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Figure 1: Animation of a “letter X”soft body character performing a handspring. The animation is automatically generated from a sparse
set of partial keyframes, which is illustrated in the image on the upper left.

Abstract

We propose a scheme for animating deformable objects based on
spacetime optimization. The main feature is that it robustly and
within a few seconds generates interesting motion from a sparse
set of spacetime constraints. Providing only partial (as opposed to
full) keyframes for positions and velocities is sufficient. The com-
puted motion satisfies the constraints and the remaining degrees of
freedom are determined by physical principles using elasticity and
the spacetime constraints paradigm. Our modeling of the spacetime
optimization problem combines dimensional reduction, modal co-
ordinates, wiggly splines, and rotation strain warping. Our solver
is based on a theorem that characterizes the solutions of the op-
timization problem and allows us to restrict the optimization to
low-dimensional search spaces. This treatment of the optimization
problem avoids a time discretization and the resulting method can
robustly deal with sparse input and wiggly motion.
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1 Introduction

Directing and controlling physical systems is a challenging task in
computer animation. We look at the problem of creating realistic
looking motion of soft body characters or deformable objects within
a scene. Modeling such motion using traditional computer anima-
tion techniques, like spline fitting, is difficult since many degrees of
freedom must be determined and secondary motion effects must be
modeled by hand. Physical simulation can be of great help for cre-
ating realistic and detailed animations, but one needs to determine
the forces and physical parameters that produce an effect an ani-
mator wants to produce. The spacetime constraints paradigm com-
bines the realism provided by physical simulation with the control
over an animation offered by keyframing. The idea is to compute
the motion as the solution of a constrained spacetime optimization
problem in which the keyframes serve as constraints in spacetime.
The result is a planned motion showing desired effects like squash-
and-stretch, timing, and anticipation. Spacetime optimization has
been used for animating articulated characters (which are controlled
by a skeleton) since the late eighties. More recently, this approach
has been extended to soft body characters and deformable objects.

In this paper, we present a method that robustly generates the mo-
tion of deformable objects from sparse input. For example, instead
of providing a set of full keyframes, it suffices to specify spacetime
constraints (position, velocities) for parts of the object at a sparse
set of points in time. This permits the generation of interesting and
realistic looking motion with rich secondary motion from a rough
sketch. Our goal is to reduce the information an animator must
provide to generate a motion and thereby simplify the generation
of motion. Creating full poses and velocities that lead to a natural
looking motion can be difficult. For example, let us look at one
keyframe of the forward jump of X shown in Figure 3. At the point
in time when the character leaves the ground, we specify a partial
keyframe that prescribes only the average velocity of X. If we want
to create such a motion using full keyframes, we would need to
replace the partial keyframe by a full keyframe that specifies the
positions and the velocities at this point in time. But what are the
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pose and velocity at this point in time? When generating a motion,
our system automatically generates full keyframes from the partial
input. Interpolating these full keyframes produces the same mo-
tion. In this sense the system can be used as a modeling tool for
poses and velocites that takes into account not only the geometry
and material of a static shape but also the dynamics of the motion.

From a technical point of view, solving a spacetime optimization
problem with sparse constraints is challenging. Recent methods,
like [Huang et al. 2011] and [Hildebrandt et al. 2012], cannot deal
with partial keyframes because they perform computations that re-
quire full keyframes. The scheme presented by Barbič et al. [2012]
is the first method that addresses the problem of sparse constraints
for spacetime optimization of deformable objects. The method is
designed for editing animations in a physically plausible way, but,
in principle, it can also be used for generating motion (by using a
static animation as input motion). However, for the problem con-
sidered here, there are fundamental limitations. Only a very spe-
cial type of sparse constraints (namely constraining the position of
a few vertices) is considered, and, more importantly, the control
over the positions is only strict for small deformations. Animations
that include larger deformations are warped in a post-process to re-
move linearization artifacts, which implies that the constraints are
no longer enforced.

Our method relies on two main contributions. The first is the math-
ematical modeling of the spacetime optimization problem with par-
tial keyframes for the positions and velocities. Following Barbič
et al. [2012], we consider linearized elasticity and rotation strain
warping. In contrast to their approach, we impose the constraints
on the warped motion and its velocity. One technical difficulty in
formulating the optimization problem is that we need the derivative
of the rotation strain warp map, which has not been used before.
We derive a scheme for the efficient and robust computation of the
derivative. The second contribution is that we develop an efficient
solver for the resulting optimization problem. One important step is
that we prove (in Theorems 1 and 2) that the minimizers of the opti-
mization problem must be of a certain form. As a consequence, we
can restrict the optimization problem from the infinite-dimensional
space of all (regular enough) motions to a finite-dimensional space
of all motions that are of the specified form. By combining this
result with a dimensional reduction of the finite-dimensional space,
we construct low-dimensional spaces (<100 dim.) to which we
restrict the optimization problem. We demonstrate that the re-
sulting low-dimensional nonlinear least-squares problems can be
solved within a few seconds with standard solvers. This treatment
of the optimization problem avoids a time discretization and the
resulting method can robustly deal with sparse input and wiggly
motion. The explicit form of the minimizers is based on wiggly
splines [Kass and Anderson 2008] that have been used for physical-
based interpolation of full keyframes in [Huang et al. 2011] and
[Hildebrandt et al. 2012]. An important difference between full and
partial keyframes is that the full keyframes decouple in the modal
basis, whereas the partial keyframes couple all the modes. There-
fore, interpolation of full keyframes is a simpler problem. In the
modal basis, the linearized spacetime optimization problem with
full keyframes decouples and only one-dimensional problems need
to be solved. The solutions of the one-dimensional problems are ex-
plicitly given by the wiggly splines. Hence no optimization is nec-
essary. Such a treatment is not possible for more general constraints
that couple the different modes, like partial keyframes. Therefore,
to be able to use the wiggly splines for spacetime optimization with
sparse constraints, a new modeling of the problem (as presented in
this work) is necessary.

