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Fig. 1. Two armadillos (274k tetrahedra) in a pool of water (633k particles) simulated at 60 FPS with a time step of 1/60s. Fluid-deformable interaction and
(self-)collisions are handled. The user can interact with the scene through click-and-dragging the meshes.

We introduce the Reduced Immersed Method (RIM) for the real-time simu-
lation of two-way coupled incompressible fluids and elastic solids and the
interaction of multiple deformables with (self-)collisions. Our framework is
based on a novel discretization of the immersed boundary equations of motion,
which model fluid and deformables as a single incompressible medium and
their interaction as a unified system on a fixed domain combining Eulerian
and Lagrangian terms. One advantage for real-time simulations resulting
from this modeling is that two-way coupling phenomena can be faithfully
simulated while avoiding costly calculations such as tracking the deform-
ing fluid-solid interfaces and the associated fluid boundary conditions. Our
discretization enables the combination of a PIC/FLIP fluid solver with a
reduced-order Lagrangian elasticity solver. Crucial for the performance of
RIM is the efficient transfer of information between the elasticity and the
fluid solver and the synchronization of the Lagrangian and Eulerian set-
tings. We introduce the concept of twin subspaces that enables an efficient
reduced-order modeling of the transfer. Our experiments demonstrate that
RIM handles complex meshes and highly resolved fluids for large time steps
at high framerates on off-the-shelf hardware, even in the presence of high
velocities and rapid user interaction. Furthermore, it extends reduced-order
elasticity solvers such as Hyper-Reduced Projective Dynamics with natural
collision handling.
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1 INTRODUCTION
The physical simulation of deformable solids and fluids in real-time
is highly desirable for various applications of computer graphics
as it enables interaction with the simulation and thereby largely
enhances the users’ experience in games, artistic and design appli-
cations, virtual reality, and medical training. The demands on the
efficiency and robustness of such simulations pose challenging prob-
lems that require specialized computational methods. Our goal is to
develop techniques targeting real-time simulations of deformable-
fluid and deformable-deformable interactions involving complex
geometry.

A challenge in the real-time simulation of fluid-deformable inter-
action is posed by the complexity of the transfer of forces between
fluid and deformable. Both media have highly deforming common
boundaries, on which non-linear forces are evaluated to compute
the two-way interaction between them. The tracking of the interface
and associated boundary conditions is prohibitive for the real-time
simulation of complex deformables and highly resolved fluids, and
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the transfer of forces is expensive unless the deformable and the
fluid are discretized in the same manner (e.g. both as meshes or both
as particle soups), such that one of them is not available in its most
advantageous representation. Thus, while there are highly efficient
solvers for the real-time simulation of deformables or fluids, it is
difficult to combine them in real-time scenarios, where at most a
few milliseconds can be spent on connecting the individual solvers.

As a result, recent approaches for real-time two-way interaction
are limited to low resolutions or rely on simplified interaction mod-
els. In contrast, our goal is to enable the real-time simulation of
complex deformables, discretized as highly resolved meshes, inter-
acting with fluids in a physically sound manner (i.e. through the
discretization of an established continuous system).

To this end, we recognize the value of immersed methods for the
real-time simulation of fluid-deformable interaction. Our novel sim-
ulation framework, the Reduced Immersed Method (RIM), is based
on a novel discretization of the immersed boundary equations of
motion [Peskin 2002]. Therein, deformables and fluid are modeled as
a continuous medium on a fixed Eulerian grid and additional elastic
forces act on the sub-domain occupied by the deformable. This will
allow us to skip the costly evaluation of the interface between the
deformable and the fluid and the computation of boundary forces
thereon. Our method is based on the immersed boundary equa-
tions of motion but the discretization and numerical schemes we use
and our application focus differ substantially from the Immersed
Boundary Method [Peskin 2002], its variants, and applications.
Our novel discretization will allow us to combine two highly

efficient solvers for fluid and deformable simulation, to achieve un-
matched performance for coupling simulations of massive scale (see
e.g. Figure 1). Fluid and deformable are integrated in time using
a PIC/FLIP [Zhu and Bridson 2005] variant, acting on a particle
representation of the fluid and the deformable. The additional in-
ner forces, acting only on the deformable, are computed using a
reduced elasticity solver, in our implementation we use the Hyper-
Reduced Projective Dynamics (HRPD) framework [Brandt et al. 2018].
These forces are transported to the Eulerian framework according
to smooth approximations of Dirac delta functions. This will require
us to transfer quantities computed on a mesh to the particle-based
fluid solver, and vice versa, since the mesh needs to be synchronized
to the updated particle state of the fluid solver after advection. We
approach this challenge through the novel concept of twin subspaces:
by constructing two subspaces, one for the particle-based and one
for the mesh-based representation of the deformable, which are
in direct correspondence, we are able to achieve the transport of
forces and the synchronization of the solvers efficiently through the
transfer of subspace coordinates and subspace projections. Since our
method is based on a careful discretization of the continuous system,
we are able to faithfully replicate complex two-way interaction and
the associated phenomena such as buoyancy. In a direct comparison,
we show that our simulations closely match those computed by an
offline approach that takes more than 400 times longer to compute
a time-step.

Despite the complexity of the continuous system and its discretiza-
tion, the resulting framework can be described through a concise
algorithm (see Algorithm 1). This is due to the fact that we embed
the transfer of Lagrangian elastic forces to the Eulerian grid into

Fig. 2. Interactive simulations of complex elastic deformables with contact
in real-time. Collisions and self-intersections are naturally handled.

PIC/FLIP’s particle-to-grid transfer, in a way that aligns with the
input/output structure of both solvers. This simplicity allows for
full reproducibility and source code will be made available.
Another challenging problem is the simulation of the interac-

tion between multiple elastic defomables in real-time, since de-
tecting and naturally handling collisions between highly resolved
meshes at large time-steps requires complex computational algo-
rithms. Through the combination of incompressibility being globally
enforced on a continuos velocity field and an additional penetration
prevention step, RIM also prevents (self-)collisions between incom-
pressible elastic deformables and resolves them in a physically-based
manner. In several examples, we demonstrate the capability of our
method to robustly simulate real-time interaction between complex
meshes subjected to gravitation and rapid user interaction.

In summary, our salient contributions are:

• We present the first immersed method for real-time fluid-
deformable interaction.
• We present a novel discretization of the immersed boundary
equations of motion that combines a reduced, mesh-based
elasticity solver with a PIC/FLIP solver.
• The transfer of information between the two solvers and
their synchronization is efficiently handled through the novel
concept of twin subspaces.
• The resulting method enables the real-time simulation of
fluid-deformable interaction with highly resolved meshes
and fluids in unmatched performance.
• We extend the reduced-order Lagrangian elasticity method
Hyper-Reduced Projective Dynamics with natural collision
handling and true incompressibility.
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2 RELATED WORK
Real-time simulation of elastic deformables. The simulation of

elastic deformable bodies has a long history in the field of com-
puter graphics. Our focus will be on approaches that are capable of
real-time simulations, for an introduction to the general topic, we
refer to the courses [Bargteil and Shinar 2018; Sifakis and Barbič
2012]. For the real-time simulation of meshes with limited resolu-
tion, Position-based dynamics (PBD) models of elasticity [Bender
et al. 2014; Müller et al. 2014; Müller et al. 2005] have been employed
successfully. Projective Dynamics [Bouaziz et al. 2014] enables an
efficient implicit time integration by a combination of a local-gloal
optimization scheme with an optimization integrator [Gast et al.
2015; Li et al. 2018] and specific choice of an elastic material model.
Projective dynamics has been extended to more general materials
[Liu et al. 2017; Overby et al. 2017] and schemes for accelerating the
convergence of the optimization integrator have been studied [Dinev
et al. 2018; Peng et al. 2018]. Gradient descent methods based on
Chebyshev acceleration allow for massive parallelization [Wang
2015; Wang and Yang 2016] on the GPU. Still, the real-time sim-
ulation of deformables is limited to coarse spatial and temporal
resolution.
Model reduction techniques can be used to design fast approx-

imation algorithms for the simulation of deformables. A reduced
system is constructed in an offline stage such that in the online stage
the cost for integrating the reduced system is independent of the
complexity mesh and its finite element space. For linear systems, a
model reduction can be achieved by projecting the dynamics to a
subspace of the finite element space [Hauser et al. 2003]. For non-
linear systems, a second layer of reduction, a hyper-reduction, that
enables the fast approximation of the non-linear forces is required.
For this purpose polynomial reduction [Barbič and James 2005], opti-
mized cubature [An et al. 2008; von Tycowicz et al. 2013; Yang et al.
2015], and a fitting method [Brandt et al. 2018] have been proposed.

