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We introduce a variational approach for modeling n-symmetry vector and
direction fields on surfaces that supports interpolation and alignment con-
straints, placing singularities and local editing, while providing real-time
responses. The approach is based on novel biharmonic andm-harmonic en-
ergies for n-fields on surface meshes and the integration of hard constraints
to the resulting optimization problems. Real-time computation rates are
achieved by a model reduction approach employing a Fourier-like n-vector
field decomposition, which associates frequencies and modes to n-vector
fields on surfaces. To demonstrate the benefits of the proposed n-field model-
ing approach, we use it for controlling stroke directions in line-art drawings
of surfaces and for the modeling of anisotropic BRDFs which define the
reflection behavior of surfaces.
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1 INTRODUCTION
The design, synthesis and processing of tangential vector fields on
surfaces is essential for various applications in computer graphics.
Often, we are not dealing with classical vector fields, but with n-
fold rotational symmetry vector fields (or n-vector fields), like line
fields (n=2) or cross fields (n=4). The structure of n-vector fields
differs significantly from that of classical vector fields. For example,
n-vector fields allow for more general singularities of fractional
degree, and, compared to vector fields, the calculus of n-vector fields
is scarcely developed. Therefore, the processing of n-vector fields
poses challenging problems and promises rewarding benefits for
the applications.
The goal of this paper is to develop the techniques needed for

a modeling tool for n-vector fields on surfaces that includes the
following features:

(1) Hard interpolation constraints. This enables users to create
smooth n-vector fields by specifying a sparse sets of interpo-
lation constraints.
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(2) Smooth dependence on the constraints. The constructed n-
vector fields should depend smoothly on the constraints. This
allows users to edit n-vector fields by modifying the con-
straints as changing the constraints smoothly changes the
n-vector field that is modeled.

(3) Local editing. To fine-tune results, the user should be able
to mark a region and only model the field inside the region
without affecting the n-vector field outside the marked region.

(4) Real-time responses. To enable modeling and fine-tuning of
n-vector fields, immediate responses are needed.

(5) n-direction fields.The tool should allowmodeling ofn-direction
fields, which are n-vector fields consisting only of unit vec-
tors.

For surface modeling and other modeling tasks, tools offering anal-
ogous to the first four features proved to be effective. Therefore
we are convinced that a modeling tool for n-vector fields that com-
bines these features is helpful for a variety of graphics applications.
The fifth feature is important for applications in which directions
rather than vectors are needed and the magnitude of vectors is not
relevant.
To realize these goals, we introduce n-field splines, a variational

approach for modeling n-vector fields and n-direction fields on sur-
faces. The basis of our approach are novel higher-order fairness
energies for n-vector fields: a biharmonic energy and more gener-
ally m-harmonic energies. The n-vector field splines are defined,
analogously to the variational characterization of classical spline
functions, as the minimizers of a higher-order fairness energy sub-
ject to constraints. The use of higher-order energies enables us to
integrate constraints that realize the desired modeling features to
the variational problem. Local editing and interpolation constraints
at single points can be enforced in the optimization and the higher-
order energies ensure that the resulting minimizers smoothly transi-
tion from the edited to the constrained region and behave smoothly
around the interpolation constraints.
To implement the concept of n-field splines, we developed sev-

eral new techniques. We introduce a biharmonic energy and more
generallym-harmonic energies for piecewise constant (face-based)
n-vector fields on triangle surface meshes. By applying a princi-
ple for the design of quadratic fairness energies for direction fields
proposed in [Knöppel et al. 2013] to our setting, we extend them-
harmonic energies for n-vector fields tom-harmonic energies for
n-direction fields. Secondly, we integrate hard interpolation and
alignment constraints, as well as constraints for placing singulari-
ties to the minimization of the higher-order energies for n-vector
and n-direction fields. These approaches extend the weak alignment
constraints for the globally optimal n-direction field approaches
introduced in [Knöppel et al. 2013] and [Liu et al. 2016]. Thirdly,
we propose an efficient approximation algorithm for n-field splines
that allows for real-time modeling. The n-field splines are solu-
tions of sparse linear systems, and, therefore, they can be robustly

ACM Transactions on Graphics, Vol. 37, No. 2, Article 18. Publication date: February 2018.

https://doi.org/10.1145/3177750
https://doi.org/10.1145/3177750
https://doi.org/10.1145/3177750


18:2 • C. Brandt, L. Scandolo, E. Eisemann, K. Hildebrandt

computed. However, for many applications, in particular for the
modeling of n-fields, real-time responses are desired or even nec-
essary. The technical basis of our approximation algorithm is a
Fourier-like representation that associates frequencies spectra and
corresponding modes to n-fields. The algorithm computes n-fields
satisfying the user-constraints in an appropriate subspace spanned
by low-frequency modes. In this sense, the approximation algorithm
computes an additionally low-pass filtered n-field spline. Since the
quadratic fairness energies in the subspace are represented by di-
agonal matrices, the computation of the reduced solutions is very
fast. After a preprocessing stage in which eigenfields of an n-field
Laplacian are computed, we obtain computation times of few mil-
liseconds for all meshes we tested and a speed-up of a factor up to
100 over solving the full linear system using sparse direct solvers.

To emphasize the applicability of the n-field splines and the real-
time solver, we apply the resulting modeling tool to two graphics
problems: real-time editing of hatchings of surfaces and interactive
design of anisotropic BRDFs on surfaces. In addition to these appli-
cations, we think that the proposed techniques hold potential for
quad meshing applications. For example, in [Ebke et al. 2016] the
computational cost of vector field design is named as one of the
factors that hinder interactive quad meshing via integer grid maps.
Our scheme could potentially remove this barrier.

2 RELATED WORK
Tools for designing n-fields are important for various applications
in computer graphics. They are used for texture generation [Chi
et al. 2014; Knöppel et al. 2015; Praun et al. 2000; Turk 2001; Wei and
Levoy 2001], non-photorealistic line art [Hertzmann and Zorin 2000]
and painterly rendering [Zhang et al. 2007], image stylization [Yao
et al. 2012], anisotropic shading [Mehta et al. 2012; Raymond et al.
2014], quad-remeshing [Bommes et al. 2009; Kälberer et al. 2007; Li
et al. 2011; Ray et al. 2006; Tarini et al. 2011] or hexagonal parame-
terization [Nieser et al. 2012], and surface segmentation [Solomon
et al. 2011; Zhuang et al. 2014] to name just a few examples. The
processing of n-fields poses challenging problems and much work
has been dedicated to establishing techniques that tackle these prob-
lems. In the following, we outline approaches closest related to the
proposed work. For more background and further references, we
refer to the recent surveys [de Goes et al. 2015; Vaxman et al. 2016].

Variational n-field design. In variational n-field design, n-fields
are constructed as solutions to optimization problems, which aim
for the smoothest n-fields that satisfy design goals specified by the
users. The smoothness of a n-field is measured by a fairness energy,
an objective that quantifies the variation of the field along the sur-
face. To compare the n-vectors of a n-vector fields at nearby points
(e.g. neighboring triangles or vertices) the n vectors at one point are
parallel transported along the shortest geodesic to the tangent space
of the other point. One way to quantify the difference between two
n-vectors (once they are in the same tangent space) is to select an
arbitrary vector from both n-vectors and to measure the oriented
angle between the selected vectors. Multiplying this angle by n,
yields a quantity that, up to a multiple of 2π , is independent of the
choice of vectors. The cosine of this quantity agrees with the cosine
of the smallest angle between pairs of vector from the two n-vectors

and one minus this cosine can be used as a measure of the deviation
of the n-vectors. Based on this idea, a fairness energy for n-direction
fields was introduced in [Hertzmann and Zorin 2000]. This approach
was extended by the concept of the representation vector [Palacios
and Zhang 2007; Ray et al. 2006], which is an alternative represen-
tation of n-vector fields on meshes. Modulo π/n, the n vectors of a
n-vector make the same angle to a fixed coordinate direction in the
tangent plane, hence, multiplying the angles by n yields a unique
representation vector. This concept allows to formulate design of
n-vector or n-direction fields as an optimization of the representa-
tion vector fields [Ray et al. 2006]. In recent work [Knöppel et al.
2013; Liu et al. 2016], a n-vector field representation using complex
numbers and fairness energies that are quadratic with respect to the
complex representation are introduced. The benefit of this approach
is that globally optimal solutions can be computed by solving sparse
linear systems. The approach can be extended to the computation of
optimal n-direction fields. This is achieved by imposing a constraint
on the L2-norm of the n-vector field during optimization and point-
wise normalization afterwards. For controlling the design, [Knöppel
et al. 2013] use a weak alignment constraint to an input field, e.g., the
principal curvatures directions of the surfaces. In [Liu et al. 2016]
this approach is extended by a stroke-based design metaphor, in
which fields weakly align with strokes placed by users. Globally
optimal fields that weakly align with the strokes and an alignment
field are computed and runtimes of 1s for a mesh with 50k triangles
are reported. Our work extends this approach. It allows for spline-
like modeling of n-vector fields including features like modeling
with interpolation constraints, local editing and real-time responses.
Our biharmonic energy for n-vector fields is also a quadratic energy,
but compared to the Dirichlet energy of [Knöppel et al. 2013], the
corresponding Euler-Lagrange equation is of higher order, which is
a prerequisite for modeling with interpolation constraints and local
editing.

Mixed-integer problems. An alternative approach to using the rep-
resentation vector is to introduce explicit assignments, so-called
matchings, between the n vectors at neighboring triangles (or ver-
tices depending on the discretization used). Once a matching is
fixed, differences between n-vectors can be measured using com-
mon measures for comparing vectors. For n-vector and n-direction
field design, all possible matchings are introduced as variables to
the optimization with the goal to find the best possible n-field and
matching [Bommes et al. 2009; Kälberer et al. 2007; Ray et al. 2008].
This means that mixed-integer problems need to be solved for n-
field construction. Hard interpolation constraints have been used for
mixed-integer based n-field design. However, since mixed-integer
problems need to be solved for field construction, these methods do
not provide real-time responses.

