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ABSTRACT

Multiple performances of the same piece share similari-
ties, but also show relevant dissimilarities. With regard to
the latter, analyzing and quantifying variations in collec-
tions of performances is useful to understand how a mu-
sical piece is typically performed, how naturally sounding
new interpretations could be rendered, or what is peculiar
about a particular performance. However, as there is no
formal ground truth as to what these variations should look
like, it is a challenge to provide and validate analysis meth-
ods for this. In this paper, we focus on relative local tempo
variations in collections of performances. We propose a
way to formally represent relative local tempo variations,
as encoded in warping paths of aligned performances, in
a vector space. This enables using statistics for analyzing
tempo variations in collections of performances. We elab-
orate the computation and interpretation of the mean vari-
ation and the principal modes of variation. To validate our
analysis method despite the absence of a ground truth, we
present results on artificially generated data, representing
several categories of local tempo variations. Finally, we
show how our method can be used for analyzing to real-
world data and discuss potential applications.

1. INTRODUCTION

When performing music that is written down in a score,
musicians produce sound that subtly differs from what is
written. For example, to create emphasis, they can vary
the time between notes, the dynamics, or other instrument-
specific parameters, such as which strings to use on a violin
or how to apply the pedals on a piano. In this paper, we fo-
cus on variations in timing, contributing a method to detect
local tempo variations in a collection of performances.

Solving this problem is made difficult by the fact that it
is not clear what we are trying to find: there is generally
no ground truth that tells us what salient variations there
are for a given piece. Furthermore, it is difficult to discern
whether a given performance is ‘common’ or ‘uncommon’.
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To overcome this, we propose an approach for statistical
analysis of relative local tempo variations among perfor-
mances in a collection. To this end, we elaborate the com-
putation of the mean variation and the principal modes of
variation. The basis of the approach is the insight that after
normalization, the set of possible tempo variations, repre-
sented by temporal warping paths, forms a convex subset
of a vector space. We test our approach on artificially gen-
erated data (with controllable variations in a collection),
and on recorded real performances. We discuss two appli-
cations: analysis of tempo variations and example-guided
synthesis of performances.

2. RELATED WORK

2.1 Performance Analysis

Most closely related to the present work are the works
in [9, 11] and [21, 22], focusing on statistical comparison
of performances, targeting local tempo variations without
ground truth. [9, 11] focus especially on temporal warping
paths with respect to a reference performance. Further-
more, [10] analyzes main modes of variation in compara-
tive analysis of orchestral recordings. We differ from these
works in offering a more formalized perspective on varia-
tion, a more thorough and controlled validation procedure
on artificially generated data, and ways to perform analyses
with respect to a full collection of performances, beyond a
single reference performance.

Further work in comparative performance analysis con-
sidered features such as dynamics [6]: here, it was shown
that dynamic indications in a score do not lead to absolute
realizations of loudness levels. [8] and [1] provide compar-
ative analyses on many expressive features, although the
latter work also finds that musicians find it difficult to think
about the aspects of their performance in the quantitative
fashion that is common in the MIR literature.

The absence of a clear-cut ground truth also poses
challenges when automatically creating a natural-sounding
rendition of a piece of music, as noted in [3] as well as [26].
Indeed, the system in the latter work explicitly relies “on
a ‘correct’ or ‘appropriate’ phrase structure analysis”, sug-
gesting it is not trivial to get such an analysis.

Quite some work has also gone into the task of structure
analysis, e.g. [12, 14–16, 18, 19, 23]. It turns out, however,
that for some genres, the structure may be perceived am-
biguously, as observed with professional annotators [23],
performers [17] and listeners [24].
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2.2 Dynamic Time Warping

For obtaining temporal warping paths between perfor-
mances, we use Dynamic Time Warping (DTW). In a nut-
shell, DTW matches points from one time series to points
from another time series such that the cumulative distance
between the matched points is as small as possible, for
some suitable distance function; the matching can then be
interpreted as a warping path. A thorough overview of
DTW is given in [13].

3. FORMAL ANALYSIS FRAMEWORK

We start with a formalization of tempo variations and then
describe the proposed statistical analysis. The tempo vari-
ations we consider can be described by warping paths,
which can be obtained from recordings of performances
by using DTW.

3.1 Formal Properties

We wish to compare tempo variations between different
performances of a piece. In this section, we consider an
idealized setting in which only the local tempo is varied.
In the next section, we will discuss how this can be used
for analyzing variations in actual performances.

