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Abstract

The spectrum and eigenfunctions of the Laplace-Beltrami operator are at the heart of effective schemes for a variety of prob-
lems in geometry processing. A burden attached to these spectral methods is that they need to numerically solve a large-scale
eigenvalue problem, which results in costly precomputation. In this paper, we address this problem by proposing a fast ap-
proximation algorithm for the lowest part of the spectrum of the Laplace–Beltrami operator. Our experiments indicate that
the resulting spectra well-approximate reference spectra, which are computed with state-of-the-art eigensolvers. Moreover, we
demonstrate that for different applications comparable results are produced with the approximate and the reference spectra and
eigenfunctions. The benefits of the proposed algorithm are that the cost for computing the approximate spectra is just a fraction
of the cost required for numerically solving the eigenvalue problems, the storage requirements are reduced and evaluation times
are lower. Our approach can help to substantially reduce the computational burden attached to spectral methods for geometry
processing.

1. Introduction

The spectrum and eigenfunctions of the Laplace–Beltrami operator
proved to be an effective tool for a variety of tasks in geometry pro-
cessing, leading to their own research branch, called spectral mesh
processing. Spectral methods profit from properties of the Laplace–
Beltrami operator and its spectrum. From a signal processing point
of view, functions on a surface can be seen as signals and the eigen-
basis of the Laplace–Beltrami allows us to associate a frequency
spectrum to a function analogous to the Fourier decomposition.
This enables applications such as spectral filtering of functions on
a mesh as well as the embedding of the mesh. Another important
property of the Laplace–Beltrami operator is that it is invariant un-
der isometric deformations of the surfaces. This property makes
the spectrum attractive as an ingredient to pose-invariant shape de-
scriptors and the eigenfunctions a tool for establishing correspon-
dences, explicit or functional, between shapes in different poses.
The downside of spectral methods on meshes is that the lowest
part of the spectrum (typically the first 100-5000 eigenpairs) has to
be computed. Since closed-form solutions are not available, large-
scale sparse eigenproblems needs to be numerically solved, which
leads to long precomputation times before spectral processing tools
can be applied.

In this paper, we introduce a fast approximation algorithm for the
lowest part of the spectrum and the corresponding eigenfunctions
of the Laplace–Beltrami operator on surface meshes. Computing
the approximation requires only a fraction of the time required for
solving the original problem. For example, in our experiments, the
lowest 2500 eigenvalues and eigenfunctions of a mesh with 240k

vertices are approximated in less than one minute, while solving
the full-resolution eigenproblem requires almost three hours. Fur-
ther benefits are that the storage requirements are reduced, which
enables working with larger bases in-core. Also, the computa-
tion of the approximate spectra does not require solving a large-
scale eigenvalue problem but only a low-dimensional eigenprob-
lem, which can be done by dense eigensolvers. Our experiments
demonstrate that the approximated spectra are close to the reference
solutions. We show that for spectral methods, such as shape DNA,
diffusion distance, and spectral filtering, using the approximated
spectra and eigenfunctions leads to results that closely approximate
results produced with reference spectra and eigenfunctions, while
requiring about two orders of magnitude shorter precomputations.
The proposed approach can be applied for the computation of ap-
proximate spectra and eigenfunctions for other discrete operators
as well. We show that for parameter-dependent operators, which
are used for spectral shape analysis, approximations of the low-
est 100 eigenvalues and eigenfunctions can be computed at inter-
active rates. This enables interactive exploration of the parameter
space. Extending the range of applications, we apply the proposed
scheme to the computation of approximations of vibration modes
of elastic objects and show that our method reduces precomputa-
tion times, storage requirements and enables simulation with larger
modal bases.

The idea underlying our approach is to take advantage of the fact
that we can explicitly construct subspaces of the space of all func-
tions on a mesh that include the low-frequency functions. The low-
est part of the spectrum and the corresponding eigenfunctions can
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be characterized as the minimizers of the Dirichlet energy subject
to unit L2-norm and pairwise L2-orthogonality constraints. The ap-
proximation algorithm first constructs a subspace, and then solves
the optimization problem restricted to the subspace. For this ap-
proach to be effective, the subspace construction needs to be fast,
the subspaces should contain approximations of the low-frequency
functions, and an efficient solver for the restricted optimization
problem is needed. The subspace construction we propose draws on
ideas used for generating weights for character skinning and shape
deformation and is designed to allow for the fast construction of
larger, e.g. 10k-dimensional, subspaces. Furthermore, the subspace
basis is designed to be sparse, which reduces the computational
cost for setting up the restricted optimization problem and allows
to efficiently store and access the approximate eigenbasis and the
subspace matrix. Since the approximate eigenpairs are minimizers
of the restricted optimization problems, they also preserve proper-
ties of the true eigenfunction, e.g., they form an L2-orthonormal
system in the space of functions on the mesh. For solving the re-
stricted eigenvalue problem, we found that GPU-based dense QR
solvers allow to compute all eigenpairs of the restricted problem in
a reasonable time. The fact that all eigenpairs are computed helps
to avoid missing eigenfunctions in eigenspace of dimension two or
higher as well as eigenspaces with almost identical eigenvalues.

2. Related Work

Spectral mesh processing In the following, we discuss some
spectral mesh processing methods. For an introduction to the
topic, we refer to [ZvKD10]. Vallet and Lévy [VL08] explored
schemes for the numerical computation of the eigendecomposi-
tion of discrete Laplace-Beltrami operators on triangle meshes.
They also proposed a framework for spectral filtering of func-
tions on a mesh. The filtering can be used to process the em-
bedding of the surface itself which allows for surface smooth-
ing and sharpening filters. Karni and Gotsman [KG00] introduced
a method for the compression of the vertex positions of a mesh
using the eigenfunctions of a combinatorial Laplace matrix. The
scheme was extended to the compression for mesh sequences by
Váša et al. [VMHB14]. Dong et al. [DBG∗06] used the critical
points of low-frequency eigenfunctions as a starting point for the
construction of coarse quadrangulations of surfaces. This approach
was extended to provide users with control over shape, sizes and
alignment of the quadrilaterals by Huang et al. [HZM∗08] and
Ling et al. [LHJ∗14]. Sharma et al. [SHKvL09] and Huang et
al. [HWAG09] proposed spectral methods for surface segmenta-
tion. Musialski et al. [MAB∗15] used the low-frequency eigen-
functions to create a low-dimensional space that describes surface
deformation in order to obtain a reduced-order model for shape
optimization problems. Song et al. [SLMR14] defined a saliency
measure on surfaces that combined spectral and spatial informa-
tion and takes advantage of the global nature of information em-
bedded in the low-frequency eigenfunction. Spectral methods have
also been used for tangential vector and n-vector field processing
on surfaces [ABCCO13, AOCBC15, BSEH17, BSEH18].

