
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Accelerating hyperbolic t-SNE
Martin Skrodzki , Hunter van Geffen, Nicolas F. Chaves-de-Plaza ,

Thomas Höllt , Elmar Eisemann , and Klaus Hildebrandt

Abstract—The need to understand the structure of hierarchical or high-dimensional data is present in a variety of fields. Hyperbolic
spaces have proven to be an important tool for embedding computations and analysis tasks as their non-linear nature lends itself well
to tree or graph data. Subsequently, they have also been used in the visualization of high-dimensional data, where they exhibit
increased embedding performance. However, none of the existing dimensionality reduction methods for embedding into hyperbolic
spaces scale well with the size of the input data. That is because the embeddings are computed via iterative optimization schemes and
the computation cost of every iteration is quadratic in the size of the input. Furthermore, due to the non-linear nature of hyperbolic
spaces, Euclidean acceleration structures cannot directly be translated to the hyperbolic setting. This paper introduces the first
acceleration structure for hyperbolic embeddings, building upon a polar quadtree. We compare our approach with existing methods and
demonstrate that it computes embeddings of similar quality in significantly less time.
Implementation and scripts for the experiments can be found at https://graphics.tudelft.nl/accelerating-hyperbolic-tsne.

Index Terms—Dimensionality reduction, t-SNE, hyperbolic embedding, acceleration structure.

✦

1 INTRODUCTION

The analysis of high-dimensional data is of major impor-
tance for a wide range of applications across many industry
and research fields. Dimensionality reduction is a key part
of processing pipelines to visualize and analyze such data,
which has recently been demonstrated in the application
settings of sports [55], literature search [38], machine learn-
ing [54], and e-commerce [59]. Effective embeddings of
data points preserve structures in the data set, such that
a visual inspection of the low-dimensional embedded data
can help to gain insights into the structures of the high-
dimensional data. A widespread technique to create such
embeddings is t-distributed stochastic neighbor embedding
(t-SNE) [51]. It is popular because t-SNE preserves local
neighborhoods particularly well when embedding the data,
see Section 3. Most dimensionality reduction algorithms tra-
ditionally embed data into flat, Euclidean space. This misses
the opportunities provided by other embedding spaces, like
negatively curved, hyperbolic spaces.

Hyperbolic spaces already find applications in the em-
bedding of trees, graphs, and other hierarchical data. For
example, it is possible to embed trees into two-dimensional
hyperbolic space with arbitrarily low distortion [48]. By
this property, previous works have successfully embedded
social networks [52] or the Internet [6] into hyperbolic
space. Furthermore, hyperbolic spaces exhibit a natural
Focus+Context view of the data [32], [37], which significantly
increases information foraging [43]. Finally, it has recently
been suggested that hyperbolic spaces are suitable for navi-
gating higher-dimensional spaces directly [29].

Given the utility of hyperbolic spaces for the visualiza-
tion of hierarchical data, several methods have been pro-
posed to translate t-SNE to work in hyperbolic space [19],

• Corresponding author: Martin Skrodzki, mail@ms-math-
computer.science. Shared first authorship with Hunter van Geffen.

• All authors are affiliated with TU Delft, The Netherlands.

[25], [60]. These adaptions have shown great potential, when
used, for instance, in visualization, clustering, lineage detec-
tion, and pseudotime inference tasks [25]. We will discuss
these in detail in Section 3.1. Although they all create useful
embeddings of high-dimensional data in hyperbolic spaces,
solving their respective optimization problems is costly
compared to methods that embed into Euclidean space.

The long optimization run time in hyperbolic spaces
is mostly because accelerations for the computation of
Euclidean embeddings are not directly effective for em-
beddings in hyperbolic spaces. For Euclidean embeddings,
state-of-the-art implementations make use of acceleration
methods [34], [42], [46], [50], which have been developed
over the last years to speed up the processing, see Sec-
tion 3.2. However, contrary to flat Euclidean spaces, hyper-
bolic spaces exhibit negative curvature. One consequence
is that the circumference and area of a circle in a two-
dimensional hyperbolic space grow exponentially with its
radius, while they grow polynomially in Euclidean space
[30]. On the one hand, these properties make hyperbolic
spaces well-suited for the embedding of structures that also
grow exponentially. On the other hand, it also leads to
the lack of linear interpolