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We propose a framework for deformation-based surface modeling that is
interactive, robust and intuitive to use. The deformations are described by a
non-linear optimization problem that models static states of elastic shapes
under external forces which implement the user input. Interactive response
is achieved by a combination of model reduction, a robust energy approxi-
mation, and an efficient quasi-Newton solver. Motivated by the observation
that a typical modeling session requires only a fraction of the full shape
space of the underlying model, we use second and third derivatives of a de-
formation energy to construct a low-dimensional shape space that forms the
feasible set for the optimization. Based on mesh coarsening, we propose an
energy approximation scheme with adjustable approximation quality. The
quasi-Newton solver guarantees superlinear convergence without the need
of costly Hessian evaluations during modeling. We demonstrate the effec-
tiveness of the approach on different examples including the test suite in-
troduced in [Botsch and Sorkine 2008].

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Physically based modeling

Additional Key Words and Phrases: geometric modeling, deformation-
based modeling, interactive modeling, surface editing, geometric optimiza-
tion, model reduction, modal derivatives.

1. INTRODUCTION

In recent years, a special focus in geometric modeling has been on
schemes for deformation-based surface editing. A major advantage
of such schemes over traditional modeling techniques like NURBS
or subdivision surfaces is that typical modeling operations can be
described by few constraints. This allows for efficient and simple
click-and-drag user interfaces. To provide intuitive usability, the
computed deformations must be physically meaningful to match
the user’s intuition and experience on how shapes deform. This
leads to non-linear optimization problems that, to achieve interac-
tivity, have to be solved within fractions of a second. The surfaces
to be edited are often rich in detail and thus of high resolution.
We distinguish between local and global deformations. Local de-
formations are restricted to a small area with the rest of the surface
fixed. The resulting optimization problems are of small scale, still,
it is challenging to solve them at interactive rates. The focus of
this work is on global shape deformations which lead to optimiza-
tion problems that, due to their size, cannot be solved at interactive
rates. Since interactivity is indispensable, the challenge is to de-
sign methods that find as-good-as-possible approximations at low
computational cost.

Instead of manipulating the surface directly, recent schemes for
global interactive deformation-based editing manipulate a part of
the ambient space that surrounds the surface and therefore implic-
itly edit the surface. The deformations of the space are often in-
duced by a cage, which in turn is manipulated by a deformation-
based editing scheme. The advantage of this concept is that the size
of the optimization problem now depends on the resolution of the
cage and is independent of the resolution of the surface.
Contributions. The contribution of this paper is a framework for
deformation-based surface modeling that is interactive, robust, in-

tuitive to use, and works with various surface deformation energies.
The main idea is to reduce the complexity of the optimization prob-
lem in two ways: by using a low-dimensional shape space and by
approximating the energy and its gradient and Hessian. The moti-
vation for the space reduction is the observation that a modeling
session typically requires only a fraction of the full shape space of
the underlying model. We construct a reduced shape space as the
linear span of two sets V1 and V2 of vectors. The set V1 comprises
the eigenvectors of the Hessian of the deformation energy that cor-
respond to the lowest eigenvalues. The span of these vectors con-
tains the deformations that locally cause the least increase of en-
ergy and is therefore well-suited to generate small deformations.
However, large deformations in span(V1) often develop artifacts
and thus have high energy values. To improve the representation
of large deformations in the reduced space, we collect in the set V2

vectors that at points in span(V1) point into energy descent direc-
tions. These directions are constructed using the third order term
of a Taylor series of the Newton descent direction of the deforma-
tion energy. For the approximation of the energy and its derivatives,
we propose a scheme based on a second reduced shape space for
a simplified mesh. By construction, the two reduced shape spaces
are isomorphic and we can use the isomorphism to pull the energy
from the shape space of the simplified mesh to the shape space of
the full mesh. Altogether, the resulting reduced problem is inde-
pendent of the resolution of the mesh and our experiments show
typical modeling operations, including large deformations, that are
reasonably well approximated. To solve the reduced optimization
problem, we use a quasi-Newton method that maintains an approx-
imation of the inverse of the Hessian and generates descent direc-
tions at the cost of gradient evaluations while still producing super-
linear convergence.

Our approach is an alternative to space deformation schemes.
Space deformations are controlled by some object, e. g., a cage
around the surface (other objects like a volumetric mesh or a skele-
ton have been used as well). Then, the set of possible deformations
of the surface depends on the cage and a space warping scheme.
In contrast, our method does not depend on an artificial cage and
a space warping scheme, but the subspaces we consider depend on
geometric properties of the surface. A resulting advantage of our
approach is that we do not need to deal with interpolation artifacts
that many space warping schemes create. Furthermore, our scheme
does not need to construct a cage, which often is a manual pro-
cess. Instead the preprocess of our scheme is automatic and the
computed basis can be stored on a hard disc with the surface. The
subspaces our method produces are effective: we demonstrate that
even 67-dimensional spaces can produce good approximations for
typical modeling operations. In contrast, the coarsest cages that are
used for space deformation have 200-500 vertices, hence gener-
ate a 600-1500 dimensional shape space. In addition, our approach
is flexible. We can use the same energies as in the unreduced case,
like PriMo [Botsch et al. 2006] or as-rigid-as-possible [Sorkine and
Alexa 2007]. The approximation quality of the energy is adjustable
and the size of the reduced space can be increased. Increasing both
parameters will lead to the exact solution of the unreduced prob-
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Fig. 1. Linear vibration modes and modal derivatives of the discrete shells energy on the dragon model. Figure shows: the rest state (top left), two linear
modes (left), and two modal derivatives (right).

lem. Both parameters, quality of energy approximation and size of
reduced space are independent.