Spectral shape analysis The isometry invariance and the underly-
ing continuous formulation make the Laplace–Beltrami spectrum
and eigenfunctions well-suited as a basis for mesh-invariant and

pose-invariant shape descriptors and signatures. Examples of such
descriptors are the Shape-DNA [RWP05,RWP06], the diffusion dis-
tance [NLCK05], the global point signature [Rus07], the heat ker-
nel signature [SOG09], the Auto Diffusion Function [GBAL09]
and the wave kernel signature [ASC11]. These shape descriptors
can be combined to form bags of features that can be used to de-
sign algorithms for pose and mesh invariant shape search and re-
trieval [BBGO11]. In addition to their use as shape descriptors,
the invariance properties of the eigenfunctions make them well-
suited for the construction of shape correspondences. Ovsjanikov
at el. [OBCS∗12] use the eigenfunctions of the Laplace–Beltrami
operator of two near-isometric shapes to construct a functional
map, which is a linear operator between the function space of
the surfaces. The functional map can be used to map informa-
tion, given in the form of a function on the surface, from one sur-
face to the other. Rustamov et al. [ROA∗13] use functional maps
between surface to analyzed difference between shapes. While
functional map compute the eigenfunctions on the two shape in-
dependently, Kovnatsky et al. [KBB∗13] propose an approach
that couples the computation of the eigenfunctions of a pair of
shapes using landmarks correspondences as input. Spectral meth-
ods for shape matching can profit from looking at local shape
matches and partial correspondences [RCB∗17, LRBB17]. For an
introduction to functional maps, we refer to [OCB∗16]. Spectral
methods are also used in the context of geometric deep learn-
ing [BZSL14, BMM∗15, DBV16, LMBB17, BBL∗17].

Beyond Laplacian While for some applications, invariance under
isometric deformations is desirable, in other settings, extrinsic in-
formation about shapes, such as sharp bends, needs to be consid-
ered. In [HSvTP10, HSvTP12b], a modified Laplace–Beltrami op-
erator that includes information about the extrinsic curvatures of the
surface is proposed. Recently, alternative constructions of extrin-
sic operators based on the Dirac operator [LJC17] and the Steklov
eigenvalue problem [WBPS17] have been introduced. Choukroun
et al. [CSBK16, CPK17] explored the construction of Schrödinger
operators for spectral processing and analysis. The Schrödinger
operator augments the Laplacian with a potential, which can be
specifically designed for the different applications. A related con-
struction is introduced by Melzi et al. [MRCB18]. Though we fo-
cus the presentation on the Laplace–Beltrami operator, our our ap-
proach can be used for fast approximations of the spectra and eigen-
functions for these operators as well. In Section 5, we show how the
fast responses of the approximation algorithm can be used to inter-
actively explore parameter values.

Nyström method An alternative approach for approximating the
spectrum and eigenfunctions of linear operators is the Nyström
method [WS01]. The Nyström method is used in the context of ma-
chine learning for accelerating kernel methods [DM05] and spec-
tral clustering [FBCM04] as well as for approximating large scale
singular value decompositions for manifold learning [TKMR13].
The Nyström method constructs a submatrix A of the large matrix
M that is built by selecting a some landmark indices and removing
all rows and columns that are not landmarks from M. An eigende-
composition of A is computed and lifted to the high-dimensional
space. While this approach works well for the matrices that appear
in learning applications, such as covariance matrices, it cannot be
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used for the extremely sparse matrices we consider in this work.
The reason is that the small matrix A constructed from matrices like
the cotangent matrix is a diagonal matrix if the landmarks are not
chosen to be neighboring vertices. Hence an eigendecomposition of
the small matrix is trivial and does not provide additional informa-
tion unless the sampling is so dense that for every landmark some
neighboring vertices are also landmarks. The same holds for vari-
ants of the Nyström method, like column sampling, which selects
columns of the large matrix and performs an SVD in the resulting
rectangular matrix. Unless the sampling is very dense, sampling
columns from the cotangent matrix results in a rectangular matrix
that has only one entry per row.

Subspace projection A second method for approximating eigen-
problems in machine learning is random projection [HMT11].
First, a random rectangular matrix A of size nm, where n is the
number of variables and m the number of desired eigenvectors, is
constructed. Then the large matrix M is multiplied with A one or
more times, similar to power iterations. Finally a singular value
decomposition of the result is computed to get approximate eigen-
vectors. Random projection is used to approximate the eigenvectors
corresponding to the largest eigenvalues, e.g., for principle compo-
nent analysis. Here, we are interested in the lowest eigenvectors
of matrices. To use random projection for our purposes, we would
need to multiply A with the inverse of M to A towards to lowest
eigenvectors. The subspace iteration method [Bat13], used in con-
tinuum mechanics for the computation of vibration modes, alter-
nates between inverse iteration and orthonormalization for comput-
ing the lowest eigenvectors. Compared to the computational cost of
our approximation algorithm, subspace projection iterations are ex-
pensive. Even a single iteration of subspace projection is far more
expensive than our whole approximation algorithm.

Kernel approximations The eigenvalues and eigenfunctions of
the Laplace–Beltrami operator can be used to compute the heat
kernel and spectral distance. Then, using only the lowest part of
the spectrum and corresponding eigenfunctions, the kernel and the
distance measures can be approximated. Once the eigenproblem is
solved, the kernel and the distances can be evaluated at low compu-
tational cost. Since the computation of the eigenfunctions is costly,
alternative approaches for approximating the heat kernel and the
spectral distances have been proposed. Vaxman et al. [VBCG10]
proposed a multi-resolution hierarchy for the approximation of the
heat kernel and used the scheme for diffusion-based feature extrac-
tion from surfaces. Patané [Pat17] proposed a scheme that can ap-
proximate the heat kernel and spectral distances by solving sparse
linear systems. This approach reduces the precomputation time
since it avoids solving an eigenvalue problem. On the other hand,
compared to spectral methods, the computational cost for solving
individual distance queries is higher.

3. Background: Laplace–Beltrami Eigenproblem

In this section, we first briefly introduce the continuous eigenprob-
lem of the Laplace–Beltrami operator, then we describe the discrete
setting and the discrete eigenproblem.