For our formal framework, we first need a representa-
tion of a performance. We will call the reference perfor-
mance g : [0, lg] → Rd, with lg the length of the perfor-
mance and d the dimensionality of some suitable feature
space in which the performance can be represented. Other
performances in a collection, displaying tempo variations
with respect to the reference performance, can be defined
as follows:

Definition 1. A performance of g with varied tempo is a
function f = g ◦ψ : [0, lf ]→ Rd, with lf and d defined as
above, and ψ : [0, lf ]→ [0, lg] a function with nonnegative
derivative, i.e., ψ̇ ≥ 0. We call ψ a tempo variation.

For the analysis of tempo variations between f and g,
we distinguish between average and relative tempo varia-
tion. The average tempo variation can be observed by look-
ing at the length of the interval over which the functions are
parametrized; it is simply the difference in average overall
tempo of each performance. Clearly, the longer the in-
terval, the slower the performance is on average. There
is more structure in the details, of course, which is what
the relative variations attempt to capture. Specifically, this
refers to an analysis of tempo variations given that the per-
formances are parametrized over an interval of the same
length, for instance, the unit interval.

Now, to implement the concept of relative tempo varia-
tions, we first reparametrize the performances over the unit
interval. Given f : [0, lf ] → Rd, we consider the nor-
malized performance f∗ = f ◦ ρ : [0, 1] → Rd, where
ρ : [0, 1] → [0, lf ] is given by ρ(t) = lf t. Now we can go
into more detail about these relative tempo variations.

3.1.1 Structure of the Set of Relative Tempo Variations

Relative tempo variations can be described by reparame-
trizations that relate the performances in question. Due to
the normalization of the performances, the reparametriz-
ations map the unit interval to itself. The relative tempo
variations ϕ and their derivatives ϕ̇ are characterized by
the following two properties:

Property 1. ϕ(0) = 0, ϕ(1) = 1.

Property 2. ϕ̇(n) ≥ 0 for any n ∈ [0, 1].

Examples of such relative tempo variations are shown
in Figure 1 (left), along with insets to see what happens
when one zooms in. When working with the normalized
performances, every performance with varied tempo f∗ of
a reference performance g∗ has the form f∗ = g∗ ◦ ϕ.

The benefit of splitting average and relative variation is
that the set of relative variations has a geometric structure:
the following lemma shows that it is a convex set in an
vector space. This enables us to use classical methods from
statistical analysis to analyze the relative tempo variations,
as explained in Section 3.2.

Lemma 1. Convex combinations of relative tempo varia-
tions are relative tempo variations.

Proof. Let α = (α1, . . . , αm) be a vector of nonnegative
numbers, αi ≥ 0, with unit `1 norm,

∑m
i=1 αi = 1, and

let ϕi : [0, 1] 7→ [0, 1] be relative tempo variations (1 ≤
i ≤ m). We show that ϕ =

∑m
i=1 αiϕi is a relative tempo

variation. As a sum of functions on the unit interval, ϕ is
also a function on the unit interval. Since the αi sum to 1,∑m

i=1 αiϕi(0) = 0 and
∑m

i=1 αiϕi(1) = 1, which means
that Property 1 holds. Finally, since all αi are nonnegative,
ϕ̇ ≥ 0 is also maintained.

3.2 Analysis of Prominent Variations

In the following, we consider a set of performances (with
varied tempo) and show how our approach allows us to
compute statistics on the set. Explicitly, we take the mean
and perform principal component analysis (PCA). As a
first step, we reparametrize the performances over the unit
interval [0, 1], as described above. We distinguish two
settings for our analysis. First, we describe a setting in
which we consider one reference performance. An exam-
ple of such a reference performance in practice is a ren-
dered MIDI, which has a linear timing to which we relate
the actual performances in the set. In the second setting,
we avoid the use of a reference performance by incorpo-
rating all pairwise comparisons between performances.

3.2.1 Comparing to the Reference Performance

Comparing a set of performances {f1, f2, . . . , fn} to a ref-
erence g∗ means obtaining for each normalized perfor-
mance f∗i the corresponding relative tempo variation ϕi,
such that f∗i = g∗ ◦ ϕi. Lemma 1 shows that we can build
a continuous set of relative tempo variations by building
convex combinations. Geometrically speaking, we con-
sider the simplex spanned by the ϕi. Though not needed
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Figure 1. Several reparametrizations ϕ relating professional human performances of Chopin’s Mazurka op. 30 no. 2 to a
deadpan MIDI version. Original ϕ with zoomed insets (left) and their derivatives ϕ̇ (right).

for our analysis, extrapolation out of the simplex is possi-
ble, as long as Property 2 is satisfied.

