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Abstract
A new method for noise removal of arbitrary surfaces meshes is presented which focuses on the preservation and
sharpening of non-linear geometric features such as curved surface regions and feature lines. Our method uses a
prescribed mean curvature flow (PMC) for simplicial surfaces which is based on three new contributions: 1. the
definition and efficient calculation of a discrete shape operator and principal curvature properties on simplicial
surfaces that is fully consistent with the well-known discrete mean curvature formula, 2. an anisotropic discrete
mean curvature vector that combines the advantages of the mean curvature normal with the special anisotropic
behaviour along feature lines of a surface, and 3. an anisotropic prescribed mean curvature flow which converges
to surfaces with an estimated mean curvature distribution and with preserved non-linear features. Additionally,
the PMC flow prevents boundary shrinkage at constrained and free boundary segments.

1. Introduction

Noise is an omnipresent artifact in 2d and 3d meshes due
to resolution problems in mesh acquisition processes. For
example, meshes extracted from image data or supplied
by laser scanning devices often carry high-frequency noise
in the position of the vertices. Many filtering techniques
have been suggested in recent years, among them Laplace
smoothing is the most prominent example. In practice, de-
noising is still a delicate task and left to the hands of a user
who carefully chooses different filtering algorithms.

Anisotropic denoising concentrates on the preservation
of important surface features like sharp edges and corners
by applying direction dependent smoothing. For example, a
sharp edge remains sharp when smoothing is avoided to hap-
pen across the edge.

In geometry, different notions of curvature have been es-
tablished to detect and measure the bending and the geomet-
ric disturbance of a shape. One approach to denoise a shape
therefore concentrates on the removal of unwanted curva-
ture peaks while a feature preservation simultaneously tries
to keep certain curvature distributions, for example, the high
curvature along sharp corners. Anisotropic mean curvature
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flow addresses this problem by constraining the isotropic
mean curvature flow to preserve features encountered in a
shape.

A good knowledge of curvature is an eminent prerequisite
for constrained mesh smoothing. Especially for feature con-
strained denoising the computation of principal curvatures
on simplicial surfaces is important since it measures the in-
dividual bending of a surface in different directions. The re-
sults of this paper are based on the novel definition and ex-
plicit calculation of a shape operator and principal curvature
information on a simplicial surface. These definitions rely on
a smallest possible stencil for curvature calculations and are
still fully consistent with the known vertex-based discrete
mean curvature formulas. We incorporate these operators in
new kinds of diffusion algorithms for the feature preserving
denoising of meshes.

1.1. Related Work

On simplicial surfaces the definition of discrete versions of
the various curvature notions has a long history. The discrete
Gauß curvature defined as angle defect at a vertex played
a major role in the work of Alexandrov [AZ67]. The sim-
plicial mean curvature defined as gradient of the simplicial
surface area has a simple intrinsic description as the sum of
the weighted edges emanating from a vertex, and led to sev-
eral algorithms for the computation of minimal and constant
mean curvature surfaces, see [Pol04] for an overview.
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Different approaches have been made to calculate the
principal curvature directions of a simplicial surface. A com-
mon adhoc approach uses a quadratic surface to estimate a
pair of principal curvatures at the center of a triangle. Here
the quadric is the unique surface which interpolates the six
vertices of a triangle and its three neighbors. The principal
curvatures of this quadric are evaluated at the point corre-
sponding to the barycenter of the triangle and assigned as
constant discrete principal curvatures of the inner triangle.
Taubin [Tau95a] uses an approximation of a formula known
from the theory of smooth surfaces to compute the direc-
tional curvature. An estimation of the shape operator at each
vertex of a surface is computed based on the directional cur-
vature of the emanating edges. Meyer et al. [MDSB03] com-
bine the scalar-valued simplicial Gaußand mean curvatures
to estimate principal curvature values with a formula known
from the smooth case. They derive principal directions by
a best quadratic fit of a pair of two orthogonal tangent vec-
tors. A relation of the obtained principal curvature directions
and the otherwise obtained discrete mean curvature is not
obvious. Cohen-Steiner and Morvan [CSM03] define an in-
tegrated shape operator for subsets of a simplicial surface
in R

3 using the theory of normal cycles. For a special class
of approximations of a smooth surface S, namely restricted
Delaunay triangulation of a vertex sample of S, they derive
bounds on the error between the estimated and the smooth
curvature.