Real-time design. Recently, Jakob et al. [2015] introduced amethod
for real-time quadrilateral and hexagonal mesh generation. The
scheme proceeds in two stages: n-field design and mesh generation
based on the n-field. To obtain a real-time system, the n-field de-
sign is not done by solving a global optimization problem, instead a
multiresolution hierarchy is set up and local optimization steps are
performed on the different levels of the hierarchy from coarse to
fine. For efficiency, the objective for the local optimization steps is
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an extrinsic fairness energy for n-fields that does not need parallel
transport of vectors. As a consequence, the objective depends not
just on intrinsic properties of the surface but also on its extrinsic
curvatures. In [Huang and Ju 2016] the extrinsic fairness energy
is further explored and the relations between extrinsic and intrin-
sic fairness energies are analyzed. Since [Jakob et al. 2015] is the
only scheme that can construct n-fields at rates comparable to our
scheme, we include a comparison to their method to Section 9.

Polyvectors. Polyvectors [Diamanti et al. 2014] extend the idea
of a representation vector for rotational symmetric n-vectors to
arbitrary (non-symmetric) n-vectors. The idea is to assign to every
n-vector the complex polynomial that has the n vectors as its roots,
where vectors in R2 are identified with complex numbers. The space
of polynomials of degree n is a vector space and n-vector field design
problems can be formulated using this representation. A harmonic
energy for polyvectors was introduced in [Diamanti et al. 2014]
and additional objectives for quad-remeshing in [Diamanti et al.
2015]. For a discussion of benefits and drawbacks of the different
representations of n-vector fields, we refer to the survey [Vaxman
et al. 2016].

Controlling topology. Singularities are salient features of n-fields.
Methods for controlling and editing singularities of vector, n-vector
and n-direction fields and for generating fields from given sets of
singularities have been proposed [Crane et al. 2010; Fisher et al.
2007; Lai et al. 2010; Liu et al. 2016; Palacios and Zhang 2007; Ray
et al. 2009; Zhang et al. 2006]. Our approach combines variational
field design with the enforcement of singularities. Singularities can
be placed on the surface and the higher-order fairness energies
ensure smooth transition of the field around the singularities.

Modeling of vector fields. Vector fields (or 1-fields) are a special
case of n-vector fields. The topological and geometric properties of
vector fields and differential operators on spaces of vector fields are
well studied, and discretizations of classical operators on triangle
meshes have been established [Desbrun et al. 2005; Polthier and
Preuß 2003; Tong et al. 2003; Wardetzky 2006]. In [Brandt et al.
2017; Fisher et al. 2007] quadratic fairness energies have been used
for variational vector field design. In both papers, the benefits of
using biharmonic energies over harmonic energies for vector field
design and modeling are emphasized. Our approach extents these
techniques to the modeling of n-vector and n-direction fields using
biharmonic energies.

Spectral processing of vector fields. In the last decade, spectral
methods, which use the spectrum and eigenfunctions of the Laplace–
Beltrami operator, have been very successful for various tasks in
shape analysis and processing. For an introduction to spectral mesh
processing and an overview of applications, we refer to the surveys
of Lévy and Zhang [2009] and Zhang et al. [2010]. For fluid simu-
lation, subspaces of low frequency modes of the vector Laplacian
have been used for speeding-up computations [De Witt et al. 2012].
Recently, this approach has been generalized to fluid simulation on
surfaces, where the eigenmodes of the Hodge–Laplace operator are
used [Liu et al. 2015]. In a parallel development, the eigenmodes of
the Hodge–Laplace operator have been used for spectral processing

of tangential vector fields on surfaces [Brandt et al. 2017]. In a differ-
ent recent development, eigenfields of the Hodge–Laplace operator
have been used for functional representation of linear operators
on spaces of tangential vector fields [Azencot et al. 2015]. In this
paper, we further develop these lines of work and compute the first
spectral decomposition of tangential n-vector fields on surfaces.

Higher-order energies. Optimization problems involving higher-
order energies, like the biharmonic, thin plate or Willmore energy,
have been used for example for fairing [Hildebrandt and Polthier
2007; Kobbelt et al. 1998], variational surface modeling [Jacobson
et al. 2010; Sorkine and Cohen-Or 2004], deformation-based mesh
editing [Botsch and Kobbelt 2004; Sorkine et al. 2004] and the con-
struction of skinning weights [Jacobson et al. 2011; Wang et al.
2015]. One example of a benefit provided by higher-order energies is
more control over the boundary behavior. For example, biharmonic
problems allow to prescribe positions and derivatives (in normal
direction) at the boundary, which allow to create G1-continuous
transitions at boundaries of surface patches [Kobbelt et al. 1998].
In contrast, using harmonic problems only G0-transitions can be
obtained. A second example is that interpolation constraints can be
imposed at single points. For example, the minimizers of the thin
plate energy over a two-dimensional domain subject to interpolation
constraints at single points exist and are uniquely defined [Löhn-
dorf and Melenk 2017]. In contrast, minimizers of the harmonic
energy over a two-dimensional domain subject to point constraints
in general are discontinuous, see [Braess 2007, pp 50–51] for an
example. For applications like surface modeling and deformation
it is desirable to be able to impose constraints on single points.
The biharmonic andm-harmonic energies we propose provide the
benefits of higher-order energies for the modeling of n-vector and
n-direction fields.

3 BACKGROUND: n-VECTOR FIELDS
A n-symmetry vector (short: n-vector) in R2 is a set {v1,v2, ...,vn }
of n vectors with a 2π

n -fold rotational symmetry, i.e., rotations by 2π
n

map the set to itself. For example, a 1-vector is an ordinary vector
and a 2-vector is a pair {v,−v}, where v ∈ R2 is arbitrary.

Representation vector. Consider the map that rotates any vector
such that its argument, i.e. the oriented angle with the x-axis, scales
by a factor of n and the length is preserved. If this map is applied
to a n-vector {v1,v2, ...,vn }, all elements vi have the same image u,
which is called the representation vector of {v1,v2, ...,vn }. More-
over, the map from n-vectors to representation vectors is a bijection,
which means that every n-vector has a unique representation vector
and every vector R2 is the representation vector of a n-vector. The
representation vector provides additional structure that we will use
to work with n-vectors. For example, we can add n-vectors by con-
verting them to representation vectors, adding the representation
vectors and converting them back to n-vectors. In combination with
the natural scaling of n-vectors, we obtain a vector space structure
on the set of n-vectors.
For later use, we want to remark that the representation vector

changes when moving from one coordinate system to another. We
consider a rotation of the coordinate system by an angle of φ. Then
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the coordinates of the n-vector in the rotated system are given by
{R−φv1,R−φv2, ...,R−φvn }, where R−φ denotes the rotation by −φ.
The representation vector in the rotated coordinate system is R−nφu.
This means, the representation vector u is rotated by −nφ when the
coordinate system is rotated by φ.

n-vector fields. We consider tangential n-vector fields on triangle
meshes that are constant in every triangle. To work with such n-
vector fields, we fix a coordinate system in the tangent plane of
every triangle and consider the vector u = (u1,u2, ...,u |F |) ∈ R2 |F | ,
whereui ∈ R2 is the representation vector of then-vector of triangle
Ti (with respect to the coordinate system fixed in Ti ) and |F | is the
number of triangles of the mesh. Explicitly, we choose one oriented
edge in every triangle and use this as the x-axis of the coordinate
system. The vector u completely describes the n-field, e.g., we can
reconstruct the n-vectors of every triangleTi from its representation
vectorui . We will perform all computations using the representation
vectors. Only oncewe convert initial input, like an alignment field, to
representation vectors, and, after the computation is done, we covert
the result into a n-vector field for visualization or other applications
like constructing a hatching or BRDF on the surface. To simplify the
presentation, we will sometimes refer to u as the n-vector field and
ui as the n-vector and rely on the context to make the distinction
between representation vector and n -vector.
The representation vectors, hence also the piecewise constant

n-vector fields on a mesh, form a vector space. On this space, we
consider the L2-scalar product〈

u, u′
〉
L2 =

∑
i
area(Ti )

〈
ui ,u

′
i
〉

and the corresponding L2-norm

∥u∥2L2 = ⟨u, u⟩L2 ,

where u, u′ ∈ R2 |F | .

n-direction fields. n-direction fields are n-vector fields consisting
only of unit-length n-vectors. These fields are of particular interest
as for many applications the magnitudes of the vectors are irrele-
vant.

Transport of n-vectors. The fairness measures, which will be intro-
duced in the following sections, compare the n-vectors of a n-vector
fields in adjacent triangles. To do so, one n-vector is parallel trans-
ported from its tangent plane to the tangent plane of the other
n-vector. In this paragraph, we discuss the transport of a n-vector
from a triangle Ti to an adjacent triangle Tj . We fix coordinate sys-
tems in both triangles and denote by u = (ux ,uy ) the coordinates of
the corresponding representation vector in Ti . If the x-axes of the
coordinate systems in both triangles are aligned with the oriented
edge ei j that is common to both triangles, the transport is simply
given by the identity matrix, i.e., the coordinates of the transported
vector in the triangleTj agree with the coordinatesu of the vector in
Ti . In the general case, where the coordinate systems in the triangles
Ti and Tj may not align to the common edge, we first transform to
the ei j -aligned coordinate system inTi , then use the trivial transport
to the ei j -aligned coordinate system in Tj , and, finally, transform
to the (non ei j -aligned) coordinate system in Tj . Let φi j and φ ji

be the oriented angles between the edges chosen as x-axis in Ti
and Tj and the common edge ei j . Then, the representation vector
transforms by multiplication with the rotation matrices R−nφi j and
R−nφ ji . Altogether, the transport of the representation vector from
Ti to Tj is given by a rotation

Ri j = Rn(φ ji−φi j ). (1)

In practice, it is convenient to precompute the rotations Ri j for every
pair of adjacent triangles.
We want to remark that the Ri j s form a discrete connection on

the mesh, see [Crane et al. 2010; Knöppel et al. 2013] for more
background on discrete connections. Since the Ri j s depend on n,
the connections differ for the different types of n-fields. For n=1,
the Ri j s agree with the usual parallel transport of vectors (discrete
Levi-Civita connection) induced by the metric on ambient 3-space.