2 Related Work

Simulation of deformable objects is widely used in graphics. An
introduction to the topic can be found in the recent tutorial [Sifakis
and Barbič 2012]. Among the various techniques that have been
proposed for accelerating the computation of deformable object
simulations, two are most important for our work. One is dimension
reduction. This is an established technique in mechanics [Nick-
ell 1976; Krysl et al. 2001] and graphics [Pentland and Williams
1989; Barbič and James 2005; An et al. 2008; Kim and James
2009; von Tycowicz et al. 2013]. The principle is to construct
a low-dimensional subspace to which the simulation is restricted.
Since a motion typically is of low rank, a good approximation of
the simulation can already be obtained in low-dimensional sub-
spaces. Subspace constructions are based on local analysis, e.g. vi-
bration modes and modal derivatives, or sampling and proper or-
thogonal decomposition. The second technique is rotation strain
warping [Huang et al. 2011]. Like co-rotation methods [Müller
et al. 2002] and modal warping [Choi and Ko 2005], the goal is
to improve linearized elasticity while keeping the computation cost
low. Rotation strain warping aims at removing visible lineariza-
tion artifacts from a deformation. For this the matrix exponential is
used to map the antisymmetric part of the deformation gradient of
every tet to a rotation matrix. Then, the rotation matrices are used
to construct target deformation gradients for all tets. The warped
deformation is a deformation whose gradients best match the target
gradients.

Animating characters or objects often requires not only simula-
tion but also control over the simulation. The idea of using con-
strained spacetime optimization for animation was introduced by
Witkin and Kass [1988] in the late eighties. Their examples demon-
strate that the resulting animations naturally include motion effects
that are desired in character animation. The so-called spacetime
constraints paradigm has inspired many researchers. The focus
has been on articulated characters and human motion, see [Co-
hen 1992; Gleicher 1997; Fang and Pollard 2003; Safonova et al.
2004] and references therein. More recently, constrained spacetime
optimization has been used to control other physical systems in-
cluding rigid body motions [Popović et al. 2003], fluids [Treuille
et al. 2003; McNamara et al. 2004], particle systems [Wojtan et al.
2006], and deformable objects [Barbič et al. 2009; Hildebrandt
et al. 2012]. The resulting optimization problems are solved with
gradient-based or Newton methods. Automatic [Safonova et al.
2004] and symbolic [Witkin and Kass 1988] differentiation and the
adjoint method [McNamara et al. 2004] have been used to com-
pute the derivatives of the objective functional. Local-to-global
strategies [Cohen 1992; Treuille et al. 2003] and dimension re-
duction [Safonova et al. 2004; Sulejmanpašić and Popović 2005;
Barbič et al. 2009] have been applied to speed up the optimiza-
tion. In [Kass and Anderson 2008], tools for motion design based
on spacetime constraints for one-dimensional mass-spring systems
were presented. The variational characterization of the solution of
the one-dimensional optimization problem is analogous to that of
cubic splines. Since these splines are oscillatory instead of smooth,
they are called wiggly splines. An explicit form of the wiggly
splines was derived in [Hildebrandt et al. 2012], which yield fast
and robust computations of the wiggly splines. In addition, they
showed that for linearized elastic objects, every modal coordinate
of the solution of the constrained spacetime optimization problem
is a wiggly spline. Based on this and a multipoint linearization,
a method for spacetime control of deformable objects with full
keyframes was presented. In [Huang et al. 2011] the rotation strain
warping was used for generating motions of deformable objects
that interpolate (full) keyframes. Barbič et al. [2012] introduced
a scheme for physically-based editing of animations using space-
time optimization. Another editing tool for animations has recently



been introduced by Li et al. [2013].

An alternative approach for controlling deformable objects is the
use of proportional-derivative controllers, which were introduced
to computer graphics by Kondo et al. [2005]. Another alternative
is locomotion control twhich was recently used for animating soft
body characters with a skeleton [Kim and Pollard 2011] and with-
out a skeleton [Coros et al. 2012; Tan et al. 2012]. In contrast
to spacetime optimization, the control forces in all of these ap-
proaches are computed without a longer planning horizon. Track-
ing solvers [Bergou et al. 2007] take a coarse animation as input
and augment it with physical details by running a fine simulation
that is forced to remain close to the coarse input. Example-based
materials [Martin et al. 2011] direct a simulation towards a desired
behavior by providing a set of example poses. During the simula-
tion, a force pushes the deformable object towards a submanifold
of the shape space, which is generated from the example shapes.

Related to spacetime optimization is the boundary value problem
for the equations of motion: For two poses and two points in
time, compute the trajectory that connects them. In contrast to
the spacetime optimization we consider, no additional force is al-
lowed. Compared to the initial value problem, the numerical treat-
ment of the boundary value problem received less attention. We
refer to [Huang et al. 2011] for a recent method and an overview.

Another related problem is geometric shape interpolation. Ap-
proaches that define a Riemannian metric on the space of all pos-
sible shapes and then compute geodesics to interpolate between
shapes have been proposed [Kilian et al. 2007; Heeren et al. 2012].
Such a Riemannian metric on a shape space measures the metric
distortion or the viscous dissipation required to physically deform
an elastic object. Simpler approaches compute interpolating shapes
by solving large but sparse linear systems, e.g. [Sumner et al. 2005;
Xu et al. 2005]. In contrast to spacetime constraints, geometric
shape interpolation does not include the dynamics, e.g. does not
exhibit secondary motion effects.