Continuous eigenproblem We consider a smooth, compact sur-
face Σ and the two biliner forms

〈 f ,g〉L2 =
∫

Σ

f gdA (1)

and

〈 f ,g〉H1
0
=

∫
Σ

〈grad f ,grad g〉
Σ

dA (2)

that are defined on the space H1 of functions on Σ whose weak
derivatives are square integrable. The eigenvalue problem of the
Laplace–Beltrami operator is to find pairs (λ,φ) ∈ R×H1 such
that

〈φ, f 〉H1
0
= λ〈φ, f 〉L2 (3)

holds for all f ∈ H1. Since 〈 f , f 〉H1
0

vanishes for constant func-
tions f , the constant functions form a one-dimensional eigenspace
with eigenvalue 0. The first non-zero eigenvalue can be character-
ized as the minimum of 〈φ,φ〉H1

0
among all functions in H1 that

have unit L2-norm and are L2-orthogonal to the constant functions.
A similar variational characterization can be formulated for the
other eigenvalues by adding the constraints, that the eigenfunctions
need to be L2-orthogonal not only to the constant functions but to
all eigenfunctions with smaller eigenvalue.

Discrete setting In the discrete setting, we consider triangle
meshes in R3 and the space of functions that are continuous on
the whole surface and linear polynomials over the triangles. The
functions can be described by nodal vectors, that is, by vectors list-
ing the function values at the vertices of the mesh. The polynomial
corresponding to a nodal vector can be explicitly constructed since
there is a unique linear polynomial over a triangle that interpolates
three given function values at the vertices. We denote by ϕi the
function that takes the value one at the ith vertex and zero for all
other vertices. For the continuous and piecewise polynomial func-
tions the bilinear forms are well-defined, hence they can be repre-
sented by matrices w.r.t. to the nodal basis. The resulting matrices
M and S with entries

Mi j =
〈
ϕi,ϕ j

〉
L2 and Si j =

〈
ϕi,ϕ j

〉
H1

0
. (4)

are called the mass matrix and the stiffness matrix (or cotangens
matrix). Explicit formulas for Mi j and Si j can be found, for exam-
ple, in [WBH∗07] and [VL08].

While in our experiments we consider the setting described
above, our approach can be applied to other settings, such as dis-
crete Laplacians for polygonal meshes [AW11], higher-order finite
elements on meshes [RWP05, RWP06] or Discrete Exterior Calcu-
lus discretizations [CdGDS13] as well.

Discrete eigenproblem Our goal is to compute approximations of
the lowest m eigenvectors and eigenvalues of the discrete Laplace–
Beltrami operator of a mesh with n vertices. Analogous to the con-
tinuous case, the m lowest eigenpairs can be characterized as solu-
tions of the variational problem:

min
Φ∈Rn×m

tr
(

Φ
T SΦ

)
(5)

subject to Φ
T MΦ = Id.
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The columns of the minimizer Φ are the nodal vectors of the
eigenfunctions and the corresponding eigenvalues are given by
λi = Φ

T
i SΦi, where Φi is the ith column of the minimizer Φ. The

eigenpairs (λi,Φi) satisfy the equation

SΦi = λiM Φi, (6)

which is the discrete analog of (3).

4. Fast Approximation Algorithm

In this section, we introduce our approach for the fast approxima-
tion of the lowest eigenvalues and corresponding eigenfunctions of
the discrete Laplace–Beltrami operator. The idea is to construct a
subspace of the space of all functions on the mesh. Then we restrict
the computation of the eigenvalues and eigenfunctions to the sub-
space, that is, we solve the optimization problem (5) restricted to
the subspace. For the approach to be effective, the subspace con-
struction needs to be fast and the constructed subspace needs to
be able to approximate eigenfunctions from the lower end of the
spectrum well.

Subspace construction We construct a d-dimensional subspace of
the space of continuous, piecewise linear functions on the mesh.
The basis vectors that span the subspace are stored as the columns
of a matrix U ∈Rn×d . The construction draws on ideas used for the
construction of weights spaces for skinning and deformation, such
as bounded biharmonic weights [JBPS11] and the linear subspace
construction proposed in [WJBK15]. However, there are essen-
tial differences to these approaches. For example, while [JBPS11]
solve a box constraint quadratic optimization and [WJBK15] solves
a linear system for every basis vector, we only query a local neigh-
borhood of a sample point to the construct a basis vector. This is
important for our construction since we want to be able to construct
larger, e.g. 10k-dimensional, subspaces in a few seconds.

The subspace construction proceeds in three steps. First, a point
sampling of the surface is constructed. Then, basis functions, which
are locally supported around the sample points, are constructed.
Finally, the functions are modified to form a partition of unity.

The goal of the sampling stage is to select a subset of the set of
vertices from the mesh such that the subset provides an evenly dis-
tributed sampling of the surface. A requirement for the choice of the
sampling scheme is that it needs to be able to compute a sampling
with several thousand sample points in a few seconds. In our exper-
iments, we observed that the constrained Poisson-disk sampling on
triangle meshes introduced in [CCS12] satisfies our requirements.
We denote the indices of the sample vertices by {s1,s2, ...,sd} and
the set of sampled vertices by {vs1 ,vs2 , ..,vsd}. Examples of sam-
plings are shown in Figure 1.

In the second step, we construct a preliminary matrix Ũ ∈Rn×d .
The ith column of the matrix represents a locally supported function
centered at the sample point vsi . The function takes the value one at
vsi , monotonically decreases (in radial direction) in a neighborhood
around vsi , and vanishes outside of the neighborhood. The size of
the support of the functions is controlled by a global parameter ρ.
We denote by d(vi,vs j ) the geodesic distance between vi and vs j

Figure 1: Examples of samplings used for the construction
of the subspace bases showing between 1000 and 5000 sam-
ples on meshes with 100k to 2m vertices. The samples are com-
puted with the constrained Poisson disk sampling scheme proposed
in [CCS12].

and we consider the polynomial

pρ(r) =

{
2
ρ3 r3− 3

ρ2 r2 +1 for r ≤ ρ

0 for r > ρ
,

which is the unique cubic polynomial satisfying pρ(0) =

1, ∂

∂r pρ(0) = 0, pρ(ρ) = 0, and ∂

∂r pρ(ρ) = 0. Then, the matrix en-
tries ũi j of Ũ are given by

ũi j = pρ(d(vi,vs j )).

We choose the parameter ρ such that the support of every func-
tion contains a small number of sample points, e.g. 7− 15 sam-
ple points. The entries ũi j can be interpreted as weights measuring
the influence of sample vs j on vertex vi of the mesh. Each sample
only influences vertices in a local neighborhood. Within the neigh-
borhood, the influence weights decrease as the geodesic distance

Figure 2: Visualization of a locally supported basis function used
for the construction of the subspace bases on the Fertility model.
The image on the right shows a plot of the polynomial pρ(r), see
Equation (4), for ρ = 1.
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Figure 3: Comparison of approximate (bottom row) and reference (top row) eigenfunctions of the Laplace–Beltrami operator on the Kitten
model. The reference solutions are computed with MATLAB’s sparse eigensolver.

between the vertex and the sample increases. A visualization of a
resulting function is shown in Figure 2.

