
3D Model Retargeting Using Offset Statistics
Xiaokun Wu†

Max-Planck-Institut für Informatik
Saarbrücken, Germany
xwu@mpi-inf.mpg.de

Chuan Li†
Utrecht University

Utrecht, Netherlands
cl.chuanli@gmail.com

Michael Wand
Utrecht University

Utrecht, Netherlands
M.Wand@uu.nl

Klaus Hildebrandt
Max-Planck-Institut für Informatik

Saarbrücken, Germany
klaus.hildebrandt@mpi-inf.mpg.de

Silke Jansen
Max-Planck-Institut für Informatik

Saarbrücken, Germany
sjansen@mpi-inf.mpg.de

Hans-Peter Seidel
Max-Planck-Institut für Informatik

Saarbrücken, Germany
hpseidel@mpi-inf.mpg.de

Abstract—Texture synthesis is a versatile tool for creating and
editing 2D images. However, applying it to 3D content creation
is difficult due to the higher demand of model accuracy and the
large search space that also contains many implausible shapes.
Our paper explores offset statistics for 3D shape retargeting. We
observe that the offset histograms between similar 3D features are
sparse, in particular for man-made objects such as buildings and
furniture. We employ sparse offset statistics to improve 3D shape
retargeting (i.e., rescaling in different directions). We employ a
graph-cut texture synthesis method that iteratively stitches model
fragments shifted by the detected sparse offsets. The offsets
reveal important structural redundancy which leads to more
plausible results and more efficient optimization. Our method is
fully automatic, while intuitive user control can be incorporated
for interactive modeling in real-time. We empirically evaluate
the sparsity of offset statistics across a wide range of subjects,
and show our statistics based retargeting significantly improves
quality and efficiency over conventional MRF models.

Index Terms—3D content creation; sparse offset statistics;
graph-cut

I. INTRODUCTION

Content creation is a central problem of compute graphics:
Reducing the effort required for creating 3D models has been a
long standing challenge in the field. In recent years, example-
based model synthesis has received a lot of attention, in
particular motivated by fast growing model repositories that
could provide rich training data.

Synthesizing shapes from examples involves two key chal-
lenges: First, we have to characterize the shape space of
plausible variants of the example data. Second, we also need
an efficient algorithm to explore the shape space.

A necessary requirement for plausibility is local consis-
tency: Shapes should form closed surfaces that resemble
the input data at a local scale. This notion is captured by
Markovian texture synthesis methods [26]. However, local
consistency is not sufficient to characterize meaningful shapes
(Figure 1-a); synthesizing complex models (beyond “texture”
with stationary statistics) require additional structure to be
maintained.

† These authors contributed equally to this work.

(a) 4992 nodes, 64 labels, 8.035 sec. (b) 378 nodes, 8 labels, 0.195 sec.

Fig. 1: 3D retargeting without (a) and with (b) offset statistics.
Close inspections are shown on the right. The complexity of
the the graph-cut problem and the corresponding optimization
time are reported for each result.

In this paper we propose a simple but effective method
to retarget 3D models using the statistics of low-level trans-
lational symmetries. Our method is inspired by the recent
success of offset statistics in image inpainting [9] and editing
[19]. Intuitively, it uses an MRF model to stitch translational
copies of the input model, where the optimal stitching can
be found using graph-cut based optimization. However, the
method does not consider arbitrary translations but only those
that are aligned with salient, frequently observed offsets be-
tween matching features. This additional regularization helps
enforcing a more plausible global structure.

The key insight of our paper is the sparsity of offset statistics
reveals important structural redundancy and can be used for
searching good retargeted shapes. Frequently appearing offsets
represent dominate repetitive structures in the model. They
also indicate promising directions and spacings for retargeting
the model. To utilize this information, we set up a transforma-
tion space that is the linear span of the dominant offset vectors.
We use transformations inside this space to translate the input
model. In this way, the structural regularities within the input
model influence the distribution of the translational copies, so
are more likely to be preserved in the retargeted model (Figure
1-b). In the meantime, since the number of dominant offsets
is relatively small (also due to the sparsity), the retargeting is
significantly more efficient (c.f. Figure 1).

