
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING
Commun. Numer. Meth. Engng 2005; 21:571–580
Published online 3 June 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cnm.774

Adaptive multi-resolution triangulations based
on physical compression

Ricardo Marroquim1, Paulo Roma Cavalcanti∗;†;1,
Claudio Esperan�ca1 and Luiz Velho2

1COPPE-Sistemas; Universidade Federal do Rio de Janeiro; Cidade Universit�aria—Ilha do Fundão;
Caixa Postal 68530; CEP 21945-970; Rio de Janeiro; RJ; Brasil

2 IMPA; Instituto de Matem�atica Pura e Aplicada Estrada Dona Castorina 110; CEP 22460-320;
Rio de Janeiro; RJ; Brasil

SUMMARY

This paper presents a method for generating multi-resolution adaptive triangulations of non-manifold
3D objects composed of several regions with arbitrary geometry. The process �rst immerses the input
boundary elements inside a semi-regular adaptive tetrahedral mesh known as a BMT triangulation. The
mesh elements are then pushed towards the boundary by means of a physically based compression
scheme, more speci�cally, a mass-spring system. The �nal triangulation has no degenerated tetrahedra
and provides an approximation of the boundary based on a chosen resolution. Copyright ? 2005 John
Wiley & Sons, Ltd.

KEY WORDS: multi-resolution triangulations; physically based triangulations; mass-spring systems

1. INTRODUCTION

Numerical simulations have become an essential step in the development of engineering prod-
ucts, or in the prediction of the behaviour of physical phenomena, such as weather conditions,
oil generation and migration, tide movement, earthquakes, etc.
Although several triangulation algorithms have been proposed in the past three decades,

these algorithms are meant mainly to deal with mechanical parts, produced by CAD systems.
However, there are numerous important applications where the domain presents no symmetry
at all, and boundaries are not well or clearly established.

∗Correspondence to: Paulo Roma Cavalcanti, COPPE-Sistemas, Universidade Federal do Rio de Janeiro, Cidade
Universit�aria—Ilha do Fundão, Caixa Postal 68530, CEP 21945-970, Rio de Janeiro, RJ, Brasil.

†E-mail: roma@lcg.ufrj.br

Contract=grant sponsor: Cenpes=Petrobras; contract=grant number: 3678

Received 12 December 2004
Revised 10 March 2005

Copyright ? 2005 John Wiley & Sons, Ltd. Accepted 31 March 2005

572 R. MARROQUIM ET AL.

Traditional triangulation algorithms can be classi�ed according to the way they work.
Delaunay based algorithms recover the boundaries after triangulating the convex hull of the
point set [1]. Ruppert and Shewchuck [2–4] insert a vertex at the circumcentre of a bad
element to improve the mesh quality. In practice, if the original model already contains small
angles, their algorithms have problems in converging, specially in 3D. Advancing front algo-
rithms [5–10], on the other hand, start at the boundaries and proceed toward the centre of
the model, inserting new vertices to create well-shaped elements. The trick is to merge the
di�erent fronts without generating any inconsistency. The success of the algorithm is highly
dependent on the simplicity of the geometry of the boundary. Packing sphere algorithms
[11–14] generate a distribution of vertices, forcing edges and faces to be present in the �nal
mesh, which can then be generated by a Delaunay-like algorithm.
These triangulation algorithms have di�culty to deal with models having complex and irreg-

ular boundaries, and do not support multi-resolution. Even when a triangulation algorithm does
a good job meshing such models, it may generate tetrahedra with small dihedral angles in the
�nal mesh, which usually cause problems when running numerical simulations. Furthermore,
if the original model already contains small angles these methods cannot eliminate them.
This paper presents an adaptive algorithm to triangulate non-manifold, multi-region models,

approximating their irregular boundaries instead of trying to match them exactly. Our main
concern is to generate a good mesh whose boundary approximates the original one within a
given tolerance.
Physically-based triangulation algorithms are not new. Molino [15] used a similar approach

to obtain numerical meshes. Nonetheless, despite his good results, he considered only single
region manifold objects. In this paper we extend Molino’s work to be able to deal with
non-manifold multi-region objects, thus addressing a broader set of applications.