We use a growing geodesic disk strategy for the construction of
the locally supported functions. To obtain the jth column of Ũ , we
start with the sample vs j and process the other vertices in order
of increasing geodesic distance to vs j . For each visited vertex vi,
a triplet < i, j, ũi j > is created. Once the distance to vs j is larger
than ρ, all triplets for the jth column are collected and the triplets
for the next column are assembled. After the triplets for all columns
are collected, the sparse matrix Ũ is generated.

The benefit of the growing disk strategy is that for the construc-
tion of the locally supported functions, only the local neighbor-
hoods of the samples are processed. In other words, this is a strategy
for selecting exactly those pairs (vi,vs j ) that contribute non-zero
entries to the sparse matrix Ũ . As a consequence, the computational
cost for the construction of Ũ depends on the number of non-zero
entries. Since for a larger number of samples, we decrease the size
of the support of the functions in a way that the number of entries
of the matrix remains (approximately) constant, the computational
cost is independent of the dimension of the space we construct.
This can also be observed in Table 1, which lists timings for the
individual steps of the basis construction.

We experimented with three different variants of the growing
disk strategy that differ in the way they approximate the geodesic
distance. The first variant is to use Dijkstra’s single source algo-
rithm, see [CLR90], on the edge graph of the mesh, where the
weights of the edges are the edge lengths. An alternative is the use
of the Short-Term Vector Dijkstra algorithm proposed in [CHK13].
This algorithm is a variant of Dijkstra’s algorithms that corrects
distance computations by unfolding the computed edge paths to a
plane and measuring the distance in the plane. The third variant
is to use Dijkstra’s algorithm and correct the distances by taking
the Euclidean distance in ambient R3 instead of the edge path dis-
tance. This variant is motivated by the fact that the diameter of the
support of the functions we construct is quite small and for small
distances, the Euclidean distance provides a good approximation of
the geodesic distance. We refer to [SvWW00], where it is proven by

Taylor expansion that squared Euclidean and the squared geodesic
distances between two points agree up to third order in the geodesic
distance of the points. We compared the three variants by look-
ing at approximation quality of the resulting spectra as well as the
required run time and found the third variant to provide the best
trade-off.

In the last step of the basis construction, the matrix U is gener-
ated by normalizing the rows of Ũ

ui j =
1

∑
d
j=1 ũi j

ũi j.

This step ensures that the functions U form a partition of unity on
the surface. Though, we did not encounter such a situation in our
experiments, it is possible that a vertex of the mesh is not in the
support of any of the functions. This case could be dealt with by
adding a function centered at the vertex to the basis.

Restricted eigenproblem The subspaces are designed such that
when the subspace dimension d is large enough, low- and mid-
frequency functions can be well-approximated. To get approxima-
tions of the lowest m eigenvalues and eigenfunctions, we restrict
the optimization problem (5) to the subspace spanned by U . This
means that instead of searching for a minimizer in the set of all ma-
trices Φ∈Rn×m, we restrict the search space to matrices Φ̄∈Rn×m

that have the form Φ̄ = U φ̄, where φ̄ is a matrix in Rd×m. Our ex-
periments, we chose d = 2m.

To formulate the restricted optimization problem, we use the re-
stricted mass and stiffness matrices

M̄ =UT MU and S̄ =UT SU .

Then the restriction of (5) is

min
φ̄∈Rd×m

tr
(

φ̄
T S̄φ̄

)
(7)

subject to φ̄
T M̄φ̄ = Id.

The columns φ̄i of the resulting minimizer φ̄ are the restricted
eigenvectors. The corresponding restricted eigenvalues are λ̄i =
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Figure 4: Approximations of the lowest 500 eigenvalues for dif-
ferent subspace constructions on the Fertility model: The subspace
constructions differ in the scheme that is used for the approximation
of the geodesic distances. The schemes used are: Dijkstra’s algo-
rithm, Dijkstra’s algorithm with Euclidean distance correction, and
Short Term Vector Dijkstra (STVD) with two different parameter
settings. The subspace used is 1000-dimensional. All 1000 eigen-
values are shown, though, we recommend using only the first 500.

φ̄
T
i S̄φ̄i. The pairs of (λ̄i, φ̄i) satisfy the equation

S̄φ̄i = λ̄iM̄φ̄i. (8)

The eigenvectors φ̄i are d-dimensional vectors listing coordinates
with respect to the basis U . The vectors can be lifted to nodal vec-
tors

Φ̄i =U φ̄i (9)

that describe functions on the mesh, which we call the restricted
eigenfunctions.

Solving the eigenproblem The restricted problem is a low-
dimensional eigenproblem involving sparse matrices. Explicitly,
the matrices M̄ and S̄ have in average 29 and 32 non-zero entries per
row for the Kitten model in a 1000-dimensional subspace. We ob-
served similar numbers for other models and subspace dimensions.
We experimented with solvers for sparse matrices and GPU-based
dense solvers for the restricted problem, developing a preference
for the latter. The dense solver computes all d eigenvectors of the
reduced problem in a reasonable time for sizes up to d = 10k. Tim-
ings are listed in Table 1.

Storage requirements In addition to the accelerated basis con-
struction, less data is required to represent the approximate bases.
For spectral methods, this implies less storage is required. Hence
larger bases can be used in-core and evaluations, like reconstructing
a shape from the reduced representation, are faster. Explicit timings
for the latter can be found in the paragraph on simulation in modal
coordinates in Section 5. Since the eigenfunctions have dense nodal
vectors, for a mesh with n vertices, storing m (unreduced) eigen-
vectors requiresO(nm) storage. The approximate eigenvectors are
represented by two matrices: the sparse matrix U representing the
subspace basis and a dense matrix representing the reduced coordi-
nates of the eigenvectors. Since we choose the size of the support

of the subspace basis functions such that in average about 10 sam-
ples influence each vertex, the matrix U has on average 10 entries
per row. Hence, U requires O(n) storage, which is independent of
d, the dimension of the space. The intuition is that if more sam-
ples are used, the support of the basis functions shrinks. Since we
choose d to be 2m, the matrix storing the reduced coordinates of the
approximate eigenfunctions requires O(m2) storage. Together, the
two matrices requireO(n+m2) storage. For example, representing
5k eigenfunctions on a mesh with 1M vertices in double (8 byte)
precision requires 5k ∗ 1M ∗ 8 byte = 40 GB storage. An approxi-
mate basis computed in a 10k-dimensional subspace requires about
(10∗1M+10k ∗5k)∗8 byte < 0.5 GB storage.