The most common techniques for fairing and denois-
ing of surfaces are based on Laplace smoothing. This can
be modeled as a solution of the diffusion equation ∂tF =
∆MF where F is the parametrization of the surface and ∆M
is the Laplace-Beltrami operator. On surfaces the Laplace
smoothing is equivalent to the mean curvature flow since
the Laplace-Beltrami operator equals the mean curvature
vector. Many improvements and extensions of the Laplace
smoothing for surface fairing and denoising have been pro-
posed. Taubin [Tau95b] developed a fast and simple iterative
scheme to integrate the diffusion equation and designed a
low pass filter by alternating the sign in the Laplace smooth-
ing. Desbrun et al. [DMSB99] suggested to use an implicit
integration scheme to allow larger time-steps and to stabilize
the flow. To compensate shrinkage of the surface and to ad-
ditionally avoid undesired deformations of the shape, Liu et
al. [LBSP02] proposed a method that keeps the volume of
each star of a vertex, and Vollmer et al. [VMM99] suggested
a method that is based on the idea to push the vertices back
to their previous positions. Ohtake et al. [OBB01] extended
the Laplace smoothing by combining it with mesh regular-
ization. Kuriyama and Tachibana [KT97] and Rumpf et al.
[DMR02] connected surface fairing to subdivision. In order
to get smoothness at the boundary Schneider and Kobbelt
[SK01] propose a forth order method that smoothes the sur-
face based on mean curvature values given at the boundary.

Anisotropic smoothing methods were developed to pre-
serve and enhance features like sharp edges or corners

while denoising the surface. The main difference to isotropic
schemes is the way how areas with highly different principal
curvatures are processed. Usually, such areas contain signif-
icant shape information, i.e. sharp edges have one large and
one vanishing principal curvature. An anisotropic scheme
evolves the surface in a way that the smaller principal curva-
ture value is reduced and the larger value is kept. This pro-
duces sharp edges. Unfortunately, the anisotropic smoothing
tends to converge against linear features like straight lines
and flat planes. One of the contributions of this paper is the
extension of this technique to allow non-linear curved fea-
tures as stable limits. Anisotropic scheme were first intro-
duced in image processing and later extended to geomet-
ric problems, for example, by Desbrun et al. [DMSB00] to
smooth high fields and by Rumpf et al. [CDR00] for sur-
faces, level sets [RP02] and to process textures [CDR03]
on the surface as well. Bajaj and Xu [BX03] developed
a scheme to smooth higher order functions on surfaces
while fairing it. Other methods [Tau01][TWBO02] use dif-
fusion filters to smooth the normal field and then integrate
this to get the smoother surface. Recently Fleishman et al.
[FDCO03] described a method that generalizes the bilateral
filtering approach known in image processing to meshes.
The basic idea is to regard a neighborhood of each vertex
as a distance graph over its tangent plane. Then the graph
corresponds to the gray level of an image. Large values of
the graph indicate surface features. The method can preserve
some kinds of features but fails to reconstruct sharp edges,
compare the results shown in their Fig. 6 with our Fig. 2.

Alternative methods use surface energies [DDH∗93]
[GH00] like the total curvature [WW94][SK00], a mem-
brane energy [KCVS98] and more recently statistical mea-
sures [JDD03] and a Wiener filter to denoise surface meshes
[PSZ01].

1.2. Contributions

The focus of our work targets three problems:

• A discrete shape operator and principal curvature direc-
tions.

We define an edge based shape operator and principal cur-
vatures of simplicial surfaces explicitly in terms of a discrete
surface. The direct calculation avoids the need of higher or-
der interpolating surfaces, and effectively simplifies and ac-
celerates curvature calculations. The small stencil of our op-
erators also avoids smoothing side-effects introduced when
using higher order approximations.

