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Preprint: Precomputed Safety Shapes for
Efficient and Accurate Height-field Rendering

Lionel Baboud, Elmar Eisemann, and Hans-Peter Seidel

Abstract—Height-fields have become an important element of realistic real-time image synthesis to represent surface details. In
this paper, we focus on the frequent case of static height-field data, for which we can precompute acceleration structures. While many
rendering algorithms exist that impose trade-offs between speed and accuracy, we show that even accurate rendering can be combined
with high performance. A careful analysis of the surface defined by the height values, leads to an efficient and accurate precomputation
method. As a result, each texel stores a safety shape inside which a ray cannot cross the surface twice. This property ensures that no
intersections are missed during the efficient marching method. Our analysis is general and can even consider visibility constraints that
are robustly integrated into the precomputation. Further, we propose a particular instance of safety shapes with little memory overhead,
which results in a rendering algorithm that outperforms existing methods, both in terms of accuracy and performance.

Index Terms—I.3.7.b Computer Graphics – Three-Dimensional Graphics and Realism – Raytracing; I.3.7.f Computer Graphics –
Three-Dimensional Graphics and Realism – Color, shading, shadowing, and texture
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1 INTRODUCTION

SURFACES in the real-world are often complex and
show many details at different scales. For real-time

applications, it is currently infeasible to represent such
small scale variations with separate geometric primi-
tives. On the other hand, there are many possibilities
to approximate such appearance, the most common one
being textures.

Standard textures only account for color, but the in-
creasing capacities of graphics hardware allow us to
shift increasing amounts of surface properties into such
image-based representations. Such techniques are usu-
ally more efficient than using a geometric equivalent.
One application of textures is to add detail to the appear-
ance of a surface, as is achieved with bump-mapping,
normal mapping and other techniques now standard in
real-time applications, but texture-based methods can
also be used to define geometric modifications of the
surface. One possibility is to interpret texture values as a
displacement. In other words, the texture itself becomes
a height field. This will be the main aspect investigated
in this paper.

There are many applications for fast height-field ren-
dering, such as terrain rendering [1], impostors [2],
or physical simulations [3]. Some applications need to
take dynamic changes into account, for others the data
is constant. We will focus on the latter case, were a
precomputation can be used to derive information to
accelerate the display. Such performance improvements

• L. Baboud and H.-P. Seidel are with the Max-Planck-Institut für In-
formatik, Department 4: Computer Graphics, Campus E1 4, 66123
Saarbrücken, Germany.
E-mail: {lbaboud, hpseidel}@mpi-inf.mpg.de

• E. Eisemann is with Telecom ParisTech, TSI, 46 rue Barrault, 75013 Paris,
France.
E-mail: elmar.eisemann@telecom-paristech.de

are important because despite the simple definition of
a height field, efficient and accurate rendering is not
straightforward. Even standard texture resolutions give
rise to a dramatic number of virtual primitives and it is
of importance to be able to skip unneeded elements. To-
day, height-field rendering on the GPU is most effective
with ray marching. It consists in looking for intersections
at successive positions along a view ray. For accuracy, it
is necessary to adapt the marching distance to not miss
an intersection.

We want to ensure the correctness of our output and
present an accurate, yet efficient ray-marching method
for height-field rendering. After a review of existing
techniques (Sec. 2), we present our motivations (Sec. 3)
and summarize our contributions (Sec. 4). We then give
an overview of our technique (Sec. 5) and the basic
definitions. Here, we define the general procedure and
the principle of our acceleration. We then detail how
to accurately and efficiently precompute the needed
data (Sec. 6). Potential constraints on viewpoints can
be exploited to further optimize the result. Section 7
justifies one specific definition, namely the way we
interpret the height-field data as a surface. Here, we also
propose alterations to the algorithm that lead to higher
performance if some minor quality sacrifice is acceptable.
As will be shown in Section 8, our approach compares
favorably in terms of precomputation times, accuracy
and rendering performance.

2 RELATED WORKS
Height-field rendering is useful for many contexts.
Oliveira et al. [4] used a cube with height-field-
augmented faces to represent complex objects. Height-
field-based rendering was also used with a few lay-
ers [5], [6], [7], patch-based representations [8] or view-
interpolations [9]. Such scenarios particularly benefit of



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ??, MONTH YEAR 2

rendering precision addressed by our method, but are
considered out of the scope of this paper. Instead we will
focus on the rendering process itself and address most
related work. More methods for height-field rendering
can be found in [10].

One possibility to render height fields is to tesselate
a surface and apply a per-vertex displacement [11]. The
complexity of this displacement mapping can be reduced
with hierarchical representations [12], controlled by the
deviation, general adaptive subdivisions [13], or prede-
fined and adaptively selected patterns [14].

Image-based methods avoid the geometric workload.
Oliveira et al. [4] use a prewarping, but need to trans-
form the entire texture, preventing the technique to
be output sensitive. Parallax mapping [15], [16] shifts
texture coordinates to simulate deformations and Kautz
and Seidel [17] rely on slicing in order to render the in-
formation. Such approximations can result in confusing
appearances for deep or high-frequency structures.

On today’s hardware, it is possible to execute height-
field ray casting directly in the fragment shader [18].
Baboud and Décoret [19] followed Amanatides and
Woo [20] and present an algorithm that leads to accurate
results on dynamic height fields. We will adapt this
algorithm and present a more efficient, but still naive so-
lution in Section 5.2.1. At the expense of accuracy, higher
performance can be reached, as shown by Policarpo
et al. [21], possibly inspired by root finding processes.
The idea is to advance along the ray with constant
steps, until it falls below the height field. From there,
a binary interval search (the bisection method) delivers
an intersection point. Similar solutions were applied
to reflection and refraction approximations [22]. Even
though such methods are relatively fast, many initial
steps might be needed before arriving underneath the
surface and artifacts often appear for grazing views.

One simple way to increase the initial steps is an on-
the-fly computed structure, inspired by classical min-
max mipmaps [23], that hierarchically store lower/upper
elevation limits. It can be interesting for large dynamic
height fields, but not for static data because especially
near-silhouette rays become costly.

For static height fields, the key to a fast rendering
with maintained accuracy lies in the use of precomputed
acceleration data. It is common to encode space above
the relief’s surface in form of some safety shape. During
rendering this information allows for a safe ray marching
(i.e. without missing intersections) and ensures large
steps along the ray (Fig. 1).

The most general encoding consists in storing a dis-
tance value for each possible viewing ray [24], [25].
This requires a dense sampling of the five dimensional
set of rays [26], related to the plenoptic function [27],
inducing large memory costs and allowing only small
relief textures, even after compression.