The reduced bases we consider allow for a physical interpreta-
tion. If we regard the deformation energy as a potential energy of
elastic deformations of the surface away from a rest shape, then
the eigenvectors of the Hessian are the linear free vibration modes
of the rest shape. Furthermore, the additional basis vectors, which
form the set V2, can be interpreted as simplified modal deriva-
tives. Therefore, our method is linked to techniques from real-
time physical simulations, especially to the work of Barbič and
James [2005], in which a reduced basis consisting of vibration
modes and modal derivatives is used for real-time simulation of the
dynamics of St. Vernant-Kirchhoff deformable bodies. However,
there are fundamental differences between the schemes. Whereas
dynamic simulations require the integration of systems of ODEs,
we solve an optimization problem and therefore need a completely
different solver. In real-time physical simulations the approxima-
tion of forces is done using a cubic polynomial for each component
of the force in the reduced space. This means that the number of co-
efficients required to represent the forces grows withO(r4), where
r is the dimension of the reduced space. In contrast, our energy
approximation technique is independent of the size of the reduced
space. In addition, we consider deformation energies defined for
surface meshes (e. g. elastic thin shells), whereas [Barbič and James
2005] simulate elastic bodies using tetrahedral meshes.

2. RELATED WORK

Deformation-based modeling of surfaces describes shape editing
operations relative to an initial surface, e. g., a surface generated by
a 3d-scanner. Such methods are driven by a deformation energy,
i. e., a function on a shape space of surfaces that, for every sur-
face in the shape space, provides a quantitative assessment of the
magnitude of the deformation of the surface from the initial sur-
face. Methods for deformation-based modeling can be classified in
three categories: linear, non-linear, and space deformation schemes.
In addition, our work is linked to dimension reduction in physical
simulations and modal analysis in geometry processing.
Linear surface modeling. Linear methods for surface modeling
employ a quadratic deformation energy. Such energies are based on
linearized thin shells, or, alternatively, on Laplacian coordinates or
differential coordinates. Energies based on Laplacian coordinates
assess the magnitude of a deformation of a mesh from an initial
mesh by summing up the (squared norms of the) deviations of
the local Laplace coordinates (which can be seen as discrete mean
curvature vectors) at all vertices. The recent survey [Botsch and

Sorkine 2008] provides a detailed overview of linear approaches
and includes a comparison of various schemes. The main advantage
of linear methods is that the minimization problem to be solved is
comparably simple. For example, if the constraints are also mod-
eled as a quadratic energy, as e. g. in [Lipman et al. 2004; Sorkine
et al. 2004; Nealen et al. 2005], the deformed surface can be com-
puted by solving a sparse linear system. These methods are de-
signed for small deformations around the initial surface and often
produce unintuitive results for large deformaions.
Non-linear surface modeling. Physical models of elastic shells
are strongly non-linear and discretizations yield stiff discrete en-
ergies. The resulting optimization problems are challenging, espe-
cially if real-time solvers are desired. The non-linear PriMo en-
ergy [Botsch et al. 2006; Botsch et al. 2007] aims at numerical
robustness and physically plausible solutions. The idea is to ex-
tended the triangles of a mesh to volumetric prisms, which are cou-
pled through elastic forces. During deformations of the mesh the
prisms are transformed only rigidly, which increases the robustness
of the energy since the prisms cannot degenerate. As an alternative
to elastic shells, non-linear methods based on Laplacian coordi-
nates have been proposed. One idea, which can be found in several
approaches, is to measure the change of the length of the Lapla-
cian coordinates instead of measuring the change of the full vector.
Dual Laplacian editing [Au et al. 2006] iteratively solves quadratic
problems and after each iteration rotates the prescribed Laplacian
coordinates to match with the surface normal directions of the cur-
rent iterate. Huang et al. [2006] describe the prescribed Laplacian
coordinates at each vertex in a local coordinate system that is used
to update the direction of the prescribed coordinates. Pyramid coor-
dinates [Kraevoy and Sheffer 2006] can also be seen as non-linear
rotation-invariant Laplacian coordinates. For any vertex v there is
a rotation that minimizes, in a least squares sense, the distance be-
tween the 1-ring of v on the initial and on the actual surface. The
as-rigid-as-possible energy [Sorkine and Alexa 2007] is a weighted
sum of these minima over all vertices. Recently, Chao et al. [2010]
proposed to use the distance between the differential of a deforma-
tion and the rotation group as a principle for a geometric model for
elasticity. This model includes a material model with standard elas-
tic moduli (Lamé parameters) and is connected to the Biot strain of
mechanics. The connection of this model of elasticity to energies
used in geometric modeling, like the as-rigid-as-possible energy,
opens the door to an analysis of the link of these energies and the
Biot strain. The drawback of using non-linear energies for surface
modeling is that directly solving the resulting minimization prob-
lem is costly, thus interactive performance is limited by the size of
the meshes.
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Fig. 2. Large deformations of the dragon model (130k vertices) computed by our modeling framework in a 130-dimensional shape space using a 1k ghost.