A particularly interesting convex combination for our
purposes is the mean of the set of performances. The mean
relative tempo variation ϕ̄ can be computed by setting all
the αi to the same value in Lemma 1 above. The mean
of the normalized performances {f∗i } is given as g∗ ◦ ϕ̄.
To obtain the mean of the performances, g∗ ◦ ϕ̄ is lin-
early rescaled to the average length of the performances
fi. The mean ϕ̄ gives information about which local tempo
variations away from g∗ are the most prevalent among the
performances under analysis. Of course, the mean does
not capture the variance in the set, for example, deviations
in opposite directions, as when some performers speed up
and others slow down, which would be evened out.

The variance in a set can be analyzed using PCA. To
perform a PCA on the set ϕi, we need a scalar product
on the space of relative tempo variations. Since these are
functions on the unit interval, any scalar product on this
function space can be used. For our experiments, we used
the L2-scalar product of the derivatives of the functions
(in other words the Sobolev H1

0 -scalar product). The rea-
son for using a scalar product of the derivatives, rather
than the function values, is that the derivatives describe
the variations in tempo, and the function values encode
the alignment of the performance. See Figure 1 (right) for
an example of how this brings out the variation. Once a
scalar product is chosen, we construct the covariance ma-
trix, whose entries are the mutual scalar products of the
functions ϕi − ϕ̄ (the distance of the tempo variations to
the mean). The eigenvectors of the covariance matrix yield
the principal modes of variation in the set ϕi. These ex-
press the main variations away from the mean in the set
and the eigenvalues indicate how much variance there is
in the set of performances by how much of the variance
is explained by the corresponding modes. The modes ex-
press the tendency of performers to speed up or slow down
observed in the set of performances.

3.2.2 Incorporating All Pairwise Comparisons

When using a reference performance, one has to choose
which performance to use as g∗, or to produce an artifi-
cial performance for g∗ (as we do in Section 4). This way,
the comparison becomes dependent on the choice of g∗,
which may not be desirable, as there may be ‘outlier’ per-
formances that would not necessarily be the best choice
for a reference performance (though other things can be
learned from them [17]).

To avoid the need to choose g∗, we propose an alterna-
tive analysis using all pairwise comparisons. This means
obtaining reparametrizations ϕ for every pair of perfor-
mances f∗ and g∗ such that f∗ = g∗ ◦ ϕ. This makes
sense, as it is not guaranteed that for three normalized per-
formances f∗, g∗ and h∗ and reparametrizations ϕi and ϕj

such that g∗ = f∗ ◦ ϕi and h∗ = g∗ ◦ ϕj , we would get
h∗ = f∗ ◦ϕi ◦ϕj . In other words, reparametrizations may
violate the triangle inequality, so we obtain more informa-
tion by taking into account all possible reparametrizations.

The same techniques can be applied once we have the
(extended) set of reparametrizations ϕ. That is, we can
take the mean of all the ϕ or perform a PCA on them. Em-
pirically, it turns out there tends to be repeated information
in the reparametrizations, which results in a certain amount
of natural smoothing when taking the mean; this effect can
be seen in Figure 3.

4. EXPERIMENTAL VALIDATION

In Section 3, we considered a collection of performances
with tempo variations as compared to a reference perfor-
mance. To perform the analyses described, we take the
following steps. First, we map the audio into some suitable
feature space; we take the chroma features implemented in
the MIRtoolbox [7] to obtain sequences of chroma vectors.
We then normalize these sequences to functions over the
unit interval. Finally, we use DTW to compute the relative
tempo variations ϕ that best align the performances.

Explicitly, let f∗, g∗ : [0, 1] → Rd be sequences of
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chroma vectors (in our case, d = 12, as analysis at the
semitone resolution suffices). Then DTW finds the func-
tion ϕ that satisfies Properties 1 and 2 and minimizes
‖f∗ − (g∗ ◦ ϕ)‖2, i.e., the L2 norm of the difference be-
tween f∗ and the reparametrized g∗. We generate ϕ in this
way for all performances in the collection.