To reduce the dimensionality of the acceleration data,
Donnelly [28] approximates the distance function on a
regular 3D grid. Geometrically, this defines spheres that

a) b) c) 

Fig. 1: Different empty space encodings; 3D grid: (a)
empty spheres; 2D sampling of the surface: (b) empty
cones, (c) safety cylinders. Arrows depict possible rays
concerned by the corresponding safety shape. They span
the maximum step length allowed by the safety volume.

etc. etc. 
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Fig. 2: Limitations of cones: (a) marching silhouette rays
is slow; (b) concave zones cannot be reached in a finite
number of steps (for clarity, only half-cones are drawn).

are stored in a 3D texture (Fig. 1(a)). The solution is
approximate because the minimization only considers
texel centers and interpolating such distances is not nec-
essarily meaningful. Furthermore, due to the still-high
memory cost, only smaller textures can be processed.

A better solution is to only use one value (or small
set of values) per height-map texel which constitutes the
best tradeoff between memory and efficiency. Further,
the data can then be stored as a simple 2D texture of the
same size as the height map.

Paglieroni et al. [29] precompute empty inverted cones
(Fig. 1(b)) which enable large marching steps when far
above, but only small steps when near the surface where
cones inevitably shrink near their apex (Fig. 2).

Baboud and Décoret [19] define a safety-volume property
(denoted PSV ) as follows: any possible ray starting
above a certain texel τ intersects the surface at most
once within the safety volume at τ . They observe that
the precomputed shape is actually allowed to grow
past the relief surface, as long as PSV is satisfied. With
this broader definition, at most one surface intersection
can occur between two stepping positions, which can
be obtained accurately with an efficient binary search
(Fig. 3).

In [19], this principle is used to derive a safety radius
which defines an associated safety cylinder for each texel
(Fig. 1(c)). The method enables a faster ray marching
than previous methods, but has the drawback that the
step sizes do not depend on the ray’s height.

Policarpo and Oliveira [30] apply this idea to compute
relaxed cones. These are wider than the classical (strict)
ones which results in a faster rendering. Their costly pre-
computation algorithm results in a fast, but error-prone
rendering (see Section 3 for a more detailed analysis).
We will avoid inaccuracies in the precomputation and
present a hybrid solution that increases effectiveness and
allows us to produce accurate results.
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Fig. 3: Safety distance: (a) every ray originating above
the texel τ intersects the surface at most once within the
safety cylinder; (b) in this example, one marching step
using the safety radius is enough to cross the surface:
the bisection (blue) then finds the (unique) intersection.
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Fig. 4: A fail case example for relaxed cones [30]:
(a),(b) relaxed cones slopes s1,s2 at positions p1,p2 are
computed by considering second intersections of rays
leaving from q1,q2; (b) marching along a ray using these
cones leads to miss a big peak; the final bisection phase
(blue) on interval [a1, a3] (containing 3 intersections) then
converges to the wrong intersection point (red dot).

3 MOTIVATION

To motivate our work and explain the importance of our
contributions, we will first analyze existing issues with
recent methods.

Ensuring precomputation correctness
The preprocess of most algorithms (e.g. , [30], [19]) boils
down to the sampling of a set of rays. This always leads
to a slow and approximate computation. One of our
contributions is to obtain an efficient and accurate result.

In particular, it is noteworthy that even the setup
of such a sampling process is difficult. In [30], it was
suggested to sample rays originating from the top of
the relief’s bounding box, above the considered texel τ
and find the second intersection point along the ray. The
slope stored in τ is then the largest cone not containing
any of the second intersection points1. Fig. 4(a) and (b)
show two examples.

The issue however is that no guarantee exists that
cones computed via such a process will satisfy the afore-
mentioned safety-volume property. Figure 4(c) shows a
case where computed cones are too large and intersec-
tions can be missed during rendering.

1. There actually exist small inconsistencies between the preprocess
algorithm described in [30] and the accompanying preprocess shader
code (mainly the direction in which the sampled rays are traversed).
Here, we base our discussion and figures on the algorithm described
in the text. With minor adaptations, the same issues persist for the
preprocess shader.

Fig. 5: Typical hole artifacts obtained with RCS [30].

a) c) b) 

Fig. 6: Different cones definitions: (a) classical strict cone;
(b) relaxed cone as defined by [30] (exterior ray ρ1
intersects the relief twice within the cone, contradicting
PSV ); (c) ideal relaxed cone, taking all exterior rays into
account (being interior, ray ρ4 does not contradict PSV ).

The problem lies in the assumption that rays originate
from the top of the relief’s bounding box. This choice is
motivated by the idea that rays initially will be consid-
ered to originate outside the bounding box (viewpoints
inside were excluded) which is a common assumption
for meso-scale relief rendering. However, during render-
ing, after one marching step, the tested position will lie
inside the bounding box. Because this location was not
considered by the preprocess, the corresponding relaxed
cone can be too wide (texel p2 in Fig. 4(b)). This results in
artifacts, particularly affecting reliefs with sharp features
(see Fig. 5 and accompanying video). Other authors
reported this problem and showed illustrations [23], but
no explanation was previously found for these issues.

In order to perform a correct preprocessing, the ques-
tion should be: which set of rays needs to be considered
to enforce PSV ? In fact, this strongly depends on the
viewing context.

The most general assumption allows viewpoints any-
where above the surface (i.e. including locations inside
the relief’s bounding box). For example, this happens if
the relief represents a large-scale terrain with an observer
located on the ground. Interestingly, in that case, it can be
shown that relaxed cones satisfying PSV are equivalent
to strict cones because rays originating from the surface
need to be accounted for (see Fig. 6(a)).

If all viewpoints are located outside of the relief’s
bounding box, one can consider less rays, resulting in
larger relaxed cones. We call exterior any ray originating
outside the bounding box or exiting it without intersect-
ing the relief when traced backwards (non exterior rays
are called interior). Exterior rays are those produced by
exterior viewpoints. As shown in Fig. 6(b), exterior rays
(e.g. ρ1, ρ3) do not necessarily enter the bounding box
above the considered texel, an assumption exploited by
the computation of relaxed cones. For a correct computa-
tion [19], one needs to consider all rays originating from
densely sampled positions above the considered texel,
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along densely sampled directions, and disregard interior
ones. This strategy allows us to compute accurate (up
to sampling issues) relaxed cones (Fig. 6(c)), but would
require modifying the preprocess and adding many
sampling dimensions and a backtracking for a potential
intersection with the surface before each ray.