A major advantage of our method is the low-level approach,
which is simple and robust. In contrast, a lot of recent work
has used much stronger regularity models, such as explicit
algebraic models [6] or symmetry hierarchies [25], [11].
However, these methods require either clean data with exact
regularity, or human assistance for pre-segmentation [13], [28],
limiting the applicability in practice. While our method is
limited by a simpler structure representation, texture synthesis
can easily accommodate for imperfect regularity and other data
imperfections, thereby complementing previous methods.

The main contributions of our paper include (i) an empirical
study that confirms the sparsity of offset statistics in man-made
3D shapes, (ii) an algorithm for detecting dominant offsets
from single input models, and (iii) a 3D model synthesis
algorithm that utilizes offset statistics for automatic, high
quality model retargeting at interactive speed.

II. RELATED WORK

In this section we briefly review related work in 3D model
synthesis, considering assembly and retargeting.

Model assembly: This category of methods decompose
models into parts and recombine parts from different models
into new shapes. Early work [8] allowed parts to be assembled
interactively to form new shapes. Shapes can also be created
by interpolating parts from two exemplar shapes, based on
parts matching [11] or hand coded substructure [28]. More
recently, large collection of shapes have been considered. Xu
et al. [27] evolve an initial population of 3D models to produce
generations of novel shapes, Averkiou et al. [1] analyze
unorganized collections of 3D models to facilitate exploratory
shape synthesis using high-level feedback. Kalogerakis et
al. [12] use a generative probabilistic model of shape structure
trained on a set of compatibly segmented shapes to learn the
structural variability.

Rertarget based methods: Early work applied MRF-based
texture synthesis to 3D modeling. For example, Merell et
al. [15] stitch geometry using adjacency constraint to pre-
serve the local consistency. However, MRF-based 3D model
synthesis suffers from the lack of knowledge of higher level
object structure, and the computational cost of generating
detailed models is high [16]. In the past decade, great effort
has been made to exploring shape structure for high quality
3D synthesis. For example, symmetry [17], [18] and partial
symmetry [5], [4] are extracted from input models and used
to regularize the synthesis model. This forms the basis for
inverse procedural modeling, which represents families of
shapes by automatically inferred context-free grammars [5].
Bokeloh et al. [6] propose an algebraic model that describes
shapes in terms of regular patterns, interlinked with fixed
topology. The shape space is parameterized by a small set
of numerical parameters. While the structure model is richer
than ours, the method requires exact regularity (grids of at
least 3×3 rigidly identical copies each) to be applicable. More
complex (architectural) models can be handled using manual
user annotations [13].

(a) Input model (b) Dense samples (c) Features

Fig. 3: Sampling from input model.

Texture synthesis: Our paper revisits 3D texture synthesis,
drawing inspirations from fruitful progress recently made in
the 2D case [26]. Here, various forms of guidance have been
employed to overcome the limitations of the MRF models.
This can be achieved using an additional image layer with
user annotations [10] or on-the-fly user interaction [2]. For
image retargeting, results can be improved by better metrics
for comparing MRFs. For example, [21] uses bidirectional
matching and a gradual resizing procedure for retaining the
image structure in retargeting. Our work is particularly in-
spired by the recent success of image statistics in image editing
[19] and inpainting [9]. By applying this idea to 3D synthesis,
we obtain plausible shape variations that previous 3D texture
synthesis algorithms where not able to produce without user-
guided analysis. This, together with its conceptual simplicity,
which leads to robustness and easy implementation, makes
our method appealing as a novel building block for 3D shape
synthesis.

III. METHOD

Our method has two main steps: Offset statistics detection
and model retargeting (see Figure 2 and 4).