Our goal is to analyze variations between performances.
Local tempo variation should be reflected in ϕ, provided
there is not too much noise and the same event sequence is
followed (e.g. no inconsistent repeats). The way we bring
out the local tempo variation is by taking the derivative ϕ̇
(cf. Section 3.2). A derivative larger/smaller than 1 indi-
cates that the tempo decreases/increases relative to the ref-
erence performance. Since the tempo variations are given
as a discrete functions, we need to approximate the deriva-
tives. We do this by fitting a spline to the discrete data and
analytically computing the spline’s derivative.

To avoid the ground truth issue mentioned in Section 2,
we devise several classes of artificial data, representing dif-
ferent types of performance variations for which we want
to verify the behavior of our analysis. We verify whether
the analysis is robust to noise and uniform variation in the
overall tempo (the scalar value mentioned in Section 3).
Furthermore, we consider different types of local tempo
variations, which, without loss of generalization, are in-
spired by variations typically expected in classical music
performances.

In the previous section, we mentioned two possible
analysis strategies: considering alignments to a reference
performance or between all possible pairs of performances.
Since the artificial data are generated not to have outliers,
it is difficult to apply the analysis that uses all possible
pairs to the artificial data. We therefore focus on the case
of using a single reference performance, although we will
briefly return to the possibility of using all pairs in Section
5.

4.1 Generating Data

The data were generated as follows. We start with a se-
quence g ∈ R12×m of m 12-dimensional Gaussian noise
vectors. Specifically, for each vector gi, each element gi,j
is drawn from the standard normal distribution N(0, 1).
We then generate a collection C of ‘performances’ based
on g, for seven different variation classes. We normalize
the vectors in C such that each element is between 0 and 1,
as it would be in natural chroma vectors. The classes are
defined as follows:

Class 1: Simulate minor noise corruption. A new sequence
c is generated by adding a sequence h ∈ R12×m of 12-
dimensional vectors, where each element hi,j ∼ N(0, 14 ),
so c = g + h. We expect this does not lead to any signifi-
cant alignment difficulty, so the derivative of the resulting
ϕ̄ (which we will call ˙̄ϕ) will be mostly flat.

Class 2: Simulate linear scaling of the overall tempo by
stretching the time. Use spline interpolation to increase the
number of samples in g, to simulate playing identically, but
with varying overall tempo. If there are n sequences gen-

erated, vary the number of samples from m− n
2 to m+ n

2 .
Since this only changes ‘performances’ on a global scale,
this should give no local irregularities in the resulting ˙̄ϕ.

Class 3: Simulate playing slower for a specific section
of the performance, with sudden tempo decreases towards
a fixed lower tempo at the boundaries, mimicking com-
mon tempo changes in an A-B-A song structure. Interpo-
late the sequence to have 1.2 times as many samples be-
tween indices l = 1

3m −
1
2X and h = 2

3m + 1
2X , where

X ∼ U(0, m
10 ) (the same randomly drawn X is used in

both indices). We expect ˙̄ϕ to be larger in the B part than
in A parts. Since in different samples, the tempo change
will occur at different times, transitions are expected to be
observed at the tempo change intervals.

Class 4: A variation on class 3. Simulate a disagreement
about whether to play part of the middle section slower.
Let k = h− l. With a probability of 0.5, do not interpolate
the section from l + k

3 to h− k
3 . We expect similar results

as for class 3 with the difference that in the middle of the
B part, we expect an additional jump in ˙̄ϕ. In the B part, ˙̄ϕ
will jump to a lower value, which should still be larger than
the value in the A part since only half of the performances
decrease the tempo.

Class 5: Simulate a similar A-B-A tempo structure as
in class 3, but change the tempo gradually instead of in-
stantly over intervals of size roughly 1

6m. From index
l1 = 1

4m −
1
2X to l2 = 5

12m + 1
2X , gradually slow

down to 120% of the original tempo by interpolating over
a quadratic query interval 1 , then gradually speed up again
the same way between indices h1 = 7

12m −
1
2X and

h2 = 3
4m + 1

2X . Here, X ∼ U(0, 1
18m) and is drawn

only once. Here again, we expect to see smaller values
of ˙̄ϕ in the A parts and a higher value in the B part. Due
to the gradual change in tempo, we expect a more gradual
transition between A-B and B-A.