Reduced solid-solid interaction. The detection of contact of re-
duced deformables can be accelerated using a specialized bounding
volume hierarchy [James and Pai 2004]. For fast detection of self-
collision, culling methods based on collision certificates [Barbič and
James 2010] and bounded-normal trees [Schvartzman et al. 2009]
have been proposed. These works focus only on the detection of
collision. Accelerated models for contact between two reduced de-
formables [Barbič and James 2008], reduced deformables and static
objects [Harmon and Zorin 2013], and self-contact of articulated
deformables [Teng et al. 2014] have been proposed. Our approach
addresses solid-solid contact and self-contact scenarios in one frame-
work that is based on two principles. Firstly, the combination of
global incompressibility and elastic forces is a natural physical model
for contact. This type of contact model was used in [Peer et al. 2018;
Teng et al. 2016]. Secondly, the evolution of a shape in continuous,
single-valued velocity fields precludes interpenetration [Sulsky et al.
1995]. Single-valued divergence-free velocity fields were used for a
collision-free shape editing approach [von Funck et al. 2006]. We
will not discuss offline contact simulation approaches here, but note
that the approaches in [Fan et al. 2013; Jiang et al. 2017; Levin et al.
2011] relate to the way in which we handle contact on a Eulerian
grid.

Real-time simulation of fluids. When restricting to coarse grid res-
olutions and low particle counts, many fluid simulation techniques
can be used for real-time simulation. For example, GPU implementa-
tions of the PIC/FLIP algorithm [Zhu and Bridson 2005] are capable
of real-time rates on modern hardware. Likewise, Smoothed Particle
Hydrodynamics (SPH) [Monaghan 1992] methods can be elevated
to interactive rates, as demonstrated in [Müller et al. 2003]. More
recent approaches employ hybrid grids and specialized multi-grid al-
gorithms [Chentanez and Müller 2011] to achieve real-time rates on
large scale liquids or adapt the FLIP method to a sparse hierarchy of
grids to allow for the simulation of tens of millions of particles [Wu
et al. 2018]. Our method employs a modified GPU implementation
of the PIC/FLIP algorithm.

Real-time fluid-deformable interaction. While efficient methods
for the real-time simulation of either deformables or fluids have
been introduced, the real-time simulation of the interaction between
deformables and fluids still poses a great challenge. As such, effi-
cient simulation frameworks that enable the computation of a time
step in complex fluid-deformable coupling simulations in real-time
are limited. [Yang et al. 2012] combine incompressible SPH and an
explicit FEM solver for elasticity through a CUDA implementation
and handle the computation and distribution of coupling forces
through proxy particles. The explicit elasticity computations, the
complex computation of coupling forces at common interfaces and
the need to enforce non-penetrations as an additional subsequent
step, heavily limit the step-size, such that simulations run at about
one twentieth of real-time speed and at low frame-rates for high
resolutions. To improve the performance of the computation of
coupling forces, other real-time methods represent both fluid and
deformable through particles. PBD models for elasticity can be com-
bined with a PBD model of fluids [Macklin and Müller 2013] in
a unified frame work [Macklin et al. 2014]. While this approach
is fast, drawbacks, such as difficulties in handling soft constraints
and a coupling of material stiffness to the time step and iteration
count, are reported [Weiler et al. 2016]. A related elasticity model
is shape matching [Müller et al. 2005], which has been coupled to
incompressible SPH [Shao et al. 2015] and a PIC/FLIP solver in [Gao
et al. 2018a]. We discuss our method in relation to [Macklin et al.
2014] and [Gao et al. 2018a] in Section 6.1

Offline fluid-deformable interaction. Traditional approaches for
the simulation of fluids interacting with solids are not focused on
real-time performance and computation timings for one time step
range from seconds to hours. Typically, a Lagrangian elastic solid
and a fluid simulation on an Eulerian grid are combined.

Weak, or partitioned, couplingmethods [Degroote 2013; Génevaux
et al. 2003; Guendelman et al. 2005; Hou et al. 2012], solve the fluid
and solid simulation separately and use interface conditions at the
common boundary to pass information from one to the other. Their
advantage is the ability to use two separate specialized discretiza-
tions and solvers for fluid and elasticity computations. Since the
boundary conditions cannot be known in advance, partitioned ap-
proaches require multiple iterations between the fluid and elasticity
solvers to compute a single time-step. [Akbay et al. 2018] supple-
ment arbitrary partitionedmethods with a reduced-order monolithic
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system and an impulse based interaction term to significantly reduce
the number of iterations between solvers before convergence.
Monolithic schemes, such as [Chentanez et al. 2006; Robinson-

Mosher et al. 2011, 2008], integrate the solid and fluid dynamics to
a single system that includes the interface conditions. Challenges
arise in ensuring that the resulting system is positive-definite and
symmetric.
Both approaches (weak and monolithic) need to represent the

boundary of the deforming solid on the Eulerian grid. Accuracy of in-
terfaces can be increased by adaptive refinement [Losasso et al. 2004]
or by inpainting boundary-conforming tetrahedralmesh [Chentanez
et al. 2007]. In cut-cell methods [Batty et al. 2007; Zarifi and Batty
2017] the grid cells are clipped against the solid’s geometry and in-
terface conditions are enforced at the clipped cells. We evaluate our
method by comparing simulations using our method to simulations
using [Zarifi and Batty 2017] in Section 6.2. A method for mono-
lithic solid-fluid interaction using reduced deformable objects has
been introduced in [Lu et al. 2016]. Even when efficient solvers are
combined, the handling of the boundary and the computation of cou-
pling forces enable interactive rates only for very coarse resolutions.
Additionally, time steps are usually very small to prevent stability
issues related to the fluid simulation, the elasticity simulation or
solid-solid and fluid-solid penetration.

For the interaction between rigid solids and fluid, Carlson, Mucha
and Turk [2004] propose solving for a unified velocity field, on
which they enforce incompressibility and rigidity of the solids via
projections, which in turn approximate the interaction behavior.
Mesh-based purely Lagrangian methods, such as [Clausen et al.

2013; Misztal et al. 2014], profit from a unified representation of
fluid and solids and sharply resolve the interfaces. However, the
mesh constantly needs to be restructured, which limits real-time
applicability. Smoothed Particle Hydrodynamics (SPH) [Monaghan
1992] can be used for fluid simulations [Becker and Teschner 2007;
Ihmsen et al. 2014; Müller et al. 2003; Solenthaler and Pajarola 2009],
which results in a meshless Lagrangian method.

The SPH model can be used for both fluid and deformables, as
proposed in [Peer et al. 2018]. This requires an SPH formulation
for deformable solids. Since the SPH kernel gradient is not first-
order consistent, rotation extraction requires a correction of the
kernel. Real-time simulation in this framework is limited to coarse
resolutions and the deformables are represented as particles.

Recently, the Material Point Method [Sulsky et al. 1995], which is
a meshless Lagrangian/Eulerian hybrid method has found attention
in various computer graphics applications, including fluid-solid
coupling [Hu et al. 2018; Jiang et al. 2015; Tampubolon et al. 2017].
As in our method, efficient Lagrangian to Eulerian transfers are
essential to MPM approaches, and a GPU optimization has been
explored in [Gao et al. 2018b].