• An anisotropic mean curvature vector and flow.

The small stencil of our shape operator is used to develop
an improved anisotropic diffusion algorithm with a better
feature recognition. Our anisotropic mean curvature flow re-
produces sharp features with very high quality when com-
pared to previous approaches.
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(a) (b) (c)

Figure 1: Noisy mesh with curved feature lines is smoothed using the anisotropic PMC flow. (a) Noisy surface. (b) Surface after
denoising. (c) The surface is colored by the absolute value of the predominating principal curvature.

• A smoothing algorithm based on a prescribed mean cur-
vature flow (PMC).

The anisotropic prescribed mean curvature flow solves the
problem of shrinkage and undesired deformation of the sur-
face for anisotropic smoothing. It additionally extends the
known anisotropic smoothing techniques by allowing to cor-
rectly preserve non-linear features like the sharp circular cor-
ner of a drilled hole. Cylindrical shapes like those shown in
Fig. 1 and 5 appear as stable limits of the flow.

1.3. Paper Organization

In Section 2 we derive a novel discrete shape operator for
simplicial surfaces and explain its relation to the known dis-
crete mean curvature vector. Based on the shape operator
we define in Section 2.1 an anisotropic mean curvature vec-
tor and an anisotropic mean curvature flow. In Section 3
we introduce a discrete prescribed mean curvature flow that
solves the problem of shrinkage of curved surface regions
and allows curved surfaces such as cylinders to appear as
stable limits of the smoothing. In Section 4 we incorporate
anisotropy into the PMC flow to denoise and sharpen non-
linear features like round edges which typically appear in
CAD models. Section 5 summarizes the experimental results
and discusses different integration schemes.

2. Discrete Shape Operator and Principal Curvatures

The shape operator determines the principal curvature val-
ues and directions on a surface. In this section we derive a
discrete shape operator based on the smallest possible stencil
consisting of two adjacent triangles. Especially the detection
of sharp surface features requires a curvature notion based
on a small stencil to avoid blurring of sharp features.

The well-known mean curvature vector
−→
H at a vertex

equals the gradient of the area functional whose explicit rep-

resentation
−→
H (p) =

1
2 ∑

q∈link p
(cotαq + cotβq)(p− q) (1)

was derived in the context of discrete minimal surfaces
[PP93]. This vertex based mean curvature can be reformu-
lated in terms of an edge based mean curvature vector

−→
H (e) = He

−→
N e (2)

which is the area gradient of a non-conforming mesh
[Pol02]. If θe denotes the dihedral angle of the edge e and−→
N e = N1+N2

‖N1+N2‖ the edge normal, then He = 2 |e|cos θe
2 is the

mean curvature at the edge. Following [Pol02] both mean
curvature vectors (1) and (2) are related by the equation

−→
H (p) =

1
2 ∑

e=(p,q),q∈link p

−→
H (e). (3)

For smooth surfaces the shape operator S is a symmetric
operator that applies to tangential vector fields. In the dis-
crete case we specify S(e) to be an operator in R

3 that has
the edge normal

−→
N e in its null space. We base the opera-

tor on the following remarks. Let −→e denote a unit vector in
direction of the edge e. Since the normal does not change
along the edge e, −→e is in the null space of S. For all other
tangential directions v the normal curvature 〈v,Sv〉 is either
strictly positive, strictly negative or zero. This means that
each point on an edge is parabolic or flat. As a consequence
we see that S has rank ≤ 1, that −→e is an eigenvector with
eigenvalue 0 and that −→e ×−→

N e is the non-trivial eigenvector.
The requirement traceS(e) = He determines the non-trivial
eigenvalue.