Properties of the restricted eigenfunctions In the following, we
discuss properties of the restricted eigenfunctions. First, we show
that the lifted restricted eigenfunctions, given by nodal vectors Φ̄ j,
are L2-orthonormal on the full resolution mesh.

Lemma 1 The restricted eigenfunctions are pairwise L2-
orthonormal.

Proof Using the definition of the restricted eigenfunctions (9), we
obtain〈

Φ̄i,Φ̄ j
〉

L2 = Φ̄
T
i MΦ̄ j = φ̄

T
i UT MU φ̄ j = φ̄

T
i M̄φ̄ j = δi j,

where δi j, the Kronecker delta, is 0 for i 6= j and 1 for i = j. For
the last step, we use the property that the solutions (8) of the mini-
mization problem (7) are orthonormal with respect to M̄.

The second property we want to discuss relates to the Dirich-
let energy of the restricted eigenfunctions. The Dirichlet energy of
a function f is the quadratic functional 〈 f , f 〉H1

0
associated to the

bilinear form (2). Equation (3) implies that, for (L2-normalized)
eigenfunctions of the Laplace–Beltrami operator, the eigenvalue
agrees with the Dirichlet energy of the corresponding eigenfunc-
tion. We show that an analogous relation holds true for the re-
stricted eigenfunctions and eigenvalues.

Lemma 2 The Dirichlet energy of the ith restricted eigenfunction
equals the restricted eigenvalue λ̄i.

Proof Using the definition of the restricted eigenfunctions (9), we
get〈

Φ̄i,Φ̄i
〉

H1
0
= Φ̄

T
i SΦ̄i = φ̄

T
i UT SU φ̄i = φ̄

T
i S̄φ̄i = λ̄iφ̄

T
i M̄φ̄i = λ̄i.

In the last step, we used the orthogonality constraint of the re-
stricted eigenvalue problem (7).

A consequence of Lemma 2 is that if the restricted eigenvalues λ̄i
are close to the eigenvalues λi, then the Dirichlet energies of the
corresponding restricted and unrestricted eigenfunctions, Φ̄i and
Φi, are close.

The restricted eigenfunctions Φ̄i can be written as a linear com-
bination of the eigenfunctions Φk

Φ̄i = ∑
k

aikΦk, (10)

with Fourier coefficients aik =
〈
Φ̄i,Φk

〉
L2 . Since the Φ̄i have unit

L2-norm, the coefficients satisfy

∑
k

a2
ik = 1 (11)
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Figure 5: Comparison of the first 100 eigenvalues, approximation
and reference solution, for three models, two Cat and one Centaur
models. Reference solutions are computed using MATLAB’s sparse
eigensolver.

for any i. Using Lemma 2, we get a relation of the Fourier coeffi-
cients aik of the restricted eigenfunctions, the restricted eigenvalues
λ̄i and the unrestricted eigenvalues λk.

Theorem 3 The Fourier coefficients of the restricted eigenfunctions
satisfy

λ̄i = ∑
k

a2
ikλk. (12)

Proof Using Lemmas 1 and 2, we get

λ̄i = Φ̄
T
i SΦ̄i = (∑

l
ailΦl)

T S(∑
k

aikΦk) = (∑
l

ailΦl)
T
∑
k

aikλkMΦk

= ∑
l

∑
k

λkailaikΦl
T MΦk = ∑

k
λka2

ik,

which proves the theorem.

The combination of equations (11) and (12) indicates that any re-
stricted eigenfunction Φ̄i is a linear combination of eigenfunctions
Φk with eigenvalues λk close to the restricted eigenvalue λ̄i.

5. Experiments

We implemented our approximation algorithm using the
Eigen [GJ∗10] and LibIGL [JP∗16] libraries. For solving the
restricted, low-dimensional eigenproblems, we use the GPU-based
solver provided by the cuSOLVER library.

Approximation In our experiments, we found that the spectrum
computed with the proposed scheme approximates well the spec-
trum of a numerical reference solution, which is computed with
MATLAB’s sparse eigensolver. Figure 5 shows plots of the first
one hundred reference and approximate eigenvalues for three dif-
ferent models. Figure 4 shows plots of the first 1000 eigenvalues
of the reference solutions as well as approximations that are com-
puted in a 1000-dimensional subspace using different schemes for
the bases constructions. Note that while the figure shows all 1000
eigenvalues, we recommend using only the first half of the com-
puted eigenvalues, which in this case are the first 500 eigenvalues.
The figure stills shows all eigenvalues to give a better comparison.
The schemes for basis construction that are compared differ in the
way the geodesic distance is approximated. Results using Dijkstra’s

Figure 6: Approximations of the first 1000 eigenvalues of the
Laplace–Beltrami operator on the Chinese Dragon mesh. The ref-
erence solution (blue), computed with MATLAB’s sparse eigen-
solver, is compared with approximations computed with the pro-
posed scheme with 2k (green) and 5k (red) dimensional subspaces
and also computed from coarsened meshes with 2k (dashed green)
and 5k (dashed red) vertices.

graph distances, the Dijkstra distances with Euclidean distance as
correction and the Short Term Vector Dijkstra with two different
parameter settings are shown. The figure illustrates that all four
variants produce good approximation results. Taking the timings,
shown in Table 3, into account, we favored the Euclidean correc-
tion of Dijkstra’s algorithm for our experiments.

To evaluate the approximation of the eigenvectors, we compute
the Fourier coefficients of the approximate eigenfunctions Φ̄i with
respect to the reference eigenbasis {Φk}, see Equation (10). Fig-
ure 7 and a supplementary video show plots of Fourier coefficients
for an approximate basis computed in the 1000-dimensional space
on the Kitten model. While for the lower eigenfunctions we ob-
serve a sharp peak at the index of the eigenfunction, the higher
approximate eigenfunctions are a linear combination of reference
eigenfunctions with similar eigenvalue. To put this result into a
broader context, we want to point the reader to the supplementary

Figure 7: Plots of the Fourier coefficients, aik =
〈
Φ̄i,Φk

〉
L2 , of

restricted eigenfunctions Φ̄i in the reference eigenbasis {Φk}. The
Φ̄i are computed in a 1000-dimensional space on the Kitten model.
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Model Vertices Subsp.
dim.

Eigen-
pairs

M,S Sam-
pling

Adja-
cency

Basis M̄, S̄ Solve
eigenp.

