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Figure 1: Nonlinear simulation of a deformable object with 92 k tets computed at over 120 Hz after about 4 mins of preprocessing.

Abstract

Many efficient computational methods for physical simulation are
based on model reduction. We propose new model reduction tech-
niques for the approximation of reduced forces and for the con-
struction of reduced shape spaces of deformable objects that ac-
celerate the construction of a reduced dynamical system, increase
the accuracy of the approximation, and simplify the implementa-
tion of model reduction. Based on the techniques, we introduce
schemes for real-time simulation of deformable objects and inter-
active deformation-based editing of triangle or tet meshes. We
demonstrate the effectiveness of the new techniques in different ex-
periments with elastic solids and shells and compare them to alter-
native approaches.
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1 Introduction

Methods for real-time simulation of deformable objects based on
model reduction have received much attention in recent years.
These schemes construct a low-dimensional approximation of the
dynamical system underlying a simulation and thereby achieve
a runtime that depends only on the complexity of the low-
dimensional system. We focus on two problems of reduced non-

linear simulation: the subspace construction and the efficient ap-
proximation of the reduced forces. We propose new techniques
for both problems aiming at accelerating the construction of the
approximate dynamical system, increasing the accuracy of the ap-
proximation, and simplifying their implementation. Based on this,
we implement schemes for real-time simulation of deformable ob-
jects and for deformation-based editing of triangular or tetrahedral
meshes. Beyond these two applications, the developed techniques
are potentially useful for other applications including the accelera-
tion of large simulations and the reduction of constrained spacetime
optimization problems, e.g. for motion design.

Approximation of reduced forces In addition to dimension re-
duction, the real-time simulations of deformable objects require a
scheme for efficiently approximating the nonlinear reduced forces.
The force approximation we consider here, follows the optimized
cubature introduced by An et al. [2008]. Typically interior forces
of a discrete deformable object can be written as a sum whose sum-
mands depend only on the deformation of a local neighborhood of
the object, e.g. a triangle or a tet. The idea is to exploit the correla-
tions between these summands. The dimension reduction restricts
the system to a small number of degrees of freedom, which in turn
strengthens the correlations. The strategy is to select a small num-
ber of summands and to approximate the reduced forces by a linear
combination of these summands. The subset and weights are de-
termined through an optimization procedure in which the approx-
imation error on an automatically generated set of training poses
is minimized. This is a constrained best subset selection problem.
In this paper, we devise a new scheme for efficiently solving this
problem, which is based on recent advances in the field of sparse
approximation. Our strategy for solving the subset selection prob-
lem is substantially different from that used in [An et al. 2008].
They use a greedy strategy that iteratively constructs the selection
set by successively adding one entity per iteration. In contrast, our
scheme constructs a complete selection set in the first iteration and
the whole selection set can be changed in subsequent iterations. We
demonstrate in a number of examples that our scheme can produce
a significantly smaller approximation error at lower computational
costs and is able to achieve a given training error with a smaller
selection set.

Subspace construction Subspace construction based on linear
modal analysis has become standard practice for the dimension re-
duction of linear second-order dynamical systems. However, for
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Figure 2: Interactive deformation-based editing of a Chinese dragon model with 260 k triangles (see Table 1).

nonlinear systems, such a basis cannot capture the effects of the
nonlinearities, which for the simulation of deformable objects leads
to artifacts for large deformations. We propose a simple, yet effec-
tive, technique for extending modal bases and demonstrate that the
resulting subspaces can better represent the nonlinear behavior of
deformable objects. The idea is to use linear transformations of R3

to create new basis vectors. In contrast to common usage, we do not
apply the linear transformations to deform the geometry directly,
but to “deform” the linear vibration modes. The resulting new basis
vectors depend not only on the geometry, but also on the mate-
rial properties of the deformable object. Using this strategy, modal
bases are extended in such a way that the spanned subspaces bet-
ter approximate large deformations. In our experiments, we found
the resulting effect comparable to that achieved by adding modal
derivatives to linear modal bases. Benefits of the proposed tech-
nique are that the construction is fast and simple to implement.

2 Related Work

Using subspaces constructed from linear vibration modes to accel-
erate the integration of linear second-order dynamical systems is
a standard technique with a long tradition [Pentland and Williams
1989]. Still, the question of how this technique can be general-
ized to nonlinear systems is an active area of research. One strat-
egy is to compute the vibration modes around several states and to
use the span of the union of these modes. The drawback of this
approach is the high computational cost for solving several eigen-
value problems. An alternative approach is to enrich the modal
basis with modal derivatives [Idelsohn and Cardona 1985; Barbič
and James 2005; Hildebrandt et al. 2011; Tiso 2011]. For any pair
of modes, a modal derivative can be generated. The computation
involves second derivatives of the forces. Roughly speaking, the
modal derivative computed from a pair of modes describes how
one mode changes when the object is deformed in the direction of
the other mode. Commonly a symmetrized version of the modal
derivatives, in which an order of the pair of modes is not relevant,
is used. An alternative to using modal analysis is to construct re-
duced spaces based on a principal component analysis of a set of
observations [Krysl et al. 2001].