Immersed methods. An alternative Lagrangian-Eulerian approach
to solid-fluid interaction are immersed methods, originating from
the immersed boundary method [Peskin 2002], which was used, for
example, to study flow patterns around heart valves. The basic idea
of the immersed boundary method is to simulate fluid and incom-
pressible deformables on a common, fixed Eulerian grid, through a
unified system of equations of motion that contains both Eulerian

and Lagrangian terms. The deformable’s elasticity is modeled by an
additional force term, which is computed in a Lagrangian solid simu-
lation, and a transfer of these forces to the Eulerian grid using Dirac
delta functions. Several variants of the immersed boundary method
have been proposed, such as the immersed finite elements method
[Zhang et al. 2004; Zhang and Gay 2007], the immersogeometric
method [Kamensky et al. 2015], or approaches aiming at better vol-
ume preservation [Bao et al. 2017]. A benefit of immersed methods
is that no additional interaction forces need to be imposed on the
time-varying fluid-solid interface, as they are implicitly handled
through the underlying unified equations of motion.

We recognize the benefits of immersed methods for the real-time
simulation of deformable-fluid coupling simulations in computer
graphics and propose a novel discretization of the immersed bound-
ary equations of motion from [Peskin 2002]. In contrast to other
immersed methods, we make use of an additional particle represen-
tation of the deformable and use the PIC/FLIP interpolation formulas
to transfer elastic forces and velocities between the Lagrangian and
Eulerian settings. Moreover, we use a reduced-order Lagrangian sim-
ulation and introduce the twin subspaces, which enable information
transfer of elastic forces into the Eulerian grid, as well as the syn-
chronization of the Lagrangian and Eulerian settings after advection
at low computational cost. To the best of our knowledge this is the
first immersed method making use of a reduced elasticity solver.

3 THE REDUCED IMMERSED METHOD
In the following we will describe our simulation framework RIM. In
Section 3.1 we introduce the continuous system underlying our sim-
ulation framework. A novel discretization of this system is proposed
in Section 3.2, which combines a mesh-based, reduced, Lagrangian
elasticity solver (Section 3.2.1) with a variant of the PIC/FLIPmethod
(Section 3.2.2). The joint simulation and the algorithm for RIM are de-
scribed in Section 3.2.3. In our method, fluid-deformable coupling is
realized through the concept of twin subspaces, described in Section
3.2.4, which enables the highly efficient transfer of forces between
the two solvers. The method is stabilized through an additional layer
of intersection prevention, detailed in Section 3.2.5. The simulation
of multiple deformables in contact, i.e. the handling of collisions
and self-collisions, is discussed in Section 4.

PIC/FLIP Fluid 
Simulation

Enforces incompressibility of 
joint velocities and advects

solid and fluid particles.

Reduced Elasticity
Simulation

Computes elastic forces 
implicitly on mesh.

Twin 
Subspaces

Map forces to particle
representation of solid

Map updated velocities
and positions to mesh

Fig. 3. Overview of our algorithmic pipeline.

In Figure 3 we provide a simplified overview for the final algo-
rithm, where a reduced elasticity solver and a PIC/FLIP fluid solver
are connected through the twin subspaces to solve the immersed
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boundary equations of motion. The final algorithm is listed in Al-
gorithm 1. The key algorithmic aspects for the performance of this
method are:
• Elastic forces are evaluated implicitly, using a mesh, with
displacements restricted to a linear subspace.
• The elastic forces are transported to solid particles (as velocity
updates), using a second subspace on the solid particles, that
is in correspondence to the former.
• Incompressibility of the joint (fluid and deformable) velocity
field is enforced on the grid by solving a pressure projection.
This is done using a limited number of Jacobi iterations to
find a good trade-off between accuracy and performance (see
Appendix C).
• Updated positions and velocities of the deformable are trans-
ported back to the mesh, again making use of the twin sub-
spaces.
• Velocities are corrected to prevent interpenetration between
solids and fluid, which can be done efficiently using updated
approximated particle normals, acquired by using the specific
structure of the Hyper-Reduced Projective Dynamics [Brandt
et al. 2018] subspace.

This fairly simple algorithm will be shown to approximate our
continuous model presented in the next sections.

3.1 Continuous model
Our framework is based on the immersed boundary equations of mo-
tion [Peskin 2002] for fluid-solid interaction. The equations model
the union of the fluid and the elastic solids as a single incompressible
medium on a fixed domain. Elastic forces, acting only on the de-
formables, are transported from a Lagrangian to the Eulerian setting
via Dirac delta distributions. The fluid and deformables interact on
a bounded domain Ω ⊂ R3. We assume that the deformables occupy
a subset ΩS ⊂ Ω at time 0, which is their initial, undeformed config-
uration. The initial densities of fluid and solid are given by a scalar
function ρ0 on Ω. The internal forces acting on the deformables
are given by Fint(y, t) for y ∈ ΩS, where y parameterizes ΩS. The
motion of fluid and deformables will be described by a Eulerian
velocity field v , which is governed by

ρ(x, t)

(
∂v(x, t)

∂t
+ ∇v(x, t) · v(x, t)

)
+ ∇p(x, t)

= fint(x, t) + fext(x, t)
(1)

∇ · v(x, t) = 0 (2)

ρ(x, t) =

∫
Ω
ρ0(y) δ (x − φ(y, t)) dy (3)

fint(x, t) =
∫
ΩS

Fint(y, t) δ (x − φ(y, t)) dy (4)

∂φ(x, t)

∂t
= v (φ(x, t), t) (5)

For x ∈ ∂Ω : v(x, t) · n(x) = 0 (6)

Here,p is the unknown pressure enforcing incompressibility and fext
are external, Eulerian body forces. For the boundary conditions (6),
n(x) is the outer normal to Ω at x ∈ ∂Ω. Initial velocities are given
asv(·, 0) = v0. Densities and elastic forces are treated as Lagrangian

terms and transported to the Eulerian system by convolution inte-
grals over Dirac delta distributions, (3) and (4), whose centers move
with the flow map φ. Specifics about the elastic forces used in our
simulations are delayed until Section 3.2.1, where they are stated in
the discretized setting.

This system of equations unifies the dynamics of incompressible
elastic deformables immersed in an incompressible fluid. It is equiv-
alent to other common formulations for fluid-solid interaction, but
formulates the jump in the fluid stress across the common inter-
faces implicitly, instead of posing explicit boundary conditions. In
fact, the difficulty of tracking the common interface and solving for
unknown boundary conditions is replaced by the transfer between
the Lagrangian and Eulerian setting. The integrals (3) and (4) need
to be evaluated to keep track of densities and elastic forces within
the Eulerian setting, which requires the stable computation of the
flowmap (5). Also, to compute Fint, a Lagrangian representation
of the deformable which is synchronized to the Eulerian state has
to be available. We propose a novel discretization of this system
which makes use of modern and efficient solvers ([Brandt et al. 2018;
Zhu and Bridson 2005]) and introduces a reduced-order method to
compute the transfers and synchronization between the Lagrangian
and Eulerian settings.

The immersed boundary equations ofmotion pose two limitations.
Firstly, the system implicitly imposes no-slip boundary conditions
between different deformables or fluid and deformables, as the ve-
locity fieldv will always be continuous. In practice, the effect of this
restriction is reduced by our specific discretization and we observe
relative tangential motion for both fluid-deformable and deformable-
deformable interaction. Secondly, all deformables are assumed to
be incompressible, which enables the omission of explicit boundary
conditions to model fluid-deformable interaction.

3.2 Discretization
We approach our discretization by employing the common approach
of operator splitting to approximate the equations of motion (1) - (6).
We solve for velocitiesv and pressure p by splitting the equations of
motion into an elasticity step (which will include the external body
forces acting on the deformable),

∂v(x, t)

∂t
=

1
ρ(x, t)

(fint(x, t) + fext(x, t)) for x ∈ φ(ΩS, t), (7)

a step to apply external forces on the fluid,

∂v(x, t)

∂t
=

1
ρ(x, t)

fext(x, t) for x ∈ φ(Ω\ΩS, t), (8)

a projection step to enforce incompressibility on both deformables
and fluid,

∂v(x, t)

∂t
= −

1
ρ(x, t)

∇p(x, t) (9)

∇ · v(x, t) = 0 (10)

and an advection step

∂v(x, t)

∂t
+ ∇v(x, t) · v(x, t) = 0. (11)
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Fig. 4. A stream of water is poured into an elastic cup in a pool. Through user interaction, the liquid is then poured from the cup into the pool.