Class 6: A variation on class 5. Instead of varying the
interval using X , vary the tempo. First speed up the
tempo by a factor 1.3 + Y times the starting value (with
Y ∼ U(− 1

10 ,
1
10 )), then gradually slow down to a lower

tempo and again speed up before the regular tempo of A
is reached again. Here we expect to see a peak in ˙̄ϕ at the
transition from A to B, before the lower value in the B part
is reached and again a peak in the transition from B to A.

Class 7: Another variation on class 5: disagreement about
speeding up or slowing down. Toss a fair coin (p = 0.5);
on heads, gradually increase the tempo between l1 and l2
to 1.2+Y times the starting value and decrease it again be-
tween h1 and h2 as in class 5. On tails, decrease the tempo
to 0.8+Y times the starting value between l1 and l2 and in-
crease it again between h1 and h2, with Y ∼ U(− 1

10 ,
1
10 ).

We expect this to give much more noisy alignment, though
there may be a more stable area in ˙̄ϕ where the tempos do
not change, even though they are different.

1 Normal linear interpolation corresponds to a constant tempo curve,
but if the tempo curve changes linearly, the query interval for interpola-
tion becomes quadratic.
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Figure 2. On the left: ˙̄ϕ for class 1–4. In the middle, ˙̄ϕ for class 5–7. On the right: the first three PCA modes for class 4.

When running our analysis on the classes of artificial
data thus generated, we always took m = 500 and gen-
erated 100 sequences for each class. We used Matlab to
generate the data, using 2017 as the seed for the (default)
random number generator. A GitHub repository has been
made containing the code for the analysis and for gener-
ating the test data 2 . The experiment was run 100 times,
resulting in 100 ϕ̄s and 100 sets of PCA modes; we took
the mean for both and show the results in figures: Figure 2
(left and middle) show the derivatives when taking the
mean (each time) as described in Section 3, while Figure 2
(right) shows what happens when taking the PCA, as also
described in Section 3. We show the first three modes
because these empirically turn out to cover most (around
90%) of the variance.

4.2 Discussion

We now briefly discuss what the analyses on artificial data
tell us. First of all, the observed outcomes match our ex-
pectations outlined above. This demonstrates that our anal-
ysis can indeed detect the relative tempo variations that we
know are present in performances of music.

We want to note that Figure 2 shows the derivatives of
the relative tempo variation. For example, for class 3, all
performances are shorter than the reference; therefore, they
are stretched during the normalization. Consequently, the
˙̄ϕ in part A in the normalized performance is smaller than

1. This effect could be compensated by taking the length
of the performances into account.

The PCA modes provide information about the varia-
tion in the set of performances. Figure 2 shows the first
three modes found in Class 4. These three modes are the
most dominant and explain more than 90% of the varia-
tion. The first mode has a large value in the middle part of
the B section. This follows our expectation as only 50% of
the performances slow down in this part, hence we expect
much variation in this part. In addition, there are small
values in the other parts of the B section. This is due to
the fact that the performances do not speed up at the same
time, so we expect some variation in these parts. Note that
the principal modes are linear subspaces, hence sign and
scale of the plotted function are arbitrary. An effect of this

2 https://github.com/asharkinasuit/
ismir2017paper.

is that the modes cannot distinguish between speeding up
the tempo or slowing it down. Since the first mode cap-
tures the main variation in the middle part of the B section,
in the second mode the transitions between A and B are
more emphasized. The third mode emphasizes the transi-
tions too.

Finally, we note that it becomes possible to zoom in on
a particular time window of a performance, in case one
wants to do a detailed analysis. A hint of this is shown in
Figure 1, left, where zoomed versions of ϕ are shown in
insets. We have defaulted in our experiments to analyz-
ing performances at the global level, and consider it future
work to explore what information will be revealed when
looking at the warping paths up close.

5. APPLICATIONS

Now that we have validated our approach, we describe sev-
eral applications in which our method can be employed.

5.1 Analyzing Actual Performances

As mentioned in Section 3, we can analyze relative dif-
ferences between a chosen reference performance and the
other performances, or between all possible pairs of per-
formances. We have access to the Mazurka dataset con-
sisting of recordings of 49 of Chopin’s mazurkas, partially
annotated by Sapp [21]. Note that our analysis can handle
any collection of performances and does not require anno-
tations. Since we have no ground truth, it is difficult to
make quantitative statements, but in this and the following
subsection, we will discuss several illustrative qualitative
examples.