Avoiding the limitations of sampling
Sampling the 5D ray space has two fundamental limita-
tions:

1) Prohibitive computational cost for large maps. Pre-
processing a n2 height map by sampling nz eleva-
tions and nθnϕ directions costs O(n3nznθnϕ) (each
ray needs to be marched backwards and forwards
in O(n)). Even with insufficient sampling [30], it
takes over 8 hours for 10242 height maps and gets
impractical for larger ones [23];

2) No exactness guarantee because –even for smooth
surfaces– visibility exhibits high frequencies.

These shortcomings motivated us to develop a prepro-
cess that is both (provably) accurate and more efficient
(exploiting properties of limiting triangles, defined in
Sec. 6). In particular, we enable a fast preprocessing by
showing that 2D visibility considerations are sufficient.

Another strength of our method is its ability to inte-
grate knowledge about viewing restrictions in form of
polygonal viewing regions (e.g. if the relief is integrated
in a scene with occlusion) and/or directional constraints.
For example, if it is known in advance that the relief
cannot be observed from directions above a certain
angle (e.g. previous techniques often assume downward-
directed rays), less rays need to be considered during
precomputation, leading to larger safety shapes that still
guarantee accurate rendering.

Improving safety shapes
Finally, even if computed correctly, one issue inevitably
remains with relaxed cones; cones are infinitely thin at
their apex, which can prevent the ray marching from
converging when approaching the surface. Remember
that height-field intersections are found by binary search
once a point below the surface is reached during the ray-
marching phase. There are situations however (e.g. con-
cave parts) where relaxed cones never allow us to reach
the surface (see Fig. 2(b)). Policarpo and Oliveira [30]
try to deal with this issue by fixing a maximum amount
of marching steps. This decision can result in wrongly-
located intersection points, leading to (view-dependent)
warping artifacts that are very visible near silhouettes
(see Figure 7). This inaccuracy is also problematic when
rendering shadows (Figure 8) because marching along a
shadow ray from the light source to the surface point is
likely to terminate early (shadow rays cannot be traced
in the other direction, as such upwards directed rays
are forbidden by the relaxed-cone technique). This early
ray termination leads to virtual occlusions between the
source and the surface point, that even thresholding
cannot address easily.

Fig. 7: Warping-like artifacts produced by RCS [30].

Fig. 8: Artifacts obtained with RCS [30] on shadows.

Cylinders [19] with their strictly positive radius do
not have this problem (Fig. 3). To keep the advantages
of both approaches, we propose a hybrid cylinder-cone
shape. It enables large steps far above the relief, while
the surface is reached very quickly when approaching it
(Fig. 9). We will further show that the marching position
update for this shape can still be done very efficiently,
leading to high performance. Nonetheless, our fast pre-
computation is not restricted to a particular safety shape:
any shape can be tested for the PSV efficiently using our
algorithm.

Improving ray traversal

More subtle, but also related, is the question of how
to interpolate safety shapes between neighboring texels.
Many approaches (e.g. [30]) compute their safety shapes
on texel centers only, while marching positions can fall
anywhere else inside a texel, where PSV is not ensured.
The difficulty comes from the fact that safety shapes for
neighboring texels can be bound by unrelated distant
parts of the relief, preventing exactness for any local
interpolation scheme (see Fig. 10). To address this point,
we propose a careful yet efficient ray-marching algo-
rithm, that forces stepping positions to fall on restricted
locations inside texels, for which we ensure PSV . This
also requires a careful consideration of how height-map
samples define the underlying relief surface and we
will address this question in detail (Fig. 11 shows a
challenging relief with thin features rendered accurately
with our method, while existing ones fail).

a) b) c) 

Fig. 9: Advantage of a hybrid shape: (a) cones are better
suited for elevated rays; (b) cylinders perform well for
low rays; (c) the hybrid shape keeps both advantages.
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Fig. 10: Interpolation of cones inside a texel: (a) cones
are bound by pivot points, changing arbitrarily when the
cone position moves between two neighboring samples;
(b) this results in a discontinuous derivative for the
cone’s angle.

Fig. 11: A 642 height field with 1-texel wide features.

4 CONTRIBUTIONS

Our paper makes the following contributions:
• Accurate rendering: Our solution is fast and exact.
• Efficient and general precomputations: Our solu-

tion is practical. We accelerate and improve the
precomputation of previous state-of-the-art algo-
rithms [19], [30].

• Improved acceleration structure: We present a pre-
computation that accelerates ray marching signifi-
cantly while requiring little extra memory.

• Exploitation of visibility: We show how to exploit
prior knowledge concerning the set of viewpoints
observing the surface, leading to an acceleration at
no extra memory cost.

• Fast ray marching: We present a novel accurate and
efficient ray-marching algorithm.

• Surface definition: We show how to rely on a
special surface interpretation to enable faster, yet
accurate results.

5 METHOD OVERVIEW

This section presents an overview of our general ren-
dering algorithm. We will present a simple and accurate
algorithm before proceeding to our main contributions
that involve precomputations in Section 6.

5.1 Surface definition

A height map is a 2D array of height values hi,j sampled
on a regular grid (for simplicity we assume an N × N -
pixel square). Such a point-wise definition can be inter-
preted in various ways. Here, we will give a first surface

a) b) c) 

Fig. 12: Surface definition from a sampled height map:
(a) height-map samples and centerlines; (b) triangulation
for an inter-texel; (c) complete surface.

definition that we rely on for the rest of the paper before
discussing alternatives in Section 7.

We start with a few definitions that can be followed
along in Fig. 12. The positive height value hi,j defines a
surface point pi,j above the center ci,j of the texel located
at the integer coordinates (i, j). We define two sets of
lines: the x-centerlines (y-centerlines) parallel to the y-
axis (x-axis) and passing through the texel centers. This
network of lines creates square cells that we refer to as
inter-texels. For the sake of simplicity, we will use these
expressions also for their extension along the z-axis.
Consequently, we say that a ray intersects a centerline, if
its projection in the x,y-plane does. Similarly, a 3D point
is said to be located in an inter-texel, if its projection is.

The surface S is a triangular mesh defined by the pi,j
vertices2. Above each inter-texel are exactly two trian-
gles. There are two options for the common diagonal
edge: our surface is defined by always taking the lower
one (Fig. 12(b)). The resulting surface S is the graph of a
continuous height function h, concave in each inter-texel.

5.2 Accurate rendering algorithm

The rendering is performed entirely on the GPU using
a ray-casting fragment shader. A polygonal bounding
volume V is used to initialize view rays from the eye.
The challenge is to compute the first intersection of this
ray with S encoded in a 2D texture, the so-called height
map.