Singularities. The singularities of a n-vector field are of fractional
degree ι

n , where ι ∈ N. Since we are working with vector fields that
are discontinuous, the classical notion of singularities cannot be
applied, Therefore, the concept of discrete singularities has been
developed, see [Crane et al. 2010; Ray et al. 2009] for more back-
ground. In our setting, the representation vectors and the discrete
connection can be used to extract information about the n-field
singularities. To every vertex, we associate an index which equals
the number of full rotations of the vectors in the one ring around the
vertex divided by n. Explicitly, let T0, ...,Tk be the oriented triangle
1-ring (ordered clockwise) around some vertex andu0, ...,uk the cor-
responding n-vector representatives in each of those triangles. We
then transport the vector u0 into the next triangle T1 and compute
the signed angular differenceψ0 ∈ (−π ,π ] between the transported
vector and u1. ψ1, ...,ψk are being computed in the same fashion,
where forψk , we transport uk into the triangle T0. The sum of the
angular differences will be an integer multiple of 2π and usually 0.
If it is different from 0, we say the n-vector field has a singularity
of index

∑
j ψj/(2πn) at that vertex. The number singularities of a

n-vector field is not arbitrary. The discrete Poincaré–Hopf theorem
forn-vector fields, [Ray et al. 2008], states that the sum of the indices
over all vertices equals 2 − 2д, where д is the genus of the surface.

Polyvector fields. Instead of restricting to rotational symmetric
n-vectors, one can consider other constraints or even n independent
vectors. Such n-vectors can be described as the roots of a complex
polynomial, cf. [Diamanti et al. 2014]. The coefficients of the polyno-
mial then make up a representation analogous to the representation
vector of rotational symmetric n-vectors. We want to remark that
the constructions proposed in this paper can be carried over to this
setting. Only the addition of representation vectors is replaced by
addition of complex polynomials and the absolute value of the rep-
resentation vector is replaced by a norm for complex polynomials
of degree n.

4 HARMONIC ENERGY FOR n-VECTOR FIELDS
The basis of the globally optimal n-direction fields approach intro-
duced in [Knöppel et al. 2013] are quadratic fairness energies for
n-vector fields. The benefit of using quadratic fairness energies for
n-vector field design over previous highly-nonlinear approaches
is that the globally optimal solutions can be computed by solving
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linear systems. Whereas in [Knöppel et al. 2013] a space of vertex-
based vector fields is used for discretization, we are considering
piecewise constant face-based vector fields, a commonly used alter-
native setting, here. In [Knöppel et al. 2013], a one-parameter family
of quadratic energies is studied. The harmonic energy we consider
corresponds to the anti-holomorphic energy in their notation. In
this section, we first introduce a novel harmonic energy for piece-
wise constant n-vector fields on meshes. Then we summarize how
the harmonic energy can be used for n-vector and n-direction field
design with weak alignment constraints following the approach of
Knöppel et al. [2013].

Harmonic energy for piecewise constant n-vector fields. Since we
are able to transportn-vectors from a triangle to its neighbors via (1),
we can quantify the difference of vectors in neighboring triangles via
∥Ri jui −uj ∥

2. These differences can be used to construct a harmonic
energy for piecewise constant n-vector fields u =

(
u1, ...,u |F |

)
on

triangle meshesM = (V, E,F ):

EH (u) =
∑
(i, j)∈E

wi j ∥Ri jui − uj ∥
2 (2)

where wi j =
3l2ei j

area(Ti ∪Tj )
,

with lei j being the length of the common edge between triangles
Ti and Tj . This harmonic energy is a natural extension to n-vector
fields of the harmonic energy for face-based, piecewise constant,
tangential vector fields, see [Brandt et al. 2017]. A full derivation
of the energy, and the weights wi j in particular, can be found in
the appendix. The energy (2) is quadratic in u. Hence, there is a
corresponding n-vector field Laplacian ∆ for piecewise constant
n-fields, which is the self-adjoint operator1 corresponding to the
discrete harmonic energy, i.e., it is defined via

∀ u : ⟨∆u, u⟩L2 = EH (u). (3)

In [Diamanti et al. 2014], a harmonic energy (called Dirichlet energy
in their paper) for piecewise constant n-vector fields was already
introduced. In the following, we discuss the relation of the two
energies. In our notation, the energy introduced in [Diamanti et al.
2014] is given by ∑

(i, j)∈E

∥Ri jui − uj ∥
2.

The difference to the proposed harmonic energy is that no weights
are used. In this sense, this is a combinatorial harmonic energy that
does not account for the geometry of the triangulation. This leads
to undesired results for meshes with irregular triangulations. An
example is shown in Figure 1, where we compare the smoothest,
2-direction fields on a symmetric mesh using our harmonic energy
and the combinatorial harmonic energy from [Diamanti et al. 2014].
For the combinatorial harmonic energy, the singularities appear
in an unsymmetric pattern, i.e., the resulting fields depend on the
triangulation. In contrast, when using the proposed geometric har-
monic energy instead, the four singularities appear in a symmetric

1∆ is self-adjoint means: ⟨∆u, v⟩L2 = ⟨u, ∆v⟩L2 ∀u, v. This property is needed to
uniquely determine the operator ∆ in eq. (3).

Fig. 1. Comparing the smoothest 2-fields on an ellipse mesh with irregular
triangulation (the mesh is shown on the left) using our harmonic energy
(middle) and the harmonic energy proposed in [Diamanti et al. 2014].

pattern. This is the same pattern one obtains when using a regular
triangulation of the same shape.

n-direction fields. The harmonic energy for n-vector fields cannot
directly be used for n-direction field design. As shown in [Knöppel
et al. 2013], minimizing the harmonic energy over n-vector fields
with a unit-length constraints per vector is ill-posed. To get a well-
posed problem, they propose optimizing over all rescalings of the
field and adding a single L2-constraint on the field (i.e. ∥u∥2L2 = 1) to
prevent the solution u ≡ 0. The vectors of the resulting vector field
are then normalized to satisfy the pointwise unit norm constraint.
Even if pointwise unit-length is not desired, but no other constraints
or alignment is prescribed, the same L2-constraint would give a
meaningful (non zero) solution to the problem of finding a smoothest
n-vector field. The solution to the minimization problem

min
∥u∥2

L2
=1

EH (u)

can be readily acquired by finding the smallest eigenvalue to the
eigenvalue problem

∆u = λu, (4)
which can be shown using the method of Lagrange multipliers.

Field alignment. Often, a balance between smoothness and the
alignment to a given n-vector or direction field u′ is desired. For ex-
ample, smooth 4-direction fields that align with estimated principal
curvature directions, [Cohen-Steiner and Morvan 2003; Hildebrandt
and Polthier 2011], are used in applications. For n-vector fields, the
following energy can be used to obtain smoothest n-vector fields
aligned with some input field u′:

EH (u) + µ
u − u′2L2 . (5)

In the case of n-direction fields, the norm of the difference of u and
u′ is no longer meaningful since during optimization, the vectors
of u are being freely rescaled as described above. Thus, we want
to compare the angular difference between the n-vectors of u and
u′, which can be achieved via the L2-product for n-vector field. In
particular, the following energy will be minimized:

EH (u) − 2µ
〈
u, u′

〉
L2 , (6)

again subject to ∥u∥2L2 = 1. Due to the constraint on the L2-norm, the
scalar product of u and u′ is bounded and minimizing the negative
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scalar product favors fields u that align with u′. The norm of the
vectors of the alignment field, i.e. ∥u ′i ∥, can be used to control the
local weighting of alignment. In particular, in regions with u ′i = 0,
only smoothness will be taken into account.
So far we have introduced harmonic energies for face-based,

piecewise constant n-vector and n-direction fields, and described
how smooth fields that align to user specifiedn-vector orn-direction
fields can be acquired by solving sparse linear systems. However,
field alignment only gives an approximate tool for designing n-fields
as it is oftentimes hard to specify the right weight µ and alignment
vectors u ′i such that the field follows the user input satisfactorily. In
the following, we will introduce higher-order smoothness energies
and describe how interpolation constraints on vectors and directions
can be enforced.

5 n-FIELD SPLINES
Splines are fundamental for geometric modeling. The concept of
n-field splines we introduce allows building spline-like modeling
systems for n-fields. While classical splines are defined for func-
tions over an interval, the variational characterization of splines
allows for building counterparts to splines that are defined on more
general domains. Examples are spline functions on meshes or tan-
gential vector field splines on meshes. The splines are characterized
as the minimizers of a fairness energy subject to constraints. To
ensure fairness of the solution under constraints, the order of the
fairness energy has to be high enough. For n-fields on surfaces, the
order of the harmonic energy derived in the previous section is
not high enough to support interpolation constraints. For functions
on two-dimensional domains it can been shown that minimizing
the harmonic energy subject to interpolation constraints at one (or
more) points, yields non-continuous solutions, see [Braess 2007, pp
50–51]. This effect can also be observed in mesh deformation and
parametrization, when harmonic energies (or other energies with a
second-order Euler-Lagrange equation) and hard interpolation con-
straints at single points are combined; we refer to [Martinez Esturo
et al. 2014] for examples. The same problem shows up in our experi-
ments, an example of this kind is shown in Figure 2. Hence, to enable
modeling of n-fields with interpolation constraints, a higher-order
fairness energy is needed.

m-harmonic energies. The higher-order energies forn-vector fields,
we introduce, are constructed using the Laplacian and the L2-product
for n-vector fields. We define them-harmonic energies as

Em (u) =
〈
∆mu, u

〉
L2 . (7)

Of particular interest is the biharmonic energy,m = 2, which we
denote by EB . The case m = 1 yields the harmonic energy. The
energies Em are quadratic and positive definite by construction. The
biharmonic energy of a field u equals the squared L2-norm of the
n-vector field Laplacian ∆ of u

EB (u) =
〈
∆2u, u

〉
L2 = ⟨∆u,∆u⟩L2 = ∥∆u∥

2
L2 ,

which follows from the self-adjointness of the n-vector field Lapla-
cian. We want to remark that starting from a discrete Laplace op-
erator, m-harmonic energies for functions on meshes have been
constructed analogously to our construction ofm-harmonic ener-
gies for n-vector fields. These higher-order energies are used for

Fig. 2. Placing singularities in a 2-direction field spline by adding hard
constraints as described in Section 5. On the left the harmonic energy is
used and the hard-constraints lead to a discontinuous solution, which does
not converge under refinement (see insets). Using our higher order energy
(right) allows the smooth interpolation of such constraints, which remains
consistent under refinement.

example for surface modeling, fairing and deformation. For more
background, we refer to the textbook by Botsch et al. [2010], in
particular, to Appendix A1.