2. SPATIAL SUBDIVISION

The algorithm has two main steps: subdivision and compression. The �rst step of the algorithm
is to subdivide the space surrounding the model. An adaptive binary multi-triangulation (BMT)
is used to hold the subdivision [16]. The grid obtained from the subdivision is also the base
simplicial complex for the 3D triangulation. It should be noted that a BMT mesh generates
elements with good angles.
The adaptive property of this mesh allows a re�nement based on a given criterion. The one

chosen here is the distance from a tetrahedron to a boundary surface. BMT adaptive meshes
support multi-resolution naturally, and also have the property of producing a gradual transition
of resolution, therefore leaving no gap between levels in the subdivision process.
To subdivide a particular tetrahedron, the distance from its centroid to the boundary must be

smaller than the average length of its edges. Also, each tetrahedron may only be subdivided
up to a certain number of times speci�ed by the user.

3. INPUT MODEL AND DISTANCE FUNCTION

Three-dimensional multi-region models are in general non-manifold. Therefore, to be properly
represented, they require quite complex data-structures, such as the radial-edge data structure

Copyright ? 2005 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2005; 21:571–580

ADAPTIVE MULTI-RESOLUTION TRIANGULATIONS 573

(RED) [17]. The RED data structure allows one to obtain any adjacency relationship in
constant time. Our models are created by using the CGC system [18].
Throughout the algorithm, the distance from a point in space to a boundary surface is

computed several times. Therefore, a fast algorithm for computing distances is required. We
make use of an octree to speed up the search.
The octree root node is de�ned by the model’s bounding box co-ordinates. To make a

compact structure, internal and leaf node co-ordinates are not stored, but computed on-the-�y
while traversing the tree. Thus, the only attributes maintained in an internal node are pointers
to its eight children, while a leaf node stores only the list of items (faces) intersecting its
box. If the list has more elements than a speci�ed limit, the node is subdivided. However,
in order to prevent the re�nement criterion from triggering an in�nite subdivision loop, the
height of the tree is also limited.
To �nd the distance from a given point to the boundary of the model, its octree is traversed

starting at the root node. The estimated result distance is initialized to a suitable huge value.
When a leaf node is visited, the distance to the closest face is returned. When an internal
node (octant) is visited, the children octants are sorted in ascending order of distance from
the query point. Each of these octants is then visited recursively, but only if the corresponding
distance is smaller than the best estimate so far. If the traversal returns a distance estimate
that is smaller than the overall best estimate, this is updated.

4. MESH COMPRESSION

To conform the re�ned mesh to the boundary of the model a physical mass-spring system is
used. The idea is to select a subset of the mesh (called a d-mesh) and compress it to �t the
boundary of the model. The set of vertices on the boundary of the d-mesh are marked to be
projected towards the boundary of the model. When these vertices start to move, the forces
created are propagated to the other vertices, rearranging all of the interior tetrahedra. Springs
are placed on each tetrahedron to hold their shape during the compression.
A set of vertices must be chosen to be pushed towards the boundary. One solution is to

classify all tetrahedra as being inside, outside or intersecting the boundary of the model, and
choose all exterior vertices of the intersecting tetrahedra. Alternatively, all interior vertices
could also have been chosen. However, merely choosing a set of vertices is not su�cient,
since there can be inconsistencies during the compression. For example, some tetrahedra might
have all four vertices on the boundary of the model, and chances are they would be crushed
against its surface. Also, some selected vertices may be far away from the boundary, creating
a great disturbance when displacing them towards the boundary.
Ideally, the d-mesh should be close enough to the boundary of the model. Following

Reference [15], the d-mesh is composed of all tetrahedra incident to an enveloped set.
The enveloped set contains vertices with all incident edges at least 25% inside the model.
This guarantees that all tetrahedra of the d-mesh have a minimum of one vertex inside
the model.
All vertices of the d-mesh that do not belong to the enveloped set are marked, and form a

set of vertices to be pushed towards the boundary. This procedure insures that no tetrahedron
has its four vertices marked. This set of vertices is a rough approximation of the boundary
of the model. Tetrahedra that do not belong to the d-mesh are discarded.