5.2.1 Naı̈ve algorithm
The simplest way to find the first intersection consists
in traversing successive inter-texels (as illustrated in
Fig. 13). More precisely, a testing point p is shifted
along the ray, stopping at each x- or y-centerline. Here,
its corresponding height pz is compared to the surface
elevation h(pxy). The marching stops when p passes
below the surface, i.e. when pz 6 h(pxy), which indicates
that an intersection occured. Because our defined height
function is concave in each inter-texel, the intersection
point has to lie inside the last traversed inter-texel, i.e.
between the two last test positions. Finding the inter-
section amounts to testing against the inter-texel’s two
triangles.

2. We discuss other surface definitions in Sec. 7
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Fig. 13: Successive steps of the naive marching algorithm.

The grid traversal algorithm by Amanatides and
Woo [20] provides an efficient way to update the test
positions. Along a given ray, there exists a constant
translation vector δu (δv) to jump from one x-centerline
(y-centerline) to the next one (Fig. 13, top right). To
determine successive test positions in the correct order,
these two separated sets of centerline intersections need
to be considered in an interleaved fashion.

Concretely the algorithm works as follows: A first
initialization stage places p on the first intersected cen-
terline. From here, we keep track of two step points u, v
which represent the intersection with the next x-, y-
centerline, respectively. During the marching stage the
test position p is shifted to the closest amongst u and v.
The chosen step point is updated using its corresponding
translation vector and the process is reiterated.

An interesting property of our surface definition is
that above centerlines, the triangulated surface matches
a bilinear interpolation (and usually only there): as p
is always located on a centerline, the surface elevation
h(pxy) can be determined via a bilinear texture lookup
in the height map.

This algorithm requires 2N iterations in the worst case,
which can become costly for very large height maps.

5.2.2 Improved algorithm
To reduce the number of steps in the algorithm, we are
inspired by approximate solutions that rely on fast root
finding and precomputed data (whose computation is
detailed in Section 6). The latter will enable bigger steps
during the marching phase, but ensures that only one
surface intersection occurs between two successive test
positions. Under such conditions, the bisection method
delivers the accurate intersection point.

We start by associating the ray to one of four sets
(Rx+, Rx−, Ry+, Ry−) depending on its direction. These

i=2 

i=4 

i=9 

cross-section view 

top view 

binary search 
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3 4 
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Fig. 14: The improved algorithm: the three first steps
fetch a value i from the precomputed safety distances
map to jump on x-centerlines, the fourth step falls below
the surface, which switches to the bisection phase.

four sets indicate the axis in the x, y-plane that the ray’s
direction mainly follows. E.g., let r(t) := o+ td be a ray,
then r ∈ Rx+ iff dx > |dy|.

In a preprocess, we derive a 2D texture for each of
the four ray sets, defining for each texel of the height
map an integer value called safety distance that we use
to accelerate the marching phase.

In the marching phase, test positions will always be
located on one type of centerline (x-centerlines for Rx+∪
Rx−, y-centerlines for Ry+ ∪ Ry−). In the following, we
will assume that the ray we trace is in Rx+ ∪ Rx−.

The algorithm is illustrated in Fig. 14. Initially, from
the ray’s origin, we advance exactly as for the naive
algorithm, until we reach the first x-centerline (Pos. 1 in
Fig. 14). Here, we will start the real marching process,
we fetch the safety distance value i corresponding to
the current test position p from the precomputed data,
then advance by i x-centerlines. The new position p+iδu
is located again on an x-centerline and we reiterate the
process.

In the special case that i is zero, we proceed as for the
naive algorithm and advance to the next x-centerline: if
a y-centerline is crossed between p and p + δu (it can
happen at most once because the ray is in Rx+ ∪ Rx−),
an extra test is performed.

The marching stops when the test position is below S.
We then use the bisection method between the two last
test positions to determine the precise intersection. Here
again, the bisection is restricted to x-centerlines, which
is achieved by dividing the search interval at integer
positions only. The bisection stops when the two last
test positions are exactly one x-centerline apart. Again,
because the ray is in Rx+∪Rx−, the interval spans at most
two inter-texels, leaving at most four separate triangles
to test (Fig. 14, insets).

6 PRECOMPUTATION

The previous section presented an efficient ray marching,
but relied on a precomputed safety distance whose accu-
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Fig. 15: Limiting triangle: (a) a ray hitting the back face
of T is found, making it a limiting triangle; (b) T is not
limiting as any ray leaving above h(s) sees his front face.

rate and efficient computation will be investigated in this
section. We then show how we can improve these pre-
computed values while maintaining rendering accuracy
if we have prior knowledge about the viewpoints from
which S will be observed. Finally, we generalize this
acceleration data and describe a hybrid cone-cylinder
safety shape to achieve further speedups.

6.1 Simple safety distance

We will focus on the class Rx+, but by rotation of the
height field, the description applies to the other ray
classes too.

Let’s focus on a specific texel τ of the height map.
Please remember that for rays in Rx+, the marching algo-
rithm only stops on x-centerlines. We call sτ the segment
that is the intersection of the x-centerline through τ with
τ itself. The curve on S whose footprint is sτ will be
referred to as h(sτ ). We need to consider all rays in Rx+

passing through a point p above h(sτ ) (i.e. , pxy ∈ s and
pz > h(pxy)). Let i be the safety distance that we want to
compute, then the bisection method is exact only if the
ray cannot pierce S twice between p and q := p + iδu.
In other words i should be less than the distance to
the second intersection of the ray with S. Hence, i can
be defined as the largest integer value such that this
condition holds for all rays in Rx+ passing above h(sτ )
(we denote this set Rx+

τ ).
A simple solution is to sample this four-dimensional

set of rays, but this is costly and inaccurate. Instead,
we consider all discrete triangles of S and compute i
accurately. Some observations will help us solve this
problem.

Our main observation is that the safety distance is
bound by special triangles of S that we call limiting
triangles. A triangle T is said to be limiting iff there exists
a ray r ∈ Rx+

τ hitting its back-face (Fig. 15).
It can be shown that the safety distance i is given by

the closest limiting triangle. More precisely, we show
that if k is the smallest integer such that there exists
a limiting triangle T between x-centerlines at distance k
and k + 1, then i = k.

Indeed, let r ∈ Rx+
τ be a ray hitting the back face of

T at a point p. Because S is continuous, p is at least the
second intersection of r with S. Thus, i 6 k (Fig. 16).

ta k k+1 

T
plane of T 

b 

Fig. 16: Limiting triangles bound the safety distance: (a) a
ray hitting the back face of a limiting triangle necessarily
crosses the surface earlier, so that the safety distance is
less than or equal to k; (b) safety planes for each of the
four ray classes (limiting triangles are shown in red).