Space deformation. Instead of deforming the surface directly, the
idea of space deformation methods is to deform the ambient space
around the surface and therefore implicitly also the surface. To con-
trol the space deformations, a cage is built around the surface. The
interior of the cage is described by a boundary representation, i. e.,
every point in the interior of the volume is represented by coordi-
nates that relate to the vertices of the cage. When the cage is de-
formed, the coordinates assign a new location to every point inside
the cage. Some of the different boundary representations that have
been proposed for this purpose are: mean value coordinates [Ju
et al. 2005], harmonic coordinates [Joshi et al. 2007], and Green
coordinates [Lipman et al. 2008; Ben-Chen et al. 2009]. The ad-
vantage of space deformations is that the complexity of the cage
is independent of the resolution of the surface. Since it is inconve-
nient to model the cage directly, the cage can be modeled by a sur-
face deformation scheme [Huang et al. 2006]. Alternatively, space
deformations can be induced by a skeleton [Shi et al. 2007], a vol-
umetric mesh [Botsch et al. 2007], or a graph structure [Sumner
et al. 2007; Adams et al. 2008].
Dimension reduction in physical simulations. Closely related to
deformation-based modeling is the physical simulation of elastic
bodies; we discuss aspects of the interrelation of the two topics at
the end of Section 3. Dimension reduction is an established tech-
nique in physical simulation [Pentland and Williams 1989; Krysl
et al. 2001], that reduces the computational cost of a simulation.
Linear modal analysis [Pentland and Williams 1989; Hauser et al.
2003; Choi and Ko 2005] can be used to automatically generate
reduced coordinates that are well-suited to approximate small de-
formations away from the rest pose. To improve the approximation
quality for larger deformations Barbič and James [2005] extend the
basis of linear modes by simplified modal derivatives. In order to
get real-time rates for simulations, in addition to the dimension re-
duction, the cost for evaluation of the forces has to be reduced.
This can be achieved by representing or approximating (depending
on the system to be simulated) the reduced forces by cubic poly-
nomials on the reduced space [Barbič and James 2005; An et al.
2008; Barbič and Popović 2008]. The coefficients of this polyno-
mial can be precomputed, which makes the cost for evaluating the
forces independent of the size of the full system. All above-cited
papers simulate solid bodies and therefore use volumetric meshes.
Surface models are, for example, used for cloth simulation, where
thin shells are applied to model cloth with folds and wrinkles. Com-
mon discrete models [Baraff and Witkin 1998; Bridson et al. 2003;
Grinspun et al. 2003; Garg et al. 2007] measure the bending of the
surface at the edges of the mesh. Such a discrete energy is given as a
sum of contributions from stencils that consist of only two triangles

sharing an edge. This reduces the complexity of the expressions for
the energy and its derivatives, which in turn accelerates the evalua-
tion and simplifies the implementation.
Modal analysis in geometry processing. The spectrum and the
modes of the Laplace-Beltrami operator of a surface proved to be
useful for various applications in geometry processing and com-
puter graphics. An overview of this development can be found in
the recent survey by Zhang et al. [2010] and in the course notes
of a Siggraph Asia 2009 course held by Lévy and Zhang [2009].
In addition, the spectrum of the Hessian of surface deformation
energies has been investigated: Huang et al. [2009] use eigen-
modes of the Hessian of the as-rigid-as-possible energy to con-
struct physically meaningful segmentations of surfaces, and Hilde-
brandt et al. [2010] design surface signatures based on eigenmodes
of the Hessian of the discrete shells energy. In general, the vibration
modes of a curved surface differ significantly from eigenmodes of
the Laplacian. In our experiements, low-frequency vibration modes
of many of our test models tend to focus on some area, e. g., the
dragon model has vibration modes that move fore- or hind legs and
keep the rest of the body almost fixed; in contrast, Laplace modes
tend to distribute the vibration equally over the whole surface.

3. DEFORMATION-BASED MODELING

In this section, we describe the basis of our modeling framework
and derive the full non-linear optimization problem that defines the
deformation. At the end of the section, we discuss the connection
of our framework to physical simulations of elastic shapes. A major
ingredient to deformation-based modeling schemes is the deforma-
tion energy. Our method can work with any energy that is defined
for a shape space of meshes and has continuous third derivatives at
the reference mesh. However, the quality of our energy approxima-
tion scheme is directly connected to the insensitivity of the energy
against simplification of the mesh. In our experiments, we used two
different energies: the discrete shells and the as-rigid-as-possible
energy. We start the section with a brief review of thin shell ener-
gies and of discrete shells.
Thin shell energies. We consider a homogeneous and isotropic
thin shell that has a constant thickness over a surface Σ̄, the so-
called middle surface. Under certain assumptions, including the
Kirchhoff-Love assumption, elastic deformations of the shell can
be described by geometric properties of the middle surface, cf. [Ter-
zopoulos et al. 1987; Ciarlet 2000]. The energy of such a shell is
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Fig. 3. Large deformations of the dino model (56k vertices) computed by our method using the as-rigid-as-possible energy as the objective functional. We
use a 130-dimensional shape space (20 linear modes and 110 modal derivatives) and a ghost with 1k vertices.

given by

E(Σ) =
1

2

∫
Σ̄

(
‖g− ḡ‖2α +

∥∥h− h̄
∥∥2

β

)
dĀ,

where g,ḡ and h,h̄ are the metric tensor and the shape operator of
the initial and the deformed middle surfaces Σ and Σ̄, and ‖ ‖α and
‖ ‖β are certain matrix norms that encode the thickness and ma-
terial properties of the shell. The first term, the membrane energy,
measures stretching and shearing of the surface, and the second
term, the flexural energy, measures bending of the surface.
Discrete shells. In the discrete setting, we consider a shape space
of surface meshes in R3. Let x be such a mesh, then we consider
the linear shape space X generated by varying the positions of the
vertices of x while leaving the mesh connectivity unchanged. We
consider the discrete shells energy [Grinspun et al. 2003; Garg et al.
2007]. Analogous to the continuous case, the energy that governs
this model of thin shells is a weighted sum of a flexural energy and
a membrane energy,

E(x) = αEF (x) + β (EL(x) +EA(x)). (1)

The weights α and β reflect the thickness of the shell and properties
of the material to be simulated, e. g., in cloth simulation the mem-
brane energy usually gets a high weight due to the stretch resistance
of cloth. The discrete flexural energy is given as a summation over
the edges of the mesh:

EF =
1

2

∑
i

3 ‖ēi‖2

Āei

(
2 sin

θei
− θ̄ei

2

)2

, (2)

where θei
is the dihedral angle at the edge ei, Aei

is the combined
area of the two triangles incident to ei and ‖ei‖ is the length of
the edge. The quantities ‖ēi‖, Āei

, and θ̄ei
are measured on the

reference mesh x̄. The membrane energy consists of two terms:
one measuring stretching of the edges,

EL =
1

2

∑
i

1

‖ēi‖
(‖ei‖ − ‖ēi‖)2, (3)

and one measuring the change of the triangle areas Ai,

EA =
1

2

∑
i

1

Āi
(Ai − Āi)2. (4)

Here, the last sum runs over the triangles of the mesh.

