and (iii) if a semantic gameplay description exists
with that same association, then (iv) the remaining combinations in
that description can also be considered valid and usable.

Under these assumptions, generation becomes a matter of re-
trieval of semantic gameplay descriptions. As illustrated in Fig. 2,
if the content utility model includes content_T0 which enabled ex-
perience X, for a player modeled as αβδ, then the generator needs
to implement the following function G, where Y is the experience
required for the next stage:

G(f({αβδ}, X, content_T0), Y ) = content_T1 (1)

Function f needs to retrieve and return a set of semantic gameplay
descriptions where its arguments are valid. Afterwards, function G
examines the retrieved semantic gameplay descriptions and selects
the content (content_T1) which provides the required experience Y.
The frequency and moments on which the generator, G(x), should
act in a game world will need to be decided when implementing the
integration of our framework in a game.

If only a single description is retrieved by f(x), the generator has a
simple task in creating the relevant content. Content is selected and
instantiated by G(x) according to its semantics, using the associated
geometric models or generation procedures. The generator will
include a procedural mechanism, based on semantic layout solving
[30], responsible for combining the selected instances into game
world sections.

If several descriptions are retrieved by f(x), then the generator has
a more emergent behavior. In this case it will recombine several



instances of content declared in independent descriptions. This
way, the content to generate emerges from distinct descriptions,
maximizing the potential for a richer and more complex variability.

The variability in this emergent recombination mechanism is pos-
sible in two ways, both implemented in G(x): precondition selection
and content selection. For the former, we consider as valid all game-
play descriptions with preconditions which are a subset of the player
modeled features. For example, in Fig. 2, the player was modeled
as αβδ and, in Fig. 4 there are descriptions for players modeled
as αδ and βδ. Function f(x) will consider these as retrievable and
selectable in G(x). To solve possible conflicts between content of the
retrieved descriptions, they will be ordered by degree of similarity
with the player modeled features.

As for content selection, increasing the number of retrieved game-
play descriptions can lead to redundant or conflicted content. So,
solving these situations differently can lead to different generated
worlds. Besides the degree of similarity described above, we expect
to use and compare semantics to identify and remove redundant
or conflicting content, also introducing randomness in this pro-
cess. Even though the details of such a mechanism are still being
researched, we are confident in reusing some conflict-solving tech-
niques for semantic game worlds, already present in our previous
work in SketchaWorld [24], an interactive semantics-based procedu-
ral virtual world editor.

Finally, a remark on "starvation" situations where function f(x)
does not retrieve any semantic gameplay description for a given
step: even though we do not envision such a use for our generation
framework, easy solutions can be found, e.g. using predefined static
content, as done with non-adaptive games, in these steps.

4. APPLICATION SCENARIOS
In the previous section we described our proposal for a semantic

generation framework for adaptive game worlds. We are currently
working on its implementation, namely on the semantic library inte-
gration and gameplay descriptions. In this paper, we therefore aim
at presenting and discussing the framework’s conceptual scheme,
and not yet its experimental evaluation. Instead, in this section,
we will describe two simulated scenarios of the application of our
framework, in order to help us evidence and discuss its advantages.
Each scenario will focus on one game world section where genera-
tion is required, using what was modeled (player, experience and
content) in the previous world section. Please refer to Fig. 2 for the
framework modules mentioned throughout this section.

4.1 Scenario 1
The first scenario occurs in a First Person Shooter (FPS) game,

where generation is required to occur between one room and the
next one. Player and experience modeling are deployed to capture
style and affective experience (using, for example, [20] and [18]).

Two different players have been modeled as (i) explorer, i.e. likes
to explore the environment, and (ii) achiever, i.e. likes collecting
items and leveling up his abilities through balanced gameplay. Both
were modeled as being bored and needing a 50% increase in excite-
ment. The content utility model registers the following content, for
both players: previous room had one division, four empty boxes
were opened, three crates were used as hideouts for NPC and a
time-bomb was activated by the player.

For the explorer player, a single gameplay description is retrieved
stating that rooms with one division, zero hidden chambers and time
bombs increase boredom. This gameplay description also declares
that hidden chambers in rooms increase excitement in 10%. From
this, the generator decides to create the next room with five hidden
chambers.