Conversely, there exists a ray r ∈ Rx+
τ whose second

intersection p is located strictly between the x-centerlines
at distances i and i + 1 (otherwise the safety distance
would be at least i + 1). As p is a second intersection,
it necessarily belongs to a triangle T ′, back-facing for r.
By definition, T ′ is a limiting triangle, located between
x-centerlines at distance i and i+1. It follows that i > k.

Following this observation, we compute the safety
distance by traversing S’s triangles in increasing distance
from τ and stopping at the first limiting triangle. Only
the subset of triangles reachable from h(sτ ) by a ray in
Rx+

τ needs to be considered (Fig. 17(a)).
Remains the question of evaluating wether a given

triangle is limiting or not. This can be done very simply
using the following equivalent definition: a triangle T
is limiting iff there exists a ray r ∈ Rx+

τ crossing it and
lying in its plane PT (such a ray will be called a limit
ray). Equivalence of the two definitions follows from the
observation that a limit ray can always be tilted into a
ray intersecting the back-face of T , and vice versa.

Consequently, testing whether a given triangle T is
limiting can be done by comparing h(sτ ) with PT . Let’s
call στ,T the segment in PT above sτ from which rays
in Rx+ cross T (usually the vertical projection of sτ onto
PT , but not always, see Fig. 17(b)). Then T is a limiting
triangle iff στ,T contains a point strictly above S.

Because sτ is on a centerline, h(sτ ) consists of two
meeting segments. Consequently, three points at most of
στ,T need to be tested: its two extremities and the point
above the center of sτ (Fig. 17(c)).

The simplicity and parallelizability of the resulting
algorithm (one value per texel, all computations being
independent) allow us to implement it on the GPU,
leading to small precomputation times (Sec. 8).

6.2 Restriction to exterior rays

The previous computation did not impose any restric-
tions on the rays, i.e. we considered arbitrary rays ema-
nating from above the surface. However, in many situ-
ations this set of rays can be narrowed down, implying
larger safety distances (Fig. 18), hence, faster rendering.

As already discussed (Sec. 3), the most common as-
sumption is that the viewpoint remains outside the
height field’s bounding volume, i.e. , view rays are
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Fig. 17: Limiting triangles: (a) the ±45◦ quadrant leaving
from sτ defines possible locations of limiting triangles;
(b) definition of στ,T in a case where it does not entirely
cover sτ ; (c) here a point of στ,T above S exists, thus T
is limiting (a limit ray leaves this point).
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Fig. 18: Advantage of visibility restriction: (a) the safety
distance defined for any ray is smaller than (b) the one
for exterior rays only.

exterior rays (such as those to test for shadows by an
exterior light source).

To make use of such restrictions, we will no longer
consider all rays in Rx+

τ , but restrict ourselves to those
that are exterior. This operation usually requires visi-
bility computations involving high dimensionality and
complex constructs [31]. For our specific context, we
propose a simple and accurate solution.

We keep the basic algorithm unmodified: we process
the triangles by increasing distance until a limiting tri-
angle is found. Only, this time the definition of limiting
will take the reduced ray set into account.

Denoting the limit rays of a triangle T as Lτ,T , we
will reduce this set to Lext

τ,T . The latter will only contain
exterior rays in Lτ,T that do not intersect the surface S
before reaching sτ . Only if Lext

τ,T is not empty, the triangle
is limiting.

6.2.1 Testing for Limiting Triangles

The difficulty of properly handling Lext
τ,T resides in its

5D nature. However to evaluate limiting triangles, only
a 2D subset needs to be dealt with.

First, we consider oriented lines instead of rays be-
cause exterior rays cannot have intersections before their
origin (i.e. they can be arbitrarily translated backwards),
which eliminates one dimension. In the following we
will, hence, use the terms line and ray interchangeably.

Second, all limit rays of triangle T lie in PT , which
eliminates two more dimensions. Therefore, we only
need to deal with the two-dimensional set of oriented
lines contained in PT .

Practically, continuous sets of 2D lines can be manipu-
lated algebraically using a 2D parametrization. Each 2D
line is thus represented by a point in this 2D dual space,
where two helpful properties hold:

1) the set π(b) of lines intersecting a segment b covers
a 2D polygonal area;

2) the set πx+ of lines corresponding to rays from Rx+

also covers a 2D polygonal area.
These properties reduce the computation of Lext

τ,T to a
sequence of 2D polygonal CSG operations.

Before detailing the dual space, we can already de-
scribe how our visibility algorithm determines if a tri-
angle T is limiting: In PT , we consider only the rays
in Rx+. Further, we restrict the ray set to those above3

sτ . This amounts to an intersection: π(sτ )∩ πx+. Out of
these rays, we want those that intersect T , i.e. passing
through one of T ’s edges (ti)i=1,2,3. The set of rays
passing through the edges is the union π(T ) :=

∪
i π(ti)

(for a 2D triangle, two out of the three edges are suffi-
cient to define π(T )). Our ray set is then initialized as
R := π(T ) ∩ π(sτ ) ∩ πx+. All these sets are polygonal
areas in dual space, the intersections can thus be handled
geometrically.

To obtain Lext
τ,T from R, we must exclude interior rays,

i.e. those stopped by S before reaching T . Potential
blockers are the segments (bk), found at the intersection
PT ∩ S and strictly before sτ . Removing blocked rays
requires a subtraction for each blocker bk: R← R\π(bk).
At the end of this process, R is a representation of Lext

τ,T :
T is a limiting triangle iff R ̸= ∅. In the case where R
is not empty, a limit ray, i.e. an exterior ray contained in
PT , can be disclosed by simply picking a point from R.

Next, we will detail use of the dual space which makes
the solution practical. Finally, we explain how to avoid
numerical issues and enable efficient computations in
dual space, how to integrate other visibility constraints,
and how to accelerate the entire precomputation.

6.2.2 2D Line Duality

Let ℓ be a line in PT , non-orthogonal to the x axis. It
can be represented in a unique way by a 2D point (u, v)
in dual space where (0, u) and (1, v) are its respective
intersections with the planes of equations x = 0 and
x = 1. This is a two-dimensional equivalent of the paral-
lel slabs parametrization commonly used for light-fields
[32], whose interesting properties have been studied and
exploited to address 2D visibility problems [33], [34].

The benefit of using this parametrization comes from
the underlying duality between lines and points. By
definition, a line ℓ in primal space is represented by a
point π(ℓ) in dual space.

Our rays in Rx+ map to points (u, v) in dual space
such that |v − u| < 1, covering a polygonal area πx+ in
the form of an unbounded slanted stripe (Fig. 19).

3. To simplify notations, we will use π(sτ ) in place of π(s′τ ), where
s′τ is the vertical projection of sτ onto PT .
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Fig. 19: Dual parametrization of 2D lines.