After dimension reduction, the cost for evaluating the nonlinear in-
terior forces of a deformable object is still high as it requires com-
puting and projecting the unreduced forces. Optimized cubatures
have been successfully applied for approximating the interior forces
of different types of hyperelastic materials for elastic solids [An
et al. 2008] and thin shells [Chadwick et al. 2009]. Recently, they
were also used for reduced fluid re-simulations [Kim and Delaney
2013]. Computing the cubature points requires solving a complex
optimization problem: a best subset selection problem. To solve
the problem, current schemes use a greedy strategy that incremen-
tally builds the selection set. An alternative to force approximation

is the exact evaluation of the reduced forces. For linear materials,
e.g. the St.Venant–Kirchhoff model of elastic solids, the forces are
cubic polynomials on the shape space. In this case, the coefficients
of the restriction of the polynomials to the reduced space can be
precomputed [Barbič and James 2005]. This yields an exact rep-
resentation of the forces in the reduced space and evaluation costs
that depend only on the size of the subspace. However, the number
of coefficients to be precomputed and evaluated at runtime grows
quartically with the dimension of the reduced space.

In addition to real-time simulation, model reduction has been used
to accelerate large simulations [Kim and James 2009] and for con-
trolling the motion of deformable objects [Barbič and Popović
2008; Barbič et al. 2009; Barbič et al. 2012; Hildebrandt et al. 2012]
as well as characters [Safonova et al. 2004] and fluids [Treuille et al.
2006; Wicke et al. 2009]. Moreover, in [Hahn et al. 2012] simula-
tions in reduced spaces obtained from animators’ rigs were con-
sidered with the goal of simplifying the integration of simulation
into the traditional animation pipeline. Subset selection based on
training poses has also been used for facial articulation and global
illumination by Meyer and Anderson [2007].

Alternative approaches for real-time simulation of deformable ob-
jects in a reduced space are modal warping [Choi and Ko 2005]
and rotation strain coordinates [Huang et al. 2011]. These schemes
integrate a linearized system in modal coordinates and warp the so-
lutions to counteract artifacts produced by the linearization.

In geometry processing, deformable objects are used for editing
shapes. In such a deformation-based editing system, see [Botsch
and Sorkine 2008; Botsch et al. 2010] and references therein, a user
can select parts of a geometry as handles and translate and rotate
them in space. The system automatically deforms the shape so that
the handles interpolate or approximate the specified positions. This
is done by computing static equilibrium states of the deformable
object subject to constraints or external forces that represent the
user’s input. A major advantage of deformation-based editing over
traditional modeling techniques, like NURBS or subdivision sur-
faces, is that many complex editing tasks can be described by few
constraints. This allows for efficient and simple click-and-drag user
interfaces. To obtain an interactive editing system for larger models,
methods that accelerate the computation based on space deforma-
tion [Sumner et al. 2007; Botsch et al. 2007; Ben-Chen et al. 2009],
skinning [Jacobson et al. 2012], and model reduction [Hildebrandt
et al. 2011] have been proposed. Recently, reduced deformable ob-
jects were used to create a system for modeling simulation-ready
plants [Zhao and Barbič 2013]. The deformation based editing sys-
tem we implemented to test the proposed subspaces and force ap-
proximation follows [Hildebrandt et al. 2011].



Figure 3: User interaction with a real-time simulation of an elephant model (see Table 1).

3 Background: Dimension Reduction

In this section, we briefly review the basics of model reduction for
physical simulation and modeling of deformable objects and intro-
duce our notation. For a recent tutorial on the subject, we refer
to [Sifakis and Barbič 2012].

There are different physical models of deformable objects and var-
ious ways to discretize them. We keep our presentation general so
that it covers a broad class of discrete deformable objects; the spe-
cific setting used for our experiments is treated in Section 7. We
consider a discrete deformable object whose configuration space
is R3n, e.g. a triangular or tetrahedral mesh whose states are de-
scribed by listing the coordinates of all vertices. Let x0 be a fixed
state in R3n. We describe any deformation of x0 by a displace-
ment vector u ∈ R3n. The dynamics of a deformable object are
described by the equations of motion

M ü(t) = F (u(t), u̇(t), t),

where F represents the acting forces and M is the positive definite
and symmetric mass matrix. The forces F are a superposition of in-
ternal deformation forces F int(u(t)) of the elastic shape, external
forces F ext(u(t), u̇(t), t), and damping forces F damp(u(t), u̇(t)).

Dimension reduction restricts the configuration space to a d-
dimensional subspace V of R3n. The construction of such a space
is treated in Section 5. Let {bi}i∈{1,2,...,d} be a basis of V , then the
matrix U = [b1, b2, ..., bd] ∈ R3n×d maps the reduced coordinates
q in V onto the corresponding displacement vector u ∈ R3n,

u = U q.

The reduced equations of motion are

M̄ q̈(t) = F̄ (q(t), q̇(t), t), (1)

where

M̄ = UTMU and F̄ (q(t), q̇(t), t) = UTF (Uq(t), U q̇(t), t)

are the reduced mass matrix and the reduced forces. In Section 4,
we show how the reduced forces can be efficiently approximated.

Deformation-based editing Deformation-based editing allows a
user to model a shape by first selecting arbitrary regions of the
shape as handles and then translating and rotating them in space.
The modeling system automatically computes shapes that follow
the handles. This is realized by treating the shape as a deformable
object and translating the user input into forces that act on the ob-
ject. Static equilibrium states of the deformable object under the ex-
ternal forces are then computed. We assume that the internal forces

are conservative and denote the potential (deformation energy) by
E(u). The external forces are Hookean zero-length springs that act
on the handles and pull them towards a position indicated by the
user. We denote the potential of the springs by EC(u) and set

E(u) = E(u) + EC(u).