This splitting allows us to use the most efficient representation
for each step individually, and thus we choose mesh and particle
representations of the deformable to discretize (7), a regular grid to
discretize (9) and particles to discretize (8) and (11). Note that the
deformable is present in all three discretizations.

The steps of applying external forces on the fluid (8), projection (9),
and advection (11) are approximated by the PIC/FLIP variant de-
scribed in Section 3.2.2. After these steps, positions and velocities of
the mesh representation of the deformable are updated according
to the changes of particle and grid representations.
In the elasticity step, we first compute Lagrangian elastic forces

Fint using the mesh-based, implicit approach, which is described in
Section 3.2.1. We then compute intermediate velocities according to
the elastic and external forces on the Lagrangian mesh. These ve-
locities are transferred to the particles representing the deformable
in the PIC/FLIP algorithm, where they are used as input to compute
projection and advection. This discretizes the update of Eulerian
velocities, (7), including the transfer of forces. Hence, the evaluation
of the integrals (4) is delayed, and embedded into the PIC/FLIP algo-
rithm’s particle-to-grid transfer, such that it comes at no additional
computational cost. As an additional advantage, the velocity up-
date is performed on the particle/mesh representations, where the
boundary between deformable and fluid is sharply resolved, which
is not the case on the Eulerian grid.

The update of the Lagrangian mesh, as well as the transfer of the
updated velocities from the mesh to the particle representation are
efficiently realized through the concept of twin subspaces, which
will be described in Sections 3.2.3 and 3.2.4.

3.2.1 Lagrangian elasticity computations. In this step, our task is to
update the velocities of the deformable, disregarding incompress-
ibility and fluid interaction. To discretize this step, the undeformed
solid occupying the domain ΩS is represented by a tetrahedral mesh
with vertex positions Xm

0 ∈ R
3n . Each vertex receives an associated

mass equal to the integrated rest density ρ0 over an area given by
the Voronoi cell of that vertex. The associated masses are collected
in a diagonal matrixM . The motion of the deformable is described
by time-dependent vertex positions Xm (t). The elastic energy asso-
ciated to deformed vertex positions Xm is discretized as a volume
weighted sum E(Xm ) =

∑
VoljW

j
el(X

m ), where the energy density
W

j
el is constant at each tetrahedron. In Projective Dynamics [Bouaziz

et al. 2014], theW j
el that are used to model an elastic, volumetric

deformable, are given by

W
j
el(X

m ) = λj
SjX − pj (Xm )

2
where λj > 0 is the stiffness of the material, Sj is the matrix which
computes the deformation gradient of the jth tetrahedron from
the vector X of vertex positions, and the constraint projections pj
compute the rotational parts of the deformation gradients. The
discrete Lagrangian internal forces are then given by Fint(X

m ) =

−∂E(Xm )/∂Xm = −
∑
j ∇W

j
el(X

m ).
With this, the spatially-discrete version of (7) can be rewritten

using Lagrangian coordinates as

M ÜXm = F (Xm ) + Fext (12)

To compute the updated velocities, we will compute a discrete time
step of (12) and infer updated velocities as (Xm (t + h) − Xm (t)) /h.
To compute this time step at reduced cost, we will use the reduced-
order, local-global optimization-based time stepping scheme pro-
posed in Hyper-Reduced Projective Dynamics [Brandt et al. 2018].
This approach makes use of reduced coordinates Xm ≈ UmX̃ , for
a linear, d-dimensional subspace Um , and approximates the non-
linear part of the dynamics from only a small fraction of evaluated
constraint projections pj . We will not describe Projective Dynamics
or the model reduction approach in more detail here, as we use it as
a black-box that takes as input subspace coordinates of the current
vertex positions X̃ (t), subspace coordinates of the per-vertex veloci-
ties Ṽ (t) and outputs Ṽ (t + h). Note, that the input positions X̃ (t)
and velocities Ṽ (t) have to be such that they reflect the state of the
Eulerian system on which projection and advection are computed.
Any method for the simulation of elastic deformables, that is

constrained to a linear subspace, can be used in place of the Hyper-
Reduced Projective Dynamics framework to compute the interme-
diate velocities of the elasticity step. However, we benefit from the
stability that is provided by the optimization-based implicit time
stepping in combination with the regularization through the sub-
spaces.

3.2.2 Projection and advection. To compute projection and advec-
tion, fluid, deformable and their associated quantities (velocity,
density and pressure) are discretized as particles on a staggered
MAC-grid. In particular, in addition to its mesh representation, the
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deformable will be represented through particles, which are initial-
ized as the intersection of a regular grid with the volumetric mesh.
Equations (8)-(11) are discretized and solved using the PIC/FLIP
algorithm from [Zhu and Bridson 2005].
The algorithm was modified to take into account the immersed

incompressible deformable. Specifically, the particles representing
the deformable are flagged as solid and their velocities are modified
according to the elastic forces computed in the elasticity step. This
transfer is detailed in the following section. Furthermore, we need
to account for varying densities of fluid and deformable, which
requires an adapted pressure projection.
Various small additional modifications were made to increase

performance and to prevent volume loss for large velocities and
time steps. The modiciations to the original PIC/FLIP algorithm are
detailed in Appendix A and the full modified algorithm is listed
there, as Algorithm 2.

3.2.3 Joint simulation. To finalize the RIM algorithm, we need to
detail the transfers of the Lagrangian quantities and the update
of the Lagrangian setting according to the Eulerian velocity field.
As described above, this amounts to the following steps in our
discretization:

• The velocities acquired from the mesh-based elasticity step
are transferred to the solid particles, where they replace the
velocities attached to the particles from the last time step.
• After projection and advection, the positions and velocities of
the solid particles need to be transferred to the mesh as input
for the elasticity solve. This last step is critical, since both
solvers need to be synchronized in order for the simulation
to remain stable over time.

We make use of the restriction of the elasticity solver to a linear
subspace Um by realizing the operations above via a twin subspace,
that relates quantities of the deformables in their mesh represen-
tation to quantities for the particle representation. That is, we will
create a second subspace Up , such that, for subspace coordinates X̃
encoding a deformation of the solid, the mesh Xm = UmX̃ and the
solid particlesXp = UpX̃ are in correspondence. Moreover, the same
subspace can be used to transfer per-vertex velocities Vm = UmṼ
to per particle velocities V p = UpṼ .

With this construction at hand, after we performed the elasticity
step, we can simply transfer the velocities to the solid particles in
the fluid solver, by passing the small, d-dimensional vector Ṽ and
computing the sparse matrix vector product UpṼ (the subspaces
used in HRPD are sparse). Then, we use Algorithm 2 to acquire
updated solid particle positions Xp

S and velocities V p
S .

Thereafter, we need to transfer these quantities to the mesh rep-
resentation for the next elasticity step. This transfer is also realized
through the use of the twin subspaces, namely by projecting the
solid particle positions to the subspace

UpTUpX̃ ∗ = UpTXp
S . (13)

and then inferring the mesh velocities as Ṽ ∗ =
(
X̃ ∗ − X̃

)
/h. This

amounts to solving a small, prefactorized linear system in every
time step. Finally, to synchronize the two solvers, the solid particle

positions and velocities need to be updated to account for this pro-
jection (i.e. Xp

S = UpX̃ ∗ and V p
S = UpṼ ∗). The proposed transfers

and synchronization mechanisms are fast, even for highly resolved
meshes, since all operations have a complexity that is independent
of the number of mesh vertices. In Appendix B we comment on the
performance of this approach in comparison to a potential unre-
duced approach.

We are now able to summarize our algorithm for the simulation
of fluid-deformable interaction, which is listed in Algorithm 1. The
construction of the subspaces Um and Up will be described below.
We start the simulation with initial subspace coordinates X̃ (0) = X̃0
of the deformable (and thus mesh node positions Xm (0) = UmX̃0
and solid particle positions Xp

S (0) = UpX̃0), initial velocities of
the deformable Ṽ (0) = Ṽ0 (yielding Vm (0) = UmṼ and V

p
S (0) =

UpṼ ), initial fluid particle positions Xp
F (0) and initial fluid particle

velocities V p
F (0). Then, starting from t = 0, we perform the steps

listed in Algorithm 1.

