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Figure 1: Sparse principal geodesic analysis for data-driven nonlinear deformation synthesis. In an offline phase, sparse nonlinear deforma-
tion modes (middle) are extracted from a data set of poses of a non-rigid shape (left) using the shape space of discrete shells and Nonlinear
Rotation-Invariant Coordinates. Then, the modes are grouped by overlap of the regions that are distorted (colored frames) and samples of
nonlinear deformations for each group are computed and stored in lookup tables. In the online phase, nonlinear deformations are synthesized
(right) at near-realtime rates.

Abstract
This paper introduces the construction of a low-dimensional nonlinear space capturing the variability of a non-rigid shape
from a data set of example poses. The core of the approach is a Sparse Principal Geodesic Analysis (SPGA) on the Riemannian
manifold of discrete shells, in which a pose of a non-rigid shape is a point. The SPGA is invariant to rigid body motions of
the poses and supports large deformation. Since the Riemannian metric measures the membrane and bending distortions of the
shells, the sparsity term forces the modes to describe largely decoupled and localized deformations. This property facilitates
the analysis of articulated shapes. The modes often represent characteristic articulations of the shape and usually come with a
decomposing of the spanned subspace into low-dimensional widely decoupled subspaces. For example, for human models, one
expects distinct, localized modes for the bending of elbow or knee whereas some more modes are required to represent shoulder
articulation. The decoupling property can be used to construct useful starting points for the computation of the nonlinear
deformations via a superposition of shape submanifolds resulting from the decoupling. In a preprocessing stage, samples of
the individual subspaces are computed, and, in an online phase, these are interpolated multilinearly. This accelerates the
construction of nonlinear deformations and makes the method applicable for interactive applications. The method is compared
to alternative approaches and the benefits are demonstrated on different kinds of input data.

CCS Concepts
• Computing methodologies → Shape modeling;

1. Introduction

This paper is concerned with the construction of low-dimensional
models describing the variability of a non-rigid shape from a set

of example poses. Such models are used for templates-based sur-
face reconstruction from incomplete data, data-driven shape edit-
ing, character animation, deformation transfer, and shape recon-
struction from 2-dimensional data.
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One approach for constructing such a model is to apply Principal
Component Analysis (PCA) to the vertex positions of the example
poses. The resulting PCA modes span a linear subspace of defor-
mations that approximate the examples. Still, this is not an adequate
shape model since the linear structure of the PCA cannot accu-
rately represent shape deformations, which are usually highly non-
linear in the vertex positions. Furthermore, shapes do not deform
under rigid transformations of R3, which can also not be captured
by PCA. We consider shape manifolds that provide a shape rep-
resentation invariant to rigid transformations. To this end, a point
in a shape manifold corresponds to an equivalence class of poses,
which differ only in rigid deformations. A Principal Geodesic Anal-
ysis (PGA) on such shape manifolds [HZRS18] can be used to ob-
tain nonlinear models of shape variability that are invariant to rigid
transformations of the example poses. A property of PCA and PGA
is that they result in modes that involve all variables. In particular,
they are not expected to be localized or decoupled. An alternative
is the Sparse Localized Deformation Components (SPLOCS), in-
troduced in [NVW*13]. The approach modifies the optimization
problem underlying PCA by adding a sparsity inducing term to the
objective. The resulting modes encode localized deformations that
are intuitively meaningful.

In this paper, we introduce a Sparse Principal Geodesic Anal-
ysis (SPGA), which aims at combining the advantages of PGA
with those of the sparse modes (cf . Figure 1). We consider the Rie-
mannian manifold of discrete shells, which is a shape manifold of
meshes equipped with a physically-based metric. The meshes are
treated as the midsurfaces of thin shells and the metric measures
the membrane and bending distortions of the shells. Our approach
constructs a submanifold of the shell manifold and is invariant to
rigid transformations of the example poses. Analogous to SPLOCS,
we use a discrete L1 term to enforce sparsity of the modes. How-
ever, in the nonlinear setting, the sparsity term has a different effect
than in the linear setting. Since the metric measures membrane and
bending distortions of the shells, the sparsity term forces the modes
to describe localized deformations. For example, sparse modes can
describe the movement of a human shoulder. Although the mode
moves the whole arm, the distortions are active around the shoul-
der, hence, the distortion is localized (cf . Figure 2). In contrast,
SPLOCS would not consider such a mode as sparse, because the
sparsity refers to the local displacement instead of distortions. This
property makes SPGA applicable to articulated shapes, which is a
limitation of SPLOCS stated in [NVW*13]. Our approach builds
on Nonlinear Rotation-Invariant Coordinates (NRIC), which repre-
sent a mesh by the vector that stacks the edge lengths and dihedral
angles of all edges. The manifold of discrete shells corresponds to
the set of such vectors, from which a mesh can be reconstructed.
The SPGA modes are tangent vectors to the shell manifold at the
mean shape. By applying the Riemannian exponential map to the
space spanned by these modes, one obtains the submanifold of the
shell manifold which approximates the input data.

The SPGA modes represent infinitesimal characteristic articu-
lations of the mean and usually can be decomposed into low-
dimensional almost completely decoupled subspaces, which is not
possible for PGA modes. For example, for human models, one ex-
pects distinct, localized modes for the bending of elbow or knee
whereas some more modes are required to represent shoulder ar-

ticulation. By grouping the modes via their coupling and a sim-
ple summation of nonlinear coordinates corresponding to these
groups, a practical approximation of the submanifold can be de-
fined. Then, in an offline phase, one precomputes the exponential
map on lattices in the low-dimensional decoupled subspaces. For
given weights on the principal modes, they are then used in an on-
line phase together with a multilinear interpolation and a very small
number of Gauß–Newton iterations for the back projection onto the
manifold. This yields a highly efficient discrete shell reconstruction
and enables near real-time shape animation.

Contribution. We introduce an SPGA in the Riemannian man-
ifold of discrete shells that combines the benefits of the PGA
[HZRS18] and SPLOCS [NVW*13] in one model. Our main con-
tributions are:

• We use NRIC for PGA in the shell manifold resulting in a com-
pact model for shape variability that is invariant to rigid body
motions of the example poses and can handle nonlinear shape
deformation.
• By using a sparsity inducing term which reflects the shell metric,

modes that describe localized deformations are obtained. This
makes the analysis applicable to articulated shapes.
• To solve the SPGA problem, we use a scheme that iteratively

solves quadratic problems. In our experiments, this scheme out-
performs the ADMM schemes used in prior work.
• Based on the decoupling property of the sparse modes, we in-

troduce a fast approximation scheme for the construction of a
nonlinear deformation via superposition of deformations result-
ing from the decoupled groups of modes. This makes it possible
to use our approach for interactive applications, which is not fea-
sible for PGA.

The SPGA is evaluated on different data sets and compared to al-
ternative approaches.

