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Abstract

In this paper, we address the problem of structure-aware shape deformation: We specifically consider deforma-
tions that preserve symmetries of the shape being edited. While this is an elegant approach for obtaining plausible
shape variations from minimal assumptions, a straightforward optimization is numerically expensive and poorly
conditioned. Our paper introduces an explicit construction of bases of linear spaces of shape deformations that
exactly preserve symmetries for any user-defined level of detail. This permits the construction of low-dimensional
spaces of low-frequency deformations that preserve the symmetries. We obtain substantial speed-ups over alterna-
tive approaches for symmetry-preserving shape editing due to (i) the sub-space approach, which permits low-res
editing, (ii) the removal of redundant, symmetric information, and (iii) the simplification of the numerical formu-
lation due to hard-coded symmetry preservation. We demonstrate the utility in practice by applying our framework
to symmetry-preserving co-rotated iterative Laplace surface editing of models with complex symmetry structure,
including partial and nested symmetry.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Content creation is one of the remaining open challenges
in the field of computer graphics. While current 3D mod-
eling and rendering techniques create high-quality depic-
tions of an extremely broad variety of phenomena already,
the creation of the corresponding digital 3D models is still
tedious, technical, and expensive, and a lot of recent re-
search is focusing on improvements in this respect. One such
line of work is structure-aware shape modeling [MWZ*13].
Structure-aware methods try to reduce modeling costs and
lift interaction with digital 3D models to a higher semantic
level by an analysis-and-synthesis approach: A shape (or a
collection of shapes) is first analyzed in order to detect im-
portant structural invariants. Afterwards, these constrains are
used to narrow down the space of possible shapes consid-
ered in editing and shape synthesis, thus permitting the user
to obtain plausible shape variations more quickly.

Our paper contributes to the area of structure-aware shape
deformation. The task here is to find and apply structural
constraints during shape editing, thereby making the space
of possible deformations more easily navigable.

Several such structure-aware deformation methods have
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been proposed in the last few years (for example, see
[KSSCO08, XZT*09,ZFCO*11]). A significant idea in this
domain has been introduced by Gal et al. [GSMCO09]:
Their “iWires” system detects relations of Euclidean geome-
try (parallelity, orthogonality, symmetry) within shapes uses
them as invariants during shape deformation. In particular
for man-made shapes, this provides a very useful tool to fully
automatically determine a large class of plausible shape vari-
ations. In more recent work [BWKS11,ZFCO*11,BWSK12,
KWW™14], the model has been simplified towards preserv-
ing the symmetry structure of the model, which reduces the
approach to a simple, abstract principle. While such a formu-
lation is formally appealing, it is limited by a complex im-
plementation, approximation artifacts (in least-squares for-
mulations), and computational costs.

In this paper, we study classes of shapes of fixed sym-
metry structure. We consider shapes with partial symme-
tries, i.e., there are one or more groups of affine transfor-
mations that are symmetry groups of subset of a shape,
i.e., leave these subsets invariant. In particular, this includes
the important class of symmetry under rigid mappings. Ex-
tending previous work on symmetry-invariant functions on
shapes [KFR04,LCDF10,0MPG13,WSSZ14], we show that
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the set of all deformations that preserve the symmetries of a
shape forms an affine subspace of the set of all continuous
spatial deformations.

We use this insight to devise an efficient and simple algo-
rithm for constructing a basis for these deformation spaces:
We perform Poisson-disc sampling of the domain while
replicating points by the group action of the present symme-
try groups. Further, we associate each point with the Jaco-
bian of the transformation to handle general Euclidean sym-
metry, and equip it with a Gaussian radial basis function to
span spaces that are band-limiting to the user’s preference.

We apply this construction to create a symmetry-
preserving subspace deformation method based on Laplace
surface editing (in a non-linear variant with co-rotation of
the local frame, to account for large deformations). Our tech-
nique preserves symmetries exactly while nonetheless being
able to represent low-frequency deformations with a very
small set of basis functions. The basis is redundancy-free in
the sense of having symmetry backed-in already; no explicit
constraints need to be solved for to maintain symmetry. This,
along with the subspace approach, leads to a deformation
method that is significantly faster than previous approaches
and at the same time is numerically robust and very easy to
implement. We also believe that the idea of a direct construc-
tion of a redundancy-free basis in symmetric domains might
be useful beyond the application area of shape deformation
that we explore as motivating application in this paper.