3 Constrained Spacetime Optimization

The generation of motion based on the spacetime constraints
paradigm has been studied in graphics for a long time. Various
constrained spacetime optimization problems have been formulated
and tested since then. In this section, we give a brief overview of
the spacetime optimization considered in this work.

We represent deformable objects by a tetrahedral mesh and use a
finite elements discretization of elastic solids. Any deformation of
the object is described by a displacement vector u ∈ Rn, where n
is the number of the object’s degrees of freedom. The dynamics of
the object is governed by the equations of motion

M ü(t) = F (u(t), u̇(t), t), (1)

where F represents the acting forces and M is the mass matrix.
The forces F are a superposition of internal deformation forces
F int(u(t)) of the elastic solid, external forces F ext(u(t), u̇(t), t),
and damping forces F damp(u(t), u̇(t)).

Our goal is to construct a trajectory u(t) that satisfies a set of
spacetime constraints, e.g. interpolating positions or velocities at
the nodes {t0, t1, . . . , tm}. Since a solution of (1) is determined
by an initial position and velocity at some point in time, it cannot
in general satisfy the constraints. To allow the object to modify its
motion, we add an extra force Fadd(t) to the system (1)

M ü(t) = F (u, u̇, t) + Fadd(t).

This force can be regarded as an additional interior force generated
by the deformable object or as an additional exterior force. Among

all possible forces Fadd(t), which result in a motion that satisfies
the constraints, we choose the force with minimal (squared) space-
time L2-norm

1

2

tm∫
t0

‖Fadd‖2M−1 dt =
1

2

tm∫
t0

‖M ü− F‖2M−1 dt. (2)

Here, we denote ‖F (t)‖2M−1 = FT (t)M−1F (t). The reason,
we use the M−1-norm here, is that F is an integrated quan-
tity and M−1F is the pointwise force at the vertices. The term
‖F (t)‖2M−1 = FT (t)M−1F (t) = ‖M−1F (t)‖2M is the squared
L2-norm of the force at time t. The concept of penalizing the
squared norm of the forces goes back to [Witkin and Kass 1988].
For deformable objects this energy was used by Barbič et al. [2009]
and the M−1 notation was used in [Barbič et al. 2012].

The resulting motion is a planned motion and the required force
is distributed over the whole animation. If we think of Fadd as a
force generated by a soft body character, the character tries to use
its force efficiently planning its motion ahead. If Fadd is an external
force that is used to manipulate the system to achieve an effect, the
required force is distributed over the whole animation so that the
manipulation is less visible.

4 Linearized Spacetime Optimization

Our method is based on properties of the spacetime optimization
problem for linear dynamics, which enables a robust and efficient
computation of the solution. We briefly summarize these properties
in this section. We show that the solutions of the spacetime opti-
mization problem for linear dynamics can be explicitly formulated
in terms of the solutions of one-dimensional problems. We look at
the one-dimensional problems first.

4.1 One-dimensional linear problems: Wiggly splines

Let us consider the following linear equation of motion for a point
in a one-dimensional space

ω̈(t) + 2 δω̇(t) + λω(t) + g = 0,

where ω(t) is the position of the point, δ ∈ R≥0 a damping pa-
rameter, λ ∈ R a spring constant and g ∈ R a constant. For this
system, the functional (2) takes the form

ω 7→ 1

2

tm∫
t0

(ω̈(t) + 2 δω̇(t) + λω(t) + g)2 dt. (3)

This is a quadratic functional on the Sobolev space
H2((t0, tm),R). The corresponding Euler-Lagrange equa-
tion is

....
ω (t) + 2(λ− 2δ2) ω̈(t) + λ2 ω(t) + λ g = 0. (4)

The solution space of this linear fourth-order ODE is described in
[Hildebrandt et al. 2012]. In the generic case, where δ, λ, δ2− λ 6=
0, it is spanned by the four functions

b1,2,3,4(t) = Re

(
e

(
±δ±
√
δ2−λ

)
t

)
. (5)

If we have m + 1 nodes {t0, t1, . . . , tm} at which constraints
are specified, then the minimizer of (3) is a linear combination
of the four basis functions (plus a constant) within each interval



(tk, tk+1). It is twice differentiable at nodes where only the posi-
tion (and not the velocity) is prescribed and once differentiable at
all other nodes. Explicitly, the restriction ωk(t) of the solution ω(t)
to the interval [tk−1, tk] has the form

ω(t)|[tk−1,tk] = ωk(t) =

4∑
l=1

wlkb
l(t)− c,

where w1
k, w

2
k, w

3
k, and w4

k are coefficients and c = g/ |λ| if λ 6= 0
and c = 0 if λ = 0. The construction of the function ω(t) is
analogous to that of a cubic spline and is therefore called a wiggly
spline, see [Kass and Anderson 2008]. The property that ω is once
or twice differentiable at the nodes translates to linear conditions on
the coefficients wlk :

ωk(tk) = ωk+1(tk)

ω̇k(tk) = ω̇k+1(tk) (6)
ω̈k(tk) = ω̈k+1(tk)

for all k ∈ {1, 2, ...,m − 1}, where the last equation holds only if
ω is twice differentiable at tk. The interpolation and boundary con-
ditions specify additional linear conditions that uniquely determine
a wiggly spline.

4.2 Spacetime optimization for linear dynamics

After a finite elements discretization, the linear dynamics of a de-
formable object is described by the equations

M ü+ (αM + β K)u̇+K u+ g = 0, (7)

where K is the stiffness matrix, αM + β K a Rayleigh damping
term, and g a constant vector. Then, the functional (2) takes the
form

E(u) =
1

2

tm∫
t0

‖M ü+ (αM + β K)u̇+K u+ g‖2M−1 dt. (8)

This energy was used for spacetime optimization in [Barbič et al.
2012]. The eigenvalues and eigenmodes of (7) are solutions of the
equation

K φi = λiM φi.