Total Reference

Chinese-Dragon 127K 1K 500 0.42 0.11 0.19 0.27 0.23 1.39 2.61 225.62
Kitten 137K 1K 500 0.42 0.12 0.15 0.24 0.17 1.34 2.44 242.99
Fertility 241K 1K 500 0.61 0.24 0.25 0.44 0.34 1.37 3.26 452.34
Red Circular Box 701K 1K 500 1.60 1.69 0.85 1.18 0.95 1.39 7.67 1196.37
Isidore Horse 1104K 1K 500 2.30 3.23 1.28 1.92 1.58 1.41 11.63 2001.12
Neptune 2003K 1K 500 4.34 4.65 2.79 4.32 3.30 1.31 20.70 Memory bound
Chinese-Dragon 127K 5K 2.5K 0.42 0.13 0.19 0.47 0.23 52.18 53.62 4000.01
Kitten 137K 5K 2.5K 0.42 0.12 0.15 0.49 0.19 55.94 57.31 5932.93
Fertility 241K 5K 2.5K 0.62 0.19 0.25 1.02 0.32 56.58 58.99 10,707.84
Red Circular Box 701K 5K 2.5K 1.52 0.61 0.83 2.92 1.08 50.20 57.17 Memory bound
Isidore Horse 1104K 5K 2.5K 2.39 1.15 1.29 4.72 1.49 52.54 63.60 Memory bound
Neptune 2003K 5K 2.5K 4.60 4.76 2.82 9.06 3.58 56.21 81.03 Memory bound
Chinese-Dragon 127K 10K 5K 0.43 0.17 0.20 0.80 0.25 421.86 423.71 15,479.83
Neptune 2003K 10K 5K 4.53 2.88 2.80 15.58 3.47 434.36 463.64 Memory bound

Table 1: Timings (in seconds) for the individuals steps of the proposed approximation algorithm. From left to right: number of vertices of
the mesh, dimension of subspace, number of eigenpairs computed, construction of matrices M and S, sampling stage, construction of vertex
neighborhoods, construction of subspace basis functions, computation of reduced matrices M̄ and S̄, solving restricted eigenproblem, total
time for approximation algorithm, and comparison timings of MATLAB’s eigensolver for the same setting.

material that includes an experiment in which we explore how the
Laplace–Beltrami eigenfunctions change when the metric of the
kitten model is slightly altered. In a second experiment, we evalu-
ate how well the space spanned by the approximate eigenfunctions
can approximate the reference eigenfunctions. Figure 8 shows a
plot of the norms of the difference between reference eigenfunc-
tion Φk and its projection onto the space spanned by the first 500
approximate eigenfunctions Φ̄i. The figure additionally shows an
analogous plot where the roles of the approximate and the refer-
ence eigenfunctions are exchanged. For a visual comparison, Fig-
ure 3 shows color plots of some of the reference and approximate
eigenfunctions on the kitten mesh.

Comparison to mesh coarsening Mesh coarsening can be used
for the fast approximation of the eigenvalues of the Laplace–
Beltrami operator. Instead of computing the spectrum on the full-
resolution mesh, the mesh is coarsened and the spectrum of the
coarse mesh is computed. Figure 6 shows 1000 reference eigen-
values (computed using MATLAB’s sparse eigensolver on the full-
resolution mesh), approximations obtained with our scheme using
2k and 5k dimensional subspaces, and eigenvalues computed from
simplified meshes with 2k and 5k vertices. The figure demonstrates
the benefits in approximation quality of our scheme compared to
the mesh simplification scheme. The computation times for both,

Solver MATLAB (500) MATLAB (1000) CUDA (1000)

Time 5.30 21.45 1.40

Table 2: Performance of MATLAB’s sparse eigensolver vs. the
GPU-based dense solver from the cuSOLVER library for comput-
ing the first 500 (left) and all 1000 (middle and right) eigenvalues
of the restricted 1000-dimensional eigenvalue problem.

our approximation scheme and mesh coarsening, are comparable
as the most expensive step for both schemes is solving the low-
dimensional eigenvalue problem.

An essential difference between mesh coarsening and our ap-
proach is that our scheme solves an eigenproblem in a subspace
of the function space on the full-resolution mesh. Therefore, we
can use restrictions on the matrices M and S. In contrast, the mesh
coarsening scheme creates a new function space and new matrices.
As a consequence, our scheme results in approximate eigenfunc-
tions on the full-resolution mesh. By construction the functions are
L2-orthonormal on the full-resolution mesh and their Dirichlet en-
ergy agrees with the approximate eigenvalues. We refer to Section 4

Figure 8: The norms of the difference between reference eigen-
function Φk and its projection onto the space spanned by the
first 500 approximate eigenfunctions Φ̄i for k ∈ {1,2, ...,500} are
shown in red and an analogous plot with roles of Φk ad Φ̄i ex-
changed in blue.
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Figure 9: Plots visualizing the shape distances of a collections of models. The shape distances are computed from the Shape DNA, approx-
imated with the proposed method (top-right) and reference eigenvalues (top-left) computed using MATLAB’s sparse eigensolver. The plots
are generated with multi-dimensional scaling applied to the matrix containing all pairwise distances. Visualization of the models, which are
taken from the TOSCA data set, are shown at the bottom.

for a discussion of the properties. In contrast, the mesh coarsening
scheme computes eigenfunction in a function space on the coarse
mesh. These eigenfunctions could be mapped to functions on the
full-resolution mesh, but the resulting functions would not be L2-
orthonormal and lose their connection to the approximate eigenval-
ues.

Chuang et al. [CLB∗09] introduced a scheme for estimating the
Laplace–Beltrami operator that constructs a coarse voxel grid con-
taining the surface mesh and creates a function space by restricting
a set 2nd-order tensor-product B-splines defined on the voxel grid
to the surface mesh. The dimension of the function space depends
on the voxel grid that is used and is independent of the resolution
of the surface mesh. This approach can be used to approximate the
eigenvalues of the Laplace–Beltrami operator. To put this approach
in context to our scheme, we want to note that similar to the mesh
coarsening approach, the scheme constructs a new function space
and new mass and stiffness matrices. In particular, the approximate
eigenfunctions are elements of the function space induced by the
voxel grid. This means, to use them for spectral methods, the func-
tions need to be mapped to the function space of the mesh and the
resulting functions will not be L2-orthonormal anymore.

Computation times Computation times for the individual steps
of the proposed approximation algorithm for different numbers of
eigenpairs and sizes of meshes are shown in Table 1. For reference,
timings of MATLAB’s ARPACK-based large-scale sparse eigen-
solver for the same configurations are shown. For the some prob-
lems the MATLAB solver failed because it reached the bound of the
available main memory. This could be avoided by using an out-of-
core implementation, as discussed in [VL08]. However, this comes
at the cost of much higher computation times. The approximation

algorithm, on the other hand, requires less memory, since only re-
duced coordinates need to be stored for every eigenvector, and we
can solve all the problems listed in the table in-core.

For the Fertility model with 241k vertices, the computation of
500 and 5000 eigenfunctions takes 3.3 and 59 seconds. For the
computation of 500 restricted eigenfunctions all steps require a sub-
stantial part to the total time. However, for 2500 eigenfunctions and
more, solving the restricted eigenproblem is the most expensive
step.