Organization. In Section 2, we discuss related work. The back-
ground on Nonlinear Rotation-Invariant Coordinates, geodesic cal-
culus, and its variational discretization is revisited in Section 3.
Based on this, in Section 4 the discrete PGA is introduced. Then,
Section 5 presents the SPGA and Section 6 its computation via an
efficient quadratic matrix programming approach. The superposi-
tion of large deformation submanifolds generated via grouping the
SPGA modes is discussed in Section 7, whereas the lookup table
based fast deformation synthesis is presented in Section 8. Exper-
imental results are given in Section 9 and conclusions are finally
drawn in Section 10.

2. Related work

Rotation invariant coordinates. For various tasks in geometry
processing, it is beneficial to switch from the usual mesh represen-
tation in terms of vertex positions to an alternative representation
that is adapted to the structure of the problem considered. Different
representations have been developed, such as gradient-based rep-
resentations [SP04; XZWB05] and Laplace coordinates [LSC*04;
SCL*04]. In this paper, we are interested in rotation-invariant mesh
representations. Linear rotation-invariant coordinates were intro-
duced in [LSLC05]. Each vertex is associated with a coordinate
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frame and differences between adjacent frames are used to repre-
sent the mesh. This representation was further developed in [KG08;
BVGP09; HSS*09; GLL*16].

An alternative to working with frame differences is to use the
lengths of all edges and the dihedral angles between adjacent tri-
angles [WDAH10]. In analogy to the classical differential geome-
try in which a surface is described by the first fundamental form,
representing the metric of the surface, and the second fundamen-
tal form, characterizing curvature; edge lengths describe the metric
of the mesh and the angles describe its curvature. Moreover, two
meshes have identical edge lengths and angles if and only if they
differ by a rigid transformation. Therefore, we call this representa-
tion the Nonlinear Rotation-Invariant Coordinates (NRIC). Integra-
bility conditions, which guarantee that there are vertex positions re-
alizing a given list of edge lengths and angles have been established
in [WLT12]. The set of integrable NRICs forms a manifold and the
tangential spaces at points in the NRIC manifold can be computed
from the derivatives of the integrability conditions [SHHR20].

Since vertex positions do not exist for all combinations of edge
lengths and angles, the question of how to project given lengths
and angles to integrable NRIC coordinates arises. In [FB11] dis-
crete shells, a model of elastic thin shells [GHDS03], is used for
this purpose. Considering the mesh as the midsurface of a thin
shell, membrane and bending distortions can be defined based on
the edge lengths and angles of the mesh. To determine a mesh for a
given list of edge lengths and angles, these are used to specify a rest
configuration of the shell. The mesh is determined as a minimizer
of the resulting discrete shell energy in the absence of constraints
and external loads.

Shape spaces. Riemannian shape spaces are shape manifolds
equipped with a Riemannian metric. In such spaces, concepts from
Riemannian geometry can be used to derive tools for shape analy-
sis and processing. This idea has been applied in computer vision,
computational anatomy, and medical imaging and geometry pro-
cessing. For a general overview of the topic, we refer to the text-
book of Younes [You10]. A Riemannian metric on the space of tri-
angle meshes and algorithms for computing the shortest geodesics,
the Riemannian exponential, and parallel transport in this space
were introduced and used for deformation transfer, shape interpo-
lation and extrapolation in [KMP07]. A physically-based Rieman-
nian metric was defined in [HRWW12; HRS*14]. The meshes are
regarded to be discrete shells and the metric measures the viscous
dissipation required to deform the shells.

Statistics in shape space. Principal Geodesic Analysis (PGA)
[FLPJ04] is a generalization of PCA to data given in a Rieman-
nian manifold. First, the Riemannian center of mass [Kar77] of the
data points is computed and the data points are mapped to the tan-
gent space at the center using the logarithmic map. Then a PCA in
the tangent space is computed. Finally, the exponential map is used
to map superpositions of the PCA modes back to the manifold. To
perform nonlinear statistics for the analysis of shape variability, a
PGA on the Riemannian manifold of discrete shells was introduced
in [HZRS18]. In this paper, we extend this work by formulating the
Shell PGA in the NRIC coordinates. These coordinates are well-

suited for this purpose because the invariance under rigid transfor-
mations matches the structure of the Shell PGA.

Sparse PCA. PCA allows for analyzing and compressing sets of
meshes representing animation sequences [AM00]. Varimax rota-
tions can be used to alter the basis of the space spanned by the low-
est principal components. For animation sequences, Varimax rota-
tions were applied to obtain sparse components that are meaningful
and could be used to support animators [MA07]. In [NVW*13], a
sparsity inducing term is included in the computation of the princi-
pal components resulting in Sparse Localized Deformation Compo-
nents (SPLOCS). Since the SPLOCS span linear spaces, larger de-
formations are not supported. To counteract linearization artifacts, a
warping strategy, which represents the components using the defor-
mation gradient and then treats rotational components nonlinearly,
was introduced in [HYZ*14]. SPLOCS can also be formulated in
the NRIC representation of meshes [WLZH17; LLW*19], which
results in an improved analysis for articulated shapes. In contrast to
our approach, the NRIC representation is treated as a linear space.
We demonstrate that the PGA, which uses the NRIC manifold, its
tangent spaces, the physically-based metric, and the Riemannian
exponential and logarithmic maps, leads to improved results.

Data-driven shape editing. Statistics of shape variation are use-
ful for a variety of applications in geometry processing and related
fields. In this paper, we focus on data-driven shape editing.

Elasticity-based energies, such as As-Rigid-As-Possible [SA07]
or discrete shells [GHDS03], are commonly used for mesh edit-
ing [SA07; HSvTP11; JBK*12]. These measure the energy stored
in a deformation of a rest configuration. The choice of a rest con-
figuration has a major influence on the deformation behavior, still,
this choice is ambiguous. Data-driven shape editing uses a variable
rest configuration, which is built from example poses, instead of a
fixed one. In [FB11] the NRIC coordinates of example poses are
linearly interpolated to obtain a model of a variable rest config-
uration for the discrete shells energy. While this works for a low
number of examples poses, statistical shape models, such as a PCA
in appropriate coordinates [GLL*16; WLZH17; LLW*19], PGA
[HZRS18], or SPLOCS [GLY*20], are needed when dealing with
larger numbers of example poses. Our experiments demonstrate the
advantages of the proposed model for data-driven shape editing.

3. Background

We start with the necessary preliminaries to introduce our SPGA.
First, we review NRIC as a useful representation for the geome-
try of a triangular surface to define the shape manifold of interest.
Afterwards, we discuss the Riemannian structure and geodesic cal-
culus on this manifold.

Nonlinear Rotation-Invariant Coordinates. In this paragraph,
we briefly review the work by [WLT12] who introduced a dis-
crete version of the fundamental theorem of surfaces. We consider
a simply connected, triangular surface with a set of vertices V ,
edges E ⊂ V ×V , and faces F ⊂ V ×V ×V . For nodal positions
X ∈ R3|V|, we denote by l(X) = (le(X))e∈E the vector of edge
lengths and by θ(X) = (θe(X))e∈E the vector of dihedral angles.
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To ensure that z = (l,θ) ∈ R2|E| corresponds to a two-
dimensional triangular surface immersed in R3, it has to ful-
fill two admissibility conditions. The first condition is the tri-
angle inequality, i.e. T f (l) > 0 for all f ∈ F where T f (l) =(
li + l j− lk li− l j + lk −li + l j + lk

)
for a face f ∈F with edge

lengths li, l j, lk and the above inequality is to be understood compo-
nentwise. Furthermore, traversing from face to face along the fan of
triangles at each vertex v in the set of interior vertices V0, one can
reconstruct from l and θ the geometry of the fan up to rigid body
motions. From this, one obtains a closing condition for the fan,
which can be expressed as the admissibility conditionQv(l,θ) = 0,
where Qv can be robustly and efficiently computed using quater-
nions. For details on this, we refer to [SHHR20].