For the achiever player, a single gameplay description is retrieved
where empty item boxes and NPC-owned crates increase boredom.
This gameplay description also states that leveling up items that in-
crease player abilities increase excitement in 25%. So the generator
instantiates two leveling up items in the next room.

4.1.1 Discussion
In the scenario above, we can highlight the flexibility of the se-

mantic library in allowing designers to specify how content can
influence player experience. Boredom for the explorer is charac-
terized by simple one-division rooms and by time bombs. This
way, gameplay semantics can be used to capture that simpler rooms
leave no space to explore and time bombs, if activated, can leave
no time to calmly explore. The same authoring expressive power is
shown for the achiever, where empty item boxes and NPC-owned
crates increase boredom. This expresses the designer’s knowledge
on the fact that achievers like to progress in the game, by having
multiple opportunities of collecting items, in a balanced way, where
advantages by NPC are disliked.

The potential of our generator is also demonstrated in this sce-
nario. In the end, two players with different styles were given two
different rooms, with content more appropriated for each one. This
shows the value in considering game world content in adaptive
games. Also, in this scenario’s case, the main gameplay was not
hindered. The type of generated content was specified to not relate
with the main goals or the mission of the game; it affects the player
experience in that specific moment and room. So, although some-
what different, the game still remains the same for both players. This
scenario also highlights the ability of our generator to function in a
mixed mode: the room could actually be the same geometric space
with some static content, and only some key objects are generated.

4.2 Scenario 2
The second scenario occurs in a driving simulator, a serious game

where a player drives around a city and executes what an instructor
suggests. Generation occurs on each street. Player modeling is
integrated to capture the skills of the player, and experience is
modeled to encourage, in an transparent way, the development of
the captured skills (as, for example, in [32]).

For a player, skills are modeled as: 0.4 (out of 1) proficiency in
parking sideways and 0.6 in clutch balancing. In this case, the mod-
eled experiences are redundant and directly mapped from skills, i.e.
low and medium proficiency in, respectively, parking sideways and
clutch balancing (here defined as features a and b). Consequently,
the learning goals to be encouraged next are thus to improve on
these skills, using different learning levels, with an accessible level
on parking sideways (c) and a challenging level on clutch balancing
(d), both due to the measured skill levels. Besides these player and
experience features, the content utility model includes: a one lane
steep road (e), misplaced parked cars on the side of the road (f) and
traffic lights placed on a steep road (g).

Two gameplay descriptions are retrieved, for the two types of
modeled player skills. Tables 1 and 2 describe the content of these
descriptions. We signaled both the classes and the features which
match what was captured in the content utility model, i.e. arguments
X, content_T0 and Y of the G(x) function, as explained in Section 3.

Since both descriptions are retrieved, their entries are combined,
generating a road with two lanes (z), with cars parked inside parking
spaces (y), traffic lights with longer waiting periods (w) and with
steepness angle 45 (x). The dilemma between a leveled or a steep
road (z and x) would be solved by comparing skill proficiency. The
parking sideways skill is closer to be matched (0.4 from the model
to 0.5 from the description) than the clutch balancing skill (0.6



Table 1: For players with proficiency≤ 0.5 in parking sideways
Semantic class Experience
e) Road(lanes=1) a) low proficiency: parking sideways
f) Car(parked=misplaced) a) low proficiency: parking sideways
z) Road(lanes≥2 , steepness=0) c) accessible level: parking sideways
y) Car(parked=parking space) c) accessible level: parking sideways

Table 2: For players with proficiency ≥ 0.5 in clutch balancing
Semantic class Experience
e) Road(steepness=30) b) medium proficiency: clutch balancing
g) Stoplight(location=e,wait=40) b) medium proficiency: clutch balancing
x) Road(steepness=45) d) challenging level: clutch balancing
w) Stoplight(location=e,wait=60) d) challenging level: clutch balancing

from the model to 1 from the description), and could therefore be
considered less important to be encouraged.