We experimented with different solvers for the restricted eigen-
problem. Since the restricted stiffness and mass matrices are still
sparse matrices, we experimented with sparse and dense solvers
for the low-dimensional eigenvalue problems. Table 2 shows rep-
resentative times we obtained with MATLAB’s sparse eigensolver
and a GPU-based dense solver from the cuSOLVER library. Based
on the run times obtained in our experiments, we recommend using
the dense solver.

Dijkstra Euclidean STVD
(k=3)

STVD
(k=6)

Basis Con-
struction

2.72 2.73 7.07 14.66

Table 3: Timing of basis construction with different methods for
the approximation of the geodesic distance on the mesh. From left
to right: Dijkstra’s algorithm, Dijkstra’s algorithm with Euclidean
distance correction, Short term vector Dijkstra with window size 3,
Short term vector Dijkstra with window size 6.
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Figure 10: Comparison of diffusion distances computed using ref-
erence eigenpairs (first and third rows) and our approximations
(second and fourth rows) on the Vase-Lion and Kitten models. Pa-
rameter of the diffusion distance, t, and relative L2 approximation
error, ε, are shown.

6. Applications

To evaluate the proposed approximation scheme, we use the ap-
proximate eigenvalues and eigenfunctions for different spectral
methods and compare the results to those obtained with reference
eigenvalues and eigenfunctions, which we compute with MAT-
LAB’s eigensolver.

Shape DNA Shape DNA [RWP06] is a simple, yet effective, spec-
tral shape descriptor. The simplicity makes it well-suited for our
comparison. Figure 9 compares results obtained with the approxi-
mate and the reference spectra, where the lowest 100 eigenvalues
are used for the Shape DNA. The test dataset, which is part of the
TOSCA data set [BBK08], consists of a variety of shapes with dif-
ferent poses for each of the shapes. The Shape DNA of each shape
and the pairwise shape distances are computed. The resulting dis-
tances are visualized by an MDS projection to the plane. The figure
illustrates that the approximate eigenvalues yield comparable re-
sults to the reference solution. For three examples shapes, hundred
approximate and reference eigenvalues are shown in Figure 5. The
figure illustrates that the differences between approximate and ref-
erence spectra are small compared to the difference of eigenvalues
of different shapes.

Figure 11: Comparison of results of spectral mesh filtering on the
Chinese-Dragon model using 5000 approximated eigenvalues and
eigenfunctions (bottom row) and 5000 eigenvalues and eigenfunc-
tions computed using MATLAB (top row). Relative L2 approxima-
tion errors, ε, are shown.

Diffusion distance The second spectral method we consider is the
diffusion distance [NLCK05]. We chose this spectral distance be-
cause the computation combines eigenvalues and eigenfunctions
and the distance has fewer parameter than alternatives, such as the
heat kernel signature. The latter makes it easier to compare results.
Figure 10 shows results for two models and different values of the
parameter t. The results obtained using the lowest 1000 approxi-
mate eigenvalues and eigenfunctions and reference eigenvalues and
eigenfunctions are shown. Furthermore, the relative L2 approxima-
tion error, denoted by ε, of the differences between approximate
and reference result is shown. The visual comparison indicates that
the resulting distances are quite close, which is confirmed by the
computed approximation errors. As discussed in Section 5, the pre-
computation time for the approximate solution is two orders of
magnitude shorter.

Mesh filtering Figures 11 and 12 show the results of spectral fil-
tering [VL08] using the approximate eigenvalues and eigenfunc-
tions. For comparison, results obtained using the reference eigen-
values and eigenfunctions are shown. The visual comparison shows
that results of comparable quality can be obtained using the ap-
proximate basis. The benefit of using the approximate basis is the
reduced precomputation time. This is a crucial factor as with the
approximation the overall time needed for spectral filtering be-
comes comparable to the time required by alternative state-of-the-
art mesh filtering schemes. Moreover, with the approximation, the
filtering approach only requires solving a low-dimensional dense
eigenproblem, which is in contrast to many recent filtering schemes
that are based on large scale, non-convex optimization problems.
The benefits that spectral filters can enhance frequencies and can
be interactively modified are preserved. Due to the lower storage
requirements, the approximation method can also process larger
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meshes and more eigenfunctions in-core than the original scheme
using unreduced eigenfunctions. Though approximation of the ref-
erence solution is not a quality criteria for the result of filtering, we
are listing the approximation errors since they evaluate how-well
the low frequency subspaces are approximated.

Parameter-dependent operators Recent work [HSvTP10,
CSBK16, LJC17, WBPS17] indicates that spectral methods can
profit from using not only the Laplacian but also other operators.
For example, the Laplacian can be augmented with a potential that
includes additional information about the extrinsic curvature. The
operators considered usually depend on one or more parameters.
For example, a parameter that weights the importance of extrinsic
information against the importance of intrinsic information. The
proposed approximation algorithm provides the possibility to
efficiently explore such parameter spaces. Once the subspace basis
is constructed and the reduced matrices of the relevant operators
are generated, the approximation of the lowest 100 eigenpairs
for different parameter settings can be computed at interactive
rates. For example, a user can change the parameters and receive
interactive feedback, such as visualizations of the eigenfunctions at
the current parameter setting. Figure 13 shows examples of results
obtained with the family of operators described in [Sch13, pages
72–73], which extends the construction of a modified Laplacian
from [HSvTP10]. In the discrete setting, the matrix A with entries

Ai j =
〈
N(vi),N(v j)

〉
Si j

is contructed, where Si j are the entries of the cotangent matrix and
N(vi) is the normal at vertex vi. Then a one-parameter family of
operators is defined as

(1− t)S+ tA. (13)

The operators are intrinsic for t = 0 and a potential, dependent on
the extrinsic curvature, is blended in for t > 0. Figure 13 shows
examples of approximate eigenfunctions for different values of t.

Simulation of elastic deformables In the following, we will dis-
cuss how our approach can be used for fast approximation of vibra-
tion modes of deformable objects. Vibration modes are widely used
in graphics for fast simulation [BJ05, vTSSH13], simulation-based

Figure 12: Results of a sharpening filter using 5000 approximate
eigenpairs on the Red Circular Box model. Top row shows input
and bottom row results.

shape editing [HSvTP11], sound synthesis [CAJ09], editing simu-
lations [BSG12], and for deformable motion design [HSvTP12a].
Yang et al. [YLX∗15] propose a model reduction for the simula-
tion of deformable objects that involves the construction of a linear
subspace. They state that solving the eigenproblem to obtain vibra-
tion modes is computationally expensive and they therefore use a
Krylov subspace method to compute linear inertia modes instead.
Our algorithm would enable the method proposed in [YLX∗15]
to compute approximate vibration modes in less time than what
is needed for their construction of the linear inertia modes.