Then, the manifold of all z ∈ R2|E| which correspond to im-
mersed triangular surfaces is given by

M=
{

z ∈ R2|E| ∣∣T (z)> 0,Q(z) = 0
}
, (1)

where we collect all constraints in vector-valued functionals T =
(T f ) f∈F andQ= (Qv)v∈V0 . Following [SHHR20], we callM the
NRIC manifold (Nonlinear Rotation-Invariant Coordinates). For
z ∈M, its tangent space is given by

TzM= kerDQ(z) := {w ∈ R2|E| |DQ(z)w = 0} , (2)

where DQ(z) ∈ R3|V0|×2|E| is the Jacobian of Q. The conditions
can be extended to higher-genus surfaces by including integrabil-
ity conditions along non-contractible paths that generate the funda-
mental group, see also [WLT12].

The NRIC z enable a local description of shell deformations
based on the variation of edge lengths encoding membrane distor-
tions and the variation of dihedral angles encoding bending distor-
tions. Frequently, in applications, these distortions and thus also the
associated modulation of z components are localized. For example,
on human models, in the vicinity of joints and active muscles which
is in striking difference to vertex-based mesh representations (cf .
Figure 2).

Figure 2: Support of deformation (left) in nodal positions (mid-
dle left), edge lengths (middle right) and dihedral angles (right).
Change of nodal positions and absolute length change are shown
on the same scale as color map 0 ≥ 0.05, while change of
dihedral angle is shown as color map 0 1.3.

Geodesic calculus. As in [HRWW12] we equip the manifoldM
with a Riemannian metric g reflecting the physical dissipation
caused by the infinitesimal variation of a triangular surface inter-
preted as discrete shell. Following Rayleigh’s paradigm, the met-
ric acting on strain rates is related to the Hessian of the elastic
energy, i.e. gz : R2|E| × R2|E| → R with gz = 1

2 HessW[z, ·] re-
stricted to TzM× TzM. Here, W[z, z̃] = Wmem[z, z̃] + Wbend[z, z̃]

is the elastic energy of a deformation of the discrete shell with
coordinates z into the discrete shell with coordinates z̃. It is com-
posed of a membrane and a bending contribution with Wbend[z, z̃] =
∑e∈E (θe− θ̃e)

2d−1
e l2

e , where de =
1
3 (a f +a f ′) for the two faces f

and f ′ adjacent to e ∈ E (a f is the area of f ) and Wmem[z, z̃] =

∑ f∈F a f ·Wmem(G[z, z̃]| f ), where Wmem(A) := µ
2 trA + λ

4 detA −(
µ+ λ

2

)
logdetA− µ− λ

4 . Furthermore, µ and λ are positive ma-

terial constants and G[z, z̃] is the Cauchy–Green strain tensor of the
deformation, which is a function of the edge lengths on each face.
The logarithmic term in the energy density Wmem ensures that the
triangle inequalities remain fulfilled for finite-energy deformations.

The path energy of a path (z(t))t∈[0,1] onM is defined as

E = E[(z(t))t∈[0,1]] =
∫ 1

0
gz(ż, ż)dt

and, for fixed end points z0 = z(0) and z(1), its minimizers
are geodesics. Then, logz0

z(1) = ż(0) defines the logarithm and
expz0

v0 = z(t) with v0 = ż(0) the exponential map (a solution of
the ODE ∇ż(t)ż(t) = 0 for the connection ∇ associated with the
metric).

For the Riemannian distance, we have that dist2(z(0),z(1)) =
E and straightforwardly E = K ∑

K
k=1 dist2(zk−1,zk) with zk =

z( k
K ). In our case of the discrete shells, W[z, z̃] = dist2(z, z̃) +

O(dist3(z, z̃)). Thus, we replace the squared Riemannian distance
by the computationally much cheaper elastic deformation energy
and obtain the discrete path energy

EK [z0, . . . ,zK ] = K
K

∑
k=1

W[zk−1,zk]

for discrete paths (z0, . . . ,zK) ∈ (R2|E|)K+1. Then, discrete K-
geodesics are defined as minimizers of the discrete path energy
for given end points z0 and zK and the associated system of Euler-
Lagrange equations is given by

∂2W[zk−1,zk]+∂1W[zk,zk+1] = 0 for k = 1, . . . ,K−1 .

4. Principal Geodesic Analysis

In this section, we will discuss the generalization of Principal Com-
ponent Analysis on linear spaces to Riemannian manifolds. In this
context, the Riemannian logarithm and exponential map enable to
transform nonlinear, large variations on the manifold to infinitesi-
mal variations given as tangent vectors in a particular tangent space
and vice versa. Given the already introduced discrete geodesic cal-
culus, we use discrete counterparts of the continuous logarithm and
the continuous exponential map. We define the discrete logarithm
at some discrete shell z0 as

Logz0
(zK) = v0

where v0 = K PTz0M(z1 − z0) is a discrete initial velocity of the
discrete geodesic (z0,z1, . . . ,zK) based on time step size τ = 1

K .
Here, PTz0M is the orthogonal projection onto the tangent space
Tz0M with respect to the metric gz0 , which is extended to R2|E|

per its definition. The corresponding exponential map Expz0
(v0)

for v0 ∈ Tz0M, as the inverse mapping, computes a discrete
geodesic (z0,z1, . . . ,zK) for given discrete, initial velocity v0. In
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fact, we first compute z1 for given z0 and v0 via orthogonal
projection of z0 + v0

K onto M with respect to gz0 , i.e. z1 :=
PM[z0 +

v0
K ]. The projection PM can be computed using a Gauß–

Newton scheme [FB11]. Then we recursively compute zk+1 solving
∂2W[zk−1,zk]+∂1W[zk,zk+1] = 0 in a least squares sense, i.e.

zk+1 = argmin
z∈M

‖∂2W[zk−1,zk]+∂1W[zk,z]‖2
2.

After K−1 steps this yields the requested discrete geodesic and the
discrete exponential, i.e.

Expz0
(v0) := zK .

For given points z1, . . . ,zN ∈M, the continuous Fréchet mean z̄ is
defined as the argminz∈M∑n=1,...,N dist2(zn,z). In what follows,
we replace continuous geodesics used in the definition of dist(·, ·)
by discrete K–geodesics to define a discrete (Fréchet) K-mean z̄. Of
course, these definitions depend on the choice of K, however, we
always used K = 8 for Exp and Log and did not observe any benefit
by increasing it in our experiments, see also Section 9. Concerning
the mean, we obtained already very good results for the 1-mean z̄,
which can be considered as the elastic mean [RW09].