Therefore, we define the shape operator of a piecewise
linear surface Mh in R

3 at the inner edges e of Mh by

S(e) = He(−→e ×−→
N e)(−→e ×−→

N e)t . (4)

At a vertex p ∈ Mh the tangent space TpMh is given by the
two dimensional subspace orthogonal to the vertex normal.

c© The Eurographics Association and Blackwell Publishing 2004.
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(a) (b) (c) (d)

Figure 2: The anisotropic mean curvature flow preserves and sharpens linear features like edges and corners of a surface. (a)
Original surface. (b) Surface with normal and tangential noise. (c) Reconstructed surface after 25 steps of anisotropic mean
curvature flow. (d) Distance of each vertex of the smoothed surface to the corresponding vertex of the original mesh is indicated
by a color, ranging from blue to red.

Let −→t e denote the unit vector in the direction of −→e ×−→
N e

projected onto TpMh. The representation of the shape opera-
tor of Mh at a vertex p is

S(p) =
1
2 ∑

e=(p,q),q∈link(p)
ωeHe

−→t e
−→t t

e, (5)

where ωe = 〈Np,Ne〉. Note that traceS(p) = Hp is ensured
by the choice of ω.

Using the theory of normal cycles Cohen-Steiner and
Morvan [CSM03] define a similar integrated curvature op-
erator for simplicial surfaces. On the star of an edge e their
operator differs from our operator only in second order of
the circumradius of the triangles adjacent to e. This allows
to apply their error estimates and convergence analysis to
our operator as well. Additionally our operator fits well with
other discrete differential operators such as the discrete mean
curvature vector (1). As integral entities, both operators may
be naturally extended over larger domains.

2.1. Anisotropic Mean Curvature Vector

In the previous section we decomposed the mean curvature
vector into a sum of vectors of the form He

−→
N e located at the

edges (3) and showed that the term He measures the direc-
tional curvature of the surface in the direction orthogonal to
the edge. Now we obtain the anisotropic mean curvature vec-
tor �HA at a vertex p as a weighted sum over the contributions
He

−→
N e at the edges incident to a vertex p:

�HA(p) =
1
2 ∑

e=pq,q∈link p

w(He)He
−→
N e. (6)

The choice of the weight function w determines the
anisotropic mean curvature vector. We use the function

wλ, r(a) =

{
1 f or |a| ≤ λ

λ2

r(λ−|a|)2+λ2 f or |a| > λ.
.

AnisotropicSmoothing (M, λ, s, n)
for (steps=1... n)

∆λ = 0
for each edge e = (vi,v j)
compute He,Ne

∆λ[vi]− = (wλ(He)He)∗Ne

∆λ[v j]− = (wλ(He)He)∗Ne

for each triangle t = (vi,v j,vk)
compute areat

areaStar[vi]+=areat

areaStar[v j]+=areat

areaStar[vk]+=areat

for each vertex v
v+ = 3s/(2areaStar[v])∗∆λ[v]

return M

Table 1: The explicit anisotropic mean curvature flow. The
parameters are: M a mesh, λ the feature detection parame-
ter, the scaling factor s determines the step width, and n is
the number of explicit smoothing steps.

that provides a smooth transition between those areas that
are smoothed and those that are kept as features. We call
the parameter λ the feature detection parameter. It is handed
to the user and specified for each process individually. The
parameter r controls the width of the transition. In our ex-
periments we used r = 10 ensuring that wλ,10(2λ) < 0.1.

2.2. Explicit Anisotropic Mean Curvature Flow

In this section we present an explicit anisotropic mean curva-
ture flow that combines the advantages of the mean curvature
flow with the ability to preserve and sharpen linear features
like edges and corners of a surface while removing noise. It
can be seen as a discretization of the anisotropic geometric
diffusion equation used by Rumpf et al. [CDR00] although
we solely rely on intrinsic information of our discrete shape

c© The Eurographics Association and Blackwell Publishing 2004.
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(a) (b) (c)

Figure 3: The prescribed mean curvature flow is used to filter the dragon corrupted with noise. The features of the surface
are preserved and the shape of the features is kept. (a) The original surface. (b) The model corrupted with noise. (c) The
reconstructed dragon. (Mesh from Stanford University - 3D scanning repository.)

operator and avoid the usage of any higher order interpolat-
ing surfaces.

