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Abstract
The contour depth methodology enables non-parametric summarization of contour ensembles by extracting their representatives,
confidence bands, and outliers for visualization (via contour boxplots) and robust downstream procedures. We address two shortcomings
of these methods. Firstly, we significantly expedite the computation and recomputation of Inclusion Depth (ID), introducing a linear-time
algorithm for epsilon ID, a variant used for handling ensembles with contours with multiple intersections. We also present the inclusion
matrix, which contains the pairwise inclusion relationships between contours, and leverage it to accelerate the recomputation of ID.
Secondly, extending beyond the single distribution assumption, we present the Relative Depth (ReD), a generalization of contour depth for
ensembles with multiple modes. Building upon the linear-time eID, we introduce CDclust, a clustering algorithm that untangles ensemble
modes of variation by optimizing ReD. Synthetic and real datasets from medical image segmentation and meteorological forecasting
showcase the speed advantages, illustrate the use case of progressive depth computation and enable non-parametric multimodal analysis.
To promote research and adoption, we offer the contour-depth Python package.

CCS Concepts
• Human-centered computing → Scientific visualization; • Mathematics of computing → Nonparametric statistics; Statistical
graphics; Cluster analysis;

1. Introduction

The problem of analyzing the distributional properties of contour
ensembles arises in a wide range of domains like meteorology, where
analysts need to interpret multiple simulation runs [LP08]; medicine,
where clinicians plan interventions using robust representations of the
organs [KHS∗19]; and biology [MM22], where changes in cells’ mor-
phology across a population of cells can be indicative of looming disease.
The contour depth methodology has become established to visually
analyze contour ensembles in terms of their representatives, confidence
bands, and outliers. Examples include analyzing variations of meteoro-
logical forecasts [WMK13] and determining representative and outlying
contours in medical image segmentations [MW18,CdPMS∗24].

There are two contour depth notions available: Inclusion Depth
(ID) [CdPMS∗24] and Contour Band Depth (CBD) [WMK13]. ID as-
sesses the number of times the contour contains and is contained by other
contours. CBD determines the centrality of a contour by counting the
number of times it falls in the band formed by tuples of other contours
in the ensemble. When dealing with real data, contours tend to intersect
multiple times. Non-nested pairs of contours do not contribute to the
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depth score, resulting in less discriminative CBD and ID depths. To over-
come this challenge, epsilon ID (eID) and eCBD consider partial contain-
ment. The depth scores that ID and CBD yield can be used to summarize
contour ensembles in terms of their representatives, confidence bands,
and outliers, which can be visualized using contour boxplots [WMK13].

The main practical limitation of contour depth methods is their
scalability. Most practical implementations of CBD only consider bands
formed by pairs of contours. Even then, given that there are N2 bands
formed by pairs of contours in a N-contour ensemble, CBD takes
O(MN3) operations to compute an ensemble’s depth, where M is the res-
olution of the domain used to perform the contour comparisons. By only
considering pairwise relationships, ID provided an order-of-magnitude
speedup taking O(MN2) time, without sacrificing performance (i.e., ID
and CBD yield comparable depth estimates). Nevertheless, this might
not be sufficient in use cases that require multiple depth evaluations like
interactive analysis of large contour ensembles and clustering [Jör04].

In this paper, we accelerate the computation of ID. In particular,
we present a linear time algorithm for computing eID that leverages
precomputed inclusion fields. Computing a contour’s depth reduces
to querying these fields in O(M) time. Moreover, we introduce
the inclusion matrix, which encodes the inclusion relationship
between pairs of contours, for accelerating the recomputation of an
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Figure 1: Computation of Inclusion Depth (ID) and Contour Band
Depth (CBD) for the six-member ensemble in (a). In (c), ID involves
evaluating containment relationships between contour pairs. CBD (d)
counts the number of times contours fall within bands defined by a
subset of contours, shown in purple and blue. Additionally, (b) presents
depth scores through contour boxplots, providing a statistical summary
of the ensemble with median (yellow), confidence bands (light and dark
purple), and outliers (dashed red line).

ensemble’s depths when adding or removing groups of contours,
without requiring to recompute the whole ensemble’s depths. The
ability to quickly recompute depths is useful when computing depths
progressively [SGN12] or when updating an ensemble’s configuration
based on user interaction; and critical when using procedures that
require multiple calls to the depth function like clustering.

A limiting assumption of existing contour depth methods is that
contours in the ensemble were drawn from the same distribution. In
practical scenarios with multiple modes of variation, global depth
analysis may produce unexpected results, such as assigning high-depth
scores to points that are outliers within one mode but centrally located
in the overall ensemble [PD23].

We overcome the uni-modality assumption by introducing an exten-
sion of the contour depth framework for multi-modal ensembles. Central
to this extension is the use of relative depth (ReD). By optimizing the en-
semble’s average ReD, the CDclust algorithm disentangles its modes of
variation. Each iteration of CDclust entails calling a contour depth proce-
dure several times on subsets of the data. Therefore, crucial to CDclust’s
practical application are the newly introduced fast depth computation
schemes. Through experiments with synthetic datasets, we illustrate
how ReD and CDclust facilitate non-parametric analysis of multi-modal
ensembles. Additionally, we show two case studies in the fields of
medical image segmentation and meteorological forecasting that further
demonstrate the practical utility of the multi-modal depth toolkit.