We consider a basis {φ1, φ2, ..., φn} of Rn consisting of eigen-
modes. In such a basis the system (7) decouples and the func-
tional (8) can be written as a sum over functionals of the form (3)
that depend on only one variable. Therefore, the solutions of the
Euler-Lagrange equation of (8) can be written as

u(t) =
∑
i

ωi(t)φi, (9)

where any ωi(t) is a wiggly spline. For any i, the parameters λ
and δ of the wiggly spline ωi(t) depend on λi and the damping
coefficients α and β. Explicitly, λ = λi and 2δ = α + βλi. This
explicit form of the solutions was introduced in [Hildebrandt et al.
2012].

5 Sparse Constraints for Linear Dynamics

In this section, we describe a fast solver for spacetime optimiza-
tion problems with sparse constraints for linear dynamics. In the
following sections, we will extend this approach to warped linear
dynamics. By spacetime constraints, we mean a set of linear equal-
ity constraints on the position u(tk) and the velocity u̇(tk) of the

object at a set of m+ 1 nodes tk in the time interval [t0, tm]. Here,
we are interested in sparse constraints, which means that the num-
ber of constraints at each node tk is small compared to the number
n of the object’s degrees of freedom. For example, we want to pre-
scribe only partial (as opposed to full) keyframes.

In the optimization, we treat the constraints as soft constraints mod-
eled by a least-squares energy. There are two main reasons for do-
ing so. One is that, for efficiency, we restrict the optimization to a
low-dimensional subspace (as we will discuss below). Within this
subspace, it is usually not possible to satisfy the constraints exactly
because the subspace dimension is smaller than the number of con-
straints. The justification to our approach is that with increasing
least-squares weights and subspace dimension, the soft constraints
converge towards equality constraints. The second reason is that in
many cases, we prefer soft over hard constraints. Soft constraints
give the method the freedom to adjust the shape of the constraints.
For the user, this has the advantage that roughly modeled input can
be used. For example, we did not need a surface modeler for any of
our examples; we simply selected parts of the geometry and trans-
lated and rotated them in space. Similarly, the velocities we speci-
fied are constant vector fields at selected vertices.

The constraints are represented by the energy EC

EC(u) =
1

2

m∑
k=0

(
cA ‖Aku(tk)− ak‖2 + cB ‖Bku̇(tk)− bk‖2

)
,

where Ak, Bk are rectangular matrices, ak, bk are vectors, and
cA, cB are constants. In our examples, we set only constraints on
the positions and velocities of individual vertices. Then, the matri-
ces Ak and Bk have only one non-zero entry per row. This entry
has the value one and the corresponding entry in the vector spec-
ifies the position or velocity of one coordinate of one vertex. To
make the energy robust to remeshing and refinement, we multiply
each row and entry in the vector by the square root of the mass of
the vertex that is constrained. By the mass of a vertex we mean a
quarter of the combined volume of all adjacent tets. For example,
if we constrain the position of all vertices of the base of the Buddha
model, weighing them with the masses ensures that the strength of
the constraint energy depends on the volume of the base and the
constant cA and not on the discretization of the model.

To get a motion that follows the sparse keyframes, we need to min-
imize the energy

E(u) = E(u) + EC(u), (10)

where E(u) is the functional defined in (8). The space over which
we minimize is the Sobolev space H2((t0, tm),Rn) of all motions
whose derivatives up to second order are square integrable—an
infinite-dimensional space. The following theorem shows that the
minimizer can be constructed using wiggly splines. The theorem
greatly reduces the search space and is the basis of the presented
approach. A proof of the theorem can be found in [Schulz et al.
2014].

Theorem 1 The minimizers of the energyE(u)+EC(u) among all
functions in the Sobolev spaceH2((t0, tm),Rn) are of the form (9)
and are twice differentiable at any node tk where no velocity is
prescribed and once differentiable at all other nodes.

The theorem implies that instead of minimizing over all possible
motions, we only need to determine the coefficients of the wiggly
splines ωi in (9). Thus the infinite-dimensional optimization prob-
lem is replaced by a finite-dimensional problem. Since (9) involves
all n eigenfunctions φi, this still requires complex computation.
Therefore, we apply dimension reduction to the problem. This is a
common technique in graphics. For a recent tutorial on the subject,



Figure 2: Snapshots from a dancing Buddha animation. The motion exhibits interesting secondary motion effects that are automatically
generated. Three partial keyframes that prescribe the positions of a few vertices on the belly of the model were used to generate the motion.

Figure 3: Jumping X animation generated from sparse input. The example illustrates the anticipation effect.

we refer to [Sifakis and Barbič 2012]. The motivation is that ani-
mations of deformable objects are typically of low rank and can be
well-approximated in a low-dimensional subspace of Rn. In our ex-
amples, we used the space spanned by the 10-50 lowest-frequency
eigenmodes and restricted the optimization problem (and hence the
resulting motion) to this space. This can be implemented by re-
stricting the sum in (9) to a sum over only the first d modes φi
instead of all n modes.