In summary, we make two main contributions: First, we
characterize shape spaces of fixed symmetry as affine spaces.
Second, we use this observation to directly construct a basis
for the space of symmetry-preserving deformations, which
leads to very simple and efficient shape editing algorithms.

2. Related Work

Shape deformation has become an indispensable tool in
shape editing. Early methods used low-dimensional spaces
of low-frequency deformations spanned by spline-bases that
were explicitly controlled by the user [SP86, Coq90]. With
increasing level-of-detail, these spaces become too large to
be navigated explicitly by the human modeler, which led to
a wide-spread adaptation of variational deformation mod-
els that are usually based on mimicking physical processes
such as elastic or plastic deformations [TPBF87, WW92],
or rely on smoothness assumptions for more general shape
deformation [ABCO™03, BR0O7]. Geometric approximation
such as Laplace surface modeling or as-rigid-as-possible
deformations have recently become particularly popular in
this context [SCOL*04, ATLF06, SA07, BS08]. Computa-
tional costs can be reduced by subspace methods [HSL*06,
HSvTP11,JBK*12,vTSSH13] that restrict the set of feasible
deformations to a low-dimensional subspace. Our approach
follows this line of work, but focuses on preserving symme-
tries during shape editing.

Structure-aware deformation has been introduced in im-
age processing through seam-carving [ASO7] for image re-
targeting. A similar idea for shape-resizing has been intro-
duced by Kraevoy et al. [KSSCOO08], using differential prop-
erties of shapes to detect suitable deformation directions and
a vulnerability score to protect complex structures. However,
unlike our approach, this method only permits axis-aligned
stretching of models and only protects salient area from de-
formation, rather than maintaining non-local symmetry re-
lations. Retargeting has also been extended to noncontinu-
ous operations [LCOZ*11, BWKS11], which is beyond the
scope of this paper. Other deformation constraints include
slippability for joint-detection [XZT*09].

The “iWires” system by Gal et al. [GSMCO09] is based
on the observation that geometric relations such as paral-
lel lines and planes, right angles, and symmetric and regular
parts are characteristic for man-made-shapes. This method
uses a list of Euclidean invariants and a greedy propagation
algorithm to maintain these shape properties. Most of these
invariants arise from the more concise assumption of pre-
serving the symmetry structure of the input model, i.e., the
algebraic relation between transformations that form regular
correspondences within a shape [KWW™14]. Symmetry has
been utilized as a tool for structuring and guiding shape edit-
ing in a number of recent shape editing approaches: Zheng et
al. [ZFCO™*11] enforce symmetry of object-aligned proxies
for intuitive shape manipulation. Wang et al. [WXL*11] use
hierarchical propagation of attributes in objects with com-
plex symmetry patterns for structure-preserving shape edit-
ing.

Bokeloh et al. [BWKS11,BWSK12] use translational reg-
ularity as invariant for continuous shape deformation (we
do not consider their additional option to model topologi-
cal changes here). The main drawback of the first method
is that it is a least-squares approach. Computational costs
are still considerable despite the involved numerical treat-
ment in their paper. Symmetries are maintained only ap-
proximately and traded-off against user constraints. In prac-
tice, this leads to the problem that the user needs to choose
constraints that are roughly satisfiable; unsatisfiable con-
straint will lead to bending artifacts. Increasing the penal-
ties for structure constraints reduces these but a large spread
in penalties soon leads to ill-conditioned optimization prob-
lems. The second method [BWSK12] avoids these by fixing
the null-space of the deformation energy through a singular-
value-decomposition (SVD). However, the SVD creates a
dense basis, which limits the size of models that can be
handled due to the Q(n?) costs involved for n vertices. Our
new method overcomes this problem by directly construct-
ing a sparse basis. Further, our technique handles general Eu-
clidean motions, not being limited to translational symmetry.
The work of Kurz et al. [KWW*14] is closely related to ours,
however, targeting at shape matching rather than editing. A
least-squares formulation that is inaccurate and multiple or-
ders of magnitude slower than our approach is used.

(© 2014 The Author(s)

Computer Graphics Forum (© 2014 The Eurographics Association and John Wiley & Sons Ltd.



X. Wu et al. / Real-Time Symmetry-Preserving Deformation

Input Deformation #1

A -
X \" ) ® N V’ \ 4
eat> W
‘J"{’N i TRIREN
GHY  env N

Handles Sampling Symmetry #1

Deformation #2 Deformation #3

-
( N p—
@ ="
- o [ ;‘ \'L\y =\
\_Y - | 4
- /‘/_ \‘.
-/ L
\J /7 \
U e v
N| -
Q
Ny
Symmetry #2 Symmetry #3-7 Symmetry #8-9

Figure 1: Shapes generated with our symmetry-preserving modeling system are shown. These example show a combination of
complex symmetries and large deformations. The symmetries are illustrated in the bottom row.