Surface modeling. In addition to a deformation energy E, we con-
sider an energy EC , that provides the user with control over the
deformation. Parts of the surface are marked as handles and each
of the handles can be translated and rotated in space to a desired
position. Let vi be the selected vertices and v′i the prescribed posi-
tions of the vertices. Then, EC is the quadratic energy

EC(x) =
∑
i

mi(vi − v′i)2, (5)

where mi is the mass of vi, i. e., a third of the combined area of all
triangles adjacent to vi. For given constraints, the resulting surface
deformation is the solution of the optimization problem

arg min
x∈X

E(x), (6)

where E is given by

E(x) = E(x) + µ EC(x). (7)

For small µ the constraints are soft and allow some flexibility, and
for larger values of µ the constraints tend towards equality con-
straints. Further energies, such as one that counteracts changes of
the enclosed volume, can be added to EC .
Connection to physical simulation. This framework for surface
modeling is linked to physical simulation of elastic shapes. The dy-
namics of a time-dependent mesh x(t), which represents an elastic
shape, is described by a system of second order ODE’s of the form

Mẍ(t) = F (t, x(t), ẋ(t)) (8)

where F represents the acting forces and M is the mass matrix
of x(t), see [Baraff and Witkin 1998; Bridson et al. 2003; Grin-
spun et al. 2003]. The forces F are a superposition of internal de-
formation forces F int(x(t)) of the elastic shape, external forces
F ext(t, x(t), ẋ(t)), and damping forces F damp(ẋ(t)). In our set-
ting, x(t) is the middle surface of an elastic thin shell and the de-
formation energy E is the potential energy of the internal forces
of the shell: F int(x(t)) = −∇Ex(t). In addition, we consider ex-
ternal forces that equal the negative gradient of the energy µEC ,
F ext(t, x(t), ẋ(t)) = −µ∇ECx(t). The physical energy of the sys-
tem is the sum of the kinetic energy T (ẋ(t)) and the potential en-
ergy V (x(t)), where V in our case equals the energy E defined in
eq. (7). Due to damping, the system dissipates energy:

d

dt
(T + V ) ≤ 0. (9)
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Fig. 4. Approximation quality of the reduced space with 67 dimensions in all images is demonstrated on the test suite of models and poses introduced
in [Botsch and Sorkine 2008]. Two even larger deformations have been added.

This inequality is strict for all t such that ‖ẋ(t)‖ 6= 0 holds. For
t → ∞ the kinetic energy vanishes and x(t) takes the position
of a (local) minimum of E . This means that the deformations our
scheme computes are quasi-static limits, for t → ∞, of dynamic
simulations of elastic thin shells, where the user-defined constraints
correspond to external forces in the simulation.

4. DIMENSION REDUCTION

For general meshes, solving the optimization problem, eq. (6), is
too costly to achieve interactive rates. Even for coarse meshes with
5-10k vertices, it is challenging to get rates of 1fps. To reduce the
complexity of the problem, we restrict the optimization to an affine
subspace ofX of the form Vx̄ = x̄+V where V is a subspace ofX
and x̄ is the initial mesh. Then, the reduced optimization problem
is

arg min
x∈Vx̄

E(x). (10)

An adequate space Vx̄ should, on the one hand, be as small as pos-
sible, and, on the other hand, contain reasonable approximations of
the desired deformations.

In our scheme, the generation of the reduced space is part of a
preprocess, before the actual modeling session. To obtain a sub-
space that is suitable for various types of user interaction, we ex-
clude the energy EC from this process. As a consequence, the
constraints, e. g., the positions of handles, can be modified without
forcing a recomputation or adjustment of the subspace. We generate
V as the linear span of the union of two sets V1 and V2 of vectors.
The set V1 contains low-frequency eigenmodes of the Hessian of
the deformation energy at x̄. The motivation to use these directions
is that we search for points in a shape space that minimize energy,
and, since the gradient of the energy vanishes at the initial mesh
x̄, the low-frequency eigenmodes of the Hessian point into the di-
rections in a shape space that (locally) cause the least increase of
energy. From a physical point of view, these eigenmodes are (lin-
earized) eigenvibrations of the surface around the rest state x̄. The
modes φi and eigenvalues λi are the solutions of the generalized
eigenvalue problem

∇2Ex̄φi = λi Mφi, (11)

where∇2Ex̄ is the matrix containing the second partial derivatives
ofE at the initial mesh x̄ andM is the mass matrix of x̄, see [Hilde-
brandt et al. 2010]. The matrix ∇2Ex̄ is symmetric and at least
positive semi-definite (x̄ is a minimum of E) and M is symmetric
and positive definite. Hence, the structure of this problem is similar
to the generalized eigenvalue problem arising in manifold harmon-
ics [Lévy and Zhang 2009; Zhang et al. 2010]. A fast solver that
computes the modes of a lower part of the spectrum even for large

meshes is presented in [Vallet and Lévy 2008]. For our purposes,
we need only a small fraction of the lower part of the spectrum. For
all figures, we used a set V1 consisting of the modes φi correspond-
ing to the lowest 15-20 eigenvalues.