In summary, our main contributions are:

• Schemes for accelerated computation and recomputation of contour

depths, in particular, a linear time algorithm for eID and the inclusion
matrix, which removes the dependency on the contours’ domain
resolution when recomputing depths on subsets of the ensemble.
These speedups are crucial to enable use cases like progressive depth
computation and clustering.

• The first framework for multi-modal depth analysis of contour
ensembles. The CDclust algorithm leverages the inclusion matrix to
disentangle modes of variation in a contour ensemble by maximizing
its average relative depth.

2. Related Work

Our research advances uncertainty visualization methods when
using ensembles to characterize underlying distributions. Ensembles
permit quantifying uncertainty related to initial conditions, training
data, or model parameters [APH∗21]. When visualizing ensembles,
the data type, dimensionality, and analytical tasks must be consid-
ered [WHLS19]. We focus on ensembles of contours derived from
spatial data, addressing scenarios like thresholding scalar fields.

Spaghetti plots are commonly used to display contour ensembles,
but they become cluttered and less trustworthy for larger ensem-
bles [SZD∗10, PFCB23]. Our focus is on providing an overview of
the statistical properties of the ensemble such as its representatives,
confidence bands, and outliers. Existing methods are categorized into
parametric and non-parametric approaches. Parametric methods assume
a distribution, such as Gaussian models fitted to contours’ PCA-reduced
signed distance fields (SDF) [FKRW16,FBW16] or Gaussian models at
each grid point [PH11]. Non-parametric methods, like Contour Proba-
bility Plots [KTB∗18] and EnConVis [ZLC∗23], avoid distributional as-
sumptions and offer accurate point-wise descriptions. A hybrid approach
uses pairwise contour comparisons to determine centrality [DJW16].

Contour depths, a nonparametric method, exhibit desirable properties
such as sensitivity to shape and topology, making them suitable for
downstream analyses like clustering [Jör04] and regression [PVB13].
Contour Band Depth [WMK13], while effective for ensemble character-
ization, scales poorly with the size of the ensemble. A recently proposed
alternative with more favorable scaling behavior is the Inclusion
Depth [CdPMS∗24]. In this paper, we unify both depth notions using
the inclusion matrix, capturing the topological relationships among
ensemble members. The proposed approach achieves an order of
magnitude speedup in Contour Band Depth (CBD) and accelerates
the recomputation of depths, which is relevant in interactive scenarios
and clustering. Furthermore, we present a linear algorithm for epsilon
Inclusion Depth (eID), enabling using eID with large contour ensembles.

Depth methods, assuming a uni-modal distribution, may yield
unexpected results in the presence of multiple modes. Previous research
addresses mode variation in contour ensembles through clustering.
We leverage depth to support this process. Notable approaches
include detecting multi-scale symmetries using high-dimensional
transform-invariant spaces and nearest neighbor search [TN14]; and
using lower-dimensional representations like PCA-reduced contours
SDFs [FKRW16] with existing clustering methods such as KMeans
[KTB∗18], density-based clustering [ME19] and agglomerative hier-
archical clustering [FBW16], which favors compact elliptical clusters
for Gaussian mixture model fitting [FKRW16]. Finally, the EnConVis
framework for contour ensemble analysis emphasizes the importance
of the distance function in clustering and classification tasks [ZLC∗23].
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Depth methods enhance clustering but are yet to be explored in
contour contexts. Notable instances include a scheme for clustering
multi-variate data using l1 depth [Jör04], recently adapted to use curve
depth [LdMMV21]; the bisecting k-spatialMedian algorithm based
on spatial or l1 depth [DDPW07]; depth-based clustering analysis
(DBCA) for affine-invariant and noise-robust clustering [JCSW16];
CRAD, a density-based clustering algorithm employing robust data
depth [HG17]; the depth difference (DeD) metric for determining
optimal cluster count [PB19], and depth-based medoids clustering
algorithm (DBMCA) for high-dimensional directional data [PD23].

3. Background: Contour Depth

The contour statistical depth methodology permits characterizing
an ensemble of contours in terms of the centrality, or alternatively
outlyingness, of their members. In the following, we discuss the two
main notions of contour depth: Inclusion Depth and Contour Band
Depth. Figure 1 illustrates the available contour depth notions and how
to visualize an ensemble’s summary statistics using contour boxplots.

Inclusion Depth Let C be an ensemble of N contours. The Inclusion
Depth (ID) of ci∈C results from the number of other contours that ci
contains and in which ci is contained [CdPMS∗24]:

ID(ci|C)=
2
N

min{INin(ci),INout(ci)} with

INin(ci)=
N

∑
j=1

in(ci)⊂ in(c j), and

INout(ci)=
N

∑
j=1

in(c j)⊂ in(ci),

(1)

where in(ci) denotes the subset in the plane enclosed by the contour
and⊂ yields 0 or 1, depending on the contours’ inclusion relationship.
The ID values range between [0,1]. When using bitmaps of M pixels
to represent contours, ID has a computational complexity ofO(MN2).

Contour Band Depth The Contour Band Depth (CBD) of ci∈C is the
average number of times that the contour falls inside the band formed
by any other J-band with J ∈{2,3,4,...,N−1} [WMK13]. We say a
contour ci falls in the band formed by J other contours if it contains
the contours’ intersection and is contained by their union:

CB(ci|c1,...c j)=
j⋂

j=1
in(c j)⊂ in(ci) and in(ci)⊂

j⋃
j=1

in(c j) (2)

Contour Band Depth (CBD) can be written as

CBD(ci|C)=
J

∑
j=2

1(N
j
) (N

j)

∑
k=1

CB(ci|B j
k), (3)

where B j
k is the kth band of the set of j-contours bands. The CBD values

range between [0, 1]. CBD is computationally expensive for J>2, so,
in practice, J=2 is used. In Sec. 5, we illustrate how to obtain compute
CBD inO(N2) time using the inclusion matrix.