Now, we are in the position to introduce the discrete Principal
Geodesic Analysis (PGA) [FLPJ04] forM. Again, let z1, . . . ,zN ∈
M be a given data base of discrete shells.

Discrete PGA algorithm

1. compute the mean z̄ of the input shapes z1, . . . ,zN .
2. compute vn = Logz̄(z

n) for n = 1, . . . ,N.
3. perform a PCA on the tangent space Tz̄M with gz̄ as the under-

lying scalar product to compute the dominant J principal modes
of variation u1, . . . ,uJ ∈ Tz̄M.

The actual PCA computation (3.) can be formulated as

minimize
U∈R2|E|×J

W∈RJ×N

‖V −UW‖2
g

subject to gz̄(ui,u j) = δi j for i, j ∈ {1, . . . ,J},
(3)

where V ∈ R2|E|×N is the matrix containing the vi as columns and
the columns of U are the modes u1, . . . ,uJ . The approximation error
is measured in a Frobenius norm ‖·‖g weighted according to gz̄.
Taking into account the minimizing property and the fact that vn ∈
Tz̄M, one easily checks that all u j are in Tz̄M.

For each u j, the curve t → Expz̄(t u j) can be interpreted as the
jth nonlinear mode of shape variation of the input data. Moreover,
considering the whole subspace U = span{u1, . . . ,uJ} of the tan-
gent space Tz̄M the PGA allows us to define a submanifold

M[U ] := Expz̄(U)

of the NRIC manifoldM which approximates the input data.

In comparison to linear PCA in R2|E|, i.e. using the (projected)
linear mean and linear differences, the nonlinearity allows us to
better capture the articulation of the input shapes. This means for

the same linear approximation quality, i.e. ‖V−UW‖2

‖V‖2 , the actual ap-
proximation of the input shapes zn is more accurate using nonlinear
PGA and the exponential map than using linear PCA and orthog-
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Figure 3: Comparison of nonlinear PGA (green) with linear PCA
(blue) in NRIC. The histogram shows the distribution of errors in
terms of mismatch of nodal position for reconstruction of the input
shapes. Moreover, we compare for a selected input shape (vertices
shown as gray point cloud) the approximation using PCA and PGA
respectively. In both cases, we used J = 8 components and both
models achieved a linear approximation quality of about 98%.

onal projection onM. A comparison of this nonlinear PGA and a
PCA in NRIC coordinates is given in Figure 3.

In general, Expz̄(t u j+sui) 6=Expz̄(t u j)+Expz̄(sui) by the non-
linearity of the exponential map. Nevertheless, after replacing stan-
dard PGA modes by sparse modes in NRIC coordinates in the next
Section 5, the resulting manifoldM[U ] itself will be approximated
by linear superposition of very low-dimensional submanifolds in
Section 7 – thus allowing for an efficient deformation synthesis in
Section 8.

5. Sparse Principal Geodesic Analysis

By definition, conventional PGA outputs an orthonormal set of
dominant deformation modes. These modes usually have large sup-
port as already the orthogonality implies largely overlapping sup-
ports of pairs of modes to ensure the annihilation in the gz̄ product.
Motivated by the quest for more efficient parametrizations of data
approximating submanifolds mentioned above and by the intuition
that, in many applications, we are interested in sparse, spatially lo-
calized dominant modes with widely disjoint supports. For exam-
ple, on human shapes, it seems natural to deal with dominant defor-
mation modes which are supported only on a foot, the surrounding
on a knee, or the area of a shoulder. The choice of NRIC, which rep-
resent local distortions via local coordinate chances, enables such a
sparsity on articulated shapes in our approach.

To define sparse deformation modes, we follow the common
approach of considering a sparsity-inducing regularization term.
However, using an unweighted l1-norm on tangent vectors would
be problematic as they consist of edge lengths and dihedral angles
varying on vastly different scales. To this end, we introduce a fam-
ily of weighted Lp-norms

‖u‖p
p := ∑

e∈E

(
1
l̄e
|le|
)p

+ ∑
e∈E

(
l̄e√
d̄e
|θe|

)p

, u = (l,θ) ∈ R2|E|,

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



J. Sassen, K. Hildebrandt & M. Rumpf / Nonlinear Deformation Synthesis via Sparse Principal Geodesic Analysis

Figure 4: Comparison to sparse linear PCA with Euclidean met-
ric in R2|E|. Working without the tangent space constraint leads to
modes with a mismatch between the length and the angle compo-
nent. The dihedral angle support of a sparse linear PCA mode in
R2|E| coordinates which has no length component at all is shown
on the left. This leads to mesh artifacts already in case of short
time extrapolation as seen in the middle picture. Furthermore, this
is prohibitive also for the approximation of shapes, which can be
seen in the last picture which shows the failure to approximate an
input shape, which was easily handled even by the linear PCA in
R2|E|, even though the linear approximation quality is about 96%.

where d̄e is the area associated with e in the mean z̄. The scalar
product associated with the L2-norm has already been used in
[FB11] to define a quadratic energy on lengths and angles. To sim-
plify the notation in the following, we collect the weights in a vector
m ∈ R2|E| such that ‖u‖1 = |m� u|1, where � means entry-wise
multiplication. With this L1-norm at hand, we generalize the PGA
to a Sparse PGA (SPGA) as follows.

minimize
U∈R2|E|×J

W∈RJ×N

‖V −UW‖2
g +λ

J

∑
j=1
‖u j‖1

subject to u j ∈ Tz̄M for j ∈ {1, . . . ,J}
max
i∈RN

|w ji| ≤ 1 for j ∈ {1, . . . ,J}.

(4)

We dropped the orthonormality constraints as we do not aim for
an orthonormal basis anymore but favor sparsity. To ensure that the
magnitude of the coordinates of the u j does not simply shrink to
achieve a small L1-norm while the weights grow accordingly, we
introduce a bound on the magnitude of the weights’ entries. Dif-
ferent from standard PGA, we have to impose that the modes u j
are indeed tangent vectors in Tz̄M, which ensures that they yield
admissible, infinitesimal deformations of the mean z̄. Dropping this
constraint DQ(z)u j = 0, one would leave the NRIC manifold M
and there is no guarantee that u j represents a geometrically admis-
sible variation of the underlying triangular mesh. To illustrate this,
we added in Figure 4 just the L1-regularization to the linear PCA.
As we can see, this led to components of edge length and dihedral
angle variation with non-matching support. Their usability for ap-
proximation and the synthesis of new shapes is quite limited. In
fact, it prohibits the use of extrapolation via the exponential map.

Finally, we can again by virtue of the exponential map define a
submanifold

M[U ] = {Expz̄(v) | v ∈ U}

of the NRIC manifoldM containing nonlinear deformations.

6. Quadratic Matrix Programming

We solve (4) by alternatingly solving for U while keeping W fixed
and vice versa. When U is fixed, solving for W becomes a straight-
forward quadratic optimization problem. However, solving for U is
more difficult due to the regularization term and the tangent space
constraint.