Fig. 20: Potential blockers (orange) for rays going from
s to T are found in the shaft-like shape (green).

As indicated before, we are further interested in sets
of lines intersecting segments. Let s be a segment in
primal space, and let p be a point on s. The pencil of
concurrent lines meeting at p corresponds to the set of
dual points π(p) := {π(ℓ) / ℓ ∋ p}. It is a line in dual
space. Consequently, the dual set of all lines passing
through s is π(s) =

∪
p∈s π(p). It can be shown that these

lines all meet in a point q = π(ℓ), where ℓ is the line
containing s. In the special case where s is orthogonal to
the x axis, the corresponding dual lines are parallel (q is
at infinity).

Now, it can be seen that our algorithm does not need
to handle unbounded polygons: the set of rays in PT

crossing sτ and belonging to Rx+, i.e. π(sτ )∩πx+, covers
a parallelogram in dual space (Fig. 19).

6.2.3 Blocker traversal
To test for a limiting triangle, we treat its segments in-
dependently. For each, the initial rayset R is represented
by one or two convex polygons. Whenever we subtract
a blocker from a convex polygon, it results in one, two
convex polygons, or an empty set. This follows from the
particular shape of π(b), the dual of a blocker segment
b (Fig. 19). Operations on convex polygons are very
simple, which makes the whole process efficient.

To achieve further acceleration, we scan the triangles
of S for blockers by decreasing x-coordinate and only
consider those in the shaft of rays going from sτ to T .
(Fig. 20).

6.2.4 Basic computations
Although our algorithm conceptually works in dual
space, an explicit conversion is actually not needed

x 
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v 
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4 3 
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b d 
c 
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f 
e (u,v) f(0,u) 

(1,v) 

Fig. 21: Accurate rayset computation in the dual
parametrization: (1) initialization with rays hitting
[ab], directed between α = (1,−1) and β =
(1, 1): R0 ← π([ab]) ∩ πx+ =(a, α, b, β); (2) re-
moval of rays blocked by [cd]: R1 ← R0 \
π([cd]) =((a, c, d, β), (a, α, b, c, d)); (3) further with [ef ]: R2 ←
R1 \ π([ef ]) =((a, c, d, β), (d, f, b, c), (a, α, b, e, d)); (4) a point
(red) in the residual dual area discloses a ray from Rx+

hitting [ab] wihout hitting [cd] and [ef ].

because a convex polygon can be equally represented
by a list of points or a list of half-planes. By duality,
representing a dual half-plane can be done using a single
primal point: given a point p and a line ℓ in primal space,
determining the side of the line π(p) that the point π(ℓ) is
located on, is equivalent to determining this relationship
for ℓ and p.

Thus a convex dual polygon can be represented by
an ordered list of primal points. The advantage is that
now intersection operations become simple list-splitting
operations (Fig. 21). Another advantage is that we can
avoid numerical issues that can usually arise from dual-
ity transforms because the rayset R is now represented
by a subset of the original vertices of the blockers and
those of T . Only the two half-planes forming πx+ map to
points at infinity in primal space (i.e. directions (1,−1)
and (1, 1)). Homogeneous coordinates spare a specific
treatment of this case.

6.2.5 Other visibility restrictions

For now we showed how to take self-occlusions of S
into account to optimize safety distances. Other cases
exist where visibility restrictions are known a priori.

The first case consists in occlusions due to other objects
of the scene. As our algorithm handles any kind of
polygonal blocker, it can be used unmodified to benefit
from occlusion by static polygonal objects surrounding
the height field.

The second case concerns restrictions on the viewing
angle. For example, if a height field is used to represent
details of a floor, the viewpoint will usually stay above
some known altitude, so that an angle ϕmax bounds the
slope of viewing rays. Such a constraint is also easily
handled by our visibility algorithm, as shown next.

Remember that we only consider rays included in PT .
If n is a normal vector for PT pointing upwards, then the
minimum slope is found along direction nxy (Fig. 22(a))
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Fig. 22: Viewing angle restriction: (a) intersection of PT

(with normal n) with a cone of slope t = tanϕmax

defines a restricted angular sector; (b) 2D projection of
this angular sector: θ0 is the direction of the projection of
n; (c) this corresponds to two half-planes in dual space.

and the general slope along direction θ is:

s(θ) = −α cos(θ − θ0) with n =

α cos θ0
α sin θ0

1


Let t := tanϕmax and dθ := arccos− t

α , then the bounded
slope constraint can be expressed as:

s(θ) < t ⇐⇒ t > α or
{
−α < t < α
θ0 − dθ < θ < θ0 + dθ

Thus, restricting rays included in the plane to those
whose vertical angle is lower than ϕmax (i.e. whose slope
is lower than t) amounts to at most two additional half-
plane intersections in dual space (Fig. 22(c)).

6.2.6 Global visibility precomputation
To accelerate the precomputation, one can avoid redun-
dant computations. First note that for a given triangle
T , the rayset Lext

τ,T needs to be computed for each texel τ
that “sees” it with a direction in Rx+. For two such texels
τ1 and τ2, the only difference between computations of
Lext
τ1,T

and Lext
τ2,T

is the intersection with their respective
x-centerline segments s1 and s2. Thus for each triangle
T we can precompute:

RT = πx+ ∩ π(T ) ∩
∩
k

π(bk)

thereby performing the costly blocker traversal only
once. Then, Lext

τ1,T
and Lext

τ2,T
are efficiently obtained by

intersecting RT with π(s1) and π(s2) respectively. This
solution requires the storage of RT for each triangle of S.
Its size is bounded by the number of blockers bk, i.e. the
number of triangles of S intersecting PT . Because only
visibility events (silhouettes) remain in RT , only a very
small number of vertices are left on average (typically
less than five vertices per triangle), making this solution
feasible even for very large height fields.

6.3 Improved safety volume
In the previous section, we showed how to compute a
safety distance in order to accelerate the ray marching.
More generally such a distance can be understood geo-
metrically: for each ray set, it defines a bounding plane

r 

b a 

c 

Fig. 23: Safety shapes from limiting triangles: (a) limiting
triangles (red) for texel τ and associated limit rays
(orange); (b) safety distance (cylinder); (c) general safety
shape empty of limiting triangles.

orthogonal to the corresponding axis. If we assume the
same distance for all ray classes, we obtain a (square)
cylinder. Alternatively, any other delimiting shape could
be used, as long as it demarcates a volume empty of
any limiting triangle (inside such a shape, a ray cannot
cross S twice, Fig. 23). Nevertheless, there is a trade-off:
a complex shape might give better safety distances, but
marching and even storage can become issues. Here, we
will introduce a new shape (Fig. 24) that increases the
complexity of the intersection test insignificantly, while
leading to a drastic performance increase.