In the classical setting of spline functions over an interval, mini-
mizers of the harmonic energy under hard constraints yield piece-
wise linear functions and minimizers of the biharmonic energy are
cubic splines. One can also build fairness energies by combining
m-harmonic energies for differentm. For example, in the classical
case, minimizers of the weighted sum of the biharmonic and the
harmonic energy are called splines in tension. In the following, we
will focus on splines defined as minimizers of the biharmonic energy,
for simplicity of presentation. Other types of n-field splines can be
constructed in the same manner, just the biharmonic energy needs
to be replaced by some otherm-harmonic energy or a weighted sum
ofm-harmonic energies.
For interactive modeling, our tool will mainly use interpolation

constraints. However, it is often effective to additionally use weak
alignment to an existing field as a starting point. Weak alignment
constraints to some input field for the splines can be imposed in the
same way as describe in the previous section, only EH is replaced
by EB in equations (5) and (6).

n-vector field splines. For n-vector fields u, an interpolation con-
straint in some triangle Ti can be enforced by a constraint of the
form ui = di , where di is a prescribed representation vector in Ti .
To add or modify interpolation constraints in our interactive mod-
eling system, the users do not work with representation vectors
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because this would be unintuitive. Instead they select a triangle and
specify one vector in the triangle. The system automatically adds
the missing n − 1 vectors. Internally, the system converts the input
vector into the corresponding representation vector di . However,
the representation vectors are only used internally and not shown
to the users.
The n-vector field splines are defined by the variational problem

argmin
u

EB (u) +
β

(area(M))2
∥u − u′∥2L2 (8)

subject to ui = di for all i ∈ I ,

where u′ is an alignment field and I is the set of triangle indices for
which an interpolation constraint has been specified. The squared
area of M is used as a factor to make the energy invariant to
rescaling of the surface. When no alignment field is given, the term
β/(area(M))2∥u − u′∥2L2 is removed from the problem. In addition
to the interpolation constraints, other types of constraints can be
imposed. We discuss singularity constraints below.

n-direction field splines. In the following, we extend the approach
to the modeling of n-direction fields. As for the design of n-direction
fields with weak constraints, see Section 4, the principle is to mini-
mize over the set n-vector fields with a constraint on the L2-norm
and obtain a n-direction field by pointwise normalization of the
vectors of the minimizer. To impose interpolation constraints in this
setting, we need to formulate the constraint in a way that only the
direction, not the length of the vector, is prescribed. Let di be the
representation vector of a unit n-vector prescribed as a interpolation
constraint in triangle Ti . Then, we constrain ui to be orthogonal
to Jidi (where Ji is the clockwise rotation by π/2 in the tangent
plane of triangle Ti ), i.e. ⟨ui , Jidi ⟩ = 0. The constraint ensures that
ui is collinear with di . Since, we are working with representation
vectors, we need to avoid the case ui = −tdi for some t > 0. We
prevent this case by using an alignment field u′ with u ′i = sidi for
some sufficiently large si > 0. One wants to choose the si as small
as possible while still assuring that ui points to the right direction.
Since solving the system is inexpensive, it is valid to perform a
binary search for best the parameters si . In practice, a large enough
constant for all si was sufficient in our tests to achieve the correct
alignment direction.
The n-direction field splines are defined by

argmin
u

EB (u)−2µ
〈
u′, u

〉
L2 (9)

subject to ∥u∥L2 = 1
and ⟨ui , Jidi ⟩ = 0 for all i ∈ I ,

where u′ is an alignment field, with modified entries at the hard
constraints as described above.

Constraints on singularities. In addition to the interpolation and
the weak alignment constraints, further types of constraints can be
imposed on the n-field splines. In the following, we describe how we
enforce singularities at vertices. Let T0, ...,Tk be the oriented 1-ring
of triangles around some vertex vi . Then, in order to enforce that
at vi we get a singularity with indexm ∈

{
q · 1n | q ∈ Z

}
, we add

k − 1 hard constraints, that enforce the n-vector in Tj+1 to be the
n-vector inTj , rotated by 2πm

k , for j = 0, ...,k − 1. When we express

Fig. 3. Comparing the smoothest 4-direction fields on the double torus, in
the presence of five hard constraints, when using 4-field splines (top) or
when using the harmonic energy (bottom). As can be seen in the highlighted
areas, the constraints are interpolated in a differentiable manner when using
the biharmonic energy.

these constraints in terms of our n-vector field representation u,
they have the following form:

Rj+1, juj+1 − R 2πm
k

uj = 0. (10)

The constraints prescribe a precise rotation of the field around the
singularity, and the only degree of freedom left is the magnitude
and orientation of one of the n-vectors (which define the rest). This
construction is a simple approach ensuring that singular vertices
with the desired index are generated. However, it has some limita-
tions. The rotation of the vectors around the singularity is evenly
distributed and all ui on the 1-ring around the singularity are con-
strained to have the same magnitude. This matches our desire to
compute smooth fields but does not have to be optimal in general.
On the other hand, imposing the singularity constraint in a general
form2 would be highly non-linear and therefore increase compu-
tation times. We want to highlight that imposing hard constraints
on the singularities requires higher-order energies as introduced
in this paper. Using the common harmonic energy in combination
with the constraints (10) leads to degenerated solutions that do not
converge to a smooth optimum under refinement. This will be made
precise and shown by examples in Section 9.
With this type of singularity control we are able to enforce sin-

gularities at any vertex Vi of absolute degree smaller than k/(2n),
where k is the number of triangles around the vertexVi . This limita-
tion is due to the way we define singularities in piecewise constant
n-vector fields, see Section 3. As described there, the sum of degrees
of all singularities in a field is prescribed by the genus of the un-
derlying mesh. Thus, inserting singularities will have global effects
on the field. Alternatively singularity placement can be efficiently
controlled by using hard constraints, see Figure 7 for an example.
2The most general constraint would force the sum of angular differences between the
transported n-vectors to be equal to a value that depends on the chosen singularity
index.
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Completely defining the topology of a field is not a desired capabil-
ity of our system since this is orthogonal to the goal of providing
intuitive design tools through hard constraints and higher order
smoothness.

Finally note, that this type of constraints to control the appearance
of singularities is limited to n-fold rotational symmetric fields and
has to be adapted individually for any other type of PolyVector field.

6 MATRIX REPRESENTATION
Computing n-field splines amounts to solving linear systems. Before
we derive the linear systems, we introduce the matrices representing
them-harmonic energies, the L2-scalar product and the n-vector
field Laplacian. First step is to fix a coordinate system in the plane of
every triangle. The matrices act on the vectors u ∈ R2 |F | listing the
coordinates of the representation vectors of all triangles. We denote
the matrix representing the harmonic energy by S. The matrix is
defined as the symmetric matrix that satisfies

EH (u) = uT Su

for all u ∈R2 |F | . Explicitly, S is the 2|F |×2|F |matrix which consists
of the following 2 × 2 blocks:(

S2i 2j S2i 2j+1
S2i+1 2j S2i+1 2j+1

)
= −wi jRi j for i , j(

S2i 2i S2i 2i+1
S2i+1 2i S2i+1 2i+1

)
=

∑
k ∈N(i)

wik I.

The matrixM representing the L2-scalar product is defined as the
matrix that satisfies ⟨u, u′⟩L2 = uTMu′ for all pairs u, u′ ∈ R2 |F | .
Explicitly, it is the diagonal 2|F |×2|F |matrix that repeats the area of
each triangle twice. This matrix is often called the mass matrix. The
matrices representing the Laplacian and them-harmonic energies
can be constructed as products of S and M. The matrix L for the
n-vector field Laplacian ∆ is given by L = M−1S. The matrix B
representing the biharmonic energy is

B = SM−1S,

and, more generally, the matrices for them-harmonic energies are:
S(M−1S)m−1. The matrices representing the scalar product and the
m-harmonic energies are positive definite.

For later usage, we also introduce the 2 × 2 matrix that performs
a rotation by π/2 in the plane of a triangle. Since we use positively
oriented orthonormal bases in the tangent planes, the rotations have
the same matrix representation in all tangent planes:

Ji =

(
0 −1
1 0

)
.