We want to emphasize that the approximations are solutions of
a restricted eigenvalue problem. Hence the eigenvalues are physi-
cally meaningful and the approximate eigenvalues and eigenmodes
can be used for simulation in modal coordinates. Moreover, the re-
duced storage requirements, which were discussed in Section 4,
also extend to the approximate vibration modes.

We consider a discrete elastic object modeled by a triangle or
tetrahedral mesh and describe the configurations of the object by
3n-dimensional vectors listing the coordinates of all n vertices. We
look at a rest configuration x0 of the object and use displacement
vectors u to describe deformed configurations. The energy stored
in any configuration x = x0 + u is measured by an elastic potential
E(x). The vibration modes are the eigenfunctions Φi to the gener-
alized eigenvalue problem

HΦi = λMΦi, (14)

where H = ∂
2

∂x2 E(x0) is the Hessian of the elastic energy at x0 and
M is the mass matrix. The linearized equations of motion of the
discrete elastic object are

Mü(t)+(αM+βH)u̇(t)+Hu(t) = F, (15)

subject to suitable initial conditions on positions u(0) and veloc-
ities u̇(0). Here F represents external forces. We can express any
displacement u as a superposition of eigenmodes, u = Φq, where Φ

Figure 13: Eigenfunctions of a one-parameter family of opera-
tors are shown. For t = 0, the operator is the Laplace–Beltrami
operator. For other values of t the operator includes extrinsic in-
formation. The higher the value of t the stronger the influence of
the extrinsic information. The proposed approximation scheme al-
lows to interactively explore the eigenfunctions the one-parameter
family of operators.
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Figure 14: Real-time simulation of an elastic deformable (165k
vertices) using 500 approximated vibration modes. A strong point
force is applied to the back. High frequent details in the dynamics
that spread across the mesh without (numerically) dissipating are
observed.

is the matrix whose columns are the vibration modes Φi and q is the
vector listing the modal coordinates of u. In the basis of vibration
modes, the equations of motion decouple to 3n independent ODEs

q̈i(t)+(α+βλi)q̇i(t)+λiqi(t) =
(

Φ
T F
)

i
(16)

to which analytic solutions are known. Being able to compute an-
alytic solutions has many benefits over numerical integration. For
example, the solution at any point in time can be computed without
time-step restrictions and there is no numerical damping. For effi-
ciency, not all vibration modes but only the lowest m are computed
and used for the simulation. Then, Φ is the 3n×m matrix storing
the first m vibration modes as its columns.

Our approach offers different benefits for the simulation in
modal coordinates. One is that the computational cost for con-
structing the modal basis is significantly reduced. Moreover, the
transformation from modal coordinates q to world coordinates u
is faster. The reason is that the matrix Φ̄ storing the first m ap-
proximate vibration modes can be decomposed Φ̄ = U φ̄, where
U ∈ R3n×d is the sparse matrix storing the subspace basis and
φ̄ ∈ Rd×m is the matrix representing the approximate vibration
modes in reduced coordinates. This means that instead of a matrix-
vector product with a dense 3n×m-matrix, only products with a
dense d×m-matrix and a sparse 3n×d-matrix are needed to trans-
form from modal to world coordinates. The third benefit is that
the approximate modal basis requires less memory since only the
low-dimensional dense matrix φ̄ and the sparse matrix U are stored
instead of the matrix Φ. This is crucial when memory requirements
for storing Φ exceed the GPU storage space.

In a supplementary video we show an evaluation of this applica-
tion, where we simulate the Armadillo model (unsimplified, 165k
vertices) using 500 approximated vibration modes, which were
computed using our subspace construction from d = 1000 samples.
In Figure 14 we show snapshots of this simulation. To highlight the
fine resolution of the dynamics that can be expressed using this ap-
proach, we set the damping quotients α and β to very low values
and “poke” the mesh by shortly applying large external forces to
a single vertex (shown by a blue arrow). The resulting simulation
shows the advantages of using vibration modes to reduce and solve
the linearized equations of motion, as we observe high frequent de-
tails in the dynamics as well as no dissipation due to numerical
damping, such that even small shock waves can slowly propagate

across the entire mesh. The computation of the approximated vi-
bration modes is only 15.2 seconds, whereas computing 500 full
vibration modes using MATLAB takes 30.1 minutes on the same
machine. For a quantitative comparison of the simulation using
fully computed vibration modes to the simulation using our approx-
imated vibration modes, we computed the relative error between
the two simulations, that is ei

rel := ‖x(i ·δ)− x̃(i ·δ)‖M/‖x(i ·δ)‖M .
Here, δ is the time-step, i the index of the frame, and x(t) and x̃(t)
are the vertex positions of the solutions to (16) using fully com-
puted vibration modes and approximated vibration modes respec-
tively. For the first 250 frames of the simulation shown in Figure 14,
we got an average relative error of 0.00698 and a maximal relative
error of 0.01141. Visually, the two simulations are indistinguish-
able. Updating the current state using the product U ·

(
φ̄ ·q(t)

)
re-

quires around 7 milliseconds, whereas the product Φq(t) takes 120
milliseconds of computation time on average, which prohibits real-
time applications.

7. Conclusions

We present a fast approximation algorithm for the lowest part of
the spectrum of the Laplace–Beltrami operator. Our experiments
demonstrate that the approximate spectra are close to the refer-
ence spectra, which were computed with state-of-the-art large-scale
sparse eingensolvers. We also show that spectral methods produce
comparable results with the approximate and the reference spectra.
The benefit of the approximation algorithm is the lower computa-
tional cost, which reduces precomputation time for spectral meth-
ods by two order of magnitude and thereby make spectral methods
even more attractive for geometry processing applications. A sec-
ond benefit is the computation of the approximate spectra does not
require a sophisticated large-scale sparse eigensolver, but only re-
quires to solve a low- dimensional eigenproblem.

Concerning future work, we see potential that the proposed ap-
proach can be extended to a fast approximation algorithm for the
computation of compressed manifold modes [NVT∗14] and com-
pressed vibration modes [BH17]. Due the sparsity enforcing term
that is integrated to the eigenproblem, the computation of com-
pressed modes poses a challenging problem. Moreover, we think
that reduced simulation in modal coordinates can benefit from the
proposed approach. Since computation times for approximating vi-
bration modes are greatly reduced, one direction would be to use
the approach for basis update in reduced non-linear elastic simu-
lation. Furthermore, the fact that the approximate modes can be
efficiently stored and processed makes the method interesting for
sound synthesis as more eigenfunctions produce richer sound.
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