A. Offset Statistics Detection

In this step we compute offset statistics from the input tri-
angle mesh. To compute features and their descriptors, we first
perform Poisson disc sampling at two different scales (Figure
3). Low density samples are stored as features and the high
density samples are used for computing feature descriptors. We
include all mesh vertices as features to improve the matching.
For each feature x, we compute its SHOT [23] descriptor,
denoted by S(x).

Next, we match similar features in the input model based on
their descriptors. For each feature x, we find the offset vector
v to its best match:

v = arg min
v
|S(x + v)− S(x)| s.t |v| > τ (1)

Here v = (u, v, w) is the translational mapping from
feature x to its closet match. Figure 2-a illustrates some
example mappings (only 10% of the mappings are shown for
clarity). The similarity between two SHOT feature descriptors
is measured by the L2 norm |·|. The threshold τ (set to 0.15 in
our experiments) avoids matchings between features that are
too close. As noted by [9], such a minimum distance constraint
is useful for avoiding trivial statistics.

(a) Feature Matching (b) 3D histogram (c) Histrogram peaks (d) Principle offsets

Fig. 2: Our analysis step a) automatically matches features, b-c) find dominates offsets, and d) extracts up to three principle
offset vectors.

Next, we compute offset statistics from the matched fea-
tures. To do so we bin all offsets into a 3D histogram, as
shown in Figure 2-b. Bins with strong magnitude are rendered
in warmer color. We then detect peaks in the histogram using
standard non-maximum suppression (Figure 2-c) with a radius
of 0.15. The detected peaks (yellow) are the dominate offsets.

In practice we usually have about 20 dominate offsets
detected from a model. Although it is possible to keep all of
them for later retargeting, this is not necessary as many of them
are obtained by combining very few generator vectors, which
we call principle offsets. (orange spheres / arrows in Figure
2-c, 2-d). Principle directions span a regular grid of offsets (a
translational k-parameter group [18], [6]), providing the can-
didate offsets considered for model stitching. As our method
aims at retargeting (i.e., resizing in principal directions), we
keep up to three principle offsets for a single model (which
is also the maximum number of independent generators of a
single lattice [18]). In consequence, this approach more or less
guarantees correct results if a 3D model actually contains a
dominant grid pattern (Figure 4). However, graph-cut-based
stitching, as a global optimization method, will often still find
plausible solutions for models of much more complex structure
(such as the top three examples in Figure 9).

In the next section we continue with the core retargeting
algorithm, assuming the principle offsets are known. In Section
V we provide details about how to extract the principle offsets.

B. Model Retargeting

The basic idea is to retarget models by stitching together
translational copies of the input model. Intuitively, one can
discretize the retargeting space into units, such as regular
voxels. Each voxel can be assigned with a label that indicates
which translational copy’s geometry is used for that voxel.
The assignment of the labels can be solved using the stan-
dard multi-label graph-cut-based optimization [7]. However,
stitching shapes together is non-trivial in practice, because
graph-cut-based geometry sticthing can produce implausible
shapes if the transformation between the two model copies
to be compined is not chosen carefully. In our context, it is
impossible to stitch shapes into a good model if the boundary

of translational copies are not aligned with grid border. In
theory, one can use larger number of copies to increase the
chance of getting a good synthesized model (and such as
strategy would also involve a yet to be defined criterion for
rejecting bad offsets). However, this is not practical as the
optimization cost quickly increases with the resolution of the
discretization (number of nodes and the number of labels in the
graph). In the meantime, even with a very fine discretization,
graph-cut geometry synthesis can still produce invalid shapes
as the structure of the input model is not being considered.