To solve for the sparse modes efficiently, we rephrase (4) for
fixed weights W as a quadratic matrix programming problem
[Bec07]. To this end, we first reformulate the nonlinear matrix opti-
mization problem, and then relax the L1-penalty term as in [Tib96;
BH17] to obtain a quadratic problem.

Matrix optimization. Let us begin by reformulating the matrix
optimization problem to prepare the relaxation. We denote by
G ∈ R2|E|×2|E| the matrix representation of the metric gz̄ , i.e.
G = W,22[z̄, z̄]. By the definition of the (weighted) Frobenius norm,

‖V −UW‖2
g = tr((V −UW )T G(V −UW ))

= tr(W TUT GUW )−2tr(V T GUW )+ tr(V T GV )

= tr(W TUT GUW )−2tr(WV T GU)+ tr(V T GV ).

To rephrase the regularization term, we denote by M ∈RJ×2|E| the
matrix whose rows are all equal to the weight vector m. This allows
the following reformulation

J

∑
j=1
‖u j‖1 = tr

(
MT |U |

)
, |U | :=

(
|uk j|

)
k=1,...,2|E|

j=1,...,J
.

We express the tangent space constraint using the quaternion inte-
grability operatorQ, i.e.

DzQ(z̄)U = 0 ∈ R3|V0|×J

Together, this yields for given W the problem

minimize
U∈R2|E|×J

tr(W TUT GUW )−2tr((GVW T )TU)

+λtr(MT |U |)+ tr(V T GV )

subject to DzQ(z̄)U = 0.

(5)

While this problem already closely resembles a QMP problem, the
choice of the L1-term still renders it nonlinear.

Solving the matrix optimization problem by relaxation. Next,
we relax the L1-penalty (cf. [BH17; Tib96]) to obtain the quadratic
problem with inequality constraints. To this end, we introduce non-
negative variables U+, U− ∈ R2|E|×J with

U =U+−U−, U+, U− ≥ 0,

This way, using the componentwise triangle inequality |U | ≤U++
U− we obtain the estimate

tr(MT |U |)≤ tr(MT (U++U−))

for the L1-term. Analogously, adapting the other terms in (5) we
finally arrive at the relaxed quadratic matrix programming problem
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minimize
U+∈R2|E|×J

U−∈R2|E|×J

tr

(
W T

(
U+

U−

)T (
G −G
−G G

)(
U+

U−

)
W

)

+ tr

((
λM−2GVW T

λM+2GVW T

)T (
U+

U−

))
+ tr(V T GV )

subject to DzQ(z̄)U+−DzQ(z̄)U− = 0,

U+ ≥ 0, U− ≥ 0.

. (6)

The above triangle inequality is an equality, i.e. |U |=U++U− if
U+�U− = 0. Hence, the solutions U+,U− of (6) have disjoint
support because, otherwise, we could move values from one matrix
to the other without changing the value of the objective term while
decreasing the regularization term. Thus, U = U+−U− is indeed
the solution of the original problem. To solve the relaxed problem,
one can first vectorize it (cf . [Bec07]) and then utilize off-the-shelf
software for quadratic programming.

7. Effective Submanifold Approximation

In many applications, the sparse modes (e.g. see Figure 5)
can at least partially be split into subsets with pairwise de-
coupled support. Recall, for human models one expects dis-
tinct, localized articulations for certain joints and muscle groups.

BA C

Figure 5: Three sparse modes
A,B,C for the human model (used
in Figure 6 and Figure 10).

Hence, the supports of cor-
responding groups of sparse
modes representing these artic-
ulations are well separated. Fur-
thermore, as pointed out in Fig-
ure 7, the support of these tan-
gent vectors in Tz̄M⊂ R2|E| is
only very moderately extended
under application of the expo-
nential Expz̄ even for large K.
Given such a strong separation
of supports of two subspaces Ua and Ub one observes that

Expz̄(ua +ub)− z̄≈ (Expz̄(ua)− z̄)+(Expz̄(ub)− z̄)

for ua ∈ Ua and ub ∈ Ub. This is certainly not the case for sub-
spaces corresponding to modes with overlapping supports, which
is illustrated in Figure 6 using the inset modes. In fact, the defect
of a potentially non exact separation of supports after applying the
exponential map can be measured using

DExp(ua,ub) :=

(
|Expz̄(ua)− z̄|, |Expz̄(ub)− z̄|

)
2

‖Expz̄(ua)− z̄‖2 ‖Expz̄(ub)− z̄‖2
,

where (·, ·)2 is the scalar product associated with the weighted L2-
norm introduced in Section 5, see also Figure 7. Before, we have
already argued that the support of the tangent vectors is only mod-
erately extended under the exponential map. The same then holds
for the coupling of pairs of tangent vectors, which allows us to mea-
sure the separation of modes and induced submanifolds Expz̄(Ua)

and Expz̄(Ub)using

D(ua,ub) :=
(|ua|, |ub|)2
‖ua‖2 ‖ub‖2

,

which can also be seen when comparing Figure 8 and Figure 7.

This observation motivates the following splitting approach. Let
us suppose that the space U ⊂ Tz̄M spanned by the sparse principal
modes u1, . . . ,uJ can be written as the direct sum of L subspaces
Ul for l = 1, . . . ,L, i.e.

U = U1⊕ U2⊕·· ·⊕ UL,

where each of these subspaces is spanned by a subset of the prin-
cipal modes. In fact, as discussed above, we suppose that due to
our sparse PGA approach the subspaces U j can be chosen to have
at least approximately pairwise disjoint supports. For each vector
v ∈ U , we have a corresponding decomposition v = v1 +v2 + . . .vL
with vl ∈Ul . Now, we consider a superposition of exponential maps
via summation of NRIC coordinates

Z[v] = z̄+
L

∑
l=1

(zl− z̄) with zl = Expz̄vl .

Finally, Z[v] is not necessarily onM and we have to project back
ontoM and obtain

z[v] = PMZ[v].
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Figure 6: Comparison of splitting error for two separated modes
(top row) and two overlapping modes (bottom) (cf. Figure 5). We
consider a deformation synthesis z[v], which treats the modes sepa-
rately and show the relative approximation error in the energy, i.e.
W[Expz̄(v),z[v]]/W[z̄,Expz̄(v)], on periodically distributed sam-
ples as bar plot along with three examples (approximation in yel-
low, correct extrapolation as purple point cloud).
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Figure 7: DExp(ui,u j) is plotted as heatmap on the left for
i, j ∈ {1, . . . ,J}. On the right, we show the extrapolation Expz̄(u)
of a randomly sampled mode u ∈ U , once colored according to
the absolute tangential mode |u| (top) and once colored accord-
ing to the absolute difference |Expz̄(u)− z̄| (bottom) both on the
same color scale underlining the close similarity of the support of
u ∈ Tz̄M⊂ R2|E| and Expz̄(u)− z̄ ∈ R2|E|.

This defines the submanifold

M[U1, . . . ,UL] = {z[v] | v ∈ U} ⊂M

which approximates the original SPGA submanifoldM[U ].