The space of all functions of the form (9) is a linear space and
can be described by the coefficients of the wiggly splines, see Sec-
tion 4.1. If constraints at m + 1 nodes tk are specified, we have
m intervals [tk, tk+1]. Since a wiggly spline ωi has four coeffi-
cients wli,k (where k ∈ {1, 2, ...,m} is the index of the segment
and l ∈ {1, 2, 3, 4}) for every segment and we restrict to d eigen-
modes, 4md coefficients have to be determined. Since the mini-
mizer of (10) is once or twice differentiable at the nodes tk (de-
pending on whether or not velocities are prescribed), any wiggly
spline ωi in (9) must satisfy the continuity conditions listed in (6).
Depending on whether velocities are prescribed at the keyframes,
these are between 2(m− 1)d and 3(m− 1)d linear conditions. In
addition, we specified (full) positions and velocities at the bound-
aries, t0 and tm, in most of the examples. These are again lin-
ear conditions, which determine up to 4d coefficients. A basis of
the remaining space of admissible motions can be computed us-
ing a singular value decomposition of the matrix representing the
continuity and boundary conditions. The resulting spaces are low-
dimensional, less than 100-dimensional in all our examples. Using
the singular value decomposition to eliminate the linear constraints
is not necessary for the linear system discussed in this section, but
it is effective for the nonlinear system, we introduce in Section 7.

Since E and EC are quadratic energies, they can be represented as
matrices. To set up the matrix representation of E, integrals over
products of the basis functions and their first and second deriva-
tives must be computed. Explicit formulas for these integrals can be
computed using a computer algebra system (or a table of integrals).
Once the matrices are computed, a motion can be determined by
solving a low-dimensional linear system.

6 Rotation strain warping and its derivative

For small deformations, linear elasticity is a good approximation of
its nonlinear counterpart. Various approaches that are intended to
be an improvement on linear elasticity have been introduced. Here,
we consider the rotation strain warping, which was introduced
in [Huang et al. 2011] (see also [Barbič et al. 2012; Sifakis and
Barbič 2012]). The warping map removes artifacts caused by lin-
earized elasticity and worked very well in our experiments. With-
out using warping, all the examples presented in the accompanying
video would develop visible artifacts; examples like the handspring
would be completely distorted. To integrate rotation strain warp-
ing to the spacetime optimization in the next section, we need the
derivative of the rotation strain warp map. Since no scheme for
computing the warping derivatives has been introduced before, we
derive a formula here. We begin with a brief review of rotation
strain warping.

The displacement u of the vertices can be extended linearly into the
tets and we get a piecewise linear and continuous function (or linear
Lagrange finite element) from the rest shape into R3. For each tet
Tj , the derivative of this map (at any point in Tj) is a linear map
of R3. The corresponding map ∇j : Rn 7→ R3×3 (which maps a
displacement vector to the derivative in Tj) is linear. By adding the
displacement to the coordinates of the vertices of the rest pose, we
get the coordinates of the deformed mesh. The corresponding map
from the rest shape to the deformed mesh is piecewise affine and
continuous. The derivative of this map in any tet Tj is called the
deformation gradient Gj and we have Gj(u) = Id +∇ju, where
Id ∈ R3×3 is the identity matrix. The deformation gradient can be
split into a symmetric and an antisymmetric part

Gj = Gsj +Gaj =
1

2

(
Gj +GTj

)
+

1

2

(
Gj −GTj

)
.

The antisymmetric part can be seen as a linearizations of a rotation
of the tet since the antisymmetric 3× 3-matrices form the Lie alge-
bra of the Lie group of rotation matrices of R3. The matrix expo-
nential maps any antisymmetric 3× 3-matrix to the corresponding
rotation matrix. The rotation strain coordinates use the tensor

G̃j = exp(Gaj )Gsj .



Figure 4: Walking X animation generated from sparse input. Only a sparse set of constraints on the positions and the velocities of the feet
are prescribed.

Figure 5: Snapshots from an animation of a forward jumping cactus, performing three consecutive jumps. The motion is controlled through
constraints on the position of the “foot” and on the position and velocity of the center of mass. The cactus exhibits natural secondary motion
and crouches to prepare the jumps and to absorb the impacts of the landings.

For any displacement vector u, one can compute the tensor G̃j(u)
for every Tj . In general, there is no displacement ũ whose defor-
mation gradient Gj(ũ) equals G̃j(u) for every tet. But we can
compute a deformation ϕ whose deformation gradients Gj(ϕ) best
match the G̃j(u) in a least-squares sense, that is,

min
ϕ

τ∑
j=1

|Tj |
∥∥∥Gj(ϕ)− G̃j(u)

∥∥∥2 , (11)

where |Tj | denotes the volume of Tj , τ is the number of tets, and
the norm is the Frobenius norm. The warp map W : Rn 7→ Rn
maps the displacement u to the minimizer ϕ. One motivation for
considering G̃j is that Gsj

TGsj = G̃Tj G̃j , which means that the
desired deformation tensor induces the same metric strain as the
symmetric part of the tensor Gj .

Using the linear maps ∇j , the least-squares problem (11) can be
written as

min
ϕ

τ∑
j=1

|Tj |
∥∥∥∇jϕ− G̃j(u) + Id

∥∥∥2 .
We consider two maps Γ, Γ̃ : Rn 7→ R9τ . Γ associates to any de-
formation ϕ ∈ Rn the R9τ -vector that lists the 9 coordinates of the
τ matrices ∇jϕ times the square root of |Tj |. Similarly, Γ̃ maps
any deformation u ∈ Rn to the vector that lists coordinates of the
matrices |Tj |

1
2 (G̃j(u)− Id). While Γ is a linear map, Γ̃ is nonlin-

ear since the definition of G̃j involves the matrix exponential. Both
maps are sparse in the sense that∇jϕ and G̃j(u) are determined by
the deformation of the four vertices of the jth tet. For a fixed u, the
warped deformationW (u) is determined by the linear least-squares
problem

W (u) = arg min
ϕ

∥∥∥Γϕ− Γ̃(u)
∥∥∥2 ,

where the norm is the standard norm in R9τ . The corresponding
normal equation is

ΓTΓW (u) = ΓT Γ̃(u). (12)

For an unconstrained object, the matrix ΓTΓ is the usual stiffness
(or Laplace) matrix (of the linear Lagrange finite elements) of the
rest shape. In most examples, we constrain the positions of some
vertices, e.g. the base of the blocks. Then, the matrix ΓTΓ is the
stiffness matrix without the rows and columns corresponding to the
constrained vertex coordinates. Then, ΓTΓ has full rank. In the
case of an unconstrained object, ΓTΓ has the translations in its ker-
nel. Then, W (u) is only determined up to translations. To get a
unique solution in this case, we fix the center of mass.

Our aim is to compute the derivative DW of the warp map with
respect to variations of u. Equation (12) shows that W (u) depends
linearly on Γ̃(u). To verify that the same holds for the derivatives
of W (u) and Γ̃(u), we differentiate both sides of the equation and
use the fact that Γ is linear

ΓTΓDW = ΓTDΓ̃.

The matrix ΓTΓ is sparse and symmetric and independent of u, it
depends only on the rest configuration. Therefore, using a sparse
factorization of ΓTΓ, DW can be efficiently computed once DΓ̃ is
known.

To get DΓ̃, we need the derivatives of the G̃js. Using the chain and
product rule, the identitiesGaj (u) = ∇aju andGsj(u) = Id+∇sju,
and the fact that ∇aju and ∇sju depend linearly on u; we get a
representation of the derivative of Γ̃ at u in the direction of v in
terms of∇aj ,∇sj , the matrix exponential and its derivative

DvG̃j(u) = Dv
(
exp

(
Gaj (u)

)
Gsj(u)

)
= Dv exp(∇aju)(Id+∇sju) + exp(∇aju)∇sjv.

The matrix exponential (on the space of antisymmetric matrices)
and its derivative can be efficiently evaluated using Rodrigues’ ro-
tation formula. A discussion is contained in the appendix.

7 Sparse Constraints and Warping

In this section, we integrate rotation strain warping to the frame-
work for spacetime optimization under sparse constraints, which



Figure 6: Snapshots from an animation of a deformable block that spirals upwards.

Figure 7: Stills from an upward jumping cactus animation. The cactus uses its body and arms to create the velocity needed for the jump and
to prepare for the landing.

was introduced in Section 5. The goal is to impose sparse con-
straints on the warped motion. The warping map has been used for
generating motion in [Huang et al. 2011] and [Barbič et al. 2012].
However, we consider a different problem from the aforementioned
papers. Huang et al. [2011] generate motions that interpolate full
keyframes. For full keyframes, one can use the inverse of the warp
map to get “linearized” keyframes that will be warped to the de-
sired positions. Using these “linearized” keyframes, an optimiza-
tion over the warped motion can be avoided. This is an effective
technique, but the approach is limited to full keyframes for the po-
sitions. In [Barbič et al. 2012], the positions of a few vertices are
constrained, but the warping is only used as a post-process after a
motion has been generated based on linearized elasticity. Therefore,
only a linear problem need to be solved, but the position constraints
are no longer enforced. Examples that illustrate the resulting devi-
ation form the prescribed positions are shown in [Li et al. 2013].

Controlling the warped (instead of the linear) motion turns the lin-
ear optimization problem of Section 5 into a nonlinear optimization
problem. For this problem the techniques we developed to get a
low-dimensional space of admissible motions in Section 5 become
even more important. We show that an analog construction of low-
dimensional spaces is possible for the nonlinear problem, as well.

To be able to impose constraints on the warped motion W (u(t)),
we exchange EC by the energy

EWC(u) =
1

2

m∑
k=0

(cA ‖AkW (u(tk))− ak‖2

+cB ‖BkDW u̇(tk)− bk‖2),

where cA, cB , Ak, Bk, ak, and bk are defined as in Section 5. Then
the objective functional we consider is

E(u) = E(u) + EWC(u). (13)

The resulting motion is the warped solution W (u(t)). Analogous

to the linear problem treated in Section 5, we have the following
theorem. For a proof, we refer to [Schulz et al. 2014].

Theorem 2 The minimizers of the energyE(u)+EWC(u) among
all functions in the Sobolev space H2((t0, tm),Rn) are of the
form (9) and are twice differentiable at any node tk where no ve-
locity is prescribed and once differentiable at all other nodes.

The theorem justifies the use of techniques developed in Section 5
to solve this problem. Instead of optimizing over the infinite-
dimensional Sobolev space, we use the representation (9) of the
solution and optimize over the coefficients of the wiggly splines ωi.
We want to emphasize that though we can use vibration modes and
wiggly splines to find a solution u of the minimization problem,
the resulting motion W (u) is not a linear combination of vibration
modes since the nonlinear warping map couples the modes. As in
Section 5, we restrict the sum in (9) to the lowest 10-50 modes
and use an SVD to eliminate the linear constraints resulting from
the continuity assumptions (guaranteed by the theorem) and the
boundary conditions. The resulting optimization problem is low-
dimensional and the objective functional is a sum of a quadratic
energy and a nonlinear least-squares energy. To solve the prob-
lem, we use a standard Gauss–Newton solver. In our experiments,
the resulting runtime for solving the problems was on the order of
seconds. The most expensive part of the evaluation is that of EWC

and its gradient. This part is expensive because we need to warp the
whole geometry to evaluate warped positions of the selected parts
or their velocities. This could be accelerated by using a reduced
space for the warped results. The solver could also be parallelized.