The deformed shape is the minimizer

arg min
u∈R3n

E(u). (2)

Since the geometries are often highly resolved, e.g. 3D-scan data,
this is a high-dimensional nonlinear optimization problem. Model
reduction can be used to get an interactive system for deformation-
based editing, see [Hildebrandt et al. 2011]. In such system, the
optimization problem (2) is replaced by the reduced problem

arg min
q∈V

E(Uq). (3)

To get interactive response times, an efficient approximation of the
energy and gradient in the reduced spaces is needed. In [Hilde-
brandt et al. 2011] a mesh coarsening approach was used. The force
approximation proposed in next section is an alternative to this.

4 Force Approximation

Applying dimensional model reduction to complex, nonlinear sys-
tems can significantly improve the runtime performance. However,
evaluating the reduced internal forces F̄ int by computing F int and
projecting it into the subspace becomes expensive when the mesh
size increases. To make the computational costs independent of the
size of the full problem, an efficient evaluation of the reduced in-
ternal forces is needed. The optimized cubature, proposed by An et
al. [2008], constructs an approximation of the reduced forces based
on a best subset selection problem. We follow this approach and set
up a similar optimization problem in Equation (6). However, we
propose a completely different strategy to solve the best subset se-
lection problem in Section 4.1. A comparison of running times and
accuracy of the proposed scheme and the greedy solver used in [An
et al. 2008] on a set of different models and parameter settings can
be found in Table 1.

We assume that the internal forces can be written as a sum

F int(u) =

m∑
i=1

f int
i (u),

where any f int
i depends only on a local neighborhood, e.g. the four

vertices for a tet. A wide range of discretizations, e.g. finite ele-
ments, represent F int(u) in such a form. Then, the reduced force



F̄ int satisifes

F̄ int(q) =

m∑
i=1

UT f int
i (Uq) =

m∑
i=1

f̄ int
i (q),

where f̄ int
i (q) = UT f int

i (Uq). The idea behind the approximation
of F̄ int is to exploit the correlations between the f̄ int

i s. We care-
fully select a subset of the f̄ int

i s and assign a non-negative weight
wi to any selected f̄ int

i . Then, the approximate reduced force is
a linear combination of the selected f̄ int

i s. Formally, we store the
weights and indices of the selected f̄ int

i s in a sparsem-dimensional
vector w. An nonzero entry wi in w, means that f̄ int

i is in the se-
lection set and has the weight wi. Then, we define

F̄ int(q) ≈ F̃ int
w (q) =

∑
i∈supp(w)

wif̄
int
i (q), (4)

where supp(w) denotes the support w, e.g. the set of indices with
non-zero entries of w. The motivation for restricting to positive
weights is that we want to preserve the structure of F int and reduce
the potential of overfitting the model function to the training data.

Figure 4: Optimal set of components used for the approximation of
the reduced forces. Left: tets in a solid model of the dragon; right:
edge flaps in the shell model of the elephant (see Table 1).

Determining a good subset of components and weights, is a non-
trivial task for general, nonlinear materials and geometrically com-
plex objects. We deal with this problem by using a data-driven
approach that learns the best subset and weights from a set of T
automatically generated training poses (and corresponding forces).
Let {qt}t=1,...,T be the set of training poses. Then, the relative
fitting error of F̃ int

w to the training forces is

ε(w) =

√√√√ 1

T

T∑
t=1

εt(w)2∣∣∣∣F̄ int(qt)
∣∣∣∣2 , (5)

where εt(w) = ||F̄ int(qt)− F̃ int
w (qt)|| is the absolute approxima-

tion error to F̄ int(qt). The problem of finding a sparse approxi-
mation can now be stated in terms of an optimization problem in
which we try to minimize the fitting error

min
w

ε(w)2 subject to w ≥ 0, |supp(w)| ≤ s, (6)

where |supp(w)| denotes the cardinality of supp(w). As ε(w)2 de-
pends quadratically onw, (6) is a best subset selection problem with
non-negativity constraints. This can be seen by reformulating the
error as ε(w) = 1√

T
||Aw − b||, where A ∈ RdT×m and b ∈ RdT

are defined by

A =


f̄int
1 (q1)

||F̄ int(q1)|| . . .
f̄int
m (q1)

||F̄ int(q1)||
...

. . .
...

f̄int
1 (qT )

||F̄ int(qT )|| . . .
f̄int
m (qT )

||F̄ int(qT )||

 , b =


F̄ int(q1)

||F̄ int(q1)||
...

F̄ int(qT )

||F̄ int(qT )||

 .

In the remainder of this section, we provide details of the individual
steps needed to estimate an optimal subset, i.e., a solution to (6).
The complete optimization scheme is summarized in Algorithm 1.

4.1 Optimal subsets via sparse approximation

Best subset selection problems are ubiquitous in a variety of disci-
plines and much research has been devoted to their efficient solu-
tion. In particular, their presence in the field of Compressed Sens-
ing received significant attention and triggered further advance-
ments, one of them being the normalized iterative hard thresholding
(NIHT) algorithm [Blumensath and Davies 2010].

Let f(w) = Tε(w)2 be the objective function. Then, an iteration
of the NIHT algorithm is given by

wi+1 = Hs(wi − µi∇f(wi)), (7)

where∇f(wi) = 2AT (Awi−b) andHs is a combinatorial projec-
tion that sets all but the s largest (in magnitude) entries of a vector
to zero. Increased stability over the traditional hard thresholding
algorithm is due to choosing the step length µi adaptively in every
iteration. Before we proceed to the estimation of µi, we remark that
the support of wi+1 will be necessarily contained in the 2s-element
set

Si = supp(wi) ∪ supp(Hs(−∇I\supp(wi)f(wi))). (8)

Here ∇Kf denotes the gradient of f with all entries not in the set
K set to zero and I = {1, . . . ,m}. Based on Si, the step length is
computed to be