Symmetry-invariant scalar functions have been studied by
Lipman et al. [LCDF10]. Symmetry-invariant functions ob-
viously form a linear space (linear combinations of symmet-
ric functions maintain the symmetry property), and the pa-
per proposes a spectral method for determining these spaces.
Ovjanikov et al. [OMPG13] use the subspace property to
factor out distracting variability in the context of shape
matching. The concept has various further applications, such
as symmetry-based shape descriptors [KFR04], and robust
intrinsic symmetry detection [WSSZ14].

Our work extend these previous ideas towards shape de-
formation. We show that symmetry-preserving deformation
functions form affine spaces (more specifically, the displace-
ment fields added to the input form a linear space). Un-
like the scalar case, local frames induced by the group
action need to be taken into account to preserve symme-
tries. Assuming knowledge of the symmetry groups, our ap-
proach can directly construct a suitable basis without need
for expensive eigenvalue decompositions. This construction
provides a user-defined level-of-detail and, unlike spectral
methods, can preserve the sparseness of traditional spatial
bases for deformation fields.

3. Symmetries

In this section, we recap the definition of (partial) symme-
try [MPWCI12]. Let us consider a surface in R3 given by
a two-manifold M and an embedding x : M — R3. An au-
tomorphism of M is a map ¢ : M — M that is a homeo-
morphism, i.e., is continuous, bijective and has a continu-
ous inverse. Under the composition of maps, the set of au-
tomorphisms of M forms a group that we denote by ¥ (M).
Symmetries of M relate to subgroups of W(M). Here, we
are interested in symmetries induced by Euclidean motion
of R*. A Euclidean motion is an affine map whose linear
part is an orthogonal transformation. Examples are transla-
tions, reflections, and rotations as well as any composition
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of the these. The set of Euclidean motions forms a group
E(3) under the composition of maps. We consider symme-
tries with respect to Euclidean motion, because this leads to
useful invariants for man-made shapes .part-based assembly
is inherently prone to rigid redundancy).

For our experiments, we are using triangle meshes in R3.
In this case, M is the surface mesh itself (or any isomorphic
simplicial manifold) and x is the continuous and piecewise
linear map that maps every vertex to its positions in R3.

Symmetry Any Euclidean motion g can be composed with
the embedding x, which results in a new map gox : M +—> R3.
In general, this map will map M somewhere into space.
However, there are surfaces and Euclidean motions such that
the motion maps the surface onto itself. We are interested in
these surfaces and motions. Loosely speaking, a (Euclidean)
symmetry of the embedded surface (M, x) is subgroup G of
E(3) such that every g € G maps x(M) to itself. More for-
mally, we say that a subgroup G < E(3) is a symmetry of
(M, x) if there is a subgroup @ < W¥(M) such that for every
g € G there is a ¢ € ® such that

gOX:)CO(p

ey

and the map G — & induced by this relation is a group iso-
morphism. The equality in (1) means that gox and xo @ are
the same map from M to R3.

Remark 1. Note that this concept of symmetry also works
if we relax the assumption that the surface is embedded. It
suffices that x is locally an embedding, e.g., an immersion.

Partial symmetry In addition to symmetries of the whole
object, we consider symmetries of parts of the object and
call them partial symmetries. This makes the concept more
powerful as objects often exhibit only partial symmetries. To
define partial symmetries, we consider a submanifold N of
M, which need not be connected. Then, the restriction x|y
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Figure 2: A deformation of a wind mill model generated with out symmetry-preserving modeling system is shown.
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Figure 3: Nested and overlapping symmetries. Regions with
different symmetries overlap. For example, region S| is four-
fold symmetric, and the subset S¢ is 8-fold symmetric. The
2-fold symmetry of S12 overlaps partially with S11.

of x to N is an embedding of N in R3. A symmetry G of
(N,xy) is a partial symmetry of (M,x).

Symmetry detection Various symmetry detection meth-
ods have been proposed in literature (see for exam-
ple [MPWCI12] for a recent survey). Detection is not a focus
of our paper; we use both manual annotation as well as auto-
matic detection based on Tevs et al.’s algorithm [THW* 14]
for our experiments. The resulting symmetry information
is encoded as an annotation of the surface M with regions
S;i CM,i=1...m, in which the geometry x(M) is symmet-
ric with respect to a symmetry group G; < E(3). Each group
G; and region §; is maximal with respect to set inclusion,
in that order (first maximizing the group size, then the area
covered). The prioritized maximization implies that the re-
gions S; can be overlapping or even hierarchically nested;
see Figure 3. Our current implementation does not handle
continuous symmetries, which we leave for future work.