8 Experiments and Discussion

The supplementary video shows examples of motions produced us-
ing our method. Table 1 contains details on the size of the meshes,
dimension of the reduced spaces, and runtime. All objects are
tet meshes and we used linear elasticity with homogeneous and
isotropic materials and rotation strain warping for all examples. To



convert the surface meshes to volumetric meshes, we first coarsen
the triangle meshes using the approach of Valette et al. [2004] (and
the implementation provided by the authors) and then use tetgen [Si
and Gärtner 2005] to generate the tet meshes. In this section, a wig-
gly spline means a vector-valued spline that describes a motion (and
not a one-dimensional spline).

Models Tets Ws Sub Dim Pre Opt
Block (stretch) 2015 1 30 30 2.4s 0.3s
Block (twist) 2015 1 30 30 2.4s 1.8s
Block (tilt) 2036 1 30 30 2.6s 1.7s
Buddha 77642 1 10 30 8.8s 45s
X walk 3002 5 30 60 4.4s 26s
X hand spring 3002 3 30 60 4.4s 4.9s
X jump 3002 3 30 60 4.4s 10s
cactus upward jump 8370 3 30 60 9.7s 16.8s
cactus forward jump 8370 7 30 60 10.2s 48.6s

Table 1: Statistics measured on a custom Laptop. From left to
right: number of tets, number of composite splines, dimension of
the reduced space, dimension of the resulting optimization problems
(for each spline), time for setting up the optimization problems, and
total time for solving the optimization problems.

The first sequence of examples shows a block that stretches,
stretches and twists, and stretches and tilts. All motions are com-
puted using one partial keyframe and boundary conditions (the rest
state and zero velocity). In addition, we fix the base of the block
to the ground. This means that the space Rn of all possible de-
formations excludes the coordinates of the vertices at the base of
the block. We also compute the eigenmodes of the constrained vi-
brations. Since we have one partial keyframe, the wiggly spline
has two segments. This means, we have 8d wiggly spline coef-
ficients wli,k to determine, where d is dimension of the reduced
space. The C2-continuity conditions determine 3d and the bound-
ary conditions 4d degrees of freedom. Hence, the dimension of the
optimization problem equals the dimension of the reduced space,
which is 30 for all three examples. For all three motions, we gener-
ated the partial keyframe by moving the top of the block in space.
The stretch-and-twist-motion in Figure 6 illustrates the effect of the
rotation strain warping. Using only linear elasticity would intro-
duce strong artifacts; twists are difficult for linear elasticity. The
warping nicely prevents such artifacts.

The second example, the dancing Buddha, is modeled with a cir-
cular wiggly spline. The base of the object is fixed to the ground.
For snapshots see Figure 2. Since velocities are not prescribed, it
is twice continuously differentiable everywhere. It is modeled with
three partial keyframes, which we generated by selecting a part of
the model and translating it in space, see Figure 8. For this setting,
the dimension of the optimization problem is 30. This is three times
the dimension of the reduced space, which is 10. The resulting mo-
tion shows interesting secondary motion effects.

The third sequence of examples shown in Figures 1 and 4 present a
“letter X” soft body character that walks and performs a handspring.
The walk is composed of five wiggly splines, one for each step. In
each step, one foot is fixed to the ground with equality constraints.
The first wiggly spline starts with the rest shape and zero velocity
and has a partial keyframe at the end. The position of the mov-
ing foot and a downwards velocity at this foot is specified. This is
illustrated in Figure 8. The following wiggly splines (the steps) in-
terpolate the position and velocity the preceding spline ended with.
Each of the splines ends with a partial keyframe: the position of
the sole (of the moving foot) is specified and a downward pointing
velocity is prescribed. To calculate the motion, five optimization
problems must be solved. Each of the problems is 60-dimensional.

Table 1 shows the total time required to solve all five optimization
problems. In this example, we used high least-squares weights ai
to ensure that the partial keyframes are well-approximated. The
handspring animation is modeled analogously to the walk. It is
composed of three wiggly splines. In each spline either both hands
or both feet are constrained to the ground. The first spline starts
with rest shape and zero velocity and ends with a partial keyframe,
which prescribes the position and velocity of the hands. The sec-
ond spline starts with the position and velocity the first spline ended
with. It ends with a partial keyframe, which prescribes the position
and velocity of the feet. The last spline starts with the position and
velocity the second spline ended with and ends with the rest shape
and zero velocity. For an illustration, see Figure 1.

Figure 8: Illustrations of the sparse constraints used to generate
the animations.

The fourth type of examples are jumps of the cactus and the letter
X, see Figures 3, 5, and 7. The jumping X and the upward jump of
the cactus are modeled with three splines: preparing to jump, jump-
ing, and landing. In the first spline, the feet are fixed to the ground.
It starts with the rest pose and zero velocity. At the end only the
velocity of the center of mass is prescribed. During the jump, the
object is unconstrained. Since the warp map has the translations
in its kernel, we fix the position of the center of mass during the
optimization and add the motion of the center of mass after the op-
timization. In addition, we remove the linearized rotations from
the subspace basis for the optimization, to ensure that no rotation is
generated. The motion of the center of mass is explicitly computed
from its initial position and velocity. We choose the time of the
landing such that the center of mass has reached a certain height
over the ground. The spline that models the jump starts with the
position and velocity the first spline ended with and ends with pre-
scribed positions and velocities for the feet (relative to the center
of mass and its velocity). The last spline again fixes the feet to the
ground and starts with the positions and velocities the jump ended
with and ends with the rest pose and zero velocity. For the triple
jump of the cactus seven splines are used. The motion is modeled
analogously to the other jumps, with the differences that the jump-
ing phases is repeated three times.