Epsilon Contour Depth When contours intersect, there tend to be
ties (i.e., pairs of contours for which neither contains the other) and

low depth scores. To mitigate this, variants of CBD and ID have been
introduced that use the modified epsilon subset operator

A⊂ε B=1−

{
0 |A|=0,
|A−B|/|A| otherwise,

(4)

where |A| denotes the area of A, A−B the relative set difference and
⊂ε outputs a continuous value between [0,1].

The modified epsilon ID (eID) [CdPMS∗24], replaces ⊂ in Eq. 1
with⊂ε. Similarly, the modified CBD, which we will refer to as epsilon
CBD (eCBD), replaces⊂ in Eq. 2 with⊂ε, yielding the epsilon band
containment operator

CBε(ci|c1,...c j)=min

 j⋂
j=1

in(c j)⊂ε in(ci),in(ci)⊂ε

j⋃
j=1

in(c j)

,

(5)
Computing eID takesO(MN2) time.

Computing eCBD entails forming a N×∑J
(N

J
)

matrix listing the out-
puts of Eq. 5. Individual depth values are then computed by thresholding
and averaging matrix entries. Because eCBD requires assembling the
complete matrix, it is not possible to apply the same acceleration strategy
as for CBD. Therefore, eCBD has a complexity ofO(MN∑J

(N
J
)
).

4. Linear Epsilon Inclusion Depth Computation

The Epsilon Inclusion Depth (eID) replaces the subset operator in Eq. 1
by the epsilon subset operator, defined in Eq. 4, to compute the propor-
tion of area of one contour that is contained in another (INε

in and INε
out).

By reorganizing the loops in these expressions, it is possible to obtain an
algorithm to compute eID inO(NM). In the following, we simplify nota-
tion by using ci= in(ci). ci(m) yields ci’s value at the mth domain point.

Eq. 6 provides the derivation for INε
in. We start by plugging Eq. 4 into

INin in Eq. 1. Note that the set difference can be written as a loop over the
M bitmap pixels of a contour, where ci(m)=1 if pixel m is in contour i,
and 0 otherwise. We compute ∑

N
j=1(1−c j(m)) ahead of time and store it

in a lookup table preε
in(m)=∑

N
j=1(1−c j(m)). Computing these values

takesO(MN) time but only needs to be done once for all contours.

INε
in(ci)=

N

∑
j=1

1−
|ci−c j|
|ci|

=N− 1
|ci|

N

∑
j=1
|ci−c j|

=N− 1
|ci|

N

∑
j=1

M

∑
m
(1−c j(m))ci(m)

=N− 1
|ci|

M

∑
m

ci(m)
N

∑
j=1

(1−c j(m))

=N− 1
|ci|

M

∑
m

ci(m)preε

in(m)

(6)

The same idea also applies to INε
out . We again refactor the formula

to obtain a precomputed lookup table preε
out(m) = ∑

N
j=1

c j(m)
|c j| which

is shared between all contours. Computing INε
out(ci) and INε

in(ci)
now takesO(M) time with a precomputation ofO(MN) to create the
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lookup tables. This results inO(MN) time complexity to compute eID
for all N contours in the ensemble.

INε
out(ci)=

N

∑
j=1

1−
|c j−ci|
|c j|

=N−
N

∑
j=1

|ci−c j|
|c j|

=N−
N

∑
j=1

M

∑
m

(1−ci(m))c j(m)

|c j|

=N−
M

∑
m
(1−ci(m))

N

∑
j=1

c j(m)

|c j|

=N−
M

∑
m
(1−ci(m))preε

out(m)

(7)

5. Fast Depth Recomputation

Figure 2: Inclusion (a) and epsilon inclusion (b) matrices of the
contour ensemble in Fig. 1. In the strict inclusion matrix, cells are
colored if a row contour is a subset of the column contour. The epsilon
inclusion matrix values range between 0 and 1, discretized into seven
bins for visualization simplicity.

In the following, we introduce the inclusion matrix, which permits
decoupling the depth computation from the assessment of the pairwise
inclusion relationship between contours. We show how, in practice, this
translates to a significant speedup in the computation of ID and CBD
(J = 2) on an ensemble’s subsets, a feature critical for use cases that
require depth evaluations within the ensemble, like clustering.

At the hearts of ID and CBD are the subset and epsilon subset
operators, which permits establishing the containment relationship
between all pairs of contours in the ensemble. We term the matrix that
collects all the pairwise comparisons inclusion matrix C and epsilon
inclusion matrix eC, respectively. Starting with the latter, a cell eCi j
with i, j∈N is computed as:

eCi j= in(ci)⊂ε in(c j) (8)

where ⊂ε is the operator defined in Eq. 4. To obtain C, it suffices to
threshold eC as

Ci j=1≥1[eCi j], (9)

where 1[·] is the indicator function.