Copyright ? 2005 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2005; 21:571–580

574 R. MARROQUIM ET AL.

Interior Edges

Figure 1. A 2D representation of a 3D d-mesh for the sake of simplicity. White vertices represent
the enveloped set. Vertices marked to be projected towards boundary of the model are drawn in
black. The dark black line represents the boundary of d-mesh. The model’s boundary is the curved
line and dashed lines mark discarded edges. Pointed edges (on the right) represent two interior

edges connecting marked vertices.

The set of marked vertices contains some exterior and interior vertices, but they are all close
to the boundary of the model, as can be seen in Figure 1. The more a vertex has to move
to reach the boundary, the greater the force it creates on the mesh. Very high compression
forces cause disturbances in the mesh that may lead to badly shaped elements.
There are two cases that have to be addressed to provide a smooth compression. First, an

internal edge of the d-mesh, with both vertices marked, may be crushed during compression.
An internal edge is identi�ed when all tetrahedra of its star, i.e. tetrahedra incident to the
edge, belong to the d-mesh. Second, edges on the boundary of the d-mesh with more than
two incident boundary faces are identi�ed as being non-manifold. These internal and non-
manifold edges are subdivided in a single pass, and the d-mesh is computed once again.
When subdividing an internal edge, the new vertex is automatically inserted in the enveloped
set. Since the edge is in the interior of the mesh, this new vertex is also guaranteed to be in
its interior.
In subsequent passes the mesh is checked again for remaining inadequate edges. For each

such edge, the vertex with the smaller distance to the boundary is inserted into the enveloped
set. Because the distance is negative inside the model, if both vertices are in the interior, the
deeper one is chosen. After each pass the d-mesh is recomputed, and the process is repeated
until no more inadequate edges are found.

5. MULTI-REGION MODELS

When working with multi-region models, Figure 2, di�erent enveloped sets are created for each
region. The enveloped set contains only vertices inside each region, therefore guaranteeing
that di�erent sets do not intersect. However, when computing the d-mesh, a tetrahedron might
have vertices in di�erent enveloped sets. Furthermore, this may lead to tetrahedra having all
four vertices marked to be projected towards the boundary of the model, causing them to be
crushed when compressed.
To solve this problem, it is necessary to have a delimiting surface between adjacent regions.

This surface contains the marked vertices, and, after the compression stage, shall approximate
the boundary between the regions.

Copyright ? 2005 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2005; 21:571–580

ADAPTIVE MULTI-RESOLUTION TRIANGULATIONS 575

Figure 2. Internal view of a Salt Dome, and a cut of its mesh, with 5 regions.

V1
Vproj

V3

V2

V0

Figure 3. Incident springs to vertex V0, where V0 − Vproj is a repulsion spring. The other springs are
edge springs. The remaining three edge and repulsion springs for this tetrahedron are not shown here.

When computing an enveloped set, the same rules are applied. A vertex must have all
incident edges at least 25% inside the region to belong to the set. However, to �nd the
delimiting surfaces, the d-mesh is only computed for some regions. A simple criterion based
on the identi�cation of the regions is used. When selecting the marked vertices on the boundary
between two regions, only the region with the smallest identi�er is considered. Solving the
boundary of the d-mesh for a region automatically solves it for the adjacent region.

6. SPRING CONFIGURATION

A very important issue is how to place the springs on the physical system. Badly placed
springs may not hold the shape of elements, or worse, may not prevent the tetrahedra from
collapsing.
Two types of springs are used: edge and repulsion springs. An edge spring is placed on

each d-mesh edge. Three repulsion springs are placed in each tetrahedron, connecting a vertex
to its projection onto the plane of the opposite face (see Figure 3). This con�guration proved
to prevent collapses e�ciently [19].
Each edge has a reference to its corresponding spring, while each face has references to

two repulsion springs. An edge spring is connected by two real vertices. However, repulsion

Copyright ? 2005 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2005; 21:571–580