µi =

∣∣∣∣∇Sif(wi)
∣∣∣∣2

||A∇Sif(wi)||2
. (9)

Despite its simplicity, under certain conditions, NIHT has a lin-
ear rate of convergence and can approximate sparse solutions with
near optimal accuracy. However, NIHT can be further acceler-
ated (see [Cevher 2011]). One of the most effective acceleration
methods is the hard thresholding pursuit (HTP) by [Foucart 2011]
which adds a second step to the NIHT algorithm. In every itera-
tion, the projected gradient descent step in (7) is preceded by the
low-dimensional minimization

w∗,i+1 = arg min{v|supp(v)⊆supp(wi+1)}f(v). (10)

We propose a novel algorithm, called non-negativity-constrained
HTP (NN-HTP) that extends HTP by an efficient treatment of non-
negativity constraints. First, we define a new projection operator

Algorithm: NN-HTP
Data: f, w0, tol
Result: x∗
w0 ← H+

s (w0);
for i = 1, 2, . . . do

(Lazy) evaluate∇f(wi);
if
∣∣∣∣∇f(wi)

∣∣∣∣ ≤ tol then return wi;
Determine Si via (8) usingH+

s ;
Determine µi via (9);
wi+1 ← H+

s (wi − µi∇Sif(wi));
X i+1 ← supp(wi+1);
if X i+1 = X i then return wi;
wi+1 ← arg min{v|supp(v)⊆X i+1,v≥0} f(v);

end
Algorithm 1: Non-negativity-constrained hard thresholding pur-
suit.



H+
s (w) that projects w to the new feasible region, i.e. ignores all

negative entries and keeps only the s largest ones. To satisfy the
constraints, we replace the projection operator in (7) withH+

s . Ac-
cordingly, we account for the adjustments in (7) by applying H+

s

in (8) to ensure the correct support estimation.

The second step is to incorporate the non-negativity constraints in
the s-dimensional minimization (10). Let A′ ∈ RdT×s denote the
submatrix of A containing only the columns corresponding to el-
ements in supp(wi) and w′ ∈ Rs the associated subvector of wi.
Then, we can determine the minimizer w∗,i+1 by solving the non-
negative least squares (NNLS) problem A′w′ = b with w′ ≥ 0.
In our experiments, these NNLS problems proved to be too stiff
for projection-based solvers like L-BFGS-B [Morales and Nocedal
2011]. Therefore, we employ the efficient FNNLS solver by Bro
and De Jong [1997], an active set solver that accelerates the solu-
tion of the normal equations by precomputing the matrix A′TA′.

Lazy optimization In every iteration of our NN-HTP solver, at
most s new components can enter the subset. Considering all re-
maining components as candidates comes at significant computa-
tional costs; especially since matrix A requires a storage size of
O(dTm) and is therefore evaluated only partially when needed.

To reduce the costs of the subset optimization, we introduce a pa-
rameter c that allows to specify the number of considered com-
ponents. This parameter allows us to trade-off convergence speed
against iteration costs of our NN-HTP solver. In every iteration, we
randomly choose c of the remaining components and calculate only
the corresponding columns ofA. In fact, we found that considering
only a subset can even increase the convergence of the algorithm.
For our examples, we achieved the best results with c ≈ 5s.

Automatic training pose generation Given the material and a
subspace deformation model for a deformable object we can gener-
ate training poses automatically by randomly sampling points in the
subspace. To acquire a material-aware sampling that roughly bal-
ances the ratio of configurations with high and low strain energy,
we perform the sampling in the basis φ̄1, φ̄2, . . . , φ̄d of vibrations
modes in the reduced space. In particular, qt =

∑d
i rnd(ω̄−1

i )φ̄i,
where rnd(ω̄−1

i ) generates normally distributed random numbers
with standard deviations proportional to the inverse of the fre-
quency ω̄i.

5 Subspace Construction

We propose a construction of subspaces for nonlinear simulations
of deformable objects. We start with is a modal basis consisting
of low-frequency vibration modes around a rest state of the elas-
tic energy. Modal bases depend on the geometry and the mate-
rial of the deformable object and are a standard tool for the model
reduction of linear problems, e.g. if only small deformations oc-
cur. For deformable objects undergoing large deformations, these
spaces cannot capture the nonlinearities. This is reflected in a large
increase of strain energy (and visible artifacts) when such a state is
projected onto the subspace. The effect is illustrated in Figure 9, in
which editing results computed in different subspaces are shown.
To compensate for these effects, we propose a strategy for enrich-
ing modal bases. The idea is to add new vectors to the basis that are
obtained by applying certain linear transformations to the vectors in
the modal basis. This provides the subspace with additional degrees
of freedom that can compensate for artifacts which would appear in
the space spanned by the modal basis. Our experiments show that
the effect we achieve through this construction is comparable to that
of enriching a modal basis with modal derivatives.

Modal bases Let us assume that x0 is a static and stable equi-
librium for some constant external force. If the object is excited
(by a small enough stimulus), it vibrates around x0. The vibration
modes φi and frequencies ωi can be computed by solving the sparse
generalized eigenvalue problem

ω2
i M φi = K φi,

where K = ∂
∂u
F int(0) is the tangential stiffness matrix. The

modal bases we use as a starting point for our construction of a
reduced space consists of the 15-20 eigenmodes with the lowest
frequencies.

Extended modal bases In the continuous setting, an element of
the modal basis is a vector field which assigns a vector in R3 to
every point of the deformable object. Similarly, we can interpret a
modal vector φi ∈ R3n as a discrete vector field consisting of n
vectors in R3, e.g. a R3-vector at every vertex of a triangle or tet
mesh. To construct a new vector field from a mode φi, we consider
a linear map on R3 and apply it (the same linear map) to all n R3-
vectors of the mode. For example, we fix an angle and an axis in
R3 and rotate all the n vectors by the same angle about the same
axis.