Fig. 2 depicts C and eC for an ensemble of six contours. The epsilon
inclusion matrix (b) has values that range between 0 and 1, with one
denoting full containment. In practice, entries are only zero if the
two contours are disconnected components. If this is not the case and
A ⊄ε B in Eq. 4, then the entry will be lower than one but not zero,
systematically increasing the depth scores, but preventing ties due to the
non-perfect nestedness of contours. In general, the inclusion matrices
are not symmetric. For example, C is not symmetric as for i ≠ j, if
in(ci)⊂ in(c j) then in(c j)⊄ in(ci). It is also not antisymmetric because
in(ci),in(c j) might not share a containment relationship like in the case
where they are disconnected components.

The inclusion matrix provides the information needed to compute
CBD when only bands formed by two contours are considered.
Therefore, in the particular case of CBD with J = 2, it is possible
to obtain a quadratic runtime. It is possible to determine the number
of bands a function falls in by calculating the number of functions
above (Na) and below (Nb) that function, and using the formula
Nbands=NaNb+N−1 [SGN12]. This simplification works because of
the assumption that a function cannot fall in a band formed by functions
that cross over [LP08]. In the contour case, by setting Na= INout and
Nb=INin, both of which can be obtained from the inclusion matrix, it is
possible to obtain CBD inO(MN2), the time it takes to compute the in-
clusion matrix. It must be noted that this strategy does not apply to eCBD
because eCBD requires operating on the full contours-vs-bands matrix.

The inclusion matrix decouples the initial computation of the
pairwise inclusion relationships from the depth calculations. Therefore,
adding or removing small subsets of contours is fast. Adding N′

new contours to the ensemble grows the inclusion matrix from N2

to (N + N′)2 entries. Adding these 2NN′ + N′2 new entries takes
O(MNN′ + MN′2) time, significantly faster than recomputing the
matrix from scratch. In the next section, we will show how this feature
enables CDclust. Additionally, in the experiments section, we show
how it can be used to progressively compute depth.

6. Multi-Modal Analysis

6.1. Relative Depth

Relative Depth (ReD) is an extension of the concept of depth to multiple
clusters or modes of variation. Intuitively, a contour belongs to the
correct partition if the contour’s depth in the partition it belongs to is
higher than what it could attain if it belonged to any other partition. In
the following, we refer to the former as depth-within and to the latter
as depth-between.

Let IK be a partitioning of the N contours into K clusters. IK(k)
yields the ids of the contours belonging to partition k. Given a contour
ci∈C with i∈IK(k), we compute its relative depth ReDi as

ReDi=ReD(ci|C,IK)=Dw
i −Db

i (10)

with the depth-within defined as

Dw
i =D(ci|{c j| j∈IK(k)}), (11)

and depth-between as

Db
i = max

l≠k;l∈{1,...,K}
D(ci|IK(l)), (12)

where D is any suitable contour depth notion like Inclusion Depth or

© 2024 The Authors.
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Figure 3: Relative depth scores as a function of the clustering labels for an ensemble of N=30 contours in a three-ring configuration. Each ring
has a different proportion of contours. The top row illustrates the different label assignments. The bottom row depicts the depth-within cluster (bar
above 0 line), depth-between cluster (bar below 0 line), and relative depth (bar with black stroke and no fill) for each ensemble member.

Contour Band Depth. ReD values range between [-1, 1]. A contour that
attains the minimum value in this range is likely assigned to the wrong
partition or corresponds to an outlier because its Dw is zero and its Db

is the maximum value. In contrast, a contour with the maximum value
of the range is considered the median of the partition it belongs to.

Fig. 3 depicts the ReD (using ID) per contour for different
partitionings of an (N=30) ensemble of contours made of overlapping
rings spawned in different locations with perturbed radius. The first
row shows the ensemble and its partitioning with each partition colored
differently. The second row depicts the Dw

i (colored bar above zero
line), Db

i (mirrored colored bar below zero line), and ReDi (non-colored
bar with black stroke) per contour (horizontal axis). The first column
represents the unimodal case in which calculating the ReD reduces to
computing the depth-within of each ensemble member. The other three
columns show a random partitioning, a partitioning in which only some
labels were exchanged, and the generative ground truth labels. It can
be observed how the average ReD is maximized by the partitioning
with generative labels because there are no contours with non-zero Db

i .

Interestingly, the average ReD in the case with ground truth labels
is also larger than in the uni-modal case, despite the latter not having
contours with positive depth-between. This shows how the incorrect
uni-modal assumption of the traditional depth notion negatively affects
overall depth scores. In the experiments, we leverage this observation
to show how ReD can be used as a cluster validation tool to determine
the optimal number of clusters K.

6.2. CDclust

The average ReD score of a partitioning IK provides an indication of its
quality. Specifically, we say that IK is satisfactory if the average ReD is

maximized, which entails maximizing the depth-within and minimizing
the depth-between of every contour. The problem of obtaining the IK
that maximizes ReD can be formulated as

IK =argmax
IK

1
N

N

∑
i=1

ReD(ci|C,IK)=
1
N

N

∑
i=1

Dw
i −Db

i , (13)

where C is fixed.

The optimization problem in Eq. 13 has a large discrete search space.
We adopt a heuristic inspired by KMeans [Scu10] to obtain a reasonable
solution. Algorithm 1 presents the pseudocode of CDClust. CDclust
takes as input the contour ensemble C, the desired number of com-
ponents K, random trials T , and iterations itmax. In practice, there are
potentially many local optima. Additionally, in some cases, a cluster
might become empty. To ensure a better exploration of the solution space,
we permit the user to define a number of random trials to perform.