Our key insight is to use offset statistics to set up a proper
transformation space preserving the structure of the input
model. To do so, we define the offset space Φ as the span
of the pre-detected principle offset vectors:

Φ =
{ K∑

i=1

λivi|λi ∈ Z
}

(2)

As previously discussed, the principle offsets {vi}Ki=1 are gen-
erators for resizing a model in different canonical directions.
The Z in Eq. 2 is the set of integer numbers, so λi is the
number of integer steps to resize a model using vi. We restrict
λ to integer values for discrete optimization. In this paper we
use three principle offsets (K = 3) so the offset space contains
M = U × V × W translational copies of the input model,
where {U, V,W} are the steps for different principle offsets.
Each copy has a unique offset label {li}Mi=1 = (ui, vi, wi),
indicating the translational mapping between the copy and the
original model in the units of principle offsets. For example,
l = (1, 0, 0) indicates the copy is shifted by one step in the
first principle direction. It is clear that M is also the number
of labels for the later multi-label graph-cut optimization.

We now define the retargeting space Ω as the volume of
the synthesized model. We discretize Ω into a regular volume,
once again, using the principle offsets as the generators so it is
consistent with the offset space Φ. Specifically, the retargeting
space has N = (Uin +U)× (Vin + V)× (Win +W) voxels,
where Uin, Vin,Win are the respective dimensions of the input
model (in the units of principle offsets). Figure 4-a shows an
input model, imposed by a 2×2×2 offset space (red) and the
resulting retargeting space (gray). Figure 4-b shows a montage

(a) Space discretization (b) Offset montage (c) Graph cut (d) Retargeting result

Fig. 4: Offset based retargeting.

of all translational copies rendered with different colors. These
copies together fill up the retargeting space.

To stitch all copies together, we assign each voxel in Ω
a offset label: L(x) = li. Intuitively, it means that voxel
x in the synthesized model has its geometry copied from
voxel x− (vi, ui, wi) in the input model. We find the optimal
labeling assignment by minimizing the following MRF energy
function:

E(L) =
∑
x∈Ω

Eu(L(x)) +
∑

(x,x′)|x,x′∈Ω

Ep(L(x), L(x′)) (3)

The unary term Eu is 0 if the label is valid (that is,
x−(vi, ui, wi) is a known voxel in the input model). Otherwise
the term will receive infinite cost. The pairwise term Ep

encourage smoothness between adjacent voxels in the 26-
connected neighborhood. For each pair of neighboring voxels
(x,x′) with label assignment L(x) = li and L(x′) = lj , we
define Ep as:

Es(li, lj) = dH(G(x+ li), G(x+ lj))+dH(G(x′+ li), G(x′+ lj))
(4)

This energy function penalizes stitching together voxels that
have different geometries. Here G(x) is the shape descriptor
for voxel x. We simply use the set of SHOT descriptors
contained in the voxel. The similarity between two voxels
are then computed as the Hausdorff distance dH between the
two sets, while similarity between individual SHOT features
is measured using the L2 norm. Notice the pairwise feature
distances have already been computed in the previous step
(Section III-A) and can be reused here. In practice it often
contains empty voxels. In this case we assign zero distance
if both voxels are empty, or infinite distance if only one of
them is empty. It is easy to see Es is submodular, so we can
optimize Equation 3 using the alpha-expansion algorithm [7],
which produces optimal label assignments for the retargeting
space N . Figure 4-c, d show the synthesized model output by
the graph-cut optimization, where colors in Figure 4-c reveal
the offset labels assigned to different parts of the model. In
Section VI we will show more results and compare our method
with an alternative method.

IV. SPARSITY OF 3D OFFSET STATISTICS

The sparsity of offset statistics is the theoretical foundation
for our method to work. In this section, we give some empirical