7 COMPUTING n-FIELD SPLINES
We now state the linear systems whose solutions are field-aligned,
interpolating, higher-order n-vector or n-direction field splines. In
the following, let I = i1, ..., im be the set of hard constrained vectors,
ui = di , let u′ be the specified alignment field and µ the alignment
weight. d is the vector that stacks real and imaginary parts of the
constrained directions di1 , ..., dim .

n-vector fields. Let F be the 2m × 2|F | matrix for which Fu = d is
equivalent to ui = di for i ∈ I . Then the optimization problem (8) is
equivalent to solving(

B +M FT

F 0

) (
u
λ

)
=

(
Mu′

d

)
(11)

where the vector λ stacks the 2m (rescaled) Lagrange multipliers.

n-direction fields. We first modify the alignment field in order
to enforce the correct directions in the hard constrained faces, as
described before, i.e. we set u ′i = sidi for i ∈ I , while leaving the
rest of the alignment field as is. Let D be them × 2|F | matrix for
which Du = 0 is equivalent to ⟨ui , Jidi ⟩ = 0 for all i ∈ I . Then a
minimizer of (9) can be found by solving the linear system(

B − λM DT

D 0

) (
w
γ

)
=

(
Mu′

0

)
, (12)

where λ takes the role of the parameter µ and has to be chosen in the
range

(
−∞, λ̂21

)
, where smaller λ means higher alignment. λ̂1 is the

smallest eigenvalue of the n-vector field bi-Laplacian ∆2 restricted
to fields which satisfy the hard constraints. This reformulation is
akin to [Knöppel et al. 2013]. A proof and a more precise statement
regarding λ̂1 is included to the appendix. The auxiliary variable γ
stacks them (rescaled) Lagrange multipliers. Once w is computed,
the desired n-direction field spline u, which interpolates the di-
rections di in triangles Ti and aligns to the field u′, is obtained
by normalizing all vectors of w: ui = wi

∥wi ∥
. The validness of this

system and the relationship between λ and µ is discussed in the
appendix.

ALGORITHM 1: Computation of n-direction field splines
Input :The mesh (V, E, F), the rotational symmetry index n, an

alignment field u′, the alignment parameter λ, the list of hard
constraints di along with the indices of constrained triangles I

Output :n-direction field spline interpolating the hard constraints and
aligning to u′

First solve:
(1) Modify the alignment field at the hard constraints:

∀ i ∈ I : u′i ← sidi , for sufficiently large si .
(2) Choose a basis for the tangent space in each triangle and compute

the rotation matrices Ri j as described in Section 3.
(3) Set up the matrices S, M, L and B as described in Section 6 and the

matrix D which stacks the constraints ⟨ui , Jidi ⟩ = 0.
(4) Factorize the matrix Vλ = B − λM.
(5) Solve DV−1λ DTγ = DV−1λ Mu′ by using the factorization above to

compute the matrix V−1λ DT and the vector V−1λ Mu′.
(6) Use the same factorization and γ from above to compute

w = V−1λ
(
Mu′ − DT γ

)
.

(7) The n-direction field spline u is now given by ui = wi
∥wi ∥

.
Updated constraints:

(1) Only compute the columns V−1λ DT for the rows of D that are new or
updated.

(2) Recompute the multiplications DV−1λ DT and DV−1λ u′ and solve the
two systems from steps (5) and (6) above.

(3) Output the n-direction field spline u as given in (7) above.
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Fig. 4. Left: By adding four hard constraints, we are able to force the
smoothest, curvature aligned (λ = −0.5) 4-field to align to features that
are not following the principle curvature directions. Right: Hard constraints
enable precise editing at small scale: the insets show how hard constraints
can be used to align to small features on a high resolution mesh with fine
details. Such precise control can not be achieved via least-squares alignment
terms but requires hard constraints.

For both, n-vector and n-direction fields, the constraints (10) to
enforce singularities can be readily appended to the matrices D and
F to solve for smoothest constrained n-vector or n-direction field
splines respectively.

Implementation. In our implementation the user can add and
modify hard constraints by selecting a face and dragging an arrow to
specify a desired direction. The optimal field is updated each frame
depending on the current configuration of the constraints. This
allows for instant feedback when trying to adjust hard constraints
in the design ofn-field splines. Note that when an existing constraint
is modified, in the case of n-vector fields, only the right hand side
changes, so the full system (11) can be factorized once and solved
with the modified constraints. However, once new constraints are
introduced, the matrix F changes (new rows have to be added)
and the matrix has to be refactorized. In the case of n-direction
fields, the hard constraints are encoded in the matrixD, so changing
and adding hard constraints both would lead to refactorization. To
avoid factorizing the large matrices in both systems every time
constraints are added or modified, we reorganize the equations.
We will demonstrate the reformulation on system (12), the steps to
reformulate system (11) are identical.
Let Vλ = B − λM and multiply the first 2|F | rows of the system by
DV−1λ from the left, which amounts to the system

Dw + DV−1λ DTγ = DV−1λ Mu′

Dw = 0

and by subtracting the second set of equations from the first we get

DV−1λ DTγ = DV−1λ Mu′ (13)

where the left-hand side is still symmetric. We solve (13) for γ and
then recover w via

w = V−1λ (Mu′ − DTγ ). (14)

Fig. 5. Eigenvectors of the 4-field Laplacian. From left to right: 1st, 6th, 14th
and 110th eigenfield. Singularities with indices − 1

4 and 1
4 are marked in red

and blue respectively.

The advantage of this is that we only have to factorize Vλ once, and
whenever new constraints are added or modified, we only have to
solve the dense but very small (2m × 2m) system (13). To set up the
left hand side of (13) we also need to solve a linear system to obtain
updates to those rows of V−1λ D, which have to be changed due to
updated hard constraints. This can be done using the factorization
of Vλ . Note, that in practice hard constraints will not be edited
simultaneously, such that only one column of D is being modified.
Then, since we need to update the alignment field when we edit
hard constraints, we need to compute the right hand side DV−1λ u′.
After solving (13), we solve for w in (14) using the same factor-
ization. Timings when solving for a 4-direction field with 30 hard
constraints can be taken from Table 1 (right-most column). Note that
those timings were computed as only one hard constraint has been
modified. They include setting up and solving the dense system (13)
and then recovering w via (14). The time needed to factorize the
matrix Vλ is listed separately since this is done at the preprocess-
ing stage and only needs to be repeated when the parameter λ is
changed. As can be seen, for small meshes this reformulation may
be used in a real-time editing setting, however, for larger meshes (or
in case the parameter λ needs to be changed interactively, in order
to control the strength of alignment), we propose a change of basis,
under which the matrix Vλ diagonalizes. This will be described in
the following section.
Algorithm 1 summarizes the computation of n-direction field

splines.

8 REAL-TIME EDITING
In this section we describe our approximation algorithm that allows
for computingn-field splines in real-time, independently of themesh
resolution. We want to emphasize that this is an optional step as the
full systems can alternatively be solved. The benefit of using the fast
computation is that it ensures a fluid interaction and allows users to
immediately get feedback on how the constraints they are placing
affect their design. Screen captures comparing the user-interaction
with and without using the approximation algorithm is shown in
the supplementary video. As a trade-off to a faster computation
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Fig. 6. Visual comparison of the smoothest, curvature aligned (λ = −0.05),
4-direction field on the bunny, subject to five hard constraints (pink crosses),
when computing it using the full system (12) (left) and the reduced system
(17) (right), using a basis of 500 eigenfields. The fields possess 72 and 68
singularities respectively.

during a modeling session, a pre-computation has to be performed,
in which a basis for n-vector fields is computed. Timings for both
pre-computation and the reduced/unreduced solves for the n-field
spline system are listed in Table 1 and discussed in Section 9.

Using the eigenbasis of the n-vector field Laplacian ∆, we obtain
a Fourier-type decomposition of face-based, piecewise constant n-
vector fields that associates a frequency spectrum to a n-field. The
eigenfields and spectrum of ∆ are the solutions of the generalized
eigenproblem

Su = λMu. (15)

Since ∆ is self-adjoint, all eigenvalues are real the there exist an
L2-orthonormal eigenbasis. The eigendecomposition enables the
design of spectral processing tools, such as compression and spec-
tral filtering, for n-fields. For example, projecting a n-field to the
subspace spanned by the k eigenfields with the lowest eigenval-
ues, is a low-pass filter for the n-field. Here, we will not explore
this direction—but use the low-frequency eigenfields to derive a
reduced-order scheme for the fast approximation of n-field splines.
The computation is split in an offline and an online stage. In the
offline stage, the first k eigenfields are computed and the relevant
matrices are constructed. In the online stage, the computations are
restricted to the subspace spanned by the eigenfields. This results
in a reduced computational burden in the online phase and enables
real-time computation and interactive modeling of n-field splines
for larger meshes.
In the following, we discuss the reduction of equations (11) and

(12), which yields fast approximation algorithms for n-vector and
n-direction field splines. Let U be the 2|F | × k matrix which stacks
the first k eigenvectors as its columns and let λi denote the first
k eigenvalues. Any n-field wU that is in the subspace spanned by
U can be describe by reduced coordinates w, which are given by
wU = UTw. Since the eigenfields are L2-orthonormal, UTMU = I,
we have

UTVλU = UT (B − λM)U = diag
(
λ2i − λ

)
=: Λλ . (16)

This means that solving the sparse 2|F | ×2|F | system (14) to obtain
a smooth n-vector field in the unreduced case (which has to be done
at least three times when constraints are updated) is being replaced
by the diagonal system ΛλxU = wU, which can be solved by k
multiplications with precomputed numbers. The reduced version
of (13) is

DUΛ
−1
λ DTUγ = DUΛ

−1
λ MUu′U, (17)

where u′U = UT u′, DU = UTDU and MU = UTMU, which can be
updated efficiently when D changes since it is extremely sparse.
Finally, wU can be recovered via

wU = Λ−1λ

(
MUu′U + D

T
Uγ

)
. (18)

Using this reduction, the cost for solving for n-field splines is inde-
pendent of the resolution of the meshes, aside from multiplications
with U. By storing U on a GPU and computing multiplications there,
we computed n-field splines in real time for meshes with 300k trian-
gles in our experiments (see Table 1).