Starting from a random partitioning, CDclust proceeds to iteratively
increase the partitioning depth by reassigning contours to the cluster
that represents them best. Specifically, at each iteration, the algorithm
computes the contours’ depth with respect to the other clusters and
collects these depth values in the matrix DK ∈RN×K. We define the
competing cluster of a contour as the cluster that maximizes its depth

Icomp= argmax
l∈{1,...,K}

D(ci|IK(l)). (14)

If the current assignment IK(ci)maximizes the contours’ depth, then it is
not relocated. Otherwise, the algorithm reassigns to its competing cluster.

© 2024 The Authors.
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Algorithm 1 Depth-Based Contour Clustering (CDclust)
Require: C,K,T,itmax ▷ N-contour ensemble,

number of components, number of random trials and of iterations
1: I∗K←{} ▷ Best partition
2: µReD∗←−∞ ▷ Best average ReD
3: for t∈{1,...,T} do
4: IK← random partitioning of C into K clusters
5: for i∈{1,...,itmax} do
6: DK∈RN×K ▷ Between-cluster depth matrix
7: for k∈1,...,K do
8: DK

·,k←{D(ci|Ck)|ci∈C} ▷ Via inclusion matrix
9: end for

10: Dw←{DK
i,k|k=IK(ci) and i={1,...,N}}

11: Db←{DK
i,li |li=argmaxli≠IK(ci)D

K
i,li and i={1,...,N}}

12: I′K←IK
13: IK←{argmaxkDK

i,k|i∈{1,...,N}}
14: µReD← 1

N ∑iD
w
i −Db

i
15: if µReD>µReD∗ then
16: IK∗←IK
17: ReD∗←ReD
18: end if
19: if IK =I′K then
20: return IK
21: end if
22: end for
23: end for
24: return IK

6.3. CDclust Complexity

CDclust’s runtime depends on the number of trials T and a maximum
number of iterations itmax. Within each iteration, CDclust requires
computing the depth of each contour with respect to each cluster. If the
inclusion matrix is used, then its precomputation is the bottleneck of the
algorithm taking O(MN2) time. Within the loop, it takes O(N) time
per contour to compute its depth with respect to all clusters, yielding
a complexity ofO(N2). Therefore, in this case, CDclusts complexity
isO(MN2+itmaxTN2).

When using the linear time eID, one needs to compute the inclusion
fields at each iteration, which takesO(MN) time. The most expensive
part of the algorithm is the computation of the between-cluster depth
matrix, which takesO(KN) time. In total, CDclust with linear eID runs
in O(itmaxTMN+ itmaxTKN). Note that when a high resolution grid
in the plane is used to resolve the contours, MN may be larger than N2.
In this case, CDclust with the linear time eID has slower iterations than
CDclust with the inclusion matrix.

7. Experiments on Synthetic Data

This section presents the results of experiments with synthetic
datasets, demonstrating the performance of the proposed meth-
ods. The experimental code (https://graphics.tudelft.
nl/paper-multimodal-contour-depth) and contour-
depth Python package (https://graphics.tudelft.nl/
contour-depth) are available as GitHub repositories. Further
speedups can be achieved by using a more performant programming

language and implementing parallelism in the code. We ran all the
experiments on a Mac Book Pro (2022) with an M1 Pro processor
(without GPU acceleration) and 32 GB RAM.

7.1. Fast Computation of Contour Depth

Setup We use the shape outside outliers detailed in the Inclusion
Depth paper [CdPMS∗24]. We define a stochastic model from which
we can sample inlier shapes and outlier shapes with higher amplitude
and frequency, endowing them with distinct shapes. We use an outlier
contamination proportion of 0.1. The second column of Fig. 7 shows
an example of the shape outlier dataset.

To generate datasets of varying sizes, we start with the full ensemble
(N = 300) and sample increasingly smaller -nested- subsets in
increments of 10 until 10 elements remain, yielding sampling sizes
Ns = {10,20,30, ...,300}. For the unoptimized CBD in the scaling
behavior experiment, we only consider until N =150 due to its steep
increase of computational cost. For each combination of method/sample
size, we run five random trials to derive confidence intervals of the
results. Finally, for the progressive depth calculation experiment, we use
N=150. To increase difficulty, we shuffle the shapes in the ensemble,
interleaving inliers and outliers.

Scaling Behavior Fig. 4 compares the runtimes of the linear eID com-
putation with other contour depth methods. In particular, the figure
includes strict CBD (J=2) and ID. We differentiate whether the method
was optimized or not. Optimized CBD refers to computing strict CBD
using the expression presented in Sec. 5, ID has no optimized version
and unoptimized eID refers to using the inclusion matrix to compute
the depths. The performance gains are evident. ID and unoptimized eID
are at least an order of magnitude faster than CBD when more than two
contours are used to form the band. Linear eID is, in turn, an order of
magnitude faster than methods based on the inclusion matrix, computing
depths of 300-contour ensembles in under ten seconds. These results con-
firm the speed-ups that ID and linear eID achieve. It is important to note
that speed is only one factor to consider when selecting a depth notion.
In practice, the properties of strict depth notions might be desired. In this
case, the best-performing methods, optimized CBD (J=2) and ID, have
a time complexity ofO(MN2). In the case of CBD, if more bands are de-
sired, the performance of the methods will rapidly degrade as it depends
on the number of possible bands that can be formed out of J contours.