4.2.1 Discussion
This scenario highlights the authoring flexibility of our frame-

work, showing its applicability in a different context: skill-based
learning. Here, gameplay semantics can still be created to evidence
the need to respond to different players by using different content.
For example, for parking sideways, more street lanes lead to more
space and thus less pressure, leveled streets mean more visibility
and cars inside parking spaces lead to more space to maneuver. In
other words, using the semantic library, designers can specify that
dissimilar players can benefit differently from different content.

Scenario 2 also highlights the emergent behavior of the gener-
ator. The final scene is created through the combination of two
retrieved gameplay descriptions. This can increase the variability
in the generated content, in an unique way. In this scenario, this is
made possible by considering two player experience requirements
simultaneously, a usual behavior in present adaptive games. The
conflict resolution in this example is based on a similarity degree
between the models and the descriptions, together with a criterion
to focus on the skill needing more improvement. For now, we fore-
see that mechanisms like these should be specified in the generator.
However, we are aware that future evaluation of our framework
might as well recommend giving designers control over this. This
scenario also highlights the ability of our generator to act in a fully
procedural mode, where all content is generated.

Although not directly mentioned in these scenarios, we should
also discuss performance and burden on designers. This framework
is envisioned to perform on-line, while the game is running. Consid-
ering that each semantic class should be already instantiated as of
the import of gameplay descriptions (i.e. at the design stage), the
remaining bottlenecks are likely the retrieval of descriptions and the
layout solving by the generator, both at run-time. We are confident
that, with our experience, new indexing and procedural techniques
can help to achieve satisfactory generation efficiency.

As for the process of creating gameplay semantics, it needs to
avoid burdening designers with overwhelming manual effort. The se-
mantic library already provides mechanisms to facilitate the creation
of semantics, including control on class inheritance and automatic
consistency checks. Our aim is to extend these with new propagation
mechanisms, specific to the gameplay semantic layer.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we presented the conceptual scheme of our semantic

generation framework for adaptive games. We have discussed its
main components, highlighting the role that semantic modeling
can play in adaptive game worlds. Through this framework and,
specifically, by means of gameplay semantics, game worlds will
be generated to match integrated player and experience models, i.e.
adapting to the players’ goals and needs. Semantics about personal
gameplay value, associated with game world geometry, will steer a
procedurally-based generator in creating a more suitable context for
personalized dynamic gameplay.

Even though the implementation of this framework is underway,
and its evaluation still has to take place, its novelty and advantages
can be easily anticipated, and are therefore highlighted here.

First, this framework will allow us to include 3D immersive game
worlds among those game components targeted by adaptivity. Achie-
ving this, in turn, will likely trigger investigation on new, unexplored
ways of affecting gameplay.

Second, regarding the process of creating adaptive games, the
framework will allow content generation methods to be loosely
coupled with player and experience modeling.

Third, the framework brings about the first inclusion of gameplay
information in the area of semantic modeling. Although it is here
being used for the procedural generation of game worlds, in the
future, this new semantic scheme can become valuable, for example,
for runtime interaction with game objects.

Finally, we can expect that deploying more and richer semantics
will enable game designers to much better author adaptivity.

As for future work, we aim to continue with the implementa-
tion of this framework proposal, in the short term. As discussed
before, our main challenges ahead relate with the design, creation
and implementation of conflict-solving methods for our generator
component. Also, we already identified the player and experience
modeling techniques that we will need to integrate with our frame-
work in prototype adaptive games. The implementation of both will
begin in the near future.

As for the long term, we already identified valid future research
directions. One of them is the automatic creation of semantic game-
play descriptions. With our framework, playtesting a game would
allow to use content utility models to create semantic gameplay
descriptions, independent from the semantic library. The basic idea
would be to use our game observer as a mass data collection method
to model content with player behavior and experience, automatically
creating semantic gameplay descriptions. These would be applicable
to similar players as the ones observed, in future game sessions.

Relying both on manual (i.e. designer-based) and automatic (i.e.
through statistic observation) ways of creating gameplay semantics,
rich immersive game worlds can become adaptive. When so, they
will have the potential to provide a personalized dynamic gameplay,
making games even more unpredictable, effective and fun.
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