Here we integrate the flow of the anisotropic mean cur-
vature vector �HA with an explicit Euler method. This leads
to an algorithm that is easy to understand and implement.
The description of a semi-implicit integration scheme and a
comparison of both methods is given in Section 5.1.

In terms of its vertices P = {p1, ..., pm} an explicit iter-
ation step of the anisotropic mean curvature flow is given
by

P j+1 = P j − s M−1 �HA(P j), (7)

where s is the adaptive size of the integration step and M−1

is the inverse of the mass matrix M of the surface Mj
h. Here

the mass matrix is used to convert the integrated mean cur-
vature vector into a piecewise linear vector field. For a sim-
plicial surface Mh with m vertices, M is the (m×m)-matrix
with entries:

Mpq =

⎧⎨
⎩

1
6 area(star p) if p = q
1
12 area(star e) if there is an edge e = (p,q)

0 in all other cases
.

Computing a step of the flow (7) involves solving a linear
system to invert the mass matrix. A problem here is that the
mass matrix can have a large condition number. An adequate
solution in our case is to use a diagonalization of M with
diagonal elements Mpp = 1

3 area(star p) called the lumped
mass matrix. Then the integration step for each vertex p is
given by an explicit formula:

p j+1 = p j − 3s
area(star pj)

�HA(p j). (8)

The advantage of our explicit representation of the
anisotropic mean curvature vector is that the analytic ma-
chinery of the resulting algorithm reduces to less than 30
lines of code.

The smoothing process can be fine-tuned with two param-
eters:

• The feature detection parameter λ determines the weight
function wλ, and hence the anisotropic mean curvature
vector. This provides control over what is regarded as a
feature and what will be preserved during the smoothing.

• The scaling factor s determines the amount of smoothing
done in a single step.

(a) (b)

Figure 4: Avoiding boundary shrinkage. The tangential ten-
sion shown in the standard discrete Laplacian (a) is clearly
avoided in the modified Laplacian (b).

2.3. Smoothing Surfaces with Boundary

A common problem of smoothing algorithms is the exten-
sion of the method to the boundary of the surface. For dif-
fusion based methods this requires to extend the definition
of the Laplacian to the boundary in a consistent way. At an
inner vertex the Laplacian (1) is normal to the surface such
that it is often used to define the normal of a vertex. But
at the boundary that Laplacian has a strong tangential com-
ponent since the outer edges are missing to compensate the
surface tension. For smoothing algorithms the tension causes

c© The Eurographics Association and Blackwell Publishing 2004.
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(a) (b) (c)

Figure 5: Starting with a noisy mesh (a) the anisotropic MC flow contracts the round feature lines and fails to recover the
curved edges (b). In contrast, the anisotropic PMC flow converges to a stable limit (c).

the problem of boundary shrinkage. To compensate for this
effect Taubin [Tau01] proposed to project the Laplacian of
each boundary vertex onto a normal vector that is computed
by averaging over the normals of the adjacent faces.

Computing the Laplacian as a weighted sum of edge nor-
mals instead of edges, see (2) and (3), leads to the same
result at all inner vertices but differs at the boundary. The
sum of the edge normals can be interpreted as a weighted
sum of the face normals where the weights are determined
by the edge curvatures. Consequently it avoids the tangential
components and thus provides a better definition of a normal
at boundary vertices. The problem of boundary shrinkage is
efficiently reduced by this operator without the need for a
projection or other extra treatment. Additionally this ensures
that the boundary is smoothed with the same speed as the in-
terior parts of a surface. The representation of the mean cur-
vature vector at the boundary generalizes to the anisotropic
mean curvature vector in a natural way.