Progressive Depth Computation We now demonstrate the usage
of fast depth computation for progressively calculating and rendering
depths, which can enhance analytical processes [SPG14]. Fig. 5 com-
pares the runtimes of the batched and progressive depth computation of
a N=100 ensemble. We assume that the ensemble’s contours become
available one at a time. For the batched method, we recompute the
ensemble’s ID every time a new contour arrives. For the progressive
method, we only compute missing entries of the inclusion matrix and
then perform a depth update of the ensemble. As can be observed in the
line plot, the cost of adding a contour to the ensemble is significantly
higher for the batched version. The N=100 ensemble takes an average
of 57 seconds per contour with the first one taking a fraction of a second
and the last one more than four minutes. In contrast, the progressive
version takes advantage of the information contained in the inclusion
matrix to avoid unnecessary recomputations. It takes 1.15 seconds on
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Figure 4: Comparison of mean runtimes for different sample sizes of
optimized and unoptimized versions of CBD, ID, and eID. The y-axis
uses a logarithmic scale and the shaded area denotes the 95 percent
confidence interval across replications.

average to recompute the ensemble’s depths, which means that the
whole ensemble can be progressively rendered in less than two minutes,
allowing for interactive rates. The vertical stripe on the right side of
the figure illustrates how the incremental calculation of depth works.

Figure 5: Comparison of the time it takes to compute depths of a
growing ensemble (N = 100) using batched and progressive depth
calculation. The x and y-axes have log scales. The x-axis indicates
how many contours have been processed at the time given by the
corresponding point in the y-axis. The strip to the right depicts the
updating of the depth scores as the ensemble grows.

7.2. Multi-Modal Contour Analysis

Setup We use three datasets (N=100) that contain multiple modes of
variation. First, the three rings dataset has three overlapping groups of
circles each with perturbed radii and centers. Each circle group has a dif-
ferent number of circles and spread (different radii distribution). Second,
the non-nested cluster dataset contains three groups of circles C1, C2,
and C3 arranged such that C1 and C2, and C1 and C3 are nested but C2
and C3 are not. Circles in each group have perturbed radii and centers
and different spreads. Finally, we reuse the shape outlier dataset from the
last subsection, which can be thought of as an ensemble with two modes
of variation: inliers and outliers. Figs. 6 and 7 illustrate these datasets.

In preliminary experiments, we observed that the performance of
CDclust decreases when using ID due to the method’s tendency to yield
ties if the contours intersect. Therefore, unless mentioned otherwise, we
use eID as a depth notion for both ReD and CDclust. For CDclust, we
use T =5 and itmax=10. The number of clusters K changes depending
on the experiment’s purpose.

We compare CDclust against two relevant existing methods that
leverage a PCA-reduced SDF representation of the contours. To obtain
a contour’s SDF representation, we compute the signed distance of each
pixel to the closest point on the contour and use principal components
analysis to keep the dimensions in the resulting field that explain
0.999 of the variance [FKRW16]. First, we consider KMeans [Scu10],
which iteratively improves the clustering by assigning points to the
closest center. Similarly to CDclust, we set the number of attempts to
5 and the maximum number of iterations to 10. Second, we consider
agglomerative hierarchical clustering (AHC) with average linking,
which is part of the CVP pipeline proposed in [FBW16, FKRW16].
We choose the number of clusters to match the one used in CDclust
and KMeans. For both clustering algorithms, we use Sklearn’s
implementation with Euclidean distance as the distance metric.

Cluster Validation Using ReD Average ReD (µReD) can be used to de-
termine the optimal number of clusters. Fig. 6 depicts this cluster valida-
tion strategy for the three rings dataset (N=100). For different values of
K, we run CDclust and compute the clustering µReD. To reduce the sen-
sitivity to a specific clustering result, we perform this process ten times,
varying CDclust’s random seed. The graph (top row of Fig. 6) shows
the mean µReD per K surrounded by a 95% confidence interval. It can
be observed how K=3, the desired clustering, consistently maximizes
µReD. As K increases, the mean µReD decreases and the uncertainty in
the clustering results increases. The figure’s bottom section shows the
resulting clusterings for one of the random seeds. As can be observed,
in some cases higher K clusterings preserve the inlier structure of K=3,
assigning magnitude outliers to the extra clusters. The depth-within of
the swapped contours does not change because of their outlier status, but
their depth-between increases, which results only in a slight decrease in
µReD. In other cases, a ring group is split into two or more components,
reminiscing clusterings obtained with hierarchical methods.

Comparative Evaluation of CDclust In the synthetic datasets we
considered, we observed that ReD, KMeans, and AHC exhibited a
similar clustering behavior when using the ground truth K. The methods’
behavior changed when exploring alternative Ks. The first column
of Fig 7 presents an example of the non-nested cluster dataset. We
clustered the dataset with K=2. Both CDclust and AHC put the small
group of contours (in orange for CDclust and AHC) in a separate cluster.

© 2024 The Authors.
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Figure 6: Selection of the optimal number of clusters using µReD. The
line plot depicts the mean µReD per K-clustering across ten samples.
The shaded area corresponds to a 95% confidence interval. K=3 and
K=8 (vertical dashed lines) attain the highest and lowest mean µReD,
respectively. The bottom section presents examples of the resulting
clusterings for one of the samples.

In contrast, KMeans classified these contours as belonging to the same
cluster as the inner ones, which are partially disconnected/unnested. This
example shows how CDclust has increased sensitivity to the nestedness
relationship between contours, which could be useful in cases where one
wants to flag groups of contours with a different nestedness relationship.