4. Symmetry-Preserving Deformation

We describe deformations of the surface by variations of x.
For this we use a displacement map u : M — R3. Then, the
sum x + u describes the deformed surface. Self-intersections
are permitted, as it is common for surface deformation meth-
ods. The resulting set of displacements forms a vector space.
For triangle meshes, deformations are described by the dis-
placements of the vertices. Then, the space of displacements
equals R, where n is the number of vertices.

If we have a group g that describes symmetries of the sur-

(xtu)yog =go(x+tu)

Figure 4: If the symmetry transformation commutes with the
deformation x + u (the automorphism @ in the input domain
turns into the extrinsic map g here), the deformed shape [x+
u](M) will have the same symmetry as x(M).

face, then a displacement u preserves the symmetry if
go(xtu)=(x+u)og, @)

where @ is the automorphism induced by g. Figure 4 illus-
trates how this condition induces a symmetry-preserving de-
formation field; see Kurz et al. [KWW™14] for more details.

The basis of our surface modeling scheme is the obser-
vation that the set of all symmetry-preserving displacements
forms a subspace of the vector space of all displacements
(and thus the deformations themselves form an affine space).

Lemma 1. Given a symmetry group G of a surface. The set
of symmetry-preserving displacements forms a subspace of
the vector space of all displacements.

Proof. We have to show that for two arbitrary symmetry-
preserving displacements u, v and any scalar A € R, the dis-
placement Au + v preserves the symmetry as well. We pro-
ceed in two steps: first we show that u + v is symmetry
preserving. Consider an arbitrary g € G, and let ¢ denote
the corresponding automorphism. Then, we will show that
go(x+u+v)=(x+u+v)o@holds. Since g is a Euclidean
motion, there is an orthogonal matrix O and a translation ¢
such that g(p) = O(p) +1 for all p € R>.

go(x+u+v)=(x+u+v)o@
& go(x+u+v)+gox=(x+u+v)o@+xo@
& O(x+u+v)+t+0x)+t=(x+u)o@+vo@+xo@
& Ox+u)+t+0(x+v)+t=(x+u)op+(x+v)oe@
& go(x+u)+go(x+v)=(x+tu)o@+(x+v)oe
In the first step, we used the definition of the symmetry (1).

(© 2014 The Author(s)
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(a) random sample

(b) excluded discs

(c) final sampling

Figure 5: Symmetric sampling. (a) We pick a random point
and apply all group transformations to it. (b) An exclusion
disc is centered at each point for futher sampling. (c) New
points are sampled from non-excluded area until the object
is fully covered.

The last equation holds by our assumption that u and v are
symmetry-preserving. A similar argument shows that Au is
symmetry-preserving. O

5. Direct Subspace Construction

In this section, we introduce an explicit construction of sub-
spaces of the space of symmetry-preserving displacements.
For this, we first generate a sampling of the surface that re-
spects the symmetries (including partial symmetries) of the
surface. This means every symmetry of the surface is a sym-
metry of the sampling as well. In addition, the sampling is
an r-sampling of the surface, which means that for every
point of the surface there is a point in the sampling at dis-
tance less than 7. As a second step, we construct the space of
symmetry-preserving displacements of the point sampling.
Finally the displacements of the sampling are propagated
to symmetry-preserving displacements of the surface. This
construction offers two benefits. Most importantly, we ob-
tain a low-dimensional subspace of the space symmetry-
preserving deformations. Even if the underlying mesh is
highly resolved, we can control the size of the subspace us-
ing the parameter r. This is important for obtaining an edit-
ing system that runs in real-time. A second benefit is that
even if the input is a set of approximate symmetries, we can
create a symmetric sampling. In this case, the sample points
are not on the surface, but only close to it. To compute the
deformations, we only need to preserve the exact symmetries
of the sampling.