8. Efficient Deformation Synthesis

So far, we introduced an approximation of the submanifold by split-
ting the application of the exponential map into applications on
smaller subspaces. It remains to show how these exponential maps
and the needed projection can be approximated efficiently to enable
the fast synthesis of nonlinearly deformed shapes on the submani-
fold. We propose an approach based on sampling in the preprocess-
ing phase and multilinear interpolation in the online phase.

To this end, we first consider a single subspace Ul of dimen-
sion d with basis ul

1, . . . ,u
l
d . In this subspace, we take a lattice

{∑d
n=1 αn τul

n | α ∈ Zd} with mesh size τ ∈ R. For α ∈ Zd , we
denote by vα = ∑

d
n=1 αn τul

n the corresponding lattice point. Now,
an arbitrary v = ∑

d
n=1 wn(v)ul

n ∈ Ul lies in a cell of the lattice with
nodes vα(v)+β for β ∈ {0,1}d , where α(v) = bw(v)

τ
c ∈ Zd elemen-

twise. In two dimensions, this would mean that α(v) identifies the
lattice point to the lower-left of v. To approximate Expz̄(v), we con-
sider a piecewise multilinear interpolation Zτ,l of the values at lat-
tice points, i.e.

Zτ,l [v] := ∑
β∈{0,1}d

wβ(v)Expz̄(v
α(v)+β)

where the wβ(v) are the multilinear interpolation weights (cf .

[WZ88]) such that v = ∑β∈{0,1}d wβ(v)vα(v)+β. In the offline
phase, exponentials of lattice points are computed for a suitable
finite subset of Zd and stored in lookup tables, which can be used
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Figure 8: Coupling of tangential modes on a face data set
[ZSCS04] exhibiting non-isometric deformations. The heatmap
shows the coupling between the different tangential modes, i.e.
D(ui,u j) for i, j ∈ {1, . . . ,J}. It is accompanied by the extrapo-
lated modes colored according to the absolute tangential modes
|ui| (weighted as in the L1-norm), each on a different scale to im-
prove the visual appearance of the modes.

to cheaply evaluate the piecewise multilinear interpolation in the
online phase.

Considering the whole subspace U = U1⊕ . . .⊕UL, we use for
general v ∈ U the splitting v = v1 + . . .+ vL and repeat the interpo-
lation above for each subspace. Then, we evaluate the superposition
of these interpolations

Zτ[v] = z̄+
L

∑
l=1

(
Zτ,l [vl ]− z̄

)
for the actual synthesis of nonlinear deformations. As above for
Z[v] the superposition Zτ[v] is in general not inM and we define
the submanifoldMτ[U1, . . . ,UL] = {zτ[u] | u ∈ U} for

zτ[u] = PMZτ[u]

which again is expected to approximate the submanifold M[U ].
The necessity of the projection is demonstrated in Figure 9.

Surely, when dealing with the submanifolds Expz̄(Ul) in our
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Figure 9: Two comparisons of projected shapes zτ[v] (yellow) with
adaptive frame-based reconstruction[SHHR20] of Zτ[v] without
projecting it on the manifold (gray). This shows that the projection
is required.

computational setup, we are interested only in compact subsets of
the subspace Ul representing plausible deformations. Furthermore,
in the applications, it turned out to be sufficient to restrict to sub-
spaces Ul of low dimensionality between one and four. Hence, the
multilinear interpolation of precomputed samples on a rectangular
grid becomes a feasible option. A comparison of the exact subman-
ifoldM[Ul ] =Expz̄(Ul) and the approximationMτ[Ul ] for a single
two dimensional subspace Ul is shown in Figure 10. The efficiency
of this approach based on multilinear interpolation of precomputed
samples is evaluated in the next section and in particular in Table 4.
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Figure 10: Approximation of the exponential map by multilin-
ear interpolation of lattice points for two strongly coupled modes
(cf. Figure 5). On the left, we show the lattice (grey) in the two-
dimensional subspace along with randomly sampled points colored
according to the logarithm of their relative approximation error
in the energy, i.e. W[Expz̄(v),zτ[v]]/W[z̄,Expz̄(v)] . On the right,
selected extrapolated lattice points are shown in purple and we
highlight the quality of the approximation of shapes (purple point
clouds) by our deformation synthesis approach (yellow) for sam-
ples with relatively high approximation error.
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Figure 11: Comparison of multiple choices of J and λ on the
Face dataset. The linear approximation quality is measured as
‖V −UW‖2/‖V‖2 and weighted L1-norm and overlap are com-
puted as described before. Noticeably larger values for λ led to
vanishing modes. In this case, we chose J = 10 and λ = 250.

9. Experimental Results

We have implemented our method in C++ with the Geometric Op-
timization And Simulation Toolbox (GOAST) [HS*20], where we
use the Eigen library [GJ*10] for numerical linear algebra and
CHOLMOD [CDHR08] and UMFPACK [Dav04] from the SuiteS-
parse collection as direct linear solvers. For the quadratic problem
(6), we use MOSEK [MOS20] as efficient off-the-shelf solver.

We use a multi-resolution approach to enable fast computations
while retaining the possibility to produce high-quality deforma-
tions. In this approach, the input shapes are coarsened by one of two
methods: For the human model and the horse input data, we used an
iterative edge collapse approach based on minimizing the quadric
error metric [GH97] computed in groups [MG03] to preserve the
dense correspondence between input shapes. For the hand and face
input data, we remeshed a reference input shape using OpenFlip-
per [MK12] and computed coarse representations of the other in-
put shapes with the same approach as in the prolongation described
next. In both cases, the coarse results were prolongated to the fine
level using a representation of the fine mesh vertices in terms of in-
trinsic positions and normal displacement with respect to the coarse
mesh and computed on a reference shape similar to [KMP07]. See
Table 4 for a comparison of original and coarse resolutions of the
different input data.

Selection of number of modes and sparsity. In the computation
of modes, we have two parameters which are currently chosen man-
ually based on heuristics: The number of modes J and the sparsity
weight λ in (4). This is linked to a trade-off between the approx-
imation quality of the model, the sparsity and overlap of support
of the modes, and the size of the model. In Figure 11, we compare
these quantitatively for a number of choices and also to PGA. For
the approximation, not only the average overlap is important but
also the resulting subspace dimensions. Thus, a higher number of
modes is not necessarily beneficial.

Selection of coupling spaces. The selection of the subspace de-
composition U = U1 ⊕ ·· · ⊕ UL, i.e. the grouping of the sparse
tangential modes based on their coupling, is an important step to
obtaining high-quality results with our proposed method as exem-
plarily pointed out in Figure 6. In our implementation, we employ
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Figure 12: Comparison of maximal subspace dimension for differ-
ent numbers of clusters on the Horse dataset. The selected number
highlighted in gray.

spectral clustering [SM00] of a set of modes using the sparse tan-
gential coupling D(ui,u j) as the underlying similarity measure. To
this end, we use the coupling matrix of the sparse modes, cf . Fig-
ure 8, as affinity or similarity matrix. The number of clusters is then
determined such that the resulting dimensionality of the subspaces
Ul is in the range 1, . . . ,4, see also Figure 12, and thus small enough
for the lattice generation described in Section 8 to be computation-
ally feasible. The decomposition into subspaces of different dimen-
sions used in our examples is listed in Table 1. The impact of the
coupling of sparse tangential modes on the decoupling of the as-
sociated nonlinear submanifolds is depicted in Figure 7. Examples
of groups of modes extracted from the SCAPE data set are shown
in Figure 1. The examples illustrate that modes that move the same
part of the body, for example the left leg in the leftmost groups, can
be in different groups. The reason is that the distortions induced by
the modes are located in different areas of the body, in the hip and
knee regions for the leftmost groups.

Example J 1D 2D 3D 4D
SCAPE 40 0 5 6 3
Hands 12 0 1 2 1
Faces 10 4 1 0 1
Horse 20 0 2 4 1

Table 1: Distribution of the dimensionality of subspaces Ul used in
the different examples.

Deformation synthesis. A central aim of our method is the fast
synthesis of high-quality and large nonlinear deformations in ar-
ticulated motion, i.e. the evaluation of our discrete approxima-
tion zτ of the exponential map for varying subspace coordinates
α ∈ RJ . We demonstrate this by considering curves C : R→ U in
the subspace and their counterpart c : R→Mτ on the manifold
M obtained via our deformation synthesis, i.e. c(t) := zτ[C(t)].
Such curves can, for example, be used to obtain smooth defor-
mations interpolating given key poses on the manifold. In Fig-
ure 13, we show such an interpolating curve based on a Catmull–
Rom spline t 7→C(t) [CR74], for a set of hand poses. To compute
the projection onto the manifold, we follow [FB11] and formu-
late it as nonlinear least squares problem in nodal positions, i.e.
minX∈R3|V|‖(l,θ)(X)−Zτ[u]‖2

g. This directly gives us the nodal
positions needed for visualizations and can be solved efficiently
using the Gauß–Newton method. Then, evaluating the curve t 7→

Figure 13: An interpolating deformation path computed using our
method. The interpolation is obtained by fitting a periodic Catmull–
Rom spline through the subspace coordinates of the input shapes
(shown in grey) and evaluating our discrete parametrization for
evenly spaced points on the spline (yellow).

zτ[C(t)] along consecutive points can be done in (near) real-time in
these examples as each step only needs very few Gauß–Newton it-
erations to compute the projection PM due to the good initialization
from the previous step. See also the paragraph Timings below.

Mesh editing. The deformation synthesis restricted to the approx-
imating submanifoldMτ[U1, . . . ,UL] for a sparse mode decoupling
U = U1⊕ . . .⊕UL can also be used as deformation prior for mesh
editing. In this case, we assume the editing information is given as
M sparse handle positions x1, . . . ,xM ∈R3 corresponding to the po-
sitions of vertices v1, . . . ,vM ∈V . Then we perform the editing via a
quadratic penalty method, i.e. we consider a series of optimization
problems of the form

minimize
X∈R3|V|, u∈U

‖(l,θ)(X)−Zτ[u]‖2
g + γ

M

∑
m=1
‖Xvm − xm‖2

R3 (7)

[FB11] [LLW*19]*
z̄

[HZRS18] Ours

[GLL*16]

Figure 14: Handle editing comparison on SCAPE. Top row: Rest
pose, results using the methods in [FB11], [GLL*16], and an
adapted version of [LLW*19] (see main text for more information);
Bottom row: results from [HZRS18] and ours along with close ups
of the right elbows.
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Figure 15: Challenging handle editing example on the horse as
suggested in [LLW*19]. Left to right: editing with linear interpo-
lation in R2|E| and hard constraints; editing with nonlinear inter-
polation and hard constraints; editing with nonlinear interpolation
and soft constraints, i.e. via the quadratic penalty method (7).

for increasing γ, each again solved with Gauß–Newton. We choose
the starting value for γ and increase it by a fixed factor until the
mesh fulfills the handle positions up to a pre-defined tolerance.

In Figure 14, we compare this mesh editing approach to other
state-of-the-art, data-driven approaches. To compare our approach
to [LLW*19], we replicated their approach without localization, i.e.
using a spatially constant l1-term in the mode computation, and
with a fixed penalty parameter (see the right-most example in the
top row). The other two methods, [FB11] and [GLL*16], are ap-
plied as described in the original publications. Our method delivers
plausible deformations on-par with [HZRS18], while being nearly
two orders of magnitude faster. Some details are even superior, for
example, the bending of the right arm, shown in the close-ups, ap-
pears more natural in our results with the sharp elbow contour being
better preserved.

Using the superposition of nonlinear subspaces represented by
zτ instead of the linear combinations of modes in R2|E| allows
our method to generalize better for edits requiring deformations
far from the input data set. For example, in Figure 15, we consider
the challenging example of dragging the right hind leg outwards
of a horse shape, while the input data only consists of a galloping
sequence. Here, besides the penalty approach used in Figure 14 we
used hard constraints for the vertex positions at the handles. We
compare the editing via a linear basis and hard constraints in R2|E|

(left), which leads to unnatural bending similar to the one reported

PGA SPGA
Example Off- Online Off- Online
Fig. 13 (Interpolation) 3min 3s 90min 60ms
Fig. 14 (Fitting) 2min 919s∗ 660min 10s

(100ms)

Table 2: Comparison of runtimes for PGA and SPGA. In the inter-
polation case, we report the average time to evaluate the spline in
Figure 13 at 120 evenly spaced points. In the fitting case, the total
amount of time to produce the results in Figure 14 is reported and
for SPGA, in brackets, also the time for incremental editing steps.

∗ as reported in [HZRS18]
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Figure 16: Convergence of time-discrete exponential and loga-
rithm for K →∞ on the SCAPE dataset. For the logarithm and
exponential, we show the relative error in the weighted L2-norm
using Kmax = 128 as pseudo ground truth. Furthermore, due to the
tangent space projection the discrete exponential does not coincide
with the inverse of the discrete logarithm. But, we observe that it
is an approximation with decreasing relative error in the weighted
L2-norm for K→∞.

in [LLW*19, Figure 17], with editing based on the large deforma-
tion interpolation zτ[·], both for hard constraints (middle), and using
the quadratic penalty method (7) (right), where the latter two yield
far more natural results.

Comparison PGA to SPGA. In comparison to PGA [HZRS18],
our SPGA computes sparse modes at the expense of approxima-
tion accurateness. Hence, to achieve the same approximation qual-
ity with SPGA as with PGA one will typically need more modes
(cf . Figure 11). The sparsity, however, is crucial for the subman-
ifold approximation in Section 7, as otherwise the resulting error
would be large (cf . Figure 6). When working with PGA, we cannot
use our efficient deformation synthesis and instead have to directly
use the nonlinear exponential map. In editing applications, when
additional handle constraints come into play, this implies that we
have to evaluate derivatives of the discrete exponential and hence
use methods from PDE-constrained optimization, see [HZRS18].
This results in online runtimes which are far from interactive rates
(Table 2). In contrast, our approximation built on SPGA allows for
interactive rates but requires more runtime in the offline phase for
the quadratic optimization and sampling of the exponential map.

Comparison to ADMM. Another method commonly used to
compute sparse deformation components is the alternating direc-
tion method of multipliers (ADMM), cf . [NVW*13; HYZ*14;
WLZH17]. We have also investigated this approach to solve for the
sparse modes. To deal with the tangent space constraint in (4) one
needs to add a third term to the commonly used ADMM problem
representing this constraint as a convex indicator function. Then,

SCAPE Hands Faces
Solver Obj. Time Obj. Time Obj. Time
QMP 2618 1553s 575 205s 28765 127s
ADMM 2755 2092s 629 382s 31114 408s

Table 3: Objective values after ten outer iterations and runtime
per outer iteration for QMP and ADMM. For ADMM, we choose
the penalty parameters as η= 10 after comparing multiple options.
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Data & Parameters Preprocessing Online

Dataset N |V| |Vcoarse| J Mean Log QMP Exp Zτ–eval.
GN iter
(proj)

GN iter
(edit)

SCAPE [ASK*05] 71 12.5k 1.3k 40 105s 30s 1553s 3s 0.5ms 18ms 100ms
Hands [YLSL11] 126∗ 6.1k 1.9k 12 230s 90s 205s 6s 0.3ms 25ms –
Faces [ZSCS04] 384 24k 2.1k 10 420s 70s 127s 6s 0.3ms 35ms –
Horse [SP04] 50 8.5k 1.3k 20 100s 50s 375s 4s 0.3ms 16ms 60ms

Table 4: Overview of used datasets with corresponding preprocessing and online timings listing from left to right: the data set, the number
of input shapes N, the number of vertices of the full mesh |V| and the coarse mesh |Vcoarse|, the number of modes J, the timings in the
preprocessing phase to compute the mean z̄, a discrete logarithm Logz̄, one solution of the quadratic matrix programming problem, a
discrete exponential map Expz̄, and the timings in the online phase to compute the multilinear interpolations Zτ, a Gauß–Newton iteration
used for the projection on the manifoldM, and a Gauß–Newton iteration required in the mesh editing context.

∗ obtained from six shapes by computing weighted elastic averages

as usual for ADMM one alternatingly evaluates the proximal map-
pings for each term. A more detailed explanation of this can, for
example, be found in [BPC*11]. However, we observed a slower
convergence, i.e. compared to our approach outlined in Section 5
the objective value was larger after the same number of outer itera-
tions while still requiring more time per outer iteration. We provide
objective values and runtimes for the two methods in Table 3.

Time discretization. To use the Riemannian exponential map and
logarithm as tools in our method, we needed to discretize them in
time, cf . Section 3. The discretization is controlled by the number
of steps K in a discrete geodesic and converges for K→∞ to the
corresponding continuous notions, which is shown in [RW15]. We
demonstrate this convergence empirically for the SCAPE dataset in
Figure 16 and also saw that for K = 8 we already achieve an accept-
able error. Thus, we chose it for all experiments reported above.

Timings. In Table 4, we list detailed timings of all components of
our method. For the quadratic problem, we report runtimes with
enabled parallelization, while it was disabled for all other timings.
The offline phase was performed on a workstation with two AMD
EPYC 7601 CPUs, the high number of cores allows to efficiently
parallelize the offline phase by computing many logarithms or ex-
ponential maps in parallel. All other results were computed on a
laptop with an Intel Core i7-9750H CPU.

In the preprocessing phase, we used 25 outer iterations, i.e. solv-
ing once for the weights and modes, in each of the examples. Pre-
computing the exponential for lattice points (cf . Section 8) required
about 3000 (horse), 4000 (hands), 20000 (human), and 30000 (face)
evaluations for the respective examples.

Figure 17: Incremental mesh editing example with low-frequency
deformations in the torso. Also shown in Figure 1.

In the online phase, evaluating our deformation synthesis zτ for
a random v ∈ U using the mean shape as initialization needed in all
examples at most ten Gauß–Newton iterations. For larger, instant
changes, such as in Figures 14 and 15, we need multiple increase
of the penalty parameter in (7) and thus a larger number of itera-
tions. Concretely, the computation for the result in Figure 14 took
about ten seconds while for Figure 15 it took about five seconds. In
applications with incremental changes, we only need a very small
number of Gauß–Newton iterations. For example, each step of a
spline for the shapes in Figure 13 evaluated at 120 evenly spaced
points required two to three iterations, while for the incremental
handle editing (shown in Figures 1 and 17) even one was sufficient.
This makes the method applicable for interactive applications.

10. Conclusions

We introduced a framework for data-driven surface processing
that allows synthesizing large, nonlinear deformations based on a
Sparse Principal Geodesic Analysis on the space of discrete shells
and enables close to real-time articulation of surface models and
interactive mesh editing. Thereby, we use the Nonlinear Rotation-
Invariant Coordinates to deal with the space of discrete shells as a
Riemannian submanifold of R2|E|.
The approach consists of an offline and an online phase.
– In the offline phase, we first use a discrete geodesic calculus to
compute a mean shape and the discrete Riemannian logarithms of
the input surfaces. From these logarithms, we identify sparse, dom-
inant modes of shape variability. Second, the modes are grouped
with respect to their overlap and by superposition of the discrete
Riemannian exponential map acting on the span of each group a
submanifold of the shape manifold, which fits the input data, is
defined. Third, we compute a lookup table of sample shapes ex-
trapolated this way.
– In the online phase, the synthesis of large nonlinear deformations
is performed by summing of multilinear interpolations of samples
from the lookup tables and finally projecting these close approx-
imations by very few steps of a Gauß–Newton scheme onto the
shape manifold.
We tested our framework on different shape data sets, evaluated the
performance quantitatively and compared it to different state of the
art methods.
Limitations and challenges. The current implementation can only
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handle simply connected surfaces and input data which is in dense
correspondence. A generalization to higher-genus surfaces would
require the handling of additional, nonlocal integrability condi-
tions. Computing the geodesics requires sufficient mesh quality of
the input shapes to prevent local minima. We witnessed on the
SCAPE dataset, that our method sometimes got stuck in such lo-
cal minima. This, however, did not degrade the performance of
the method due to its rareness. Still, extending the geodesic cal-
culus to less quality meshes would increase the method’s usability
to a wider variety of datasets. The method still requires a projec-
tion onto the shape manifold after the superposition of groupwise
extrapolations, constructing an approximation omitting this would
improve performance and enable more flexible applications. Fur-
thermore, a multiscale approach tailored to NRIC could help to
further increase the method’s performance. We have reported er-
ror measurements for the superposition of extrapolated groups of
modes. Here, an a priori control of the error would enable a theoret-
ically rigorous grouping of modes. Moreover, it would be interest-
ing to combine the variational sparsity approach based on L1-norms
with a variational mode untangling as in [SBBG11]. Finally, recent
hierarchical tensor product approximation tools could allow gener-
alizing the currently single scale grouping of modes and support an
improved and more efficient manifold approximation.
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