3. Prescribed Mean Curvature Flow

For surfaces, the Laplacian applied to the identity map
equals the area gradient at each vertex of the surface. Hence,
Laplacian smoothing is equivalent to minimizing surface
area. Depending on the boundary constraints the limit is
therefore a minimal surface, or a degenerate situation like
a singular point. For smoothing this causes the problem of
shrinkage of the surface. For each region of the surface the
speed of the shrinking depends on the curvature in that part,
i.e. areas with high mean curvature shrink faster than oth-
ers. This leads to undesired deformations of the surface. The
anisotropic smoothing slows down the smoothing process in
regions with high curvature, hence suppresses the shrinking
in these areas. This can cause even stronger deformations of
the surface or even degeneration of mesh, cf. Fig. 5. To the
authors knowledge no adequate method to compensate the
deformations for the anisotropic case is known.

In this section we introduce a fairing technique that dur-

ing the evolution of the surface smoothes its mean curva-
ture distribution rather than only reducing the surface area.
The method preserves the features of the surface during the
smoothing process and avoids the deformations described
above. It is applicable to the anisotropic case, too. The algo-
rithm is described in two steps. First we extend the mean cur-
vature flow such that instead of converging to a surface with
zero mean curvature, the new flow allows to evolve the sur-
face towards a surface having a prescribed mean curvature.
We call this flow prescribed mean curvature flow (PCM).
Then instead of smoothing the surface directly, we compute
its mean curvature, smooth this scalar field and use the PCM
flow to evolve it towards a surface with this smoothed mean
curvature. We describe the isotropic PMC flow in this section
and generalize it to the anisotropic case in the next section.

The design of the PMC flow is motivated by properties
of surfaces of constant mean curvature. These are known to
be critical with respect to the area functional for any varia-
tion that preserves the volume and fixes the boundary. For
discrete surfaces the same characterization means that

∇p area = H ∇p vol (9)

is valid for all interior vertices p and a constant H [PR02].
The volume of a surface is the orientated volume enclosed
by the cone of the surface over the origin in R

3,

vol Mh =
1
6 ∑

T=(p,q,r)∈Mh

< p,q× r > .

The gradient of vol Mh is

∇pvol =
1
6 ∑

T=(p,q,r)∈Mh

q× r.

We define the isotropic prescribed mean curvature flow of a
simplicial surface Mh with vertices P = {p1, ..., pm} and a
function f (P) on the vertices of Mh by

∂
∂t
P = −M−1(

−→
H (P)− f (P) ·∇pvol), (10)

where M is the mass matrix of Mh.

c© The Eurographics Association and Blackwell Publishing 2004.
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(a) (b) (c) (d)

Figure 6: Comparison of the anisotropic mean curvature flow and the PMC flow on the fandisk model that has a vanishing
ridge. Whereas the PMC flow preserves the ridge, the anisotropic flow flattens it. The models are colored by the absolute of the
predominant principal curvature. (a) Original model. (b) Noisy model. (c) Denoised model using the anisotropic MC flow. (d)
Best results with the anisotropic PMC flow. (Original mesh courtesy of H. Hoppe.)

An explicit step of the isotropic smoothing algorithm con-
sists of two parts. First, compute the piecewise linear scalar
mean curvature M−1H of the actual surface Mh and smooth
M−1H at each vertex p by averaging over the neighbors of
p. Secondly, compute a step of the PMC flow of Mh using
the smoothed M−1H as the function f that prescribes the
target curvature.

4. Denoising Non-Linear Surface Features

A main characteristic of anisotropic smoothing, in com-
parison to isotropic methods, is the way sharp edges of a
surface are processed. Sharp edges are features character-
ized by a large and a smaller principal curvature value. The
anisotropic smoothing sharpens the edges, this means that
the smaller principal curvature is reduced until it vanishes.
The results are sharp edges that are part of a straight line.
This works fine, unless the feature itself is curved. In this
section we extend the PMC flow described in the last section
to the anisotropic mean curvature. This allows to denoise
surfaces with sharp curved features like the curved bound-
ary of a hole.