Algorithm 1 The RIM algorithm

1: From X̃ (t) and Ṽ (t) compute intermediate mesh velocities Ṽ (t +
h) using the HRPD algorithm.

2: Transfer these subspace velocities to intermediate solid particle
velocities V p

S
∗
= UpṼ (t + h).

3: Perform Algorithm 2 using Xp (t), V p (t) and V p
S
∗ as input for

particle positions, velocities and intermediate particle velocities.
This yields updated particle positionsXp ∗ and particle velocities
V p ∗.

4: The output positions and velocities for fluid particles are used
in the next time step: Xp

F (t + h) = X
p
F
∗ and V p

F (t + h) = V
p
F
∗.

5: The updated solid particle positions Xp
S
∗ are projected to up-

dated subspace positions of the deformable X̃ (t + h) by solving
(13).

6: Compute the updated subspace velocities of the deformable as
Ṽ (t + h) = (X̃ (t + h) − X̃ (t))/h.

7: To synchronize the two representations, update the solid par-
ticle positions and velocities as Xp

S (t + h) = UpX̃ (t + h) and
V
p
S (t + h) = UpṼ (t + h).

8: Update solid particle normals as described in Section 3.2.5.
9: t ← t + h

3.2.4 Twin subspace construction. It remains to construct the sub-
spaces Up and Um that are used to link mesh and particle represen-
tations of the deformable object. We start by initializing the solid
particles representing the undeformed configuration by intersecting
the undeformed tetrahedral mesh with a regular grid, whose cell
widths are equal to the initial particle spacing chosen in the PIC/FLIP
solver. For each particle, we store its barycentric coordinates within
the tetrahedron it resides in, along with that tetrahedron’s index.
The subspace for mesh deformations and velocities Um is con-

structed as described in the Hyper-Reduced Projective Dynamics
framework. That is, a set of sample vertices is chosen and skinning
weights are computed from radial basis functions with limited sup-
port centered at these samples, using distances to these samples.
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Fig. 5. An armadillo with clamped feet is subjected to a dam break.

The subspace Um is then designed to contain all skinning deforma-
tions supported by the computed weights, such that the subspace
coordinates correspond to affine transformations prescribed at each
vertex sample.

The subspace for the solid particles is then constructed as Up =
BUm , where B is the matrix that puts each particle into the corre-
sponding mesh tetrahedron at the stored barycentric coordinates.

3.2.5 Preventing penetrations. Our continuous model naturally pre-
vents intersections between fluid and deformables, due to incom-
pressibility of a global velocity field in combination with elastic
forces. In practice, however, we encounter inaccuracies due to the
large step-sizes and high velocities encountered in interactive real-
time simulations, in combination with a limited grid resolution and
particle spacing. These inaccuracies can lead to fluids penetrating
the deformables. To prevent such occurrences, we add an additional
velocity correction step to the fluid solver, where the velocity V p

f

of a fluid particle f that is closer than h |V
p
f | to a solid boundary

particle s is required to satisfy

V
p
f · ns ≥ V

p
s · ns . (14)

This requires up-to-date particle normals for the outer particles
representing the deformable. However, computing such normals at
low particle resolutions and under strong deformations is inaccurate
and for high resolutions it is prohibitively costly. Instead, we make
use of the twin subspace construction. We initialize the normals
of the boundary particles of the deformable once and update them
efficiently by making use of the specific structure of our subspaces.

The initial solid particle normals are acquired fromweighted aver-
ages of the closest mesh vertices. Then, we update particle normals
by making use of the subspace coordinates corresponding to the
deformed body, received from the elasticity step. For the specific sub-
spaces proposed in Section 3.2.4, subspace coordinates correspond
to a set of k affine transformations. This means, we can approxi-
mate the particle normals by applying the weighted combinations
of the linear parts of these transformations to the initial normals.
For meshes, similar update mechanisms were proposed in [James
and Pai 2002] and [Kavan et al. 2007]. Since the skinning weights
in our subspace construction are sparse, this update mechanism is
fast. This allows us to rapidly infer outer normals on the deformed
particle representation, without having to compute the updated
normals on the mesh. The penetration constraints are enforced
just before advection (Line 11 in Algorithm 2) as a post-processing
of particle velocities. We check, for each pair of nearby particles,

whether the velocities satisfy the non-penetration constraints (14),
and, if not, project the velocities to the closest configuration that
satisfies them.
Using these normals to enforce (14) prevented fluid-deformable

penetrations in all our examples. An example sequence with and
without using the penetration prevention constraints can be seen in
the appendix, in Figure 12. There, an extreme case is shown where
fluid particles with high velocities fall onto a thin layer, using a
large time-step.

4 REAL-TIME COLLISION HANDLING
Our simulation framework offers a natural way to prevent and
handle collisions between elastic deformables in a physically-based
manner. In particular, we enrich the Projective Dynamics framework
with natural collision handling for real-time simulations and highly
resolved meshes. Contact is handled on the particle level, such that
the level of detail at which intersections are prevented can be defined
independently of the mesh resolution. This allows us to perform
reduced-order simulations of complex meshes in contact, where
common (self-)collision approaches would be prohibitive in real
time settings.

Our collision handling approach is fundamentally different from
approaches, where existing intersections are detected, and either
distance constraints or artificial repulsion forces are added to remove
the intersections and handle the contact in a natural fashion. Instead,
we anticipate and prevent collisions in three layers:

• All deformables are advected on a global velocity field. For
small enough time steps, this prevents collisions, as individual
trajectories in time- and space-continuous vector fields do
not cross.
• Enforcing incompressibility jointly on a Eulerian grid does
not permit intersections, since this would lead to locally in-
creased densities. Additionally, the elastic energy acting on
the deformables will prevent them from ’mixing’, i.e. exchang-
ing small amounts of particles, which can be observed for
fluids.
• For large time-steps and velocities, both mechanisms above
can fail due to numerical inaccuracies. Hence, in addition
to enforcing the penetration prevention condition (14) for
fluid particle velocities, we additionally enforce the following
inequalities for all pairs s1, s2 of solid particles which are
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(a) A simulation of four complex elastic de-
formables in contact.

(b) Interaction between an elastic mat, an elastic ball and
water.

(c) Textured bananas in a pool.

Fig. 6. Various examples for complex deformable-deformable and deformable-fluid interactions.

facing each other, i.e.

ns1 · ns2 ≤ 0 and

(X
p
s1 − X

p
s2 ) · ns1 ≥ 0

have to satisfy

V
p
s1 · ns2 ≥ V

p
s2 · ns2 . (15)

As for the fluid-solid non-penetration constraints in the pre-
vious section, they are enforced as a post-processing step
before advection (Line 12 of Algorithm 2).

The capability of our method to prevent collisions in real-time
simulations or in simulations with smaller time-steps is evaluated
and discussed in Section 5.2.

5 EXPERIMENTS
The supplementary video accompanying this publication shows
recordings (screen captured during simulation in real time) of all ex-
periments discussed in this paper. The experiments were conducted
on an AMD Ryzen Threadripper 1950X CPU with a GeForce RTX
2080 Ti. Hyper-Reduced Projective Dynamics was implemented to
run on the CPU, using 8 threads in parallel, while the PIC/FLIP algo-
rithm was implemented to run on the GPU using NVIDIA CUDA.
The data for our experiments can be found in Table 1. The first

FPS measurement considers the time it takes to do a full time step
and write all positions of mesh vertices and fluid particles into
buffers on the GPU that allows an external environment to render
the scene. The second FPS measurement is taken directly from the
rendering environment that we used to create our animated scenes
and thus includes the time to render the scene. Fluid rendering
consists of a real-time post-process pass which uses screen-space
reflections and refractions. The values for time step, diameters, den-
sities and stiffness of the deformables are chosen to resemble real
scenarios. The deformable diameter is measured as the longest side
of a bounding box of one of the deformables in the scene. Fluid den-
sity (1000 kg/m3) and gravitational acceleration (9.81 m/s2) are the
same throughout all simulations and are thus not listed in the table.
For the Hyper-Reduced Projective Dynamics simulation, we use a
constant number of ten local-global iterations and evaluate between
1000 and 2000 constraint projections to compute the approximated

forces. For the PIC/FLIP simulation we use 3% PIC to 97% FLIP for
fluid particles and 50% PIC to 50% FLIP for solid particles in all
experiments. We solve for the unknown pseudo-pressure using
a fixed number of Jacobi iterations. While allowing for a fast and
highly memory efficient GPU implementation, the Jacobi method
is known for slow convergence. Since in our model the solid-fluid
interaction relies on the incompressibility of the joint velocity field,
this requires further analysis, which is conducted in Appendix C.