In Figure 3, we show ˙̄ϕ for Mazurka op. 30 no. 2 for
both approaches. Taking all pairs into consideration results
in lower absolute values, as well as an apparent lag. For
both approaches, it turns out the most important structural
boundaries generally show up as the highest peaks. An-
other feature that stands out in both plots is the presence of
peaks at the beginning and end. These can be interpreted
as boundary effects, but we believe the final peak also is
influenced by intentional slowing down by the musicians
in a final retard [25].

Another example of applying the analysis on all pairs of
performances is given in Figure 4. Here, we see two more
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Figure 3. Sample showing ˙̄ϕ for Mazurka op. 30 no. 2,
comparing warping to a deadpan MIDI and warping ev-
erything to everything. Note the smoothing effect in the
latter case. Salient structural parts are indicated with verti-
cal lines: repeats (dotted) and structural boundaries (solid).

interesting features of the analysis. Firstly, it tends to hint
at the musicians’ interpretation of the structure of the piece
(as also in Figure 3); the start of the melody is indicated
with the vertical dashed line. Most performers emphasize
this structural transition by slowing down slightly before it.
However, the time at which they slow down varies slightly
(compare this to e.g. class 3 and 5 of our artificial data).
This will show in ϕ, and consequently in ˙̄ϕ . Secondly, we
note that ornaments tend not to vary tempo as much: the
thin section in the figure is closer to 1 than the peak near
the start of the melody. This helps corroborate Honing’s
results, e.g. [2, 5].

5.2 Guiding Synthesis

For the performances in question, we know the piece that is
performed and we have a score available. A direct acous-
tic rending of the score (via MIDI) would sound unnatu-
ral. Now, reparametrizations and their means are just func-
tions, which we can apply to any other suitably defined
function. Following the suggestion in [20] that a generated
‘average’ performance may be more aesthetically pleasing,
we can now use these functions for this: by applying the ϕ̄
derived from a set of performances to a MIDI rendition, a
more natural-sounding result will indeed be obtained. As
an example, we ran our analysis on Chopin’s mazurka op.
24 no. 2 with the MIDI rendition as reference performance
and applied the resulting reparametrization to the MIDI 3 .
Note that, as in Figure 3, the tempo naturally decreases to-
wards the end.

Applying ϕ̄ directly to audio is not the only thing that
we can do. One possibility is exaggeration of tempo varia-
tion. To amplify sections that show major tempo variation,
we can modify the ϕ by squaring it. Alternatively, to better
display the tempo variations in an individual performance,
we can rescale the function ϕ− ϕ̄, capturing the difference
of the actual performance to the mean in a performance

3 See https://github.com/asharkinasuit/
ismir2017paper, which includes the original for comparison.

0 0.05 0.1 0.15 0.2 0.25

time (normalized)

0.95

1
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1.1

1.15

˙̄ ϕ

Figure 4. ˙̄ϕ of the start of mazurka op. 17 no. 4. The start
of the melody is marked with a vertical dashed bar, while
the delicatissimo section is drawn in a thinner line.

collection. Such modifications offer useful analysis tools
for bringing out more clearly the sometimes subtle effects
employed by professional musicians.

Another possibility is to take ϕ from various sources,
e.g., by generating ϕ for several different reference perfor-
mances, and applying them to a MIDI rendition with vari-
ous coefficients to achieve a kind of mixing effect. Finally,
the principal modes of variation in the set can be used to
modify the tempo in which the MIDI is rendered. Exam-
ple audio files are available on request for any of these dif-
ferent ways of rendering musical scores using information
from actual performances.

6. CONCLUSIONS AND FUTURE WORK

We have presented a formal framework for analyzing rel-
ative local tempo variations in collections of musical per-
formances, which enables taking the mean and computing
a PCA of these variations. This can be used to analyze a
performed piece, or synthesize new versions of it.

Some challenges may be addressed in the future. One
would be to give a more rigorous interpretation to the case
of taking all pairwise comparisons into account. Further-
more, quantification of variation still presently is used in
a relative fashion; our analysis indicates some amount of
variation, but further interpretation of this amount would
be useful. One might also substitute other DTW variants
that can e.g. deal more intuitively with repeat sections [4].

Furthermore, while the studied variation classes were
inspired by local tempo variations in classical music per-
formances, it should be noted that our framework allows
for generalization, being applicable to any collection of
alignable time series data. Therefore, in future work, it
will be interesting to investigate applications of our pro-
posed method on other types of data, such as motion track-
ing data.
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