Figure 5: Linearization of rotations (first image) introduce artifacts
(second image). By rotating the vectors of the linearized rotation
by 90◦ (third image), one obtains a vector field that can be used to
compensate for the artifacts (fourth image).

Let us look at the simple example shown in Figure 5. It illustrates
that extending a basis using this construction can help to compen-
sate for linearization artifacts. We consider a 2D-object in the plane
(a square in the figure) and a vector field pointing into the direction
of a linearized rotation (around some center c). Moving the ver-
tices of the object along the direction of the vector field, rotates the
object, but at the same time produces an artifact: the volume of
the object is increased. Now we construct a second vector field by
rotating every vector of the linearized rotation by 90◦. Then, any
rotation of the object around c can be exactly described as a linear
combination of the two vector fields.

Motivated by such examples, we propose using construction for ex-
tending modal bases. If a modal basis consists of r modes, then the
extended basis can have at most 9r vectors, since there are only nine
linear independent linear maps on R3. The scheme for extending a
modal basis is outlined in Algorithm 2. In the first step, 9r vectors
are constructed based on the r modes. Then, the Gram–Schmidt
process is applied to get an orthonormal basis of the corresponding

Figure 6: Three linear modes (left) and for each of the three modes
two vectors obtained through our basis extension are shown.



reduced space. A basis in the space of linear maps on R3 is formed
by the nine matrices Bkl that have only one non-vanishing entry,
which takes the value 1. By applying each of the matrices Bkl to
the n R3-vectors of a mode, we obtain the desired nine new R3n-
vectors. The construction of all 9r vectors can be implemented in
four nested for-loops. The first loop (index i in Algorithm 2) iter-
ates over all modes, the second (index j) over all n R3-vectors of
the ith mode, and the third and fourth (indices k and l) over the
9 matrices Bkl. The body of the inner loop multiplies the matrix
Bkl by the jth R3-vector of the ith mode and inserts the result into
the corresponding vector of the extended basis. This requires only
one assignment since after a multiplication with Bkl, a R3-vector
has only one non-zero component. The construction of the 9r vec-
tors requires only 9rn assignments, and, therefore, is fast compared
to the construction of the modal basis. In Algorithm 2, the R3n-
vectors successively list the x-coordinates the n R3-vectors, then
the n y-coordinates, and finally the z-coordinates.

Algorithm: Extend Modal Basis
Data: φ1, φ2, . . . , φr ∈ R3n

Result: e1, e2, . . . , ed ∈ R3n

allocate b1, b2, . . . , b9r = 0 ∈ R3n;
for i = 1, 2, . . . , r do

for j = 1, 2, . . . , n do
for k = 1, 2, 3 do

for l = 1, 2, 3 do
b9(i−1)+3(k−1)+l[(l−1)n+j] = φi[(k−1)n+j];

end
end

end
end
{ei} ← orthonormalize({bi});

Algorithm 2: Construction of the extended modal basis.

If the object is unconstrained, the first six eigenmodes span the
translations and the linearized rotations of the object. In this case,
we modify the construction. In the first step, we apply the exten-
sion strategy to the modes {φ7, φ8, . . . , φr}. In the second step,
we add 12 basis vectors that span all affine transformations, i.e. lin-
ear transformations and translations, of the object to the basis. To-
gether, the extended modal basis has maximum of 9r (constrained
object) or 9(r − 6) + 12 (unconstrained object) vectors. The num-
ber of elements of the basis can be smaller if the generated vectors
are linearly dependent. Examples of vectors in the extended modal
basis are shown in Figure 6.

There are also alternative schemes for computing a basis that spans
the same reduced space. For example, one could use another basis
of the space of linear maps on R3 to construct the 9r vectors. We
chose to use the basis Bkl because the sparsity of the matrices Bkl

reduces the number of required arithmetic operations.

6 Applications

Before a real-time simulation or interactive editing session starts,
we compute a subspace and the selection set for the force approxi-
mation using our techniques.

Real-time simulation To simulate the dynamics of a reduced de-
formable object, the system (1) is numerically integrated over time.
Due to the nonlinear forcing terms and the high-frequency compo-
nents contained in our large-deformation model, explicit schemes
can be hard to control as numerical stiffness causes the integrator
to become unstable. Because stability is crucial for interactive ap-
plications, we opt for a second-order accurate, implicit Newmark

Figure 7: Deformations of an object with inhomogeneous material.
Left: initial state with color-coding of Young’s modulus (red and
green denote values of 8× 104 and 1× 104, respectively); middle:
unreduced solution; right: solution in a 138-dimensional subspace.

integrator. In particular, we use the average acceleration method
(see [Hughes 2000]), which is unconditionally stable and widely
used in structural dynamics. Each timestep involves solving a d-
dimensional nonlinear system of equations. In our experiments,
we found a quasi-Newton solver that constructs an approximation
of the inverse of the Jacobian on the fly during optimization to be
very effective for this. Explicitly, we used a variant of Broyden’s
method (see [Dennis and Schnabel 1987]), which achieves superlin-
ear convergence, but in each iteration merely requires the evaluation
of the internal forces, a low-rank matrix update, and matrix-vector
operations. Using the force approximation, all these operations can
be performed at O(d2) cost. To achieve a warm start, we compute
the inverse Jacobian at the rest state during the preprocess and use
it as a preconditioner for the nonlinear system. An alternative to the
quasi-Newton scheme would be to use a Newton-Raphson solver.