The strongest limitation of the safety distance is that
it gives the same bound for all rays, regardless of their
position above a given texel. So at a location where S
has a tiny but sharp bump, the safety distance will be
small, forcing rays, even high above the surface, to slow
down (Fig. 23(b)).

Previous work [29], [30] suggest the use of cones, as
they provide larger distances for rays far off the surface
(Fig. 23). However, as already mentioned (Sec. 3), these
have an important drawback: the safety distance for
rays approaching the surface converges to zero, which
slows down the marching process and even prevents to
eventually reach a point below the surface. For cylinders,
a ray close to the surface quickly passes underneath, thus
ending the marching process. Our idea is to combine the
best of the two solutions.

6.3.1 Hybrid cylinder-cone shapes
To take advantage of cones, while still maintaining the
accuracy and advantages of cylinders, we propose a
hybrid shape, parametrized by three values: a radius r,
a base height zc and a slope sc (Fig. 24(b)) for each ray
direction class. The shape is defined by a perpendicular
(cylinder) and a slanted (cone) plane.

The memory cost increases slightly (three instead of
one value per texel). Nevertheless, the gain due to
the large step reduction makes this solution favorable
(Sec. 8). Especially, as we can derive an efficient expres-
sion to compute the safety distance for our hybrid shape
at position p:

i = max

(
r,

⌊
max (pz − z0, 0)

sc − sd

⌋)
with

{
z0 = zc − r×sc
sd = δuz | δvz
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Fig. 24: Hybrid cylinder-cone safety shape: (a) the three
parameters; (b) example in 3D.

6.3.2 Computation
To compute the hybrid shape parameters (as illustrated
in Fig. 24b) ) for a specific texel τ and the ray set Rx+, we
start by determining the safety distance r as described in
Section 6. The second step is to compute the parameters
for the slanted plane zc and sc. This plane has to stay
above all limiting triangles for τ that are further than r.

Given the safety distance r, we chose zc as the maxi-
mum height of the triangles at distance r to τ . This leaves
us with a single degree of freedom: the slope sc. For
such a slanted plane, we find the smallest value of sc
such that all limiting triangles stay below the slanted
plane. Experiments with other heuristics showed that
this choice (i.e. fix zc and then minimize sc) usually yields
the best results in terms of rendering speed.

Unlike the computation of the safety radius, the first
limiting triangle does not necessarily define the mini-
mum slope. Testing all relevant triangles can be costly.

Accelerating computations
If precomputation time is an issue, the slope of the
slanted plane can be conservatively approximated. In-
stead of individually testing each triangle, we neglect
visibility and assume that all triangles beyond the safety
distance r are limiting. For cones, this makes little differ-
ence in terms of rendering efficiency (Sec. 8), and allows
us to accelerate the computation drastically.

To this end, we scan increasing integer abscissas x
starting from r, and determine the maximal height h̄(x)
of vertices on S located at abscissa x and reachable by
rays in Rx+ leaving above sτ . The values of h̄(x) are
used to compute the slopes s(x) = (h̄(x) − zc)/(x − r)
whose maximum is kept as sc.

i 

j T
3
(i

,j)
 

T
3
(i

,j+
5

) 

Reading all height values for a given ab-
scissa x can be avoided using a modified
version of N-Buffers [35]. This structure is
derived once in a GPU preprocess. We com-
pute log(N) textures Tl (l ∈ {1.. log(N)}), each
with a resolution of N2. Each texel (i, j) of the
lth texture contains the maximum of a 2l × 1
window along the y-axis:

Tl(i, j) := max
k∈{0..2l−1}

{h(i, j + k)}

The construction of these textures is done
recursively. Each texture is constructed with
only two lookups from its predecessor. With
these textures, h̄(x) can be obtained with

Fig. 25: Possible reconstructions for a 252 height field.

only two lookups, chosen such that their corresponding
windows cover the values that need to be tested. This
makes the algorithm well-suited for the GPU.

7 ADDITIONAL ACCELERATIONS

Surface definition: The previous sections presented a
new rendering algorithm and an efficient precomputa-
tion. One decision we made in the beginning concerned
the surface definition and we will discuss this aspect
here.

The choice of how to interpret the height-field samples
was based on two interesting properties: the function
remains concave in an inter-texel, allowing us to restrict
test positions on centerlines. At centerlines, we can fur-
ther rely on hardware-supported bilinear interpolation.

One could object that the “natural” (smoother) surface
definition is an actual bilinear interpolation, which is of-
ten (more or less accurately) used in previous techniques.
In fact, this definition gives a G1 quadric surface inside
each inter-texel (whereas two triangles only have G0

continuity), but only G0 on centerlines, which prevents
its use to represent smooth surfaces with a few texels.
Higher-order interpolation (e.g. bicubic interpolation)
would be needed, implying a costly ray-intersection
test [36]. As shown in Fig. 25, bilinearly interpolated
height fields require high resolution to produce sharp
smooth ridges for which the triangular mesh definition
can be similarly faithful.

It is also important to note that the smooth appearance
is comes actually from shading based on the normals.
Here again, bilinear interpolation yields discontinuous
surface normals (hence, discontinuous shading) at cen-
terlines. For a smooth surface, normals need to be de-
fined separately (e.g. in a precomputed normal map,
whose resolution can differ from the height map), but
then, only silhouettes matter. These are usually similar
because differences appear only if a ray intersects the
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Fig. 26: View-dependent linear approximation of the
height map along the viewing direction: in each texel,
this corresponds to a continuous view-dependent sur-
face, made of two triangles and one quadric patch.

quadric without being below the surface when travers-
ing the centerlines.

Here, we propose an alternative surface interpreta-
tion which exploits these findings and delivers a view-
dependent definition that simplifies the intersection test.

The new surface is defined as follows: on centerlines,
the height still matches bilinear interpolation. But be-
tween successive centerlines we assume a linear vari-
ation along the view ray. Hence, the surface itself is
view-dependent. As shown in Fig. 26, it implies that
each inter-texel is decomposed into three continuously
connected surface pieces: two triangles and one quadric
patch. The defined surface is continuous both spatially
and with respect to the viewpoint position (or the light-
source position for shadow rays). This surface has the
same silhouettes as our triangle definition and shares its
properties needed for our precomputations. The advan-
tage is that the final intersection test with two triangles
can be replaced by a simple linear-segment intersection,
which is significantly faster (Sec. 8).

Although view-dependence might seem like a poten-
tial source of visual artifacts, only in rare pathological
cases it becomes visible. Typically, such cases lead to
even stronger artifacts with competing methods. The
accompanying video illustrates these points. The gain
of this approximation is roughly 6%.