9 EXPERIMENTS
Real-time n-field spline editor. Using the higher-order energies,

together with the reformulations of the involved linear system and
spectral reduction described in the previous sections, we imple-
mented a tool for real-time editing of n-field splines. It allows users
to click and drag on a mesh to insert hard constraints and specify
their direction, while the field and its visualization are updated in
real-time. As a visualization we chose to draw lines along the surface
that follow one of the n directions along the n-field. To keep the
visualization consistent, we initialize seed points for those lines once
and re-integrate them whenever the n-field spline has changed. All
examples that are shown in this paper have been created using this
tool. We also show several editing sessions and features of the tool
in the supplementary video. In our experience, the precise control
offered via hard constraints, combined with the instant feedback
due to the reductions offer an intuitive, effective and persistent way
of n-field editing that has many advantages over previous methods.
A feature of the propose technique is that the output depends con-
tinuously on the constraints, which allows users to slightly perturb
constraints in order to optimize features of the field on a small scale
in an intuitive way. Below we discuss various aspects of the edit-
ing framework described in this paper along with comparisons to
previous work.

Fig. 7. The smoothest, curvature aligned (λ = −0.2), 4-direction field on
the hand (left) is intuitively modified by merging two singularities using a
hard constraint (right).
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Basic examples. In Figures 7, left, 6 and 12, top row, we show
curvature aligned, smoothest 4-direction fields. Singularities, which
are automatically optimized and not user input or achieved via inte-
ger variables, appear in desirable places, such as cube-like corners
(right, upper part of the rocker arm in Figure 12) or at the end of
extremities, in groups of four (see Figure 7 at the end of the fingers),
which allows for the flow lines to follow the features until forming
a plateau at the end. The results strongly resemble those obtained
from the formulation of Knöppel et al. [2013], which is formulated
for vertex-based fields. Different from their approach, we allow for
higher order energies and hard constraints, i.e. n-field splines. In
Figure 4, right, we show how this can be used to edit small scale
details on a high resolution mesh with exact control over the align-
ment. When using soft constraints (i.e. only an alignment field) to
control the layout of the field, we were unable to enforce alignment
satisfactorily, especially in areas where conflicting constraints are
close to each other: either one of the conflicting constraints domi-
nates the shape of the field in that region, or the field averages the
influence of the nearby constraints. When using hard constraints,
we can easily force the field to point in various directions (even for
directly adjacent triangles) and still obtain a smooth solution for the
rest of the field. In Figure 4, left we edit the smoothest, curvature
aligned 4-field by adding three hard constraints which force the
flow lines to follow two features that do not follow the principal
curvature directions. It is intuitive to move, merge or produce new
singularities by placing appropriate hard constraints, a simple exam-
ple for this is shown in Figure 7. Direct control over the placement
of singularities at desired vertices is also possible and is treated in
Section 5 and demonstrated in an experiment further below.
In Figure 5 we show some of the eigenfields of the 4-field Lapla-

cian, ∆, which are used as a reduced basis for interactive editing. It
is remarkable how the singularities are laid out symmetrically and
appear consistently (for the first 108 eigenfields) at the corners of
the twisted, rounded bar. This indicates that a process that forces
the field not to place singularities at the corners will result in less

Fig. 8. Plots of the average, minimal and maximal relative L2-error when
comparing the reduced solution (12) to the full solution (17) of a 4-direction
field on the bunny mesh from ten randomized constraints (we generated
twenty tests) using a rising number of eigenfields.

Fig. 9. Local editing on the bunny mesh: to the smoothest (biharmonic
energy), curvature aligned, 4-direction field (left) we want to add a hard
constraint to achieve diagonal quads around the eye. However, the constraint
has an undesired non-local effect (middle). This can be remedied by using
our local editing scheme, which allows for local changes to the field, while
still yielding differentiable results (right).

smooth fields. Therefore, we think that the pure number of singu-
larities of field is not a reliable indicator for the smoothness of a
field.

The effects of using a reduced basis are shown in Figure 6 where
the smoothest, curvature aligned 4-field, altered by adding five hard
constraints, is shown as an optimal solution of the unreduced (left)
and reduced (right) system. In the reduced case a basis of the 500
lowest frequency eigenfields was constructed. While the general
layout of the field remains the same, some singularities moved
and merged, which is due to the fact that the hard constraints and
curvature alignment introduced high-frequency features, which are
not contained in the reduced basis.
As a numerical comparison, we generated twenty different 4-

direction fields from a random set of twenty hard constraints on
the bunny mesh using the unreduced and reduced systems and kept
track of the relative L2 distance between both solutions when using
between one and 2000 eigenfields in the reduced case. In Figure 8 we
plot the minimal, average and maximal L2 distances between each
reduced and unreduced field generated this way. The number of
eigenfields that should be used depends on the application. In order
to keep the relative distance to a full solution consistently below
10%, at least 1000 eigenfields should be used. We found, however,
that about 500 eigenfields are enough to achieve fields that are
visually hard to distinguish from the unreduced solution. Thus the
proposed model reduction is well-suited as a technique that enables
interactive modeling of n-fields on larger meshes.

n-field splines. By introducing higher order smoothness energies
for n-fields, we get the guarantee of continuous differentiability
at constraints. To highlight this, we show an artificial example in
Figure 10, where we constrain a complete region of the 4-vector
field (lower part, in blue), while solving for the smoothest field
under these constraints using the harmonic energy EH , left, and the
biharmonic energy EB , right. As can be seen, using the harmonic
energy results in a constant field on the upper half. The tendency of
the field in the lower half to grow in magnitude and the clockwise
rotation are not continued, which corresponds to a discontinuity in
the derivative in the continuous setting. In fact, changing the blue
part of the field does not have any effect on the variable, upper part,
as long as the vectors in the boundary triangles remain the same.
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Using the biharmonic energy smoothly continues the tendencies of
the lower field.

This enables us to perform tasks such as local editing, see Figure
9: since constraints are interpolated in a differentiable manner, it
is valid to constrain the field on the whole mesh minus a small
selected region. This is relevant in practice since hard and soft
constraints have a global influence on the layout of the field, which
is undesirable when editing small features in isolated regions. For
computational efficiency, one can reduce the size of the system to
be solved by discarding vectors that are constrained and do not
affect the unconstrained vectors. Explicitly, the vectors of triangles
that are not in the two-ring of any unconstrained triangle need not
be included. Here two-ring refers to the dual graph in which the
triangles are the nodes and nodes are connected if triangles share an
edge. In this sense, the two-ring around the unconstrained triangles
specifies boundary conditions which determine the solution in the
unconstrained area.

In Figure 2 we show n-direction field splines where we prescribed
the placement of four index 1

2 (yellow) and one index − 1
2 singular-

ities in the field as described in Section 5. The main observation
is that these types of hard constraints are not well posed under
the harmonic energy. The constraints only affect the vectors in the
one-rings around the placed singularities. Since a one-ring becomes
smaller and smaller under refinement, the solutions converges to a
discontinuous field. This is illustrated in the insets in the lower row,
where the same hard constraints were used in a low and high resolu-
tion version of the hand mesh. Using the biharmonic energy leads to
a smooth solution, where the singularity constraints have a global
effect and the solution remains consistent under refinement. This
is another example for the importance of higher order smoothness
energies when posing hard constraints.

Fig. 10. Comparing the harmonic (left) and biharmonic (right) energies in
presence of boundary constraints: the blue part of the field was fixed and
the rest of the field computed as smooth as possible, as defined through
the different energies. As can be seen, the higher order energy continues
the clockwise rotation and increase in size (i.e. the first derivative remains
continuous), while the harmonic energy only ensures continuity of the field
and thus remains constant.

The tendency to interpolate constraints in a differentiable manner
when using n-field splines can also be seen in Figure 3, where the
curvature of the flow lines near the constraints is continued in the
regions on the side, away from any constraints, which is not the
case when using the common harmonic energy. Note that in this
example we did not use curvature alignment.

Timings. In Table 1 we list the timings taken to solve the reduced
and unreduced systems to compute smoothest n-fields subject to 30
hard constraints, using the harmonic energy and biharmonic energy.
We constructed 4-direction fields, and used the 500 lowest frequency
eigenfields of the corresponding Laplacian as a reduced basis. The
timings to construct those bases is listed as well. When measuring
the computation time, only one of the 30 hard constraints was as-
sumed to have changed in the last frame, such that only specific parts
of the system have to be set up and updated. The reduction leads to
computation timings that are neither influenced by the resolution of
the mesh, nor by the order of the energy. The field can be updated
about 200 times per second, such that the visualization of the field
and display of the mesh become the bottle-neck for real-time n-
vector field editing. In the unreduced case, we obtain computation
times of more than 100 ms for meshes with 70k triangles in our ex-
periments. Times for adding or removing new constraints are even
longer. The trade-off for the fast computation times in the reduced
scheme is that the eigenfields need to be precomputed, which takes
about 3 minutes for meshes with 70k triangles in our experiments.