Reduced shape spaces constructed only from linear modes can
approximate small deformations well, but, as demonstrated in
Fig. 5, the approximation of larger deformations in such spaces is
often unsatisfactory. This is reflected in a large difference of energy
between the minimum of the reduced problem and the minimum of
the full problem. To extend the reduced space, we collect vectors
that point into energy descent directions at points in x̄+Span(V1)
in the set V2. Assume we are at some point x in x̄+Span(V1).
Then, an effective descent direction in the full space X would be
the Newton direction −∇2E−1

x ∇Ex at x, which is the direction in
which a Newton solver would do a line search. The Taylor expan-
sion around x̄ of the Newton direction at x is

−∇2E−1
x ∇Ex = −u+

1

2
∇2E−1

x̄ ∇3Ex̄(u, u) +O(‖u‖3) (12)

where u = x − x̄, ∇3Ex̄(·, ·, ·) is the third-rank tensor containing
the third partial derivatives of E at x̄, and ∇3Ex̄(φi, φj) stands
for the vector we get when we plug in φi and φj into ∇3Ex̄(·, ·, ·)
(and transpose the resulting linear form). A derivation of (12) is
provided in the appendix. We define vectors ψij as the solutions of
the equation

∇2Ex̄ψij = ∇3Ex̄(φi, φj). (13)

Due to the symmetry of ∇3Ex̄(·, ·, ·), the vectors ψij satisfy
ψij = ψji. Furthermore, the first six linear modes span the (lin-
earized) rigid motions, and the translations have vanishing deriva-
tives. Hence, from the first k linear modes, we can at most con-
struct ((k − 3)2 − (k − 3))/2 linear independent vectors ψij by
solving eq. (13) for all pairs φi,φj . We collect all the ψij ob-
tained from pairs of linear modes from V1 in the set V2. Then,
at every point x ∈ x̄+Span(V1) the vector ∇2E−1

x̄ ∇3Ex̄(u, u),
which appears in eq. (12), is in Span(V2). It follows that the affine
space spanned by V1 and V2 contains an approximation up to the
third order in ‖x− x̄‖ of the Newton direction (12) at every point
x ∈ x̄+Span(V1). In our experiments, we often did not use all ψij ,
but found that using half of the number of possible ψij is a good
tradeoff between approximation quality and size of the reduced
space. For example, the 67-dimensional basis that we used for
many figures includes 52 linearly independent ψij , computed in
two for-loops over i and j, thus favoring φis with lower eigenval-
ues. For completeness, we would like to mention that eqs. (12) and
(13) are only defined up to the kernel of∇2Ex̄, which for most de-
formation energies are the linearized rigid motions. However, since
the kernel of ∇2Ex̄ is contained in span(V1), the constructed re-
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duced space is independent of the choice of vectors ψij that solve
eq. (13).

Furthermore, we would like to remark that the construction of
the vectors ψij is analogous to the simplified modal derivatives
introduced by Barbič und James [2005], though their formulation
does not use a potential energy and the simplified modal derivatives
are defined and computed for the St. Venant-Kirchhoff model of
three-dimensional elastic bodies. For this reason we call the ψij the
modal derivatives. Examples of vibration modes and modal deriva-
tives of a simple shape, the bar, and of a complex shape, the dragon,
are shown in Figs. 1 and 6. A physical interpretation of the modal
derivatives is that ψij describes how the mode φi changes (in first
order) when x̄ is deformed in direction φj . For our purposes, a ben-
efit of the modal derivatives is that they help to compensate artifacts
introduced by the linear modes.

To calculate the derivatives of the energiesEF , EL, andEA, we
use the automatic-differentiation library ADOL-C, cf. [Griewank
et al. 1996]. We do not need to compute the full tensor of third
derivatives, but only the restriction of this tensor to span(V1). Each
of the three energies is a sum over contributions of the edges or
the triangles of the mesh, and, to save main memory, we directly
reduce the third derivatives of the individual summands. To com-
pute the modal derivatives, we need to solve the linear equation
(13) several times. Since the matrix ∇2Ex̄ is the same in all these
linear systems, it is efficient to compute a sparse factorization of
the matrix once and to use it to solve all the systems.

5. EFFICIENT SOLVER

The reduced optimization problem, eq. 10, is low dimensional, but
evaluations of the energy and its derivatives are expensive and the
reduced Hessian is a dense matrix. An efficient solver for this prob-
lem is the BFGS method, a quasi-Newton method cf. [Nocedal and
Wright 2006]. This scheme, like steepest descent, requires only
evaluations of the gradient at each iterate, but, unlike steepest de-
scent, produces superlinear convergence.

The BFGS method uses an approximation of the inverse of the
Hessian to generate a descent direction and therefore does not need

Fig. 5. Deformation results produced in reduced spaces spanned by the
first 130 linear modes. For each model a small and a large deformation is
shown. The larger deformation is produced with the same constraints as
used for Figs. 3 and 4.