576 R. MARROQUIM ET AL.

springs connect a real to a virtual vertex, thus requiring some auxiliary vertices to represent
the projection of a real vertex.
To compute spring forces two di�erent equations are used: one for edge springs and the

other for repulsion springs (projection edges). The edge spring equation is the Hooke’s Law,
as given by

F =
[
ks(|�x| − x0) + kd

(
�v�x
|�x|

)]
�x
|�x| (1)

where ks and kd are the elasticity and damping constant, x0 is the rest length and �x and �v
are the vertex position and velocity di�erences.
For the repulsion spring there is a non-linear equation (see Equation (2)), as explained

in Reference [19]. These non-linear springs apply an in�nite force as their lengths tend to
zero. The values for kd and ks must be carefully adjusted to make the system converge.
We have been using the range [0:35; 1:3] and [0:85; 2:3], respectively, for kd and ks in our
implementation. The actual values may in�uence the quality of the �nal mesh.

F = ks

(
|�x| − x20

|�x|
)
�x
|�x| (2)

7. PARTICLE SYSTEM

To simulate the mass-spring oscillatory movement, the mesh is treated as a particle sys-
tem [20]. Each vertex represents a particle in the system, and particles are associated to
spring endpoints. Some temporary particles may be introduced to represent auxiliary vertices.
These particles only exist when computing the force associated to repulsion springs, having
only local in�uence in the system.
Each particle has the following attributes: position, velocity, force, and mass. The system

iterates in time steps, updating at each cycle the particles’ position and velocity. At each time
step there is an iteration through all edges to compute the forces at their particles. The force
on each vertex is the sum of the forces applied by all incident springs.
Also, the particles are given di�erent mass values. Those near the boundary are made

heavier than those far from it. The reason is to give more robustness to the small tetrahedra
near the boundary, while giving the bigger interior ones more freedom to rearrange. This
avoids crushing the small mesh elements when the interior of the mesh o�ers too much
resistance. The mass of a particle is computed as the average of all incident tetrahedra masses.
The mass of a tetrahedron is computed as the ratio between its level and the maximum
subdivision level.
The duration of one step can be rede�ned by the user. Usually, small steps are better

because they create less oscillatory movement on the springs. However, smaller time steps
result in more iterations, and consequently longer simulation running times.
Each system iteration has three main phases:

1. computation of the force accumulators for each vertex;
2. calculation of derivative values;
3. computation of new positions and velocities.

Copyright ? 2005 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2005; 21:571–580

ADAPTIVE MULTI-RESOLUTION TRIANGULATIONS 577

8. FORCE ACCUMULATORS

The force accumulated in each vertex is the sum of all contributions from all incident springs.
Auxiliary vertices are not considered, but they contribute to the force accumulated on the other
endpoint of the repulsion spring.
The �rst step is to reset all force accumulators, with a simple iteration through all par-

ticles. Next, the edges and faces are examined in order to compute the forces applied on
their corresponding springs. In this step, each particles’ position and velocity derivatives are
calculated, i.e. its velocity and acceleration, respectively. Here, an auxiliary array is created
to hold all the values. The vector size is 6n, where n is the number of particles in the system.
The derivative vector is scaled for the time of an iteration step.
Another array is used to hold the particles’ current position and velocity. The vector size

is the same of the derivative vector. To compute the new attribute values the two vectors are
added, and the particles are updated with the resulting values.

9. COMPRESSION CRITERIA

Spring rest lengths are set to their initial length, meaning that initially the particle system is
completely stable. Unless some disturbance is applied on the system, it will not change. To
start the compression, marked vertices of the d-mesh need to be pushed towards the boundary.
The initial velocity direction of a marked vertex is computed as the average of all incident

boundary face normals. If the vertex is in the exterior of the mesh surface, the normals facing
the interior of the incident tetrahedra are used. Otherwise, in case of an interior vertex, the
normals facing outwards are used. This direction precludes a vertex from landing near edges
or other vertices, spreading them apart fairly well.
Marked vertices also behave di�erently from the others in the system. Speci�cally, a marked

vertex should travel towards the boundary at a constant rate. Thus, we only consider the force
component which is perpendicular to the velocity vector. After each time step the velocity
direction is recomputed according to the incident face normals. Therefore, marked vertices
travel towards the mesh’s surface while rearranging themselves along the plane perpendicular
to their trajectory. If these vertices were allowed to interact freely with the system, the internal
forces of the mesh would eventually return it to the initial state.