evidence for the validity of this assumption using a study
similar to [9]. We collect two datasets of 3D shapes, one
for man-made objects and the other for natural objects. The
man-made dataset (Figure 5-c, top row) contains 200 models,
including architectures, furniture, vehicle etc. The natural
dataset (Figure 5-c, bottom row) contains 120 models, such
as human, animals and foliage. All models are pre-normalized
and centered so the longest dimension of each model is scaled
to [−1, 1]. As previously described (Figure 3), a dense point
cloud is sampled for each model using Poisson sampling with
0.02 as the sampling space. A feature point cloud is then re-
sampled from the dense point cloud using 0.06 as the sampling
space. A 352 dimensional SHOT descriptor is computed for
each feature. We use a fairly large radius (set to 0.2 in our
experiment) to encode sufficient geometric information in the
SHOT descriptors. For each feature, we find its closest match
as defined in Equation 1. We then bin the offsets between
matched features and sort the bins in the descending order of
their magnitude (number of offsets in a bin). We use bin of size
0.05 in each dimension, and test different minimum distance
thresholds τ (Figure 5-a, b) for precluding trivial infinitesimal
similarity case.

In order to examine the sparsity of the offset statistics,
we accumulate the bins and plot the cumulative distribution
(averaged over all models) in Figure 5-a. The diagonal line
(gray) is the cumulative distribution for a uniform statistics,
indicating the most non-sparse distribution. In comparison,
man-made objects have a clearly sparse distribution as the
curve is highly non-linear. For example, when τ = 0.15 (green
curve), 79.9% of the offsets are distributed in only 7% of the
bins, 97.1% of the offsets are distributed in 20% of the bins.
We also observe that τ has little influence on the distribution
– as the curves for different τ are very similar. This can be
better seen in the enlarged plot (Figure 5-b). Notice although
the curve of τ = 0 (blue) is relatively more distanced to the
others, the difference is not as significant as being observed
in 2D images previously [9]. This is because the 3D models
have higher accuracy so are less likely to have false positive
matchings. Nonetheless in practice we still use τ = 0.15 to
eliminate the possibility of getting trivial peaks around (0, 0, 0)
in the 3D histogram. Figure 2 showed an exemplar model
where three principle offsets are detected. Figure 6 shows

(a) Cumulative distribution (b) Zoom-in (c) Datasets: man-made (top) and natural (bottom) subjects

Fig. 5: Offset sparsity.

Fig. 6: Offset statistics for different structures. Top: 1D grid,
Middle: 2D grid, Bottom: sheared 2D grid.

cases where only one or two principle offsets can be found in
a model.

It is worth mentioning that the sparsity is not as pronounced
for natural objects, as the red curve shows. For example, only
40.4% (compare to 79.9% of the man-made objects) of the
offset are distributed in 7% of the bins. Although there is still
some sparsity, as the cumulative curve is above the diagonal
plot of an uniform distribution, we find it gives little advantage
for later model retargeting.

V. IMPLEMENTATION

In this section we provide implementation details of our
algorithm. In this paper we use the popular SHOT descriptor
for matching features. But other descriptors, such as FPFH
[20], can also be used. Since we only consider translational
offsets, we do not need rotationally invariant feature matching.
We therefore fix the local reference frame of each feature to
be aligned with the world coordinate frame. Once features
are matched, we bin them into a 3D histogram, where each
bin is a cube of 0.05 on each dimension. We detect peaks
using non-maximum suppression with a local window size of
0.15 (consistent with the value of τ in Equation 1). Each peak
represents a dominant offset in the model. Since the dominant
offsets are not very accurate at this stage, as they are defined
at the resolution of the bins, we increase their precision using

a global iterative closest point algorithm that is applied on the
entire point cloud.

Next, we find up to three principle offsets (c.f. Section III-A)
using a greedy selection strategy on a list of dominant offsets
sorted in decreasing order of their histogram magnitudes.
We select the first dominant offset in the list as the first
principle offset v1, since it has the most matched features.
The second principle offset v2 is the first remaining dominant
offset that satisfies − cos θ ≤ v1·v2

|v1||v2| ≤ cos θ, which specifies
a minimum angle between two principle offsets. In practice
we set θ = π/3. The third principle offset, if there is any,
is set to be the first remaining dominant offset that satisfies
the minimum angle check with both the first and the second
principle offsets. Notice the number of detected principle
offsets determines the degree of freedom for model retargeting.
For example, if only one principle offset is detected, the model
can only be resized in one direction.