φ7 φ8 φ9 φ10

ψ7,7 ψ7,8 ψ7,9 ψ7,10

ψ8,8 ψ8,9 ψ8,10

ψ9,9 ψ9,10

ψ10,10

Fig. 6. Vibration modes and modal derivatives of the bar are shown: vibra-
tion modes in the top row and corresponding modal derivatives below. We
leave out the first six modes because these span the linearized rigid motions.

to evaluate the Hessian or its inverse directly. Instead of comput-
ing the approximate inverse Hessian from scratch at each iteration,
the change of the gradients at the recent step is used to update the
matrix. Explicitly, the inverse Hessian update is given by

Bk+1 = (I − ρkskyTk )Bk(I − ρkyksTk ) + ρksks
T
k ,

where Bk is the approximate inverse Hessian at iteration k, yk =
∇Ek+1−∇Ek the change of gradients, sk = xk+1−xk the change
of position, and ρk = 1/yTk sk. The classic BFGS method uses the
identity matrix as the initial matrix B1; this means it starts as a
gradient descent and becomes more Newton-like during run time.
To achieve a warm start of our solver, we compute the inverse of
the reduced Hessian at the initial mesh once during the preprocess
and use this matrix as the initial approximate inverse Hessian B1

in the interactive phase. In our experiments, the BFGS solver (with
warm start) requires a similar number of iterations to reach a local
minimum as a Newton solver, which computes the full Hessian in
each iteration, see Fig. 7.
Energy and gradient approximation. Since the solver maintains
an approximate inverse Hessian, it does not need to solve a linear
system to compute the descent direction. Then, the most expensive
operations in each iteration are the evaluations of the energy and its
gradient. To make these calls independent of the size of the input
mesh x̄, we need an approximation of the energy and the gradient

Fig. 7. Comparison of the performance of different optimization schemes:
Newton‘s method, BFGS with and without warm start, and steepest descent.
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Fig. 8. Results for different ghost sizes. Number of vertices (faces) from
left to right: 37 (50), 67 (100), 283 (500), and 544 (1000). The ghosts are
shown in the bottom row.

for all x in the reduced shape space Vx̄. For this, we build a low
resolution version x̄s of the initial mesh x̄ with 500-5000 vertices.
In addition, we simplify the subspace basis {bi}. Each bi is a vec-
tor field on x̄, we compute corresponding vector fields bsi on the
simplified mesh x̄s and define the reduced shape space of the sim-
plified mesh as V sx̄s = x̄s+Span{bsi}. Every x ∈ Vx̄ has a unique
representation in the basis {bi}, x = x̄ +

∑
iαibi, and the linear

map given by x̄ +
∑
iαibi → x̄s +

∑
iαib

s
i is an isomorphism

of the shape spaces Vx̄ and V sx̄s . To approximate the energy of the
surface x̄ +

∑
iαibi ∈ Vx̄, we compute the energy of the coarse

mesh x̄s +
∑
iαib

s
i and we proceed analogously to compute the

gradient.
Explicitly, we use an edge-collapse scheme to generate the

coarse mesh. Edge-collapse schemes implicitly generate a map
from the vertices of the fine to the vertices of the coarse mesh:
for every vertex of the fine mesh there is exactly one vertex on the
coarse mesh to which it has been collapsed. Let vs be a vertex of
the coarse mesh and let {v1, v2, ..., vn} be the set of vertices on the
fine mesh that are collapsed to vs. We construct the simplified ba-
sis vectors bsi by setting bsi (v

s) = 1
n

∑
kbi(vk). If the initial mesh

is strongly irregular, it is reasonable to include the masses of the
vertices into this averaging process.

We would like to emphasize that though we compute the en-
ergy and gradient on a coarse mesh, the fine mesh varies in a space
spanned by nice and smooth modes and modal derivatives that
are computed from the fine mesh. Actually, the simplified mesh
is never shown or handed to the user, therefore, we call it the ghost.

In real-time physical simulations, a different approach to speed
up the evaluation of the forces is used, see [Barbič and James 2005].
They use cubic polynomials on the reduced space to approximate
each coordinate of the forces. Transfered to our setting, this would
mean to approximate the energy by a fourth-order polynomial in
the reduced space. Since this polynomial in general is dense, it has
O(r4) coefficients, where r denotes the dimension of the reduced
space. This would impose strict bounds on the maximum dimen-
sion that would still allow real-time performance of the method. In
contrast, our technique to approximate the energy using a simpli-
fied mesh is independent of the dimension of the reduced space,
and, therefore, allows for larger reduced spaces. For the 67- and
130- dimensional spaces we use in our experiments, the evaluation
of the approximate energy based on a simplified mesh is orders of
magnitude faster than the evaluation of a dense quartic polynomial
on the reduced space. Furthermore, our scheme has a parameter, the
number of vertices of the coarse mesh, that allows us to improve the
approximation quality, if necessary.

Fig. 9. Different approximations of the energy E in a one-dimensional
affine subspace of the shape space are shown as graphs. The minima of
the energies are indicated by dots. Graphs of the full energy, a second-order
and a third-order Taylor series of E , and approximations using ghosts with
1k, 5k, and 10k vertices are shown.

6. RESULTS AND DISCUSSION

Eigenvibrations of an elastic shape with small amplitude often look
like natural deformations of the shape, as illustrated in Fig. 1, and
shape spaces constructed from linear modes are well-suited to ap-
proximate small deformations. But for larger deformations, approx-
imations in such spaces often develop distortions. This is illustrated
in Fig. 5, which shows results obtained in spaces created only by
linear modes for small and larger deformations. Our concept to ex-
tend the shape space by adding the modal derivatives ψij largely
improves the quality of the results. The large deformations shown
in Fig. 5 can be compared to the results shown in Figs. 3 and 4
that are produced with the same poses but in spaces constructed
from linear modes and modal derivatives. Examples of vibration
modes and modal derivative are shown in Figs. 1 and 6. Results
that our method produces in a reduced space with 67 dimensions
(15 linear modes and 52 modal derivatives) on a set of typical test
deformations are shown in Fig. 4. Considering the small size of the
reduced space, even the large deformations are astonishingly well
approximated. The results shown in Figure 4 can be compared with
(unreduced) results of various schemes, including PriMo, shown in
a comparison table in [Botsch and Sorkine 2008]. Our scheme is
not limited to the discrete shells energy, but works with other shape
deformation energies as well. To use it with other energies, it suf-
fices to exchange the objective functional used for the optimization;
if desired, the computation of the modes and modal derivatives can
be done with other energies as well. Figure 3 shows results pro-
duced with the as-rigid-as-possible energy as objective functional.