Symmetric sampling We propose a symmetry-aware Pois-
son disc sampling scheme that scatters points sparsely in the
domain such that they conform to the underlying symme-
try group structures. As input, we are given the surface M,
annotated with potentially multiple, and potentially overlap-
ping regions S; C M with symmetry groups G; < E(3), as
discussed above. We now randomly start with a seed point,
chosen with uniform probability from M. We then search
for all annotations S; this point is contained in. Then, for
each symmetry group G;, whose domain S; contains this
point, we add all the corresponding points transformed by
its group action into sample set. To handle overlapping and

(© 2014 The Author(s)
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nested symmetries correctly, we form the transitive closure:
If the transformed sample point lies within a previously un-
seen area S, we recursively apply all transformations from
G; to this point. This process is continued until no new, pre-
viously non-sampled points are discovered anymore (a sim-
ple threshold of 10~*x the scene size is used to recognize
doublet samples). All of those sample points will later be
coupled, moving coherently and not providing more than
three degrees of freedom altogether. For each of those newly
added samples, we mark all points with a small radius ¢sam
as invalid, which means they can not be picked later. We redo
this process on the remaining point set, and iterate until all
the points are either picked into the sample set, or marked as
invalid.

Symmetry-preserving displacements of the sampling Let
us first assume that the shape has only one constant symme-
try group: During the sampling, we collect the transforma-
tions that map every seed point to its whole orbit. These can
be used to construct the space of symmetry-preserving dis-
placements of the sampling. For this, we use the following
fact: whenever a point p is transformed by a Euclidean mo-
tion g(p) = O(p) +1, a displacement u of the point is trans-
formed only by the orthogonal matrix O. Hence, we obtain a
symmetry-preserving displacement of the sampling by dis-
placing one vertex and propagating the displacement to the
orbit of the point using only the orthogonal parts O of the
Euclidean motions g (Figure 7(a)). The orbit of any sample
point p has exactly three degrees of freedom that we ob-
tain by applying this procedure to the unit displacements of
p into each of the three coordinate directions. To generate
a basis of the space of symmetry-preserving displacements,
we construct the three basis vectors for every seed point we
placed during sampling.

Partial, overlapping, and nested symmetry The same
construction also works for nested and overlapping symme-
try groups, where the transitive closure of the orbits is con-
sidered (Figure 8). The sampling algorithm generates these
points by following and concatenating the local transforma-
tions during sampling. Hence, the local frames O are given
by concatenations of the orthogonal mappings involved.

Degenerate samples A special case occurs if a sampling
point is visited more than once but with different local
frames O;. This can happen on transformation-invariant sets,
such as the diagonals in Figure 7(b): Here, we have orbits
with four points from eight transformations, and each point
has two different frames, differing by a reflection. The cor-
rect solution is obtained by reducing the dimension of the ba-
sis to those vectors v for which O;v = O;v for all i, j, which
yields is a linear system of equations. Due to the random
sampling, this is rarely encountered in practice. In relevant
cases, we can perform an SVD reduction of the null space
to remove spurious degrees of freedom. If points do not per-
fectly overlap but only come close (which is still common
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(a) local frames (b) double frames (c) near-doublets
Figure 7: Local frames. (a) Each sample point is asso-
ciated with a local frame O. (b) If a point lies within a
transformation-invariant set, it can have more than one
frame O1,0,,.... (c) The problem can be ignored for points
in general position as the contributions of the radially-
symmetric basis functions cancel out and the low-pass ker-
nel maintains the band-limitation.

new
point

transitive
closure

Figure 8: Nested and overlapping symmetries are treated by
propagating samples along transformations.

close to transformation-invariant sets, see Figure 5(c)), we
do not need to take special measures — the contributions of
the basis functions cancel out exactly; we only obtain some
overhead due to too dense sampling. The overhead is small
as it only occurs at transformation-invariant sets of measure
zero (reflection planes, rotation centers, Figure 7(c)).

Lifting the displacements To propagate a displacement of
the sampling to a displacement of the surface, we compute
for each basis vector b; of the space of symmetry preserving
displacements of the sampling a corresponding displacement
vector b; of the mesh. Then, the displacement i = ¥ ,¢;b; of
the sampling is lifted to the displacement u = Y ;g;b; of the
mesh. The basis vectors b; and b; are a vector fields speci-
fying a three dimensional vector for each sample point and
mesh vertex. We denote these three dimensional vectors by
b;(v;) and b;(vy). A displacement of a sampling point should
only affects the displacement of the mesh vertices in a local

neighborhood. We use Gaussian functions with standard de-
viation equal to the sampling density around every sample
point to a assign influence weights to the mesh vertices. The
Gaussian functions are cut-off (set to zero) for function val-
ues below 0.001. For each pair of a point ¥; of the sampling
and a vertex vy of the mesh, we obtain a weight wy;. Due to
the compact support property this weight matrix is sparse.
The basis vectors b; are given by a partition-of-unity:

! Y wibi(9).