We want to highlight that all simulations discussed in the follow-
ing are simulated and rendered in 60 FPS with a time step of 1/60s,
such that real-time interaction can be observed. The only exception
to this is the simulation depicted in Figure 6a, which is simulated at
30 FPS with a time step of 1/256s and the comparison to an offline
method shown in Figure 9.

We further break down the timings for one time step of our sim-
ulation for the example of an Armadillo mesh in a pool (Figure 8,
Table 1 leftmost column) in Figure 7. There, we list the timings for
HRPD (further split up into local and global iterations, as well as
time taken to update relevant vertex positions), the time to perform
Algorithm 2, the timings for the transfer between mesh and parti-
cle representations (including the evaluation of normals for solid
boundary particles) and the timings for the rest of the simulation
(handling interaction, writing particle and vertex positions into
buffers, handling the program flow). As in all our experiments, the
elasticity step takes up the largest part of our computation time.

2148 332 324 2176 1775 745

Hyper Reduced Projective Dynamics PIC/FLIP (Algorithm 1) RestTransfers

Fig. 7. Breakdown of timings (in microseconds) for one time step in the
simulation from Figure 8.

There is a precomputation phase, in which we initialize the re-
duced dynamics as described in [Brandt et al. 2018], sample the
particles for solids and fluids, generate the twin subspace for the
deformable particles and transfer normals from the mesh to the
boundary solid particles. These times range from 12 seconds, for
the buoyancy example shown in Figure 8, to 96 seconds, for the
simulation of four complex meshes shown in Figure 6a.
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Table 1. Data for the experiments shown in the figures and the supplementary video. See Section 5 for further details.

Name Buoyancy Armadillos in pool Elephant and Lion Cup in Pool Plate and Ball Four Meshes
(Fig. 8) (Fig. 1) (Fig. 2) (Fig. 4) (Fig. 6b) (Fig. 6a)

# mesh tetrahedra 137330 274660 250154 368709 713012 371561
# solid particles 4826 4253 53082 9811 84499 241983
# fluid particles 189540 633750 0 274076 89090 0
grid dimensions 27 × 99 × 26 61 × 81 × 65 87 × 92 × 63 33 × 147 × 33 59 × 152 × 48 59 × 152 × 48
Subspace Dimension 1188 1188 1188 1188 1188 2400

diameter of deformable (m) 2.86 2.86 1.85 (Elephant) 2.02 2.11 (Ball) 2.86 (Armadillo)
time step (s) 1/60 1/60 1/60 & 1/30 1/60 1/60 1/256
init. particle spacing (m) 0.073 0.096 0.037 0.051 0.025 0.032
solid density (kg/m3) 540 / 1000 / 1850 660 1000 430 2330 1000
Stiffness parameter 150000 500000 100000 & 20000 250000 300.000 150000

fps 126 98 94 129 80 31
fps incl. rendering 77 60 72 60 55 25

5.1 Fluid-deformable interaction
In Figure 1, we show a snapshot of a simulation of two armadillo
meshes (137k tetrahedra and 4253 solid particles each) in a pool of
water (633750 fluid particles). As in all our simulations, the user can
interact by clicking and dragging the meshes to introduce tempo-
rary position constraints into the elasticity step. The scene shows
that two-way coupling between fluid and deformable is faithfully
handled and that the simulation remains stable, even though large
velocities (which violate the CFL conditions) are present.

Figure 8 shows that buoyancy is correctly handled by our method.
Armadillos of different densities are dropped into a pool of water
and sink to the bottom, come to rest within the pool or rise to
the top, depending on the density ratios. Note that drag forces are
implicitly handled by our model and do not have to be computed
and transferred to solid particles or the mesh in any way.

More complex fluid-deformable interactions are shown in Figures
9, left, 4 and 5. In these simulations, we show that we successfully
prevent liquid from penetrating moderately thin deformable sur-
faces. The simulation in Figure 9, left, shows liquid deforming an
elastic mat, whose inner forces cause an opposing motion that, in
turn, causes the fluid to splash upwards. Figure 4 shows a snapshot
of a simulation where an elastic, low density cup in a pool is filled
with water, which causes the cup to deform and sink. Through user
interaction the cup is then lifted such that the liquid is poured into
the pool. The full cup settles at a different height than the empty
cup, which shows another complex layer of interaction.

In Figure 5, we show an elastic body with low density being sub-
jected to a flood of water, which heavily deforms the solid. The
supplementary video includes two variants of this sequence with
varying material stiffness for the solid, which lead to clearly distinct
interaction behavior. Our simulation makes use of the mesh-based
representation for elasticity computations and rendering, where it
is advantageous over particle or grid based representations. To high-
light another advantage of the mesh representation, a simulation
with textured objects, interacting with each other and with fluid, is
shown in Figure 6c.

5.2 Deformable contact simulation
Figure 2 shows interactive simulations of complex elastic deformables
in contact, where a user pushes and drags elastic bodies against each
other. Figure 6b shows a simulation that exhibits rich interactions
between two deformables (the elastic mat and an elastic ball) and
fluid. Data concerning these simulations is included in Table 1. The
example demonstrates the capabilities of our method to handle col-
lisions and self-intersections in real-time. The deformables interact
naturally and most collisions and self-intersections are prevented.
Like any collision handling approach for elastic deformables, the
large velocities encountered in interactive simulations, in combina-
tion with the large time steps, can cause intersections if the collision
primitives (in our case particles) are advected further than their
confidence radius in a single time-step. For applications that require
guarantees for the absence of intersections, one can either reduce
the time step depending on the largest velocities or conduct an ad-
ditional position correction step (which can either make use of the
mesh, particle or grid data available in our method). Figure 6a shows
a snapshot of a simulation with four complex meshes in contact and
a time step of 1/256s, which is free of collisions.

Fig. 8. Armadillos with different densities are being dropped into a pool
of water, the snapshot is taken after the armadillos settle. The armadillo’s
density is 540, 1000 and 1850 kg/m3, respectively.
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6 COMPARISONS

6.1 Other real-time approaches
Approaches for real-time fluid-deformable coupling are listed in
Section 2. We would like to put our method in relation with the FLIP
and shape matching approach [Gao et al. 2018a] and the unified PBD
approach [Macklin et al. 2014] in more detail, as these two meth-
ods report the highest performance in terms of computation times,
resolutions and time-step sizes. Both methods are purely particle-
based and use shape-matching to model the deformable objects.
While shape-matching approaches are fast, they are also simple
models of deformable objects. As a consequence, “only small scale
elastic deformations are supported” ([Macklin et al. 2014]), and, for
highly-resolved deformables, the stiffness of the objects is difficult to
control (see e.g. [Weiler et al. 2016]). In contrast, our approach uses
a non-linear mesh-based elasticity solver and large deformations
can be observed in all our examples, see Figure 5 for an example
involving particularly large deformations. Moreover, having mesh
representations of the deformables readily available is beneficial
for rendering the scenes (especially in real-time approaches), see
e.g. Figure 6c for an example with textured meshes.

In the unified particle-based approach [Macklin et al. 2014], fluids
are simulated using density constraints (akin to [Macklin and Müller
2013]) and coupling is achieved by including the solid particles to
the density estimation, which is used for enforcing the density
constraints. The convergence of this approach is tied to the number
of particles, such that, for example, buoyancy is reported to be
affected by the sizes of the solids, instead of solely their density.