Figure 8: Comparison of simulations of a spring pulling at a de-
formable object. From left to right: reference full simulation, simu-
lation using the proposed space reduction and force approximation,
results of a nonlinear simulation in a reduced space spanned by lin-
ear modes. Reduced spaces have the same dimensions.

Deformation-based modeling In recent years, deformation-
based modeling has attracted much attention due to its simple user-
interface and the ability to directly model unstructured meshes,
e.g. produced by 3D-scanners. In [Hildebrandt et al. 2011] an edit-
ing system based on a model reduction of the nonlinear optimiza-
tion problem (2) was proposed. We follow this approach but replace
the subspace construction and force approximation techniques.

Solving the reduced optimization problem (3) is related to finding
the roots of the nonlinear system of equation arising from implicit
Newmark integration. Since the Hessian of the reduced energy is
the Jacobian of the d-dimensional system of equations ∂

∂q
Ē(q) = 0,

it could be approximated using the same techniques from the pre-
vious paragraph. However, we would neglect important properties



Figure 9: Comparison of deformations found in 93-dimensional
subspaces. Reference solution in unreduced space and rest states
as superscripts (top row), our reduced space (second row), linear
modes and modal derivatives (third row), only linear modes (bot-
tom row).

inherent to the minimization problem, e.g., the Hessian of the en-
ergy is symmetric. An efficient quasi-Newton solver which incor-
porates these properties and again approximates the inverse Hessian
(saving the costs of linear system solves) is the BFGS method (see
[Dennis and Schnabel 1987]). As in Broyden’s method, we can
achieve a significant acceleration in convergence by providing the
solver with the inverse Hessian at the rest state as a warm start.

Our modeling system allows a user to mark parts of the object as
handles which, during runtime, can be translated and rotated in
space by the user to prescribe modeling operations. Once the user
defines those handle regions, we set up the control energy EC . Let
Cj be a randomly determined subset of vertex indices correspond-
ing to the j-th handle. Then EC is the quadratic energy

EC(u) =
∑
j

∑
i∈Cj

wj(vi − v′i)2,

where wj is a handle weight and vi, v′i are the current and pre-
scribed positions of the i-th vertex. In our experiments, we chose
the number of sampling points for the handle regions in the order
of the cardinality of the selection set used for approximating the
elastic forces.

The interior forces equal the negative of the gradient of the elastic
potentialE. Therefore, the force approximation can be used for fast

gradient approximation. To approximate the elastic potentialE, we
use the same selection set and weights.

7 Results and Discussion

To test the proposed force approximation and subspace construc-
tion, we implemented the schemes for real-time simulation and
deformation-based editing discussed in Section 6. We experi-
mented with elastic solids and shells; in particular, we used finite
elements discretizations of the St.Venant–Kirchhoff and Mooney–
Rivlin material models of elastic solids and Discrete Shells [Grin-
spun et al. 2003]. For the simulations, we used (linear) Rayleigh
damping.

The reduced internal forces of a single component (tet or edge flap)
can be evaluated at O(d) cost. As in [An et al. 2008], we ob-
served that the number of components needed to achieve a given
error tolerance grows linearly with the subspace dimension. Thus,
our reduction achieves force approximation independently of the
full shape space at O(d2) cost. Runtime statistics of reduced sim-
ulations for various geometries and parameter settings are listed in
Table 1. This includes timings for the evaluation of the reduced
forces and one step of an implicit Newmark integration. In ad-
dition, the resulting time-stepping rate of subspace integration (as
average measured over 1k timesteps with constant external loads)
is listed. Depending on the parameter settings, the reduced simula-
tions achieve rates of 50-5000 implicit Newmark integration steps
per second.

The total time needed to set up the reduced deformable models is
dominated by the subspace construction, training force evaluation
and subset optimization. Table 1 provides the times for each of
the steps. Figure 4 visualizes optimal sets of components, i.e., tets
and edge flaps used to approximate the St.Vernant–Kirchhoff mate-
rial and the discrete shells energy, respectively. Clearly, component
selection is not based on purely geometric criteria. In particular,
components tend to cluster in certain regions of the objects, e.g.,
the jaw of the dragon and the right fore leg of the elephant; both
regions proved to exhibit more versatile deformation behavior as
compared with regions having fewer components.

Most of our experiments consider homogeneous materials. Still,
since our construction of a reduced space includes a modal basis, it
is material-aware. Figure 7 shows an example of a deformation of
an inhomogeneous block made from two different materials. The
reduced space adapts to the inhomogeneous material. For compari-
son, we show the unreduced (reference) solution.

To evaluate the fidelity of the reduced simulation, we measured the
deviation of the reduced from the reference-full simulation for a
dragon model with 92 k tets. The average L2-distance over all

Figure 10: Runtime accuracy. Lateral displacement of a vertex at
the head of the dragon model (see Fig. 1 and Table 1) for the full
and different reduced simulations.