Y wi I

b,-(vk)

The basis b; can be precomputed such that the Gaussians
need not be evaluated in the interactive editing phase.

6. Symmetry-Preserving Editing

Once the subspace of symmetry-preserving displacements
has been constructed, any deformation-based editing scheme
could be used to produce symmetry-preserving deforma-
tions. Only the set of feasible displacements needs to be
restricted to the subspace. However, as the meshes can be
highly resolved, the computation of a deformation can be ex-
pensive. To be able to compute deformations of the surface
in real-time, we restrict to low-frequency deformations that
are liftings of displacements of the sampling. To compute
the displacements of the sampling, we use an iterative co-
rotated Laplace editing inspired by the approach proposed
in [ATLF06]. The reasons for choosing this are approach are
that on the one hand, we obtain a non-linear editing scheme
that allows for large deformations, and, on the other hand, we
only need minimal additional structure to compute the defor-
mations. Namely, we need a Laplace matrix for the sampling
and a list of neighbors for each vertex. There are different
ways to get a Laplace matrix for the sampling. One is to
compute the Laplace matrix of the original mesh and to re-
strict this matrix to the subspace generated by the sampling,
see [HSL*06]. A second way is to compute a point-cloud
Laplacian, see [LPG12], of the sampling. In our implemen-
tation, we specify a graph structure on the sampling: any pair
of distinct points closer than 2r is connected by an edge.
Then, we use the discrete Laplace (or Laplace—Kirchhoff)
matrix of the graph, which is given as the difference of the
degree matrix and the adjacency matrix. For Laplace editing,
the Laplace matrix is applied not just to one function, but to
the three component functions of the displacement vector

(© 2014 The Author(s)
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Figure 9: A larger deformation of a yard tool generated with our symmetry-preserving modeling system is shown.

field of sample points. Therefore, the n x n Laplace matrix
is extended to a 3n X 3n matrix by replacing every entry with
the 3 X 3 matrix that is the entry times the 3 x 3 identity ma-
trix. We denote this extended Laplace matrix by L.

Laplace editing The basis of the non-linear iterative co-
rotated Laplace editing is the linear Laplace editing. For a
thorough discussion of linear surface editing methods, we re-
fer to [BS08]. Here we briefly review the variant of Laplace
editing our scheme is based on. The deformation is com-
puted by solving a quadratic minimization problem. The ob-
jective functional combines two quadratic functionals: one
measures the deviation of the so-called Laplace coordinate
and the other measures the deviation (in a least-squares
sense) from user-specified constraints. We denote by X the
vector listing the coordinates of the sample points and by i
the displacement of the sampling points. We use the bar to
distinguish the coordinates and displacements of the sam-
pling from those of the surface mesh. The vector of Laplace
coordinates is 8 = Lx and the first quadratic functional is

Eg(i) = || L(z+a) - 8|*.

In our implementation the user can select handle regions in
the sampling and assign desired positions to the selected
sample points by rotating and translating the handles in
space (see accompanying video). The deformed sampling
will approximate these constraints. The corresponding least-
squares functional is

Ec(a) = ||A(@) —a|*,

where a lists the desired displacements of all vertices in the
handle regions. The matrix A is rectangular and has only one
non-zero entry per row, which takes the value 1. The result-
ing deformation is given by the displacement that minimizes

3

among all symmetry-preserving displacements. The param-
eter o0 € R controls how strongly the surface is pulled to-
wards the user-specified handle positions.

E(it) = Ep(it) + 0Ec (it)

To solve the quadratic program, we use the null-space
method; see [NW06, Chapter 16.2]. Let U be the rectangular
matrix whose columns are the basis vectors of the space of

(© 2014 The Author(s)
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symmetry-preserving displacements of the sampling, and let
g be the vector of coordinates with respect to the basis. To
compute the minimizer of (3) in the space spanned by U, we
have to solve the linear system

U (L"L+oA"AUg=U" (0a"a+L" (8- Lx)) @
for g. Then, Ugq is the solution in the space of symmetry-
preserving displacements of the sampling. Since the sym-
metric, positive definite matrix UT (LTL + 0ATA)U only
changes when new handle regions are selected or the weight
o is modified, it is efficient to compute a Cholesky factor-
ization of this matrix and to re-use it for solving the mini-
mization problems. In addition, using a factorization speeds
up the iterative co-rotated Laplace editing.