Strictly positive safety distance: If small artifacts are
acceptable, an acceleration maintaining high visual qual-
ity is possible. The most costly element of our algorithm
is the treatment of zero safety distances because they
result in local intersection tests that imply branching
in the marching loop, impairing parallelism. Forbidding
zero values (i.e. clamping safety distances to one) avoids
this behavior while the quality loss is minimal. Only
silhouettes at sharp height-field discontinuities (Fig. 27)
are slightly affected. The performance gain makes it a
useful choice in practice.

8 RESULTS AND DISCUSSION

In this section, we analyze the performance and quality
of our approach. We explained how a distinct safety
distance (SD) or hybrid cylinder-cone (CC) shape is
computed for each of the four ray classes. A conservative
approximation consists in keeping only the minimum of

s
a b c

Fig. 27: Handling of null safety distances: (a) a zero
safety distance is affected to the shown texel, requiring
at most two simple iterations to escape from it without
missing intersections; rendering (b) without and (c) with
clamping of safety distances to value one (notice the
small artifacts on sharp edges in the latter case).

Fig. 28: The four variants of safety shapes: (a) isotropic
safety distance; (b) isotropic cylinder-cone; (c) directional
SD; (d) directional CC.

the four directional shapes (Fig. 28). The required storage
is divided by four (i.e. one value for SD, three values for
CC), but using four directional shapes instead of a single
isotropic one increases performance by 20%, hence, this
option provides an interesting trade-off between storage
and rendering speed. Applying the just-mentioned sur-
face definition results in an average speedup of 6%. For a
fair comparison, the following results use only isotropic
shapes and the triangle-surface interpretation.

Fig. 29 summarizes the performance of several vari-
ants of our algorithm against competing methods, mea-
sured on a 5122 height field (Fig. 30) covering all pixels
of a 1280 × 1024 screen using a GeForce GTX 285. Ap-
proaches without precomputation are either very error-
prone (linear search (LS) [21], or much slower (minmax
mipmaps (MM) [23]) and can result in less performance
than our accurate naive algorithm (NA) (Sec. 5.2.1). In
particular, minmax mipmaps proved less efficient even
for textures of a resolution beyond 40962.

Higher performance is obtained with methods using
precomputation. The only competing method (relaxed
cones (RC) [30]) requires tuning the fixed number of
marching steps to a small value to achieve performance
similar to ours, thereby increasing rendering artifacts,
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Fig. 29: Timings: MM [23], NA (our naive solution),
LS [21], RC [30], SD (our safety distance), CC (our
cylinder-cone). For LS and RC, numbers denote march-
ing iterations. For SD and CC, ϕmax is taken as 90◦ if
not specified (i.e. no viewing angle restriction); d > 0
corresponds to the strictly positive distance assumption
(Sec. 7). Dashed boxes denote situations where rendering
artifacts are too strong to allow usefulness. For each bar,
the three stair levels correspond to height-field resolu-
tions 2562, 5122 and 10242.

Fig. 30: The 5122 height field used for performance
comparison, rendered here with shadows, using our
accurate technique.

while our technique remains accurate in all situations
(only the additional no-zero-radius strategy approxi-
mates some silhouettes). The accompanying video shows
that even with 35 iterations the RC method has too many
artifacts for close-ups which makes it problematic to use
for high-resolution height fields (see Sec. 3).

Table 1 shows computation times and rendering per-
formance obtained for several variants of our precom-
putation. Exact computations involving visibility run on
the CPU while conservative approximations are imple-
mentable on the GPU, leading to significantly smaller
computation times. We first notice that addition of vis-
ibility has a higher influence on safety cylinders than
on the hybrid cone-cylinder shape. For both shapes, an
additional angular viewing constraint of ϕmax = −45◦
improves rendering efficiency significantly, in which case
the influence of visibility becomes negligible. It must
be noted that even if not theoretically guaranteed, even
below ϕmax, artifacts remain very limited and less no-
ticeable than for most competitors.

The most costly precomputation involves exact visibil-
ity. As it gave results in reasonable time we did not try
to optimize it further, though it could probably be much
faster using appropriate geometrical structures (notably
for the blocker search). However, if precomputation time

TABLE 1: Precomputation times and rendering perfor-
mance for various cases: cylinder with all rays (cylall,
CPU) or exterior rays only (cylext, GPU), cone computed
with all rays, i.e. with our N-Buffers solution (coneall,
GPU), or exterior rays only (coneext, CPU). Framerates
are given without viewing restriction (left) and with a
max. viewing angle of ϕmax = −45◦ (right). Blue lines
indicate good trade-offs between rendering speed and
precomputation time.

safety shape
computation (s) rendering (Hz)

2562 5122 10242 2562 5122 10242

cylall 1.8 7.1 15.2 304 / 445 190 / 284 85 / 145
cylext 14 109 1197 358 / 450 214 / 290 109 / 147

cylall+coneall 1.9 7.3 16.1 548 / 608 444 / 492 313 / 341
cylext+coneall 14.1 109 1198 563 / 612 450 / 497 316 / 348
cylext+coneext 143 1809 24111 573 / 629 461 / 514 326 / 358

is an issue, our conservative approximation using n-
buffers, coupled with a safety distance ignoring visibility
(but still possibly assuming a ϕmax bound) can be fully
implemented on GPU, and computes results which are
close to reference, in less than one second. It must be also
noted that our exact visibility algorithm is already faster
than a sampling solution [19] for ordinary height fields
(and height fields can be designed for which sampling
always fails, whatever the density used). As an indicator:
a sampling with 8 positions on sτ and 256 angular
directions for a 5122 texture, leads to the same rendering
performance, but results in artifacts. The sampling-based
precomputation was roughly 10 times slower than our
solution, even for a fairly optimized implementation.

One final interesting comparison is the use of a stan-
dard mesh to render a height field. At a height-map
resolution of 10242 and full screen (1280 × 1024) ray
casting, our CC approach reaches 395 fps, compared to
170 fps for a standard rendering (i.e. using vertex buffer
objects, with 2 triangles per texel of the height map).

Note that the bisection could be replaced by any
dichotomous search (e.g. regula falsi [22], [37]), but the
intersection-test intervals produced by our marching
phase are small, making performance gains difficult.

9 CONCLUSION

This paper presented a novel height-field-rendering so-
lution. We achieve high performance, while remaining
accurate. The approach gives further insight into height-
field rendering. We presented a method to efficiently
integrate visibility into the preprocess. The precomputa-
tion is comparably fast and in many situations we out-
perform previous suggestions by several orders of mag-
nitude. This makes the approach practical and height-
field surfaces a very attractive rendering primitive.
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