The previous result hints at the strength of contour depth in
identifying shape outliers. For ID, the user must select a depth threshold
for the outliers. CBD uses an automatic mechanism to determine it.
We explored the utilization of clustering methods to identify the shape
outliers, using the shape outliers dataset and K=2. The second column
of Fig. 7 shows an example of the results. As can be observed, CDclust
assigned all the 16 shape outliers to the same group. It also assigned
contours with extreme magnitudes to the group of outliers, highlighting
as inliers the highly central core of circular contours. KMeans and
AHC, relying on distances rather than on the inclusion relationships,
do not achieve a clear separation. KMeans splits the shape outliers,
assigning 11 to the green cluster and 5 to the orange one. Furthermore,
in the orange cluster KMeans mixes representative contours with shape
outliers. For K=2, AHC only separated one magnitude outlier from
the rest, combining shape outliers and inliers. This result is sensitive to
AHC’s linking method and the K used. When we tried larger values for
K, AHC assigned shape outliers to low cardinality clusters, producing
a satisfactory separation of the inliers similar to CDclust’s. Nonetheless,
needing to tinker with both K and the linking method hinders the

Figure 7: Comparison of clustering results of CDclust, KMeans, AHC
and the reference labels for the non-nested cluster and shape outlier
datasets with K=2.

method’s practicality. The results indicate that CDclust can also be used
to separate outliers from inliers, permitting us to automatically obtain a
robust outlier-free cluster, which can be used in downstream procedures.

8. Case Studies

In this section, we demonstrate how CDclust+ReD can be used to
perform non-parametric multi-modal visual analysis of real datasets.
We use eID because it is the fastest depth notion available and
because contours in real data tend to intersect. For CDclust, we
use the same configuration as in the previous section. For CVP, we
implement the pipeline as described in [FKRW16]. In summary, CVP
uses agglomerative hierarchical clustering of the PCA-reduced SDF
representations of the contours to find the modes of variation. The
cluster representatives are the geometric medians of each cluster in
PCA space. The bands are computed from the SDFs by adding and
subtracting from the mean SDF a user-selected number of standard
deviations (we use one standard deviation for the results in this section).

© 2024 The Authors.
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For visualization of the results, we use spaghetti plots and contour
boxplots [WMK13]. We render contour boxplots using a single hue
to accommodate multiple modes of variation and consider the median
(thick solid line) and the confidence bands (semi-transparent polygon
with the same hue as the median line). We do not render the outliers
for clarity of exposition. Nevertheless, for CDclust+ReD, we filter out
the bottom ten percent of contours with the lowest depth per cluster
and then compute the band with the remaining contours. We use the
same computer as in the experiments with synthetic data.

8.1. Segmentation Ensembles

Data With the advent of deep learning-based auto-contouring
technologies, segmentation of organs-at-risk (OARs) in radiotherapy
has been largely automated [MCCC∗20]. Nevertheless, clinicians still
need to perform a quality assessment of the segmentations, which
requires understanding the uncertainty in the predictions. We consider
the computerized tomography (CT) of a patient with head and neck
cancer treated at HollandPTC between 2018 and 2020. The IRB
approved the research protocol for the use of patient data in research, all
patients signed an informed consent form. We trained 30 segmentation
models based on the popular UNet architecture [RFB15] on different
subsets of the training split of the dataset of the Head and Neck Auto
Segmentation MICCAI Challenge [RZS∗17]. The MICCAI dataset
contains CT scans of patients with head and neck cancer with ground
truth segmentations of nine OARs. To further augment the ensemble
size and the variability of the predictions, we trained each model using
different learnable weight initializations. Using the resulting models
to segment the parotid gland yields an ensemble of 120 scalar maps
of per-voxel softmax probabilities. For the analysis, we focused on
540×540 pixels 2D slices of the OARs. We obtain the contours by
thresholding the probabilities with an iso-value of 0.8.

Analysis Fig. 8 illustrates a depth-based multimodal analysis of a
slice of the ensemble of segmentations of the right parotid gland using
depths. We focused on the parotid gland because it is not always clearly
visible in CT, which can increase inter-clinician variability. In these
cases, a visual statistical summary can help clinicians understand the
range of predictions. The spaghetti plot (a) provides an overview of
120 segmentations, revealing trends that are challenging to disentangle
visually due to occlusion. Using contour boxplots based on the eIDs
of the ensemble (b) simplifies data display and showcases variability in
wide confidence bands. Notably, the median contour differs significantly
from the outer band boundary, suggesting multiple modes of variation.
To validate this hypothesis, we used CDclust with K=2 (max average
ReD). The resulting clustering reveals a split into inner and outer
sections (c). The orange cluster has more members, which explains
its representative shape being selected as the median in (b). While
contour boxplots improve on spaghetti plots, occlusion persists. In (d),
clinicians can drill down by clicking on the cluster of interest in the
vertical proportions bar, revealing that most of the teal cluster’s variation
is concentrated in the bottom right, where confidence bands are wider.