Iterative co-rotated Laplace editing A limitation of
Laplace editing is that deformations that include larger ro-
tational components lead to visually observable artifacts in
the deformed surface, see [BS08]. Therefore, we use a non-
linear variant obtained by iteratively applying Laplace edit-
ing. The Laplace coordinate can be interpreted as a vector
field on the sampling specifying a 3-dimensional vector §;
for every vertex. The Laplace coordinate is related to the
discrete mean curvature normal and every §; should point
into the direction of the surface normal at the correspond-
ing sample point. The co-rotated Laplace editing process it-
erates a two-step procedure. First, the linear system (4) is
solved. Then, the Laplace coordinates are rotated to point
in normal direction of the deformed sampling. For rotating
the Laplace coordinate of each vertex, we consider the un-
deformed and deformed local neighbors of the sample point
and compute the rotation such that the rotated undeformed
neighborhood best matches the deformed neighborhood. The
neighborhoods are defined by the graph structure on the sam-
ple points. The rotation matrix can be computed using SVD,
as described in (the additional material of) [SA07]. We stop
the process when the maximum number of iterations (usu-
ally 5-10) has been reached. Once a displacement of the
sampling is computed, we use the lifting process described
in Section 4 to propagate the displacement of the sampling
to a deformation of the surface mesh.



X. Wu et al. / Real-Time Symmetry-Preserving Deformation

Handles Sampling \
V
}g L
//\ \ -
Symmetry #1 Symmetry #2 Input

Y\/\

Deformation #1 Deformation #2

Figure 10: Deformation generated with our symmetry-preserving modeling system are shown.

Model Mesh Info. Sampling Info. Timing (ms) Frame rate
Name Figure Vertex (k) Triangles (k) Groups Samples DoF Prefactor Solving (5 Iter.) Lifting Rendering Frames per s
Bar 6 4 8 1 96 18 13 2 3 12 58.8
Center piece 1 83 165 9 690 150 1300 21 32 12 15.4
Plane 10 181 359 2 160 234 75 4 51 18 13.7
Yard tool 9 50 97 2 78 27 55 3 22 5 333
Car 11 47 95 61 675 156 4160 35 3 10 20.8
Wind mill 2 20 40 2 156 33 97 5 7 6 55.6
Fan 12 2 4 3 72 27 43 3 1 13 58.8
Chair 12 15 58 2 32 39 4 2 1 16 52.6

Table 1: Statistics and timings of the shown examples. From left to right: number of vertices, number of triangles, number of
symmetry groups, number of sampling points, dimension of the space of symmetry-preserving deformations, timings for pre-
factoring the Laplace matrix, five iterations of co-rotated Laplace editing, lifting the solution from the samples to the surface
mesh, and rendering the mesh, and the total number of frames per second.

7. Experiments and Discussion

We tested our implementation of the proposed method on a
set of shapes with varying complexity. Some shape have only
a few symmetries, other have more complex nested symme-
tries. The mesh sizes vary from 4k to almost 200k vertices.
Details are listed in Table 1. We tested the method with auto-
matically detected and with manually specified symmetries.
For example, the 61 symmetries of the car model (Figure 11)
have been detected using the method proposed in [THW* 14]
and the 9 symmetries of the center piece (Figure 1) have
be specified manually. For every example, the symmetries
are illustrated in the corresponding figure. We tested with
various sampling densities resulting in 72 to 690 sample
points. We used random sampling and feature-sensitive sam-
pling, where sharp features are selected first. We found the
random sampling to produce the same quality of results as
the feature-sensitive approach. Still, we show one exam-
ple (the bar, Figure 6) produced with feature-sensitve sam-
pling (here, we use the SVD-reduction described in Section
5 to remove doublet frames; this is not required/performed
elsewhere). The dimensions of the spaces of symmetry-
preserving displacements vary from 18 to 234. For many
examples, we show large deformations, which the iterative
co-rotated Laplace editing nicely supports.

Timings Our implementation of the symmetry-preserving
modeling runs at 13-60 fps in our experiments. Table 1 lists
details for the shown examples, including timings for pre-
factoring the Laplace matrix, 5 iterations of the co-rotated
Laplace editing, lifting the deformation from the sampling to
the surface mesh, and rendering. The timings were generated

using a single-threaded C++ implementation running on an
Intel® Xeon® ES5-1620 processor at 3.60GHz with 16GB
of RAM. The timings could be improved using paralleliza-
tion, in particular, the time required for lifting the displace-
ment from the sampling to the surface mesh. The shown run
times demonstrate that, except for lifting the solution from
the sampling to the surface and rendering the surface, the
time needed to compute a deformation is independent of the
resolution of the surface. It mainly depends on the dimen-
sion of the subspace of deformations, which in turn depends
on the symmetry structure of the model and the resolution
level of the desired editing operations. For example, though
the car and the yard tool examples have a comparable num-
ber of vertices, there is a large difference in the time needed
to compute the deformations, which is due to different sam-
pling densities.