In our experiments, the modeling framework runs robustly on
various models, for small and large deformations, and with differ-
ent parameter settings, like the dimension of the reduced space and
the resolution of the coarse mesh. Our model reduction has an enor-
mous effect in increasing the stability and reducing the stiffness of
the optimization problem. Reasons for this effect are that the re-
duced shape spaces are low-dimensional and spanned by smooth
vector fields that point into directions in which the energy increases
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(Emb. Deforms.) (Rigid Cells) (Our method)

Fig. 10. Comparison of results of the Embedded Deformations and the
Rigid Cells scheme with our method.

slowly. To demonstrate the stabilizing effect of our model reduc-
tion, we choose the discrete shell energy for most of our exper-
iments, instead of the numerically more stable PriMo energy or
as-rigid-as-possible energy. All figures are produced with both ma-
terial parameters of the discrete shells energy, α and β in eq. (1),
equal to 1 and we scaled each surface such that the longest edge
of the bounding box has length 10. Fig. 11 shows the ghosts used
to produce Figs. 2, 3, and 4. All ghosts are irregular and coarse
meshes. We show experiments with various sizes of the reduced
shape spaces and the ghosts in Figs. 8 and 12.
Energy approximation. Figure 9 shows a comparison of different
approximations of the energy E , where the discrete shells energy
is used as a deformation energy. The full energy, a second-order
(quadratic) and a third-order (cubic) Taylor series of E around x̄,
and approximations using ghosts with 1k, 5k, and 10k vertices are
shown as graphs over a one-dimensional affine subspace of the
shape space. To illustrate which subspace was used, we attach im-
ages that show shapes in the subspace to the x-axis of the image.
The results of our method depend on the location of the minima
rather than on the values of the energy, therefore, we added dots to
the graphs that indicate the location of the minima. The figure illus-
trates the experimental observation that our technique to approxi-
mate the energy using a ghost mesh produces a smaller approxi-
mation error than a Taylor expansion up to second or third order.
Furthermore, it demonstrates that the approximation error reduces
with increasing size of the ghost mesh.
Running times. Table 1 shows running times of the configurations
we used to produce the figures and additionally times of configura-

Fig. 11. The ghosts that were used to produce Figs. 2, 3, and 4 are shown.

tions for modeling the dragon model with varying parameters. This
demonstrates that our framework produces interactive rates even
for large meshes with 100k+ vertices. The time needed to solve the
optimization problem mainly depends on the size of the reduced
space and on the resolution of the coarse mesh. In our experiments,
the time needed for one Newton iteration was between 4 and 33ms.
During the interactive-modeling phase the constraints, which im-
plement the user input, vary continuously. Therefore, we do not
completely solve each optimization problem, but we update the
constraints after either a fixed number of iterations is exceeded or
an optimality criterion is satisfied. We use the optimality criterion
discussed in [Gill et al. 1982], which, for a given ε, checks condi-
tions on the change in energy E , the convergence of the sequence
{xk}, and the magnitude of the gradient:

Ek−1 − Ek < ε(1 + |Ek|)
‖xk−1 − xk‖∞ <

√
ε(1 + ‖xk‖∞) (14)

‖∇Ek‖∞ < 3
√
ε(1 + |E(xk)|).

In our experiments, we choose a maximum number of 5-10 itera-
tions between updates of the constraints, which yields frame rates
of 10+fps. After 5-10 iterations the optimality criterion is usually
satisfied with ε between 10−3 and 10−4. Still, we set ε = 10−6

to allow for further iterations if the constraints are not modified.
This criterion is usually satisfied after about 15 Newton iterations.
The reason that the running time for the as-rigid-as-possible energy
(last row of Table 1) is much longer than the others is that our cur-
rent implementation of the energy and gradient evaluation of this
energy is very inefficient. Fig. 7 demonstrates the performance of
different optimization schemes. It illustrates that our solver, BFGS
with warm start, needs a similar number of iterations to converge
as a Newton solver and shows that a BFGS without warm start still
converges much faster than steepest descent. Steepest descent re-
quired 5806 iterations to converge and still did not reach the same
energy level as the Newton or the BFGS solver. The drawback of
our approach is that we need to generate the reduced shape space
in a preprocess before the actual modeling session can start. In our
prototype implementation, which leaves much room for optimiza-
tion, the preprocess for the 40k bumpy plane took 5 1

2
minutes and

for the dragon model with 130k vertices it took almost 20 minutes.
Most of the time is spent on calculating the modal derivatives. But,
for every model we only need to compute the reduced basis once
and it can be stored with the mesh. Then, after loading, the model-
ing session can start almost immediately. Also, choosing new han-

Fig. 12. A comparison of the results produced with reduced spaces with
varying size is shown. Number of linear modes and modal derivatives from
left to right: (8,6), (10,20), (15,52), (20,110), (30,270), full space.
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Fig. 13. Local deformations of dragon in a 130-dimensional shape space.
The reference model is shown on the left of the top row.