Model #Cmps d (r) U T b s F̃ int
w Step Steps/s NN-HTP Greedy Cubature

error time error time
sh

el
l

Bunny 104310 135 (15) 26s 2k 125s 800 3.7ms 10.7ms 93 2.9% 593s 12.2% 2.2h
Chinese dragon 389994 138 (20) 110s 1k 243s 250 1.5ms 4.9ms 203 7.4% 69s 17.4% 266s
Dinosaur 168576 135 (15) 41s 1k 101s 500 3.0ms 7.9ms 126 2.3% 223s 11.0% 1293s
Elephant 75000 135 (15) 18s 1k 46s 500 2.8ms 10.1ms 99 3.7% 205s 11.0% 1356s
VW Beetle 52645 300 (300) 67s 2k 227s 800 9.7ms 20.6ms 49 2.8% 1473s 12.1% 2.7h

so
lid

Aorta∗ 35551 138 (20) 6s 1k 73s 200 1.0ms 4.4ms 245 2.1% 22s 10.9% 182s
Dragon∗ 92386 135 (15) 10s 1k 182s 150 0.9ms 3.7ms 272 1.5% 63s 8.4% 130s
Menger† 393216 135 (15) 36s 1k 332s 100 0.5ms 2.0ms 509 2.7% 8s 7.0% 116s
Neptune† 691434 135 (15) 55s 1k 396s 200 0.8ms 2.4ms 424 2.8% 41s 25.6% 148s
Skull∗ 156157 300 (300) 186s 1k 470s 250 3.5ms 9.6ms 104 2.3% 66s 8.4% 606s
Vertebrae∗ 70447 15 (15) 7s 1k 117s 30 0.1ms 0.2ms 5059 1.5% 1s 7.6% 6s

Table 1: Statistics measured on a 2012 MacBook Pro Retina 2.6GHz. From left to right: number of components, dimension of subspace
(number of linear modes used), time for subspace construction, number of training poses, time for computation of training forces, posed
cardinality constraints, time to evaluate force approximation, time for one step of implicit Newmark integration, time-stepping rate of subspace
integration, achieved subset optimization error and optimization time for our scheme and the scheme from [An et al. 2008]. Experiments
are based on Discrete Shells [Grinspun et al. 2003] and finite elements discretizations of the St.Venant–Kirchhoff (∗) and Mooney–Rivlin (†)
material models. (3% error and max. 10 iterations for NN-HTP as stopping criteria for all runs except the example of the dragon, which
converged to 1.5% after 18 iterations.)

frames is listed in Table 2. Additionally, we show both simula-
tions in the accompanying video and plot the lateral displacement
of the mesh vertex with the largest initial velocity (a vertex at the
side of the head) in Figure 10. The example illustrates that the
proposed scheme is able to closely match the unreduced trajectory
while featuring superior runtime performance—a more than 6000-
fold increase in simulation speed after only about four minutes of
preprocessing.

Comparison to Greedy Cubature An advantage of the proposed
solver compared to the greedy strategy of An et al. [2008] is that
the NN-HTP scheme reduced the number of iterations required to
construct a selection set. The greedy strategy adds one component
to the selection set in every iteration, hence, requires as many itera-
tions as the cardinality of the selection set. In contrast, the NN-HTP
builds a complete selection set in the first iteration and then updates
this set at every iteration. In our experiments, we typically needed
ten or less iterations to construct the selection set. As a consequence
the number of NNLS problems that need to be solved to construct
a selection set decreases. In addition, we use the FNNLS routine to
solve the NNLS problems, which we found more effective than the
Lawson–Hanson algorithm, see [Lawson and Hanson 1974], used
by An et al. [2008]. We want to remark that, independent from
our work, Kim and Delaney [2013] proposed a modified greedy cu-
bature construction that reduces the number of iterations and uses
FNNLS.

Table 1 provides a comparison of our optimization algorithm (NN-
HTP) to the greedy optimization approach by [An et al. 2008] (us-
ing the implementation by Steven An with enabled parallelization).
For the comparisons we used St.Venant–Kirchhoff and Mooney–
Rivlin materials and Discrete Shells. The results illustrate the ad-
vantages of NN-HTP: it produces a significantly smaller approxi-
mation error in considerably less time. Furthermore, it is able to
achieve a given training error with a smaller selection set yield-
ing force approximations with considerably higher runtime perfor-
mance. In particular, Figure 11 extends the elephant experiment
from Table 1 by showing approximation errors as a function of
the sparsity constraints. Greedy cubature reaches 3.7% training
error with 1474 sparsity constraints (almost three times as many
as needed by NN-HTP). Tests of the greedy algorithm were per-
formed using runtime-favoring configurations as reported in [An
et al. 2008] (|C| = 100, Ts = 10). However, as shown in Figure 12,

Figure 11: Achieved subset op-
timization error with increasing
sparsity constraints for NN-HTP
and the Greedy Cubature by [An
et al. 2008]. This plot shows op-
timization results for the elephant
shell model in a 135 dim. sub-
space (cf. Table 1 for s = 500).

disabling the subset training only slightly improves the approxima-
tion error from 11.0% to 8.5% but significantly increases runtime.
On the other hand, NN-HTP is able to find a solution with 2.3%
error in only ten iterations. The benefit of a more accurate force ap-
proximation for simulation is illustrated in the accompanying video
and Figure 10. The video contains a sequence that compares the
full simulation of the dragon model with reduced simulations using
force approximations computed by our method and by greedy cuba-
ture with the same cardinality constraints (for details see Table 1).
Furthermore, the figure shows the lateral displacement of the mesh
vertex with the largest initial velocity for the different simulations.

Figure 12: Comparison between our NN-HTP and Greedy Cuba-
ture [An et al. 2008] for the dinosaur model (see Table 1). (∗) Dis-
abling subset training in greedy solver increases runtime immensely
with only marginal improvements in convergence.



Comparison to modal derivatives To evaluate how well our
extended modal bases can represent large deformations, we com-
pare simulation and editing results obtained different subspaces:
modal bases, extended modal bases, and modal bases augmented
with modal derivatives. For the examples of static states shown in
Figure 9 and the simulation of a dragon models shown in Figure 1,
Table 2 lists the relative L2-error, i.e. the L2-norm of the difference
of the reduced and the unreduced reference solutions divided by the
area/volume of the rest state. The configurations that define the four
static states are taken from [Botsch and Sorkine 2008], where they
were tested using different linear editing schemes, e.g. based on
linearized thin shells. None of the linear schemes could deal with
all four poses without developing visible artifacts.