For the graph-cut optimization, we discretize the embedding
space of the retargeted model into a regular volume Ω as
used in Eq. 3. The discretization uses principle offsets as the
generators, so each voxel is of size {|v1|, |v2|, |v3|}, where
| · | denotes the L2 norm. In cases where there are less than
three principle offsets, we create up to two orthogonal dummy
directions with length 0.2. These supportive offsets are only
used to discretize the model, no retargeting will be performed
along these directions.

To generate new models, we stitch together translational
copies of the input model, as described in section III-B. The
translations are restricted to multipliers of the voxel size for
two important reasons: First, to keep the translations consistent
with the repetitive structure of the input model. Second, to
keep the number of labels for graph-cut optimization low for
computational efficiency. In fact, the graph-cut is usually run
on a graph of less than 1000 nodes with 30 labels, so the
retargeting can be performed at an interactive speed. Despite
using such relatively low complexity graph, our algorithm is
still able to keep the retargeting quality high and preserve the
exemplar structure in the synthesized models.

In practice we map the input model into a canonical space
(i.e. 3D Cartesian coordinate system) if the detected principle
offsets are not orthogonal to each other. The mapping is

(a) Input model (b) Canonical space (c) Final output

Fig. 7: A model with sheared 2D grid (a) is mapped into
a canonical space (b) where the two principle offsets are
orthogonalized. The retargeting is performed in the canonical
space and mapped back to the normal space (c).

constructed by collecting all 3 principle offset vectors into a
3D transformation matrix, which is then applied to all model
vertices. Figure 6 (bottom) shows an example where the object
has two non-orthogonal principle offsets. Doing so allows the
discretization of the model to be axis-aligned for fast geometry
computation. Figure 7-a and 7-b show the same model in the
ordinary space and in the canonical space. The retargeting is
performed in the canonical space, and the result is mapped
back to the ordinary space for displaying to users (Figure 7-
c).

VI. RESULTS

In this section we show some of our retargeting results.
Figure 8 shows side-by-side comparisons between our results
(yellow) and the conventional MRF based results without
offset statistics (blue). The gray models are the input examples.
The exact number of graph nodes, number of labels, and time
for graph-cut optimization are also provided for each result.
To generate the blue models, regular offset (set to 0.1) is used.
Despite using significantly more complex graphs, conventional
MRF produced shapes that do not preserve the structure of
the input models, as highlighted in the close inspections. In
contrast, our method uses simpler graphs and does not produce
such artifacts. Our optimization (yellow models) is fast enough
for real time modeling (as demonstrated in the supplementary
video).

Figure 9 shows a gallery of our results. Notice the book shelf
model (the first example) would be difficult to accomplish by
methods such as [6]. Figure 10 shows the detected degrees of
freedom (DoF) for resizing this model using Bokeloh et al’s
method [6]. As readers can see, the detection only covers a
small part of the model due to irregularities in the shape. This
lack of DoF can be an obstacle of synthesizing plausible new
shapes. In particular, it often locks the entire shape from being
changed. In contrast, a MRF based method such as ours is less
rigid and can still produce convincing results by synthesizing
the model as a “texture” and preserve fuzzy repetitions using
offset statistics. Compare to other retargeting methods that
explicitly model shape structure [22][14][15], our method is
more flexible in different ways: we do not require prescribed
procedural rules [22] nor manual decomposition [14], and
perform less sensitively to the discretization of the shape space
[15]. Compare to low level texture synthesis methods such as
[24][3][29], our method handles man-made structures better
due to the capture of offset statistics.

(a) Blue: 1600 nodes, 5 labels, 0.139 sec. Yellow: 360 nodes, 3 labels, 0.012
secs.

(b) Blue: 924 nodes, 8 labels, 0.082 sec. Yellow: 32 nodes, 6 labels, 0.008
secs.

(c) Blue: 2625 nodes, 25 labels, 0.956 sec. Yellow: 104 nodes, 9 labels,
0.013 secs.