10. LIMITING THE DEFORMATION RATE

To better control the mesh during the simulation, some bounds are imposed onto the movement
of the particles. These bounds are motivated by the techniques used in cloth simulation, and
limit the strain and strain rate [21–23]. First, no spring may compress a tetrahedron more
than 60% of its initial height. Second, in a time step, no particle may move more than 10%
of the current height of any of its incident tetrahedra.
When a vertex surpasses the strain bound, it is halted during the current time step. The

other vertex new positions are iteratively recomputed until all tetrahedra abide the restriction.
These arti�cial bounds create a higher degree of robustness, while compressing the mesh.
They also help to obtain better quality meshes.

Copyright ? 2005 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2005; 21:571–580

578 R. MARROQUIM ET AL.

By this criterion some vertices being pushed towards the boundary may be continuously
halted, and never reach it. This happens more often with low re�ned meshes, where the vertices
have to travel large distances, and the size variation, of the tetrahedra near the boundary and
those in the interior, is small. This procedure is valid in cases where a perfect match of
the boundary is not necessary. The simulation �nishes when all marked vertices have either
reached the boundary of the model, or have been halted.

11. CONCLUSIONS

We have presented an adaptive algorithm for triangulating multi-region, non-manifold 3D
models. Although the boundaries of the triangulation may di�er from the boundary of the
original model, there are several applications where this is acceptable. For instance, in some
Geoscience applications based on noisy seismic data, boundaries are only rough estimates
created by specialists or software. Also, simulations may deform boundaries over time, which
makes it important for triangulation algorithms to change the mesh topology as little as pos-
sible while, at the same time, maintaining a good boundary conformance.
Our algorithm allows one to specify how closely the boundary will be recovered, and

has some advantages over traditional triangulation techniques, such as: (1) o�ering multi-
resolution; (2) being capable of dealing with models possessing complex and irregular bound-
aries; and (3) not being a�ected in a high degree by numerical issues.
The algorithm has been implemented to run on ordinary personal computers with 1 Gb of

RAM, and generates good meshes with several million tetrahedra. It is not intended to compete
in speed, say, with Delaunay-like algorithms, since it has to update the force accumulator
vector at each time step. Therefore, the execution time may take from a few minutes to
several hours, depending on the degree of precision set for recovering the boundaries, and
the desired quality of the �nal mesh. Its main advantage, however, is that, at the end, there
is no need to remove a large number of slivers, or bad shaped elements.
As an example, the triangulation of a tiger, shown in Figure 4, possesses 145 K tetra-

hedra. The minimum dihedral angle is 11◦, and the processing time was 30 min on a

Figure 4. Triangulation of a tiger with approximately 145 K tetrahedra.

Copyright ? 2005 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2005; 21:571–580

ADAPTIVE MULTI-RESOLUTION TRIANGULATIONS 579

Pentium 4-2.8C HT. The triangulation of the Salt Dome model in Figure 2 possesses 903 K
tetrahedra, minimum dihedral angle of 4:86◦, and was generated in 3 h. Only 35 tetrahetra
had minimum dihedral angle below 7◦ (99.7% above 17:7◦).

ACKNOWLEDGEMENTS

We would like to thank the CAPES and CNPq agencies and, specially, the �nancial support received
from Cenpes/Petrobras, through the COPPETEC Project Pesc 3678.

REFERENCES

1. Cavalcanti P, Mello U. Three-dimensional constrained Delaunay triangulation: a minimalist approach. 8th
International Meshing Roundtable, Lake Tahoe, CA. Sandia National Laboratories: Albquerque, NM, 1999;
119–129.

2. Ruppert J. Results on triangulation and high quality mesh generation. Ph.D. Thesis, University of California at
Berkeley, Berkeley, CA, 1992.

3. Ruppert J. A Delaunay re�nement algorithm for quality 2-dimensional mesh generation. Journal of Algorithms
1995; 18(3):548–585.