8.2. Weather Forecast Ensembles

Data A common use case for contour statistical models is to analyze
meteorological forecast data. We consider data from the European
Centre for Medium-Range Weather Forecasts (ECMWF). Specifically,

Figure 8: Different stages of the ensemble analysis process. a) and
b) present an overview of the ensemble using a spaghetti plot and
a contour boxplot based on the depths of the complete ensemble. c)
and d) present a multi-modal analysis of the ensemble. c) depicts an
overview of the different modes of variation and d) focuses on the less
representative variation mode.

the ECMWF Ensemble Prediction System (EPS) provides ensembles
of predictions for different variables like precipitation, temperature, and
pressure. The forecasts include N=50 perturbed members and a control
run. We analyze the same data as in [FKRW16], which is the forecast
from 00:00 UTC 15 October 2012. More details about this type of data
can be found in [LP08]. The region under consideration encompasses
101× 41× 62 grid points, which corresponds to latitude, longitude,
and geopotential height dimensions. For the analysis, we consider 2D
fields, corresponding slices of the region where the geopotential height
is 500hPa. To obtain contours from this field, we threshold them using
an iso-value of 5600m. The spaghetti plot in Fig. 9 depicts the extracted
contours laid over the geographical region they span.

Analysis Fig 9 (b) shows the results of utilizing CVP to analyze the
forecast ensemble [FKRW16]. The majority of the ensemble’s members
belong to the purple (25) and orange (23) clusters. and the geometric
medians (solid lines) are similar in shape, with the orange one exhibiting
more pronounced curves towards the middle of the map. The green clus-
ter contains the fewest members (3), and its shape differs from the other
two, especially at the left of the map. When performing non-parametric
analysis with CDclust (c), one can observe trends similar to CVP’s. In
particular, the proportions (24, 17, and 10 members) remain similar, and
the shapes of the representatives too. This shows that both clustering
procedures identified similar trends in the data. The two methods mainly

© 2024 The Authors.
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Figure 9: Comparison of parametric (b) and non-parametric (c)
analysis of the ensemble of 500 hPa geopotential contour lines
(ECMWF ENS forecast from 00:00 UTC, 15 October 2012 valid at
00:00 UTC, 20 October 2020). (a) presents an overview of the ensemble
using a spaghetti plot. The horizontal colored bar in (b) and (c) encodes
the cluster’s proportions in decreasing order.

differ in the bands’ shapes and the representatives’ smoothness. The
depth-based bands are generally thicker, and the trajectories of the repre-
sentatives are more distinct because they are made from inlier contours
in the ensemble. In contrast, CVP synthesizes bands and representatives,
producing smoother graphical elements. A clear visual difference that
arose in this case study is the blob in CDClust’s green cluster. Both meth-
ods use a threshold to define the bands’ extents: unit standard deviation
for CVP and keeping the top 90% contours depth-wise for CDclust. The
blob arises because two members of the CDclust’s green cluster (which
agree with CVP) contain such a feature, but only one was flagged as
an outlier and removed. This difference highlights the importance of
trying different values for the threshold parameters of both methods.
Finally, our results reinforce that, in practice, analysts can benefit from
considering parametric and non-parametric analysis [ZLC∗23].

9. Discussion and Conclusions

Contour depth has gained prominence in non-parametric analysis
across domains such as meteorological forecasting and medical image
segmentation [WMK13,MW18,CdPMS∗24]. The efficacy of contour
depth methods hinges on their scalability with increasing ensemble
size. Our contributions significantly enhance existing methods by
introducing a linear time algorithm for Epsilon Inclusion Depth (eID)
computation. Furthermore, we introduce an inclusion matrix, facilitating
depth computation on ensemble subsets without reevaluating the
inclusion relationship, a process dependent on domain resolution. These
accelerated depth computation methods find applications in progressive
depth computation [SPG14] and interactive depth updating.

We also generalize contour depth using relative depth and introduce
CDclust to address the assumption of contours drawn from the same
distribution. To our knowledge, CDclust is the first depth-based contour
clustering algorithm. Experiments on synthetic data demonstrate that

CDclust largely agrees with KMeans and Agglomerative Hierarchical
Clustering, but exhibits sensitivity to clusters violating the nestedness
relationship. The desirability of this property depends on the application.
We further demonstrated CDclust’s practical utility by analyzing
ensembles arising from two domains. In medical image segmentation,
we showcase how clinicians can disentangle trends through multi-modal
analysis. This positions contour depth methodology for interactive re-
finement of segmentations [WLC∗22,TJL∗20] based on representative
selection [MW18]. Our meteorological forecasting example compares
non-parametric and parametric multi-modal analyses, revealing the
visualization-altering assumptions of CVP’s method. Adopting both
parametric and non-parametric lenses is crucial in practice [ZLC∗23].
The proposed methods and the contour-depth Python library contribute
to this approach.

There are several future work avenues. First, eID’s formulation fa-
cilitates obtaining a linear algorithm based on precomputed maps. It is
unclear whether other depth notions like contour band depth [WMK13]
can profit from similar strategies. Second, the runtime of linear eID
depends on the grid resolution, reducing its effectiveness in cases that re-
quire multiple evaluations. Addressing this dependency and implement-
ing parallelism, for instance, via a GPU implementation, would increase
the contour depth methodology’s reach. Third, using ReD to select the
optimal K showed suboptimal clusters can obtain high ReD. While
alternative schemes are possible, we found running CDclust multiple
times helps avoiding local optima. Finally, CDclust uses a global depth
notion. Future investigations could adapt CDclust to enable local analy-
sis [MW18] for multi-scale insights. Additionally, working directly with
the scalar field from which contours arise and integrating speedups into
functional depth cases are intriguing future research avenues [ME19].
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