(d) Blue: 7429 nodes, 54 labels, 5.151 sec. Yellow: 810 nodes, 8 labels,
0.072 secs.

Fig. 8: Qualitative comparison between retargeting without
(blue) and with (yellow) offset statistics.

However, our current implementation has limitations for
retargeting more complex structures. Figure 11 shows an
example. In this case, the offset statistics is less sparse (top
row, middle) and there are more than three dominant offsets
(top row, right) that influence the structure of the model. We
believe such a shape needs to be modeled by multiple grids,
otherwise the retargeting produces artifacts as shown in Figure
11-b1. It is an interesting future work to extend our method
to work with such more complexly structured models.

VII. CONCLUSION

Our paper explores offset statistics for 3D shape retargeting.
The main contribution is to detect structural redundancy as
sparse offset statistics, and use it to reduce the search space
for good shapes. Our method works fully automatic, and
produces significantly better results than conventional MRF

1This result uses the top three dominant offsets for discretizing the
retargeting space into a single regular volume, and the top seven dominant
offsets for generating translational copies of the input model.

Fig. 9: Retargeting results.

models that do not use offset statistics. Nonetheless, in com-
parison to recent strongly structure-based methods (such as
strictly symmetry- or regularity-based approaches), it retains
the simplicity and generality of a texture-synthesis algorithm,
in particular the ability to handle imperfect regularity. The
computational cost is kept sufficiently low for real time
modeling.

Our method is a small step to advance conventional MRF
models for 3D modeling. It also opens many interesting future
avenues. For example, how to model more complex shapes that
can not be represented by a single grid. One possible solution
might be to first segment the model into multiple grids, and
use a second layer for capturing the relationship between these
grids. Another interesting future path is to extend the model to
non-translational mappings, for example rotation and scaling.

Finally, it is interesting to apply offset statistics to applications
such as structure from motion and shape completion.

VIII. ACKNOLEDGEMENT

This work has been partially supported by the Intel Visual
Computing Institute, the Max-Planck-Center for Visual Com-
puting and Communication, the international Max Planck Re-
search School for Computer Science and Microsoft Research
Cambridge. We thank Pushmeet Kohli and Martin Bokeloh
for inspiring discussions. The input models are from the
Digimation Model Bank Library.

REFERENCES

[1] M. Averkiou, V. G. Kim, Y. Zheng, and N. J. Mitra. Shapesynth:
Parameterizing model collections for coupled shape exploration and
synthesis. Comput. Graph. Forum, 33(2):125–134, 2014.

Fig. 10: Linear constraints detected by [6].

(a) Input model, 3D histogram and dominant offsets.

(b) Synthesized model with artifacts in close view.

Fig. 11: Limitation of our method.

[2] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman. Patch-
match: A randomized correspondence algorithm for structural image
editing. ACM Trans. Graph., 28(3):24:1–24:11, July 2009.

[3] P. Bhat, S. Ingram, and G. Turk. Geometric texture synthesis by example.
In Proceedings of the Symposium on Geometry Processing, pages 41–44,
2004.

[4] M. Bokeloh, M. Wand, V. Koltun, and H.-P. Seidel. Pattern-aware shape
deformation using sliding dockers. ACM Trans. Graph., 30(6):123, 2011.

[5] M. Bokeloh, M. Wand, and H.-P. Seidel. A connection between partial
symmetry and inverse procedural modeling. ACM Trans. Graph., 29(4),
2010.

[6] M. Bokeloh, M. Wand, H.-P. Seidel, and V. Koltun. An algebraic model
for parameterized shape editing. ACM Trans. Graph., 31(4):78:1–78:10,
2012.

[7] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy mini-
mization via graph cuts. IEEE TPAMI, 23(11):1222–1239, 2001.

[8] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal,
S. Rusinkiewicz, and D. Dobkin. Modeling by example. In ACM Trans.
Graph. (Proc. Siggraph), pages 652–663, 2004.