Analog to the isotropic case the anisotropic PMC flow is
defined by

∂
∂t
P = −M−1(

−→
H A(P)− f (P) ·−→V A(P)), (11)

where
−→
H A is the anisotropic mean curvature vector de-

fined in Section 2.1 and f is a function, that prescribes the
anisotropic mean curvature. The term

−→
V A is an anisotropic

analog of the volume gradient. We call the vertices p with−→
H A(p) �=−→

H (p) the feature vertices and set
−→
V A(p) =∇pvol

for all non-feature vertices p. For the other vertices we set

−→
V A(p) = sign(

〈−→e HA(p),∇pvol
〉
)−→e HA(p)

where −→e HA is the unit vector field of
−→
H s

A and we get
−→
H s

A by

performing a simple smoothing step on
−→
H A. In our experi-

ments we used
−→
H s

A(p) =
1
2
(
−→
H A(p)+

1

∑
q∈link p

ωq
∑

q∈link p

ωq
−→
H A(q))

−→e HA(p) =
−→
H s

A(p)/
∥∥∥−→H s

A(p)
∥∥∥ .

where ωq is the sum of the vertex angles at p in the triangles
adjacent to the edge pq.

An explicit integration step of the PMC flow consists of
two parts. First, compute f = M−1HA and smooth this scalar
field. Second, compute the new positions of the vertices by
using the iterative formula

p j+1 = p j − 3s
area(star(pj))

(
−→
H A(p j)− f (p j) ·−→V A(p j))

for each vertex pj of M j
h. When smoothing the anisotropic

scalar mean curvature, we must take care to keep the
sharp features. Analog to the isotropic case, we smooth
M−1HA(p) by averaging over the neighbor vertices of p.
But to preserve the sharp edges, at each feature vertex p
we only average over those neighbor vertices that are fea-
ture vertices as well. To avoid solving a linear equations sys-
tem in each step, in our experiment we have used the term
HA(p j)/||−→V A(p j)|| instead of M−1HA(p j).

The thresholds to control the method are the same as
those for the anisotropic mean curvature flow in Section 2.1,
namely the feature detection parameter λ to determine what
is regarded as a feature and the scaling factor s to control the
magnitude of the smoothing steps. Additionally the control
of the amount of smoothing done to the function M−1HA
that prescribes the curvature can be handed to the user.

5. Experimental Results

We demonstrate our results in Fig. 1-3 and 5-9. The models
in Fig. 2 and 7 are smoothed with the anisotropic smoothing

c© The Eurographics Association and Blackwell Publishing 2004.
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(a) (b) (c) (d)

Figure 7: Application of the anisotropic mean curvature flow to the venus head corrupted with noise. The features of the
surfaces are preserved, while the noise is removed. Models are colored by the absolute of the predominant principal curvature.
(a) Original mesh consisting of 260k triangles. (b) Noisy head. (c) Anisotropic mean curvature flow is used to remove the noise
and (d) to additionally smooth the model. (Mesh from Cyberware Incoporated.)

introduced in Section 2.1 and 2.2, and the other models with
the prescribed mean curvature flow described in Section 3
and 4. A comparison of the anisotropic and the prescribed
smoothing is given in Fig. 5 and 6.

Model Fig. #Vert. Method

Armadillo 8 173k Prescr.

Bearing 1 6k Prescr.

Bone 9 137k Prescr.

Dragon 3 125k Prescr.

Fandisk 6 6k both

Octahedron 2 4k Aniso.

Ring 5 6k both

Venus 7 130k Aniso.

Table 2: The table lists the models used in our experiments.

Fig. 2 shows an example of the anisotropic smoothing ap-
plied to recover the surface of an octahedron, that has been
corrupted with noise. Due to the explicit measurement of
curvature based only on quantities of the simplicial mesh,
the detection and sharpening of the features is very precise.
The recovering of the edges therefore has a high quality, es-
pecially when compared to other approaches using interpo-
lating higher order surfaces to measure curvature. An ap-
plication of the anisotropic mean curvature flow to a noisy
higher resolution model is shown in Fig 7.