In Figure 8, we illustrate constraint types we used to generate the
motions. The dark blue parts describe the partial keyframes for
the positions. The bright transparent parts are unconstrained. On
the top left are the constraints used to create the twisting block an-
imation. Next on the top right are all keyframes for the upward
jumping cactus. The arrow at the second cactus describes the ve-
locity constraint for the center of mass. The single black dot at the



third cactus indicates the position of the center of mass. Constraints
for the positions of the “foot” are specified relative to the center of
mass. The bottom left illustrates the one full and the five partial
keyframes and velocities used for the five step X walk. The three
partial keyframes used to create the dancing Buddha animation are
shown on the bottom right.

Figure 9: Comparison of results of our nonlinear framework to
alternative linear approaches. From left to right: a simple setup,
solution of the nonlinear problem of controlling the warped motion
(Section 7), solution of the linear problem (Section 5), and warping
applied to the solution of the linear problem.

In Figure 9, we compare results produced by our nonlinear problem
modeling (Section 7) with the linear modeling (Section 5) for a sim-
ple setup of partial positions and velocities. The example illustrates
the limitation of the linear model, which is that larger deformations
lead to strong linearization artifacts. Such examples indicate that
the nonlinear modeling is needed to produce interesting motions
that undergo larger deformations. In addition to the solution of the
linear problem, we show what happens if we warp the motion com-
puted with the linear model. The resulting motion no longer satis-
fies the constraints.

In our experiments, the Newton scheme could solve the optimiza-
tion problems within 5-30 iterations. As an alternative, we used the
BFGS scheme with a warm start using the Hessian at the rest pose.
The BFGS scheme was faster than the Gauss–Newton on many ex-
amples, but failed for some of the examples. For example, using
BFGS, we could solve the optimization problem for the Buddha in
11.4s—almost four times faster than the Gauss–Newton scheme.
The times listed in Table 1 are the total times required to set up and
solve all the optimization problems needed to generate a motion.
The number of splines used for each example is listed as well. The
times are all produced with the Gauss–Newton solver.

One difference our scheme has compared to most other spacetime
optimization schemes, is that we do not need a time discretization.
The resulting advantage is that the dimension of the optimization
problems we obtain is much lower. In addition, our scheme does
not suffer from stability issues caused by time discretization and
therefore robustly computes motion from sparse input and even
wiggly motion. For time discretization, finite differences are typi-
cally used. Kass and Anderson [2008] discuss the resulting stability
issues for the one-dimensional spacetime optimization problems.

9 Conclusion

We present an approach to compute animations of deformable ob-
jects from partial keyframes via constrained spacetime optimiza-
tion. The scheme is based on an explicit characterization of solu-
tions of a spacetime optimization problem with sparse constraints.
Using this characterization, we can restrict the optimization to a
low-dimensional search space and do not need a time discretization
of the motion. Since we combine linearized elasticity with rota-
tion strain warping, the scheme can deal with large deformations.
For controlling the warped motion, derivatives of the warp map are
needed. We derive a representation of these derivatives that allows
for an efficient and robust evaluation. Our formulation of the space-
time optimization problem robustly computes motions from sparse

input. This only requires solving a low-dimensional nonlinear least-
squares problem, which can be done with standard solvers.

9.1 Limitations and challenges

Currently, the most expensive part in the optimization is the eval-
uation of the warp map and its derivative. For this evaluation, the
whole object is warped. Since we restrict the optimization to a sub-
space, one idea would be to speed up the evaluation of the warp
map by restricting the result to a subspace as well.

In our examples, we only work with homogeneous materials. It
would be interesting to test inhomogeneous materials. One chal-
lenging problem would be to extend the method to deformable ob-
jects with a skeleton. This would require an efficient spacetime op-
timization for deformable objects that are coupled with rigid bodies.

Our current framework is limited to equality constraints, both at the
keyframes and for the whole animation. A challenge for our ap-
proach (and for spacetime constraints in general) is to find an effec-
tive way to integrate inequality constraints into the spacetime opti-
mization. Related is the problem of collision handling. Currently,
we model collision using the keyframes, velocities, and equality
constraints. Examples are the walk and handspring of X in which
the feet and hands collide with the ground.
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Appendix

Computation of the matrix exponential. Rotation strain warping
of the positions and velocities, see Section 6, involves the evalua-
tion of the matrix exponential of an antisymmetric 3 × 3 matrix J
and its derivative. Here, we show how Rodrigues’ rotation formula
can be used for this. We set ι =

∥∥ 1
2
J
∥∥, where the norm is the

Frobenius norm. Then, Rodrigues’ rotation formula is

exp(J) = Id+
sin ι

ι
J +

1− cos ι

ι2
JJ.

One can compute Dexp by a straight forward application of basic
rules of differentiation. For small values of ι, the computation of
the functions sin ι/ι and (1 − cos ι)/ι2 is unstable since both the
numerator and the denominator converge to zero. A robust way
to handle this problem is to replace the functions by the following
truncated Taylor series for small values of ι

sin ι

ι
≈ 1− 1

6
ι2 +

1

120
ι4

1− cos ι

ι2
≈ 1

2
− 1

24
ι2 +

1

720
ι4

and analogous for the derivatives. We used the truncated Taylor
series for ι < 0.2. For a thorough treatment of the subject, we refer
to [Wisniewski 2010, Chapter 8.2].
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J. 2005. Mesh-based inverse kinematics. ACM Trans. Graph.
24, 3, 488–495.

TAN, J., TURK, G., AND LIU, C. K. 2012. Soft body locomotion.
ACM Trans. Graph. 31, 4, 26:1–26:11.

TREUILLE, A., MCNAMARA, A., POPOVIĆ, Z., AND STAM, J.
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