Model #v d Our M. D. Linear
Bar 6k 93 0.0109 0.0113 0.0851
Cactus 5k 93 0.0131 0.0057 0.0933
Cylinder 5k 93 0.0089 0.0080 0.0565
Plate 40k 93 0.0109 0.0136 0.0266
Dragon 26k 135 0.0170 0.0225 0.0440

Table 2: Subspace Fidelity. From left to right: number of ver-
tices, subspace dimension, L2-norms of the differences between the
unreduced solution to those obtained in subspaces from our con-
struction, modal derivatives, and linear modes only. See Fig. 9 for
shell examples and Fig. 1 for snapshots from the simulation of the
dragon.

For the comparisons, we used subspaces of the same dimension. In
most cases, we used 15 eigenmodes to construct the extended modal
basis. This yields 93- or 135-dimensional spaces depending on
whether the object is constrained or unconstrained, see Section 5.
For some unconstrained objects, we used 20 eigenmodes, resulting
in 138-dimensional subspaces. To construct subspaces of equal di-
mension using modal derivatives, we start with the same number
r of linear modes, compute all modal derivatives, and choose the
required number of basis vectors from the span of the computed
derivatives. For r = 15 and an unconstrained object, all modal
derivatives are used.

For all examples, our construction and spaces enriched with modal
derivatives yield better approximations of the unreduced reference
solution than the spaces constructed only from linear modes. The
results obtained with our construction and with modal derivatives
are of comparable approximation quality. We want to remark that
this comparison is limited to hyperelastic, isotropic, and homoge-
neous materials and the ratio of linear modes and modal derivatives
described above.

Model #v d (r) Φ Our M. D.
Chinese Dragon 130k 138 (20) 102s 8s 407s
Dinosaur 56k 135 (15) 38s 3s 169s
Elephant 25k 135 (15) 17s 1s 81s
Dragon 26k 135 (15) 9s 1s 28s
Vertebrae 16k 135 (15) 7s 1s 21s

Table 3: Subspace construction times. From left to right: number
of vertices, subspace dimension (number of used vibration modes),
time for computation of vibration modes, our extended modes and
modal derivatives.

We found the results promising, since compared to modal deriva-
tives, the proposed basis extension is easier to implement and faster
to execute. To illustrate the lower computational costs, we list com-
putation times for the construction of the linear modes, our ex-
tended modes, and the modal derivatives in Table 3. Of course,

these times may vary depending on what solvers are used for the
computation of the eigenmodes and the modal derivatives. To com-
pute the eigenmodes, we use our implementation of the shift-and-
invert Lanczos method. Since the computation of the modal deriva-
tives involves solving a number of linear systems with the same
matrix, we use a sparse direct solver for the systems (reusing the
factorization). Additionally, we set up the right-hand sides of the
systems in parallel.

Deformation-based editing The deformation-based editing sys-
tem we implemented follows [Hildebrandt et al. 2011]. The tech-
niques for subspace generation and reduced force approximation
used therein, can be directly replaced by the techniques proposed
here. In [Hildebrandt et al. 2011], modal derivatives are used for
the construction of the subspace and the preprocessing costs are
dominated by the subspace construction. Hence, using the extended
modal bases instead, reduces the preprocessing time of the method
(as discussed and analyzed above).

The editing method focuses on global edits. Local edits are only
supported to a certain degree, depending on what can be represented
in the subspace. Creating a method that integrates local and global
edits, e.g. by extending the subspace basis on the fly, is still an open
problem. For reduced simulations, a method that extends a reduced
space during runtime, e.g. to represent collisions more accurately,
was recently proposed by Harmon and Zorin [2013]. For interactive
shape editing, there are many alternative schemes to [Hildebrandt
et al. 2011] (see Section 2). A through comparison of the different
methods, however, lies beyond the scope of this paper.

8 Conclusion and Future Work

We propose model reduction techniques for the approximation of
the reduced forces and for the generation of subspaces for de-
formable objects. We demonstrate their effectiveness in real-time
simulations and deformation-based editing and compare them to
alternative techniques.

Beyond the discussed applications, we will use our model reduc-
tion techniques to accelerate the integration of large simulations.
Such a scheme must satisfy an error tolerance and therefore needs
to modify the reduced space and force approximation if the toler-
ance cannot be achieved with the current reduced model. We expect
benefits from both techniques presented in this paper for this appli-
cation. Our construction of a reduced basis, which is fast and sup-
ports large deformations, could be used to accelerate adjusting or
recomputing the reduced space. Furthermore, our NN-HTP solver
could incrementally update the force approximation using the pre-
vious approximation as a starting point.

Another direction for future work is to develop fast solvers for other
physical systems, or, more generally, to other problems that are
modeled with complex systems of equations based on the proposed
techniques.

Acknowledgements

We would like to thank Steven S. An for sharing his cubature source
code and the anonymous reviewers for their comments and sug-
gestions. This work was supported by the Max Planck Center for
Visual Computing and Communication (MPC-VCC) and the DFG
Research Center MATHEON “Mathematics for Key Technologies”.



References

AN, S. S., KIM, T., AND JAMES, D. L. 2008. Optimizing cubature
for efficient integration of subspace deformations. ACM Trans.
Graph. 27, 5 (Dec.), 165:1–165:10.
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