Comparison to Instant Field Aligned Meshes. Jakob et al. [2015]
introduced a scheme for computing smooth n-fields via a local aver-
aging scheme on a multiresolution hierarchy and parallelization in
very low computation times. Since this is the only technique that
results in comparable timings, we want to put our framework into
contrast.
The techniques used in their approach are fundamentally differ-

ent from the methods we propose. Our fields are globally optimal

Fig. 11. Curvature alignment using our framework (top row) and [Jakob
et al. 2015] (bottom row). We used the bihamornic energy and, from left to
right, λ = 0.0001, 0, −0.005, −0.1. Bottom row, left, shows the result when
using the extrinsic energy, and then, from left to right, alignment via local
averaging using interpolation weights of 0.01, 0.1 and 0.5.
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Fig. 12. Top row: The smoothest curvature aligned 4-fields on three different triangulations, computed using our system. The fields possess 51, 40 and 42
singularities, respectively, different numbers mostly resulting from merged groups of nearby singularities. Bottom row: The smoothest 4-fields, using the
extrinsic energy and the system proposed by Jakob et al. [2015]. The fields possess 22, 30 and 42 singularities, respectively, being arranged in inconsistent
structures.

and are solutions of linear systems, while [Jakob et al. 2015] use
parallelization, a multiresolution hierarchy and local operations to
iteratively optimize the fields. Their approach does not iterate until
a minimum of an objective is found, but terminates after a number
of local smoothing steps on each level of the hierarchy have been
performed. In our experiments with their approach, we detected
multiple drawbacks resulting from this strategy when compared
to our approach. Their results are heavily affected by a changing
the triangulation of a surface: Figure 12 shows the smoothest, cur-
vature aligned 4-fields produced with our technique (top row) and
the smoothest fields produced by Jakob et al. on three different
triangulations of the rocker arm mesh. While our singularity lay-
out remains consistent (only some pairs of very close singularities
merge and cancel each other), the fields produced by Jakob et al.
possess inconsistent and globally different singularity layouts.
In [Jakob et al. 2015], alignment to a globally defined field, such

as principal curvature directions, is handled via linearly interpolat-
ing the current n-vectors with the vectors of the alignment field in
every optimization step. Since this has to be done on every level
of the multiresolution hierarchy, the constraint vectors have to be
propagated along the hierarchy as well, by iteratively merging the
constraint vectors. It is not clear whether such an optimization

Table 1. Timings for the computation of smoothest, 4-direction fields with-
out and with using the proposed spectral reduction. In all examples we
added 30 random hard constraints. We state timings for both the harmonic
and biharmonic smoothness energy. In the reduced case, we construct a
basis from the 500 lowest frequency eigenfields.

Model #faces Bases Reduced Setup & Solve Factorization of Unreduced Solve
Name setup harmonic \biharmonic ∆ \ ∆2 harmonic \biharmonic
Twisted Bar 3276 5s 5ms \ 5ms 40ms \ 83ms 6ms \ 6ms
Hand 12184 24s 5ms \ 5ms 161ms \ 393ms 16ms \ 23ms
Rocker Arm 20088 44s 5ms \ 5ms 267ms \ 654ms 28ms \ 37ms
Bunny 69666 170s 6ms \ 6ms 1318ms \ 4413ms 138ms \ 194ms
Elephant 79946 181s 6ms \ 6ms 1249ms \ 3112ms 155ms \ 182ms
Armadillo 331904 15m30s 8ms \ 8ms 8155ms \ 28s 598ms \ 801ms

scheme minimizes a smoothness/alignment energy such as (9). As
an alternative to achieve curvature alignment, Jakob et al. propose
to minimize an extrinsic smoothness energy by averaging the n-
vectors in 3D world coordinates. However, this approach does not
allow for a weight between smoothness and alignment. In Figure 11,
we show a comparison between curvature aligned fields using our
framework with the biharmonic energy and different weights for λ
and fields using the framework of [Jakob et al. 2015], where we show
both the extrinsically smooth field and fields produced by using the
alignment method described above, using different interpolation
weights. While the extrinsically smooth field has comparable quality
to our field for λ = 0.0001, it is not aligned to many features of the
elephant, such as the eye, or the right part of the visible ear. There is
no way to enhance the alignment when using the extrinsic energy.
Using the local averaging scheme to align to the principal curvature
directions produces visibly unsmooth fields, when the interpolation
weights are high enough to guarantee alignment to the aforemen-
tioned features. Our technique maintains global smoothness while
aligning to more features when using higher values of λ.

Finally, we want to remark that since there are no guarantees on
the optimality of solutions and because of the necessity to merge
n-vectors when navigating the multi-resolution hierarchy in [Jakob
et al. 2015], one cannot expect a continuous dependence of the
solutions on the constraints. This is a key feature of a modeling tool.
In our framework, slightly changing the constraints leads to small
changes in the field.

10 APPLICATIONS
In the following we will describe two applications that strongly
benefit from our ability to compute n-field splines in real-time in
order to aid with artistic tasks, which require immediate feedback
and smooth alignment to user defined hard constraints.
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Fig. 13. Left: Screenshot of a modeling session of a 2-field spline using hard constraints. The constraints are edited via dragging the arrows and the field is
updated and visualized at 60fps.Middle: Non-photorealistic rendering of the rocker arm mesh when using the unedited smoothest 2-field aligned to the
maximal principal curvature. Right: Hatching rendering of the edited 2-field spline subject to six hard constraints.

Hatching. Rendering a surface mesh to resemble a line drawing,
often called hatching, is a popular technique for stylizing 3D scenes,
cf. [Kalogerakis et al. 2012; Kim et al. 2008; Praun et al. 2001; Suarez
et al. 2016; Umenhoffer et al. 2011]. In order to perform such a
rendering, directions on the surface have to be chosen, along which
the lines can be drawn. Often, as in [Kim et al. 2008; Praun et al.
2001], these directions are somehow extracted from the principal
curvature directions. Principal curvature directions are not unique
in flat or umbilic regions, so directions in such regions need to be
post-processed. Treating principal curvature directions as direction
fields, allows to smooth the directions and to impaint directions
in umbilic regions. For such smoothing processes, the principal
curvature directions can be treated as 4-direction fields, see [Palacios
and Zhang 2007]. However, for guiding stroke directions, we opt
for 2-direction fields, since it is the natural choice for the regions
in which strokes are being drawn in only one direction and not
orthogonally.

Using the principal curvature directions as the stroke directions
is just one of many choices and often it is desirable to design stroke
directions from scratch or modify existing directions, for example to
hide singularities in highly lit or occluded places. This leads to a di-
rect application of our real-time framework for the design maximal
curvature aligned 2-direction field splines, which can be enhanced
via hard constraints. To illustrate this we implemented a real-time
hatching system based on [Kim et al. 2008], which uses tonal art
maps to texture surfaces according to light intensity and direction
information. We enable the user to design a 2-direction field using
our standard set of tools and directly update the directional infor-
mation for the hatching application in real-time, which provides
the user with an instant result. We show a comparison between
the 2-direction field aligned to the maximal principal curvature di-
rections and an edited 2-direction field spline subject to six hard
constraints. It can be seen how alignment to curvature directions is
not suitable in regions where many singularities are present or the
maximal/minimal directions suddenly exchange their roles. We pro-
vide the ability to intuitively edit the field in such regions in order to

enhance the quality of the rendering. We refer to the supplementary
video for several examples of this application.

Anisotropic BRDF. In physically-based rendering systems one de-
scribes the reflection behavior of an object by using a bidirectional
reflectance distribution function (BRDF) [Nicodemus 1977]. The BRDF
at a given point on a surface depends on the direction towards the
light and the direction towards the viewer and returns the color
and intensity of the perceived light. Many such functions can be
designed and they result in different perceptions of an objects mate-
rial. Often, materials can be considered isotropic, meaning that their
value does only depend on the angle between viewing/light direc-
tion and the surface normal. However, for anisotropic materials, like
brushed metals, parameters have to be defined across the surface
which define the orientation dependent response of the material
to light. In Ashikhmin et al. [2000] a BRDF model is proposed that
takes (amongst others) two parameters nu and nv , which describe
the anisotropy of the light in the local coordinate frame (u,v). By
designing a 2-direction field, one can specify the two directions of
anisotropy by setting them to the direction of the field and its or-
thogonal direction respectively, thus describing the local coordinate
frames up to the sign (to which the reflectance is indifferent).

Thus, using our framework for designing 2-direction field splines,
provides control over the reflectance properties of such materials.
Again, the real time response to newly imposed or modified hard
constraints enables a direct feedback for the user, which is important
for performing artistic tasks. A screenshot from an anisotropic BRDF
design session using our framework is shown in Figure 14. There,
we show a simple example to visualize what kind of effect we are
aiming at. BRDF manipulation on a more complicated mesh can be
seen in the supplementary video.

Alternatively one can directly control the shape of the highlights
under a fixed viewing and light direction, as proposed in Raymond
et al. [2014]. There, a relation between the BRDFs and the shape of
the highlights is established, such that desired tangent directions of
potential highlights can be specified by the user and then the BRDFs
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Fig. 14. Editing BRDFs to manipulate highlights on a golf-ball. The BRDF
parameters are consistently and smoothly defined over the whole mesh
as they are extracted from the 2-field spline, and so, highlights will be
consistent and smooth even when view and light directions change.

are optimized to fit these highlights. In [Raymond et al. 2014] sev-
eral tools to design a field with these prescribed tangent directions
are offered. They are based on direct manipulation of a potential
highlight, thus do not take into account the geometrical structure of
such 2-direction fields and neglect the global structure of the field.
Our tools offer an intuitive alternative that allows for the design of
globally smooth tangent directions of potential highlights.

11 CONCLUSION
In this paper, we introduce n-field splines: an approach for mod-
eling tangential n-vector and n-direction fields on surfaces. The
approach enables modeling of n-fields with hard interpolation and
soft alignment constraints, placing singularities and local editing.
New fairness energies for n-fields, a biharmonic energy, forms the
basis of our approach. The energies are convex and quadratic so
that n-vector as well as n-direction field splines can be computed
by solving sparse linear systems. Based on a spectral decomposi-
tion of n-vector fields, we derive a reduced optimization scheme for
computing n-field splines in real-time. We apply our approach to
controlling and editing of stroke directions in line-art renderings
and the modeling of anisotropic BRDFs on surfaces.

Limitations and challenges. The discrete harmonic energy we in-
troduce has one conceptual limitation, which it shares with the
discrete harmonic energies for n-vector fields introduced in pre-
vious work. Only the trivial field is in its kernel. For surfaces of
non-trivial genus д, there should be a 2д-dimensional kernel of
“discrete harmonic” n-vector fields. For piecewise constant vector
fields (1-fields) such structure-preserving discretizations are known,
however, it remains a challenge to find such a structure-preserving
discretizations for n-vector fields.
A limitation of our current implementation of the n-vector field

modeling tool is that the local editing is not integrated with the
global editing. We use the local editing as a last step in the modeling
pipeline and cannot switch back to global editing after local edits
have been performed (without constraining the whole local region).
Various ways to address this problem are possible. However, it is
not clear which one is the simplest and most effective.