4. Shewchuk JR. Delaunay re�nement mesh generation. Ph.D. Thesis, Department of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, 1997.

5. Mavriplis DJ. An advancing front Delaunay triangulation algorithm designed for robustness. Journal of
Computational Physics 1995; 117(1):90–101.

6. L�ohner R, Parikh P. Three-dimensional grid generation by the advancing front method. International Journal
for Numerical Methods in Fluids 1988; 8:1135–1149.

7. Peraire J, Peir�o J, Morgan K. Advancing front grid generation. In Handbook of Grid Generation, Chapter 17,
Thompson JF, Soni BK, Weatherill NP (eds). CRC Press: Boca Raton, FL, 1999.

8. L�ohner R. Progress in grid generation via the advancing front technique. Engineering with Computers, vol. 12.
Springer: Berlin, 1996; 186–210.

9. Frey PJ, Borouchaki H, George P-L. Delaunay tetrahedralization using an advancing-front approach. 5th
International Meshing Roundtable. Sandia National Laboratories: Albquerque, NM, 1996; 21–46.

10. Fleischmann P, Selberherr S. Three-dimensional delaunay mesh generation using a modi�ed advancing front
approach. 6th International Meshing Roundtable. Sandia National Laboratories: Albquerque, NM, 1997;
267–278.

11. Shimada K, Gossard DC. Bubble mesh: automated triangular meshing of non-manifold geometry by packing
spheres. Proceedings of the 3rd ACM Symposium on Solid Modeling and Applications, Salt Lake City, Utah,
May 1995; 409–419.

12. Bern M, Eppstein D. Quadrilateral meshing by circle packing. International Journal of Computational Geometry
and Applications 2000; 10(4):347–360.

13. Li X-Y, Teng S-H, �Ung�or A. Biting spheres in 3d. Proceedings of the 8th International Meshing Roundtable,
South Lake Tahoe, CA, 1999; 85–95.

14. Li X-Y, Teng S-H, �Ung�or A. Biting: advancing front meets sphere packing. International Journal for Numerical
Methods in Engineering 2000; 49(1):61–91.

15. Molino N, Bridson R, Teran J, Fedkiw R. A crystalline, red green strategy for meshing highly deformable
objects with tetrahedra. 12th International Meshing Roundtable, Santa Fe, NM, 2003; 103–114.

16. Mello V, Velho L, Cavalcanti PR, Silva C. Bmt: a generic programming approach to multiresolution spatial
decompositions. In Visualization and Mathematics III, Hege H, Polthier K (eds). Springer: Berlin, 2003;
337–360.

17. Weiler K. The radial-edge structure: a topological representation for non-manifold geometric boundary
representations. Geometric Modeling for CAD Applications. North-Holland, 1988; 3–36.

18. Cavalcanti PR, Carvalho PCP, Martha LF. Nonmanifold modeling: an approach based on spatial subdivisions.
Computer-Aided Design 1997; 29(3):209–220.

19. Cooper L, Maddock S. Preventing collapse within mass-spring-damper models of deformable objects. The Fifth
International Conference in Central Europe on Computer Graphics and Visualization, Plzen, Czech Republic,
1997; 70–78.

20. Witkin A. An Introduction to Physically Based Modeling: Particle System Dynamics. ACM Siggraph Course
Notes, 1994.

Copyright ? 2005 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2005; 21:571–580

580 R. MARROQUIM ET AL.

21. Bridson R, Fedkiw R, Anderson J. Robust treatment of collisions, contact and friction for cloth animation.
Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press:
New York, 2002; 594–603.

22. Bara� D, Witkin A. Large steps in cloth simulation. Proceedings of the 25th Annual Conference on Computer
Graphics and Interactive Techniques. ACM Press: New York, 1998; 43–54.

23. Provot X. Deformation constraints in a mass-spring model to describe rigid cloth behavior. In Graphics Interface
’95, Davis WA, Prusinkiewicz P (eds). Canadian Human-Computer Communications Society, 1995; 147–154.

Copyright ? 2005 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2005; 21:571–580