[Gao et al. 2018a] achieve coupling by computing a FLIP step for
all particles and then applying a shape-matching step that modifies
the positions of the solid particles. Since this will lead to pene-
trations between fluid and solid, subsequent correction steps are
conducted. This coupling approach does not derive from a contin-
uous system and “cannot handle elastic objects interacting with
fluid well” ([Gao et al. 2018a]). In contrast, our system derives from
an established continuous system, which we discretize using two
specialized solvers and force/velocity transfers from mesh to grid.

6.2 Comparison to an offline method
We can verify the ability of RIM to accurately simulate complex in-
teraction scenarios by comparing it to offline methods, which spend
a considerable amount of time on computing each time-step with
the goal of being as accurate as possible. To this end, we compare
RIM to a recent approach presented in [Zarifi and Batty 2017]. As an
experimental setup, we pour fluid onto an elastic, low density mat.
The setup is chosen such that strong interactions in both directions
(i.e. fluid strongly deforming the solid and the solid applying forces
to the fluid with visible effect) can be observed and difficulties in pre-
venting penetrations of fluid through the thin mat arise. To keep the
computation time of the offline method low, we use a low resolution
to represent the elastic mat (3025 vertices). The fluid is represented
by roughly 59k particles, and the simulation grid consists of 1003
cells. The time step is set to to 1/240 and gravitational acceleration
to 3m/s2, in order to keep the offline method from taking more than
two sub-iterations and to prevent fluid from penetrating the mat.
Since the elastic material model used in [Zarifi and Batty 2017] is

Fig. 9. Corresponding frames of simulations using RIM (left, 17ms per frame)
and a recent offlinemethod [Zarifi and Batty 2017] (right, 7480ms per frame).

different from ours, we chose the material stiffness parameter of
our method such that a visually comparable behavior is obtained.
In Figure 9, we show frames of the simulations produced by both
methods side-by-side, the full comparison is shown in our supple-
mentary video. Our method, which requires 17ms computation time
per frame, is able to faithfully simulate the two-way coupling phe-
nomena observed in the offline method, which requires 7480ms per
frame on average.1 Some differences in the simulations are expected,
as the method of [Zarifi and Batty 2017] resolves the fluid-solid inter-
face sharply, uses a different material model, uses free-slip boundary
conditions and simulates compressible deformables.

To demonstrate the scalability of our method, in our supplemen-
tary video, we show a similar simulation using a larger amount of
fluid, a more finely resolved elastic mat, higher gravitational accel-
eration and a larger time-step, while allowing for user interaction.
Moreover, our frameworks simulates deformable-deformable con-
tact without any computational overhead, see for example Figure
6b.

7 LIMITATIONS AND FUTURE WORK
Maintaining real-time rates, robustness, and stability for deformable-
fluid scenarios is a challenging problem. Hence, our method has
several restrictions.
The equations of motion underlying RIM pose two limitations.

The first is that the elastic materials must be incompressible. Since
this requirement is closely tied to the way our framework realizes
fluid-deformable interaction, extending the framework to include
compressible material poses a challenge. The second limitation is
that the interface is restricted to no-slip boundary conditions. In our
1For the method from [Zarifi and Batty 2017], we used a CPU implementation provided
by the authors, which performs all simple loops in parallel. At the heart of the algorithm
is a linear solve of a time-varying system which has to be assembled in each iteration.
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experiments, sticky surfaces can be observed (see Figure 9, left and
6b). However, simulations also show that fluid can flow tangentially
across deformable surfaces. For example, fluid runs across the the
armadillo’s skin as it surfaces from the pool in Figure 8, right, leaving
it completely dry. Similarly, deformables in contact can be observed
sliding across each other (see Figure 2). This is caused by factors such
as the PIC/FLIP update, which involves not only the grid velocities
but also their previous velocities and temporal changes of the grid
velocities. It is an interesting task to extend RIM to include other
types of boundary conditions.
Our current implementation uses a basic implementation of the

PIC/FLIP solver with several modifications to accommodate for
large time-steps and low computation times. In order to achieve
more accurate and rich dynamics, it would be beneficial to extend
the fluid solver by handling free surfaces correctly, resolving the
discontinuities in the densities and pressure more accurately and
use a more involved volume preservation mechanism for large time
steps. While these features have been introduced in several variants,
preliminary experiments have shown that work is required to adapt
them to real-time scenarios.
It would be interesting to explore the use of dimensional reduc-

tion techniques for the fluid solver in our framework, e.g., for an
accelerated pressure projection [Ando et al. 2015] or by restricting
velocities to a subspace [Cui et al. 2018; Liu et al. 2015].

To allow fluids and deformables to freely move in space, unre-
stricted by simulation boundaries, sparse and adaptable grids as
proposed in [Wu et al. 2018] would be beneficial. Note that in simu-
lations where only deformables are present, we can move the grid
to always encompass the current positions of the deformable.
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A MODIFIED PIC/FLIP ALGORITHM
We modified the PIC/FLIP algorithm [Zhu and Bridson 2005] to
accomodate for the additional elastic forces and the large-time steps
and performance requirements posed by interactive simulations.
Our PIC/FLIP variant is listed in Algorithm 2.
The following changes were made to account for the immersed

deformable object and the additional elastic forces acting on it:

• Particles are equipped with a flag that discerns particles rep-
resenting the deformable (solid particles) and particles repre-
senting the fluid. Each particle carries its respective initial
density, such that the evaluation of ρ(x, t) for (8) and (9) based
on the integral in (3) is approximated by interpolating these
quantities on the grid; see Line 5.
• To take into account the elastic forces acting on the deformables,
we will transfer the updated velocities from the elasticity step
(which accounts for external forces as well) to the solid parti-
cles in Line 3 (this transfer detailed in Sections 3.2.3 and 3.2.4).
Fluid particle velocities still need to be updated according to
external forces (Line 2). Then, the updated particle velocities
are interpolated to the grid to obtain vcnew. While we listed
this as three different steps in the algorithm, both vcold and
vcnew can be computed within a single loop over all nearby
particles, preventing re-evaluation of the trilinear weights.
• We need to account for different densities in the projection
step in Lines 8 and 9. Let vc be the velocity field that was
interpolated on the grid from solid and fluid particles. In
each grid cell c , we interpolate the density values carried
by nearby particles (using the trilinear weights) to get an
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estimated density value ρc within this cell2. The time-discrete,
grid-discrete version of equations (9) and (10) then read

ṽc = vc − h
1
ρc
(∇p)c (16)

(∇ · ṽ)c = 0 (17)

where p is an unknown pseudo-pressure field on the grid.
Applying the (discrete) divergence operator to both sides of
(16) and using (17), results in the discrete, density weighted
Poisson equation

h

(
∇ ·

1
ρc
∇p

)c
= (∇ · v)c , (18)

which we solve using a fixed-number of Jacobi iterations (200
in all experiments, see Appendix C). Such variable coefficient
Poisson equations often appear in multiple fluid simulation
approaches (such as [Boyd and Bridson 2012; Kang et al. 2010;
Losasso et al. 2006]), where great care is taken to resolve the
discontinuities in the density (and the resulting pressure) in
their discretization. We resolve the issue of discontinuities
by interpolating the values on the grid, that is, assigning a
mix between fluid and deformable densities in cells where
both are present. This leads to inaccuracies in the projection
step. Note, however, that we are not dealing with the complex
phenomena associated to fluid-fluid interactions (bubbles,
mixing, foam), that lead to topological changes at fine scales.
In our experiments (Section 5), we show that we can simulate
a broad range of fluid-deformable interaction phenomena
despite this inaccuracy.