Another interesting direction of future work is to use the n-vector
field splines for quadrilateral or hexagonal meshing.
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A DERIVATION OF THE DISCRETE HARMONIC ENERGY
The discrete harmonic energy for n-vector fields is defined as

EH (u) =
∑
(i, j)∈E

wi j
Ri jui − uj2 (19)

where wi j =
3l2ei j

area(Ti ∪Tj )
.

In the following, we will justify the weights wi j , as they emerge
naturally in a face-based discretization of the harmonic energy for
vector fields. The harmonic energy of a smooth vector field v is
given by Esmooth

H (v) = ⟨∆v, v⟩L2 , where ∆ is the Hodge–Laplace
operator

∆ = −(grad div + J grad curl.)

Rearranging terms, we get

Esmooth
H (v) = ⟨∆v, v⟩L2

= ⟨−(grad div + J grad curl)v, v⟩L2
= − ⟨grad div v, v⟩L2 − ⟨J grad curl v, v⟩L2
= ⟨div v, div v⟩L2 + ⟨curl v, curl v⟩L2

wherewe used the equations ⟨div v, f ⟩L2 = − ⟨v, grad f ⟩L2 , curl v =
−div Jv and ⟨Jv, v⟩L2 = − ⟨v, Jv⟩L2 , which hold for all smooth vec-
tor fields v and square integrable functions f . For more background,
we refer to [Brandt et al. 2017]. In [Fisher et al. 2007] and [Desbrun
et al. 2008], a DEC-based discretization of this energy is used for
vector field design. We are dealing with piecewise constant vector
fields that jump at the edges. In this setting, discrete divergence and
curl operators can be defined by testing a weak form of the diver-
gence and curl with test functions. As test functions, we are using
Crouzeix–Raviart finite elements, which are functions on the mesh
that are linear polynomials in every triangle and edge-midpoint con-
tinuous. The nodes of the Crouzeix–Raviart elements are located
at the midpoints of the edges of the mesh. The (non-conforming
discrete) divergence and curl map piecewise constant vector fields
to such edge-based functions. For more background on the discrete
divergence and curl, we refer to [Brandt et al. 2017; Polthier and
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Preuß 2000]. The values at the edge-midpoints are given by

div∗ v(mi, j ) =
3

ATi∪Tj

(〈
vi , Ji ei j

〉
−

〈
vj , Jj ei j

〉)
, (20)

curl∗ v(mi, j ) =
3

ATi∪Tj

(〈
vj , ei j

〉
−

〈
vi , ei j

〉)
, (21)

where
(
v1, ...,v |F |

)
are the piecewise constant vectors of the field

per face, mi, j is the midpoint of the common edge between two
adjacent triangles Ti and Tj , Ji is the operator that rotates a vector
in the tangent plane of Ti by π/2 (following the orientation of the
surface), ATi∪Tj is the combined area of Ti and Tj , and ei j is the
non-normalized directed (following the orientation of Ti ) common
edge between triangles Ti and Tj .
With these operators, one can discretize the harmonic energy:

EH (v) =
〈
div∗ v, div∗ v

〉
L2 +

〈
curl∗ v, curl∗ v

〉
L2

=
∑
(i, j)∈E

3
ATi∪Tj

( (〈
vi , Ji ei j

〉
−

〈
vj , Jj ei j

〉)2
+

(〈
vj , ei j

〉
−

〈
vi , ei j

〉)2) (22)

=
∑
(i, j)∈E

3l2ei j
ATi∪Tj

(〈
Ri jvi −vj , Jj

ei j

lei j

〉2
+

〈
vj − Ri jvi ,

ei j

lei j

〉2) (23)

=
∑
(i, j)∈E

3l2ei j
ATi∪Tj

Ri jvi −vj2 (24)

In (22), we simply inserted the definition of the operators and can-
celed the squared area factors in div∗ and curl∗ with the area fac-
tors coming from the sum that computes the L2 scalar product for
the Crouzeix–Raviart elements. In (23), we used that

〈
vi , ei j

〉
=〈

Ri j (vi ), ei j
〉
. (Ri j is the connection for 1-fields) and the linearity of

the scalar product. Finally, in (24), we used that ⟨v,w⟩2 + ⟨v, Jw⟩2 =
∥v ∥2 for any pair of an arbitrary vector v and a unit vectorw . Then,
since for n = 1, when using the same tangent space bases for the
vectors and their n-vector representations, the vectors vi coincide
with the n-vectors ui , so that (24) coincides with (2).

Since we end up with a weighted sum of finite differences, we
can extend this energy to arbitrary n by taking the differences of the
ui representing the n-vectors by transporting them into a common
tangent space. This leads to the generalized harmonic energy (19).
As discussed in Section 11, the discrete harmonic energy does

not have a kernel of “discrete harmonic” n-vector fields for surfaces
of non-trivial genus. For vector fields such a discretization can
be obtained by combining conforming and non-conforming finite
elements, see [Brandt et al. 2017]. However, it remains an open
question how this construction can be carried over from 1-vector
fields to n-vector fields.

Finally, wewant to remark that in addition to the harmonic energy
and the Hodge–Laplace operator, one can consider the Bochner–
Laplace operator and the corresponding quadratic energy. For more
background, we refer to [Knöppel et al. 2013; Liu et al. 2016]. In
the notation used in these papers, the harmonic energy is called

the anti-holomophic energy. The construction of a discrete Bochner
Laplace operator for piecewise constant vector fields on triangle
meshes remains an interesting open problem.

Relation to Finite Volumes. We want to remark that in addition to
the derivation described above, the discrete harmonic energy (19)
can be interpreted as a finite volume discretization. The control
volumes are the triangles and each summandwi j

Ri jui − uj2 of
the discrete harmonic energy measures the diffusive flux through
the edge (i, j) between adjacent triangles. The weightswi j are the
transmissibilities.

For more background on finite volume methods, we refer to [Ey-
mard et al. 2000]. The discrete harmonic energy (19) is analogous
to the discrete harmonic energy (or squared discrete Sobolev H1

0
semi norm) for piecewise constant functions on triangulations of
compact domains in R2, compare [Eymard et al. 2000, Chapter 9,
eq. (9.12)]. In contrast to their setting, we are working with vector
fields and curved surface meshes, this is why the transport of vector
fields Ri j is needed for evaluating the fluxes. Based on this analogy,
we could use the weights that are commonly used for finite vol-
ume discretization of the harmonic energy with piecewise constant
functions for our purposes. These are

2
cotαi j + cotbi j

,

where αi j and bi j are the angles opposite of the edge (i, j) in the two
adjacent triangles. The problem with these weights is that they may
be negative, which can be avoided by requiring the triangulation to
be Delaunay. The weights we propose are positive for any triangu-
lation by construction. To the best of our knowledge, the weights
we are proposing have not been used in the context of finite volume
methods. It is an interesting task to further explore the properties
of these weights and their use for finite volume methods.

B A LINEAR SYSTEM FOR n-DIRECTION FIELD SPLINES
In this section, we derive the linear system we solve to compute n-
vector field splines and discuss the relationship between µ and λ. Our
proof re-uses arguments from [Knöppel et al. 2013], however, since
we use hard constraints and different objectives and discretizations,
some modifications need to be made, and we will verify correctness
for our specific system.

We will show that u = w
∥w∥L2

, for w being a solution of the linear
system from Section 7(

B − λM DT

D 0

) (
w
γ

)
=

(
Mu′

0

)
, (25)

is a minimizer of the previously stated n-vector field spline problem

min
u

EB (u)−2µ
〈
u, u′

〉
L2 (26)

subject to ∥u∥L2 = 1
and ⟨ui , Jidi ⟩ = 0 ∀ i ∈ I

To this end note that (25) can be rewritten as

Bw − µ∥w∥L2Mu′ = λMw − DTγ (27)
and Dw = 0,
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where µ = 1
∥w∥L2

. Multiplying (27) by 1
∥w∥L2

, letting γ̃ = γ
∥w∥L2

and
plugging in u = w

∥w∥L2
we get

Bu − µMu′ = λMu − DT γ̃ (28)
and ∥u∥L2 = 1

and ⟨ui , Jidi ⟩ = 0 ∀ i ∈ I

since ⟨wi , Jidi ⟩ = 0 ⇔ ⟨ui , Jidi ⟩ = 0. These are the necessary
conditions for the constrained optimization problem (26), where the
Lagrangemultipliers are 2λ and 2γ̃ . Since theminimized functional is
quadratic in u, this is sufficient to show that u is a feasible minimizer.
To determine the relationship between λ and µ, we first make a

change of basisw = Cŵ, where the image ofC ∈ M(2|F |×2|F |−m)
is the vector space of all fields that satisfy the hard constraints, i.e.
Dw = 0 ⇔ w ∈ Image C and CTC = I. Then (25) is equivalent to
solving

CT (B − λM)Cŵ = CTMu′, (29)
since u′ satisfies all hard constraints by construction and so u′ ∈
Image C. Let Û be a full eigenbasis of the constrained bi-Laplacian
V̂ := CT

(
LTML

)
Cwhich is mass-orthonormal, i.e. ÛTCTMCÛ = I.

Then (29) is equivalent to

(Λ − λI) ŵÛ = ÛTCTMu′, (30)

where ŵÛ = ÛT ŵ and Λ stacks the eigenvalues λ̂i of V̂ ordered
by magnitude (note that the eigenvalues are all positive as the fre-
quency of hard constrained fields can only be higher than those of an

unconstrained field). Nownote that
(
ŵÛ

)
i
=

(
ÛTCTMu′

)
i

(
λ̂i − λ

)−1
.

So, when λ→ λ̂1,
(
ŵÛ

)
1
goes to (plus or minus) infinity. This im-

plies ∥ŵ∥ → ∞, and so µ = 1
∥w∥ → 0. Conversely, when λ→ −∞

we have that
(
ŵÛ

)
i
→ 0 for all i and so µ →∞.
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