[9] K. He and J. Sun. Statistics of patch offsets for image completion. In

ECCV, pages 16–29, 2012.
[10] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin.

Image analogies. In SIGGRAPH, pages 327–340, 2001.
[11] A. Jain, T. Thormählen, T. Ritschel, and H.-P. Seidel. Exploring Shape

Variations by 3D-Model Decomposition and Part-based Recombination.
Computer Graphics Forum, 31(2):631–640, 2012.

[12] E. Kalogerakis, S. Chaudhuri, D. Koller, and V. Koltun. A Probabilistic
Model of Component-Based Shape Synthesis. ACM Transactions on
Graphics, 31(4), 2012.

[13] J. Lin, D. Cohen-Or, H. Zhang, C. Liang, A. Sharf, O. Deussen, and
B. Chen. Structure-preserving retargeting of irregular 3d architecture.
ACM Trans. Graph., 30(6):183:1–183:10, 2011.

[14] J. Lin, D. Cohen-Or, H. Zhang, C. Liang, A. Sharf, O. Deussen, and
B. Chen. Structure-preserving retargeting of irregular 3d architecture.
ACM Trans. Graph., 30(6):183:1–183:10, Dec. 2011.

[15] P. Merrell and D. Manocha. Model synthesis: A general procedural
modeling algorithm. IEEE TVCG, 17(6):715–728, 2011.

[16] P. C. Merrell. Model synthesis. PhD Thesis, Stanford University, 2009.
[17] N. J. Mitra, L. Guibas, and M. Pauly. Partial and approximate

symmetry detection for 3d geometry. ACM Transactions on Graphics
(SIGGRAPH), 25(3):560–568, 2006.

[18] M. Pauly, N. J. Mitra, J. Wallner, H. Pottmann, and L. J. Guibas.
Discovering structural regularity in 3d geometry. ACM Trans. Graph.,
27(3), 2008.

[19] Y. Pritch, E. Kav-Venaki, and S. Peleg. Shift-map image editing. In
ICCV, pages 151–158, 2009.

[20] R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature histograms
(fpfh) for 3d registration. In ICRA, pages 3212–3217, 2009.

[21] D. Simakov, Y. Caspi, E. Shechtman, and M. Irani. Summarizing visual
data using bidirectional similarity. In CVPR, 2008.

[22] J. O. Talton, Y. Lou, S. Lesser, J. Duke, R. Měch, and V. Koltun.
Metropolis procedural modeling. ACM Trans. Graph., 30(2):11:1–11:14,
Apr. 2011.

[23] F. Tombari, S. Salti, and L. di Stefano. Unique signatures of histograms
for local surface description. In ECCV, pages 356–369, 2010.

[24] G. Turk. Texture synthesis on surfaces. In Proceedings of SIGGRAPH,
pages 347–354, 2001.

[25] Y. Wang, K. Xu, J. Li, H. Zhang, A. Shamir, L. Liu, Z. Cheng,
and Y. Xiong. Symmetry hierarchy of man-made objects. Computer
Graphics Forum (Proc. EUROGRAPHICS), 30(2), 2011.

[26] L.-Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk. State of the art in
example-based texture synthesis. Eurographics STARs, March 2009.

[27] K. Xu, H. Zhang, D. Cohen-Or, and B. Chen. Fit and diverse:
Set evolution for inspiring 3d shape galleries. ACM Trans. Graph.,
31(4):57:1–57:10, 2012.

[28] Y. Zheng, D. Cohen-Or, and N. J. Mitra. Smart Variations: Functional
substructures for part compatibility. Comput. Graph. Forum, 32(2):195–
204, 2013.

[29] K. Zhou, X. Huang, X. Wang, Y. Tong, M. Desbrun, B. Guo, and H.-
Y. Shum. Mesh quilting for geometric texture synthesis. ACM Trans.
Graph., 25(3):690–697, July 2006.