Furthermore, in order to account for large time steps and to
decrease the computation time we introduce the following modifi-
cations to the PIC/FLIP algorithm:
• In Line 7 we modify the computation of divergence, where, if
the sum of trilinear weights from nearby particles in a cell
exceeds that value for a cell filled with regularly sampled
particles, we subtract a fraction of the difference from the
divergence. This fraction is given by a parameter α , that is
chosen in the range of 0.1 to 1 in our examples. This simple
modification allows us to recover from temporary volume
loss in a natural manner, but does not modify computations
at all, in case no volume loss occurs. The sums of trilinear
weights are already available from the velocity interpolation
step.
• In interactive simulations, we do not adapt the step-size h
when velocities exceed the threshold given by the CFL con-
ditions, as this is prohibitive in a real time setting, where
a stable ratio between framerate and time step is required.
For non-interactive simulations the step-size can be adapted
when velocities from the elasticity step exceed a threshold.
• We do not extend the velocity field to empty grid-cells, which
allows us to skip the computation of the distance field to the
water surface. This causes the fluid to decelerate more when
entering empty grid cells andmay also cause unnatural splash-
ing due to not accounting for surface tension. This trade-off is

2Note that the interpolation of density values on the grid can be performed at the same
time as velocities are interpolated to increase performance.

Algorithm 2 The modified PIC/FLIP algorithm used for RIM

Input: Step-size h, particle positions Xp , current particle veloc-
ities V p , intermediate solid particle velocities V p

S
∗, grid-based

external forces fext.
Output: Updated particle positions Xp ∗ and velocities V p ∗

1: Interpolate particle velocitiesV p on grid nodes c , using trilinear
weights: vcold

2: Update fluid particle velocities from external forces: V
p
F ←

V
p
F + h ∗ fext

3: Replace the velocities on solid particles by the intermediate
solid particle velocities: V p

S ← V
p
S
∗

4: Interpolate the updated particle velocities V p on grid nodes c ,
using trilinear weights: vcnew

5: Interpolate particle densities on grid nodes ci , using trilinear
weights: ρc

6: Compute divergence of vcnew on grid: dci
7: Subtract divergence from cells where the sum of trilinear

weights is above rest-value: dc ← dc −max (0,α(wc −wrest))
8: Solve Poisson equation using Jacobi iterations to get pseudo-

pressure on grid: pc
9: Make velocity field divergence free: vcnew ← vcnew − h

1
ρc ∇p

c

10: Interpolate grid velocities on particles, using bothvnew andvold
in PIC/FLIP manner: V p ∗

11: Enforce fluid-deformable penetration prevention constraints
(14) from Section 3.2.5

12: Enforce deformable-deformable non-intersection constraints
(15) from Section 4

13: Advect each particle using a Runge–Kutta second order step to
get updated particle positions Xp ∗

made to allow for real-time simulations with highly resolved
fluids.
• We will not sample air particles in our PIC/FLIP simulation,
such that grid-cells without fluid or deformable particles are
skipped in divergence computations and the projection step.
This is a common simplification for fluid simulations in com-
puter graphics.

We implemented Algorithm 2 on a GPU using CUDA [NVIDIA
2007]. Most steps of this algorithm can be trivially parallelized (over
the grid or over the particles). To efficiently interpolate particle
quantities on the grid, a data structure that assigns particles to the
grid cell they reside in is required. To this end, we first create a list
of key-value pairs that contain, for each particle, its own ID and
the ID of the grid cell it resides in. We then sort this list by the grid
cell IDs (using a GPU-based parallel sorting algorithm). From the
sorted list, in parallel over all particles, we create a data structure
that enables efficient iterations over particles that reside in a specific
cell.

B BENEFITS OF THE TWIN SUBSPACES
The twin subspace construction enables the rapid transfer between
and synchronization of the two solvers employed in our framework.
In Figure 7 we report the time spent on transferring velocities from
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mesh to particles, transferring positions and velocities from parti-
cles to mesh and updating the normals of the boundary particles in
a typical simulation scenario (Figure 8), which amounts to 1775 mi-
croseconds. The timings for transfer and synchronization between
the solvers depends only on the number of solid particles and the
subspace dimension, but is independent of the mesh resolution.
Without twin subspaces there are various problems preventing

an efficient simulation scheme. In the following, we list potential
alternatives for each of the transfers:
• We use the twin subspaces for transferring velocities from
the elasticity solver to the solid particles. Without the twin
subspace concept, we would need to evaluate the per-vertex
velocities (from the subspace coordinates) and compute the
particle velocities via barycentric interpolation.
• We use the twin subspace to efficiently update normal vectors
at the solid boundary in the particle representation. Without
the twin subspace mechanism, we would need to compute
updated normals for the mesh boundary. Hence all vertex (or
triangle normals) would have to be computed, which requires
full vertex positions evaluated from subspace coordinates.
Then, we would need to transfer these to the particles as
weighted sums and normalize them. Alternatively, particle
normals could be computed from the particle positions di-
rectly, but this is inaccurate at the particle resolutions used
in our examples.
• We use the twin subspaces for transferring updated positions
and velocities from the solid particles back to the elasticity
solver. It is unclear how this could be done without the twin
subspaces since there are significantly less particles than ver-
tices in our examples, and there are vertices outside of the
convex hull of the particle representation. A transfer via inter-
polating per-vertex velocities from the grid, a subsequent sub-
space projection and explicit, Lagrangian advection would be
possible, but would not bring the mesh and particle represen-
tations into correspondence, since their respective advections
would yield significantly different results. These errors would
accumulate without additional synchronization of vertex and
particle positions, which could be achieved via barycentric
interpolation. Note that this would cause solid particles to
change their positions, while fluid particles remain fixed, and
would lead to volume loss and fluid-deformable penetration. 3

In summary, a potential unreduced scheme for our proposed dis-
cretization of the immersed boundary equations of motion is possi-
ble, but increases computation time in a mesh-resolution dependent
manner and introduces problems due to difficulties in the synchro-
nization of the representations.

C APPROXIMATED PRESSURE PROJECTION
To find a decent trade-off between accuracy and performance, we ap-
proximate the pressure projection solve (see equation (18)) by a fixed
number of Jacobi iterations, namely 200 in all our experiments. Since

3When using twin-subspaces, a synchronization also takes place (Algorithm 1, Line
7), where solid particles are moved such that they form a subspace configuration. For
the subspace sizes used in our examples, we found that the positional changes are
negligible compared to integration errors resulting from advection.
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Fig. 10. Average absolute residual divergence per cell at each frame of the
animation shown in Figure 11.

our solid-fluid interaction model relies on the incompressibility of
the joint velocity field, residual divergence might not only cause
volume loss, but also inaccurate interaction behavior. However, we
found that divergence is sufficiently reduced that the visual quality
of the simulation does not suffer from the approximation. Note that
long-term volume loss is prevented due to the modified divergence
used on the right hand side of the pressure projection (cells with
too many particles get assigned a decreased divergence, see Line
7 of Algorithm 2). Furthermore, interaction artifacts, such as fluid
and solid intersecting, can be remedied by the particle penetration
prevention step described in Section 3.2.5. For a visual comparison
of our method using limited Jacobi iterations to a fully monolithic
method that solves the pressure projection exactly, see Figure 9.

In Figure 10 we plot the average absolute residual divergence per
cell of the velocity field used for advection in a fluid-deformable
interaction scene for each frame and for varying Jacobi iteration
counts. While residual divergence can be completely removed after
about 10k iterations, this results in a low FPS count (23 FPS in the
shown scene, versus 126 FPS when using 200 iterations). On the
other hand, the simulations using 200 iterations and 10000 iterations
(snapshots in Figure 11) are visually close, such that we decide to
limit the number of Jacobi iterations to enable real-time performance.
Moreover, in our experiments, a high iteration count yields more
numerical dissipation. Lastly, note that our method is not limited
to 200 Jacobi iterations, and most examples in this paper will still
maintain real-time rates for much higher iteration counts.
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Fig. 11. The same simulation of an armadillo dropping in a pool with 10 (top row), 200 (middle row) and 10000 (bottom row) Jacobi iterations. While volume
loss is clearly visible for a low number of iterations, the results for 200 iterations (which we use in all experiments) and 10000 iterations (which yields almost
zero residual) are visually close, the lower iteration count even leading to less numerical dissipation. Frames 30, 70, 100 and 200 are shown, corresponding to
the residual divergence plots in Figure 10.

Fig. 12. The same simulation of a cup, which is kept fixed at the opening and filled with water, on the left with using the penetration constraints from Section
3.2.5, and on the right without, where, due to high velocities and a large time-step (1/60s), fluid particles are able to move through and into the thin bottom of
the cup.
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