Whereas the anisotropic MC flow can only recover
straight edges, the anisotropic PMC flow is able to sharpen

curved feature lines. We demonstrate this with different ex-
amples. Fig. 5 shows the surface of a ring that has been cor-
rupted with noise. The PMC flow recovers the shape and
removes the noise. The ring is a stable limit of the flow. For
comparison we have processed the ring with the anisotropic
MC flow, too. This flow contracts the feature lines and fails
to recover the shape. While the ring surface has circular fea-
ture lines the surface shown in Fig. 1, has different types of
curved feature lines, especially the curvature of some feature
lines varies strongly. The prescribed mean curvature flow
correctly sharpens the features. The fandisk (Fig. 6) model is
a model with a vanishing and curved ridge. For comparison
we tested it with both smoothing methods. The PMC flow
correctly preserves the ridge while the anisotropic smooth-
ing does not. We tested the flows on surfaces that do not

Model Octahedron Venus

#Steps 10 10

Ex. AMC flow 0.3s 13.7s

Im. AMC flow 0.9s 52.6s

Ex. PMC flow 1.8s 103.1s

Im. PMC flow 2.8s 152.4s

Table 3: Comparison of the computation time needed for
10 steps of the different flows and integration methods. Time
measured using our Java implementation on a PC with a 1.6
GH Pentium 4 CPU.

have such artificial and regular feature lines but have dif-
ferent kinds of features, cp. Fig. 3, 8 and 9. The PMC flow
proved to be very well suited to denoise the surfaces and to
preserve the surface features.

c© The Eurographics Association and Blackwell Publishing 2004.
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(a) (b) (c)

Figure 8: The prescribed mean curvature flow is applied to denoise a surface with many different features. (a) The origi-
nal model. (b) The mesh corrupted with noise. (c) The reconstructed surface. (Mesh from Stanford University - 3D scanning
repository.)

(a) (b) (c)

Figure 9: The anisotropic PMC flow is used to denoise the
surface of a bone. Features of the surface are preserved. (a)
Original model. (b) Model corrupted with noise. (c) Recon-
structed surface. (Mesh from Cyberware Incoporated.)

5.1. Implicit Integration of the Flow

In Section 2.1 and 4 we have derived explicit integration
schemes for the anisotropic MC flow (8) and the PCM flow
(11), because explicit methods are simple to understand and
to implement. Implicit methods stabilize the flow and allow
larger integration steps, but require to set up and solve a sys-
tem of equations. Desbrun et al. [DMSB99] introduced a
semi implicit scheme for the mean curvature flow and Rumpf
et al. [CDR00] used a semi implicit method to integrate the
anisotropic diffusion equation. In this section we describe an
analog semi implicit integration scheme for the anisotropic
MC flow and for the PMC flow. The anisotropic mean cur-
vature vector

−→
H A, compare equation (6), can be represented

by a matrix KA defined by
−→
H A = KAP where P lists the co-

ordinates of all vertices of the surface Mh. An implicit inte-
gration step of the anisotropic MC flow is the solution of the
equation

(M j + sK j
A)P j+1 = M j P j, (12)

where M j is the mass matrix of the surface M j
h and s a scal-

ing factor controlling the size of the step. The trick that keeps
this scheme linear and is that the mass matrix and the matrix
KA are still computed on the given surface Mj

h. To solve this
system of linear equations we use a preconditioned biconju-
gate gradient method as described in [PTVF92].

To extend this scheme to the PMC flow (11) we add the
term f

−→
V A that prescribes the curvature. Since the compu-

tation of this term already involves a smoothing process, it
varies only little compared to

−→
H A. Thus we compute the

term f
−→
V A on the surface M j

h. A step of the semi implicit
scheme for the PMC flow is given by

(M j + sK j
A)P j+1 = M j P j + s f (P j) ·−→V j

A. (13)

6. Conclusion

We presented a novel discrete shape operator whose trace
is fully consistent with the well-known discrete mean cur-
vature, and defined an anisotropic mean curvature vec-
tor. The curvature operators were used for feature preserv-
ing noise removal algorithms. Using the computation tech-
nique for constant mean curvature surfaces we modified the
anisotropic mean curvature flow such that it converges to a
surface with prescribed (anisotropic) mean curvature. This
allows to sharpen non-linear features such as cylindrical
holes.
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