dles or changing the resolution of the coarse mesh does not require
recomputation of the basis.
Comparison to previous work. We compare the results of our
method with two state-of-the-art deformation schemes: Embedded
Deformations [Sumner et al. 2007] and Rigid Cells [Botsch et al.
2007]. The implementations of the methods were kindly provided
by their respective authors. Fig. 10 shows deformations of the cylin-
der, the bar, and the head of the raptor model. The graph of Embed-
ded Deformations, the cell complex of Rigid Cells, and the ghost of
our method are shown on the right of every deformed model. The
left column shows results of Embedded Deformations (with a graph
of 200 vertices for the cylinder and raptor and 400 for the bar), the
middle column of Rigid Cells (with 650 cells for the cylinder, 576
cells for the bar, and 1318 cells for the raptor), the right column of
our method (with a 67-dim. shape space for the cylinder and bar, a
130-dim. space for the raptor, and a ghost of 1000 vertices for all).
Compared to Embedded Deformations, the results our method pro-
duces are visually more appealing since Embedded Deformations
produces some noise artifacts. The results of Rigid Cells are com-
parable to those of our method, however our method is consider-
ably faster (see Table 1). There are three reasons for this: first, Rigid
Cells requires an expensive interpolation scheme (using radial basis
functions) to avoid noise artifacts, which we do not need; second,
our method decouples the approximation quality of the energy (the
size of the ghost) from the size of the reduced space, which allows
us to use smaller reduced spaces while keeping a reasonable ap-
proximation quality of the energy; and, third, Rigid Cells is using
volume meshes, which are typically larger than surface meshes.

Model #Vert. Dim. Ghost Solve Df. Total Prep. Fig.

Bumpy plane 40k 67 1k 5 3 53(10) 325 4
Cylinder 5k 67 1k 5 1 51(10) 38 4
Bar 6k 67 1k 5 1 51(10) 48 4
Cactus 5k 67 5k 32 1 161(5) 44 4
Dragon 130k 67 0.5k 4 8 48(10) 1067
Dragon 130k 67 1k 5 8 58(10) 1067
Dragon 130k 67 2.5k 14 8 78(5) 1066
Dragon 130k 67 5k 33 8 173(5) 1064
Dragon 130k 130 0.5k 7 13 69(8) 1185
Dragon 130k 130 1k 10 13 93(8) 1185 2
Dino 56k 130 1k 10 6 86(8) 511
Dino (ARAP) 56k 130 1k 72 6 366(5) 511 3

Table 1. Performance measured on a custom Macbook with a 2.66GHz CPU. From
left to right: number of vertices, dimension of reduced space, number of vertices of the
ghost, time in milliseconds for one BFGS iteration, time for mapping reduced solution
into full shape space, time for full optimization (/w maximum number of iterations),
time in seconds for the preprocess, and figure that shows the configuration.

Local deformations. A general problem of model reduction
schemes for shape modeling is that detail editing is either impos-
sible or requires special treatment. Fig. 13 and the two rightmost
images of Fig. 3 demonstrate that a certain degree of locality is pos-
sible with our scheme, e. g., the head of the dino can turn around
or the arm can move without affecting other parts of the body. But
Fig. 13 also shows (left image of the bottom row) that local defor-
mations can introduce artifacts, in the shown example the mouth
opens and lower jaw increases in size when the horn below the
mouth is edited. In order to seamlessly switch between modeling of
details, like moving a finger of the dino, and global modeling that
preserves these detail edits, an integration of our scheme with a lo-
cal editing method, e. g., PriMo or as-rigid-as-possible, is needed.
A benefit of our method for such an integration is that the same
energy can be used for both local and global editing.
Future work. The framework for deformation-based modeling we
present in this paper provides an efficient way to represent approx-
imations of a large variety of shapes. We think that this technique
can be useful for various problems in computer graphics that need
to operate in a shape space of surfaces. We plan to extend our ap-
proach to shape matching and shape interpolation.

Our next steps to improve the presented method aim at speeding
up the preprocess. We are working on an efficient representation
of the tensor that contains the third derivatives at x̄ for a certain
class of deformation energies, where we exploit the property that
the energy and the gradient vanishes at x̄. In addition, we want to
experiment with computing the modes and modal derivatives on a
coarse mesh and then using an adequate interpolation scheme to
generate smooth basis vector fields on the fine mesh.
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Appendix

In this appendix, we verify the Taylor expansion of the Newton
direction of E around x̄ that was stated in eq. (12). Formally, the
Taylor series of −∇2E−1

x ∇Ex around x̄ is

−∇2E−1
x ∇Ex = −∇2E−1

x̄ ∇Ex̄ −∇(∇2E−1
x̄ ∇Ex̄)(u)

− 1

2
∇2(∇2E−1

x̄ ∇Ex̄)(u, u) +O(‖u‖3)

where u = x− x̄. Since x̄ is a minimum of E, the first term of the
right-hand side vanishes, and we have

∇(∇2E−1
x̄ ∇Ex̄) = ∇2E−1

x̄ ∇2Ex̄ = Id,

which shows that the second term reduces to −u. Furthermore,
∇2E−1

x ∇2Ex equals the identity matrix for all x, which implies

0 = ∇(∇2E−1
x̄ ∇2Ex̄) = ∇(∇2E−1

x̄ )∇2Ex̄ +∇2E−1
x̄ ∇3Ex̄.

Using this, we get

∇2(∇2E−1
x̄ ∇Ex̄) = ∇(∇(∇2E−1

x̄ )∇Ex̄ +∇2E−1
x̄ ∇2Ex̄)

= ∇(∇2E−1
x̄ )∇2Ex̄ = ∇2E−1

x̄ ∇3Ex̄.

Hence, the third term of the formal Taylor series satisfies:

−1

2
∇2(∇2E−1

x̄ ∇Ex̄)(u, u) = −1

2
∇2E−1

x̄ ∇3Ex̄(u, u)

Altogether, we have verified eq. (12).
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