Comparison We compare our method to the recent scheme
of Kurz et al. [KWW?*14]. They propose to use symmetry-
preserving deformation for template fitting to incomplete
scan data. A comparison of results is shown in 12. A dif-
ference between the schemes is that their method enforces
the symmetry in a least-squares sense, whereas our approach
exactly preserves the symmetry. The resulting difference in
visual quality can be seen in the figure. For example, our
method better preserves the symmetry of the blades of the
fan and better fits the desired positions of the legs of the
armchair. To obtain the deformation that matches the given
incomplete data, they combine handle-guided deformation
and ICP. Let us compare the timings for the fan example. The
timings listed in [KWW* 14] are 2 seconds and 2 minutes per

(© 2014 The Author(s)
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Figure 11: A deformation that preserves 61 symmetries that were automatically detected is shown. Despite of the complex
symmetry structures, the modeling system runs at real-time. Some of the detected symmetries are shown in the bottom row.

iteration of the optimization, depending on whether linear or
smooth basis functions (with wider support) are used. Their
main bottleneck is the setup of the transfinite least-squares-
constraints that involve numerical integration and fine dis-
cretization (disabling them reduces the computation times in
their approach from 2 seconds to 0.4 seconds, still including
ICP). Our results were produced using only handles. After
43ms for pre-factoring the Laplace matrix, the time per iter-
ation of our optimization is less than 1ms. While the numer-
ical implementation of Kurz et al. arguably leaves room for
improvement, a performance gain of at least three orders of
magnitude indicates clear advantages of our approach.

In the following, we discuss relations and differences of
the proposed approach to the other previous work. Similar
to our approach, the “ iWires” framework [GSMCOQ09] aims
at preserving geometric relations of a shape to be edited.
Our symmetry-preservation model (based on [KWW™*14])

Template Target Scan  [KWW*14] Ours
4y . 7 /
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(*] ¥
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Figure 12: We compare results of our method with results
produced by the scheme proposed by Kurz et al. [KWW™ 14].

(© 2014 The Author(s)
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captures most of their constraints (equal area, equal length,
etc.). In addition to conceptual simplicity, this also provides
a navigable shape space that can be utilized as prior in var-
ious applications. Some details are different: For example,
our method does not explicitly parallel lines. However, as
linear constraints, they could be added as special cases to our
approach, too. Further, unlike our approach, we use dense re-
lations on symmetric area rather than feature lines (“wires”),
thereby no relying on the existence of such sharp features.
As solver, iWires uses a greedy propagation algorithm that,
unlike our method, does not guarantee to satisfy all con-
straints. Nonetheless, our method is still faster (Gal et al.
report response times of 2-4 seconds).

Wang et al. [WXL*11] use hierarchical propagation of
attributes in objects with complex symmetry patterns for
structure-preserving shape editing. The work differs from
ours in that it builds a hierarchical representation, break-
ing cycles in symmetry-constraints by perceptual reasoning.
In contrast, we utilize all symmetry information, including
arbitrary cycles. By understanding the feasible set as a lin-
ear shape space, efficient navigation can still be guaranteed
(whereas the method of Wang et al. utilizes direct edit prop-
agation in the hierarchy).

8. Conclusion

We present a method for real-time symmetry-preserving
shape modeling. The basis of the scheme is a construc-
tion of spaces consisting of low-frequency deformations
that preserve the symmetry. Within these low-dimensional
spaces, we apply a non-linear deformation-based editing
scheme. We demonstrate real-time deformations that pre-
serve the symmetries exactly and support large deforma-
tions. The method is much easier to implement than previous
optimization-based methods and significantly faster.

Limitations and challenges Currently our scheme supports
only finite symmetry groups. A direction of future work
would be to integrate continuous symmetries, e.g., arbitrary
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rotations around a fixed axis. Another limitation is that edit-
ing operations which require frequencies below the sampling
density are not supported. Hence, very localized edits require
a dense sampling. It would be interesting to integrate non-
uniform samplings. This would allow for localized edits in
selected regions while preserving the real-time performance.
A challenging problem is to extend the framework to other
types of symmetries like intrinsic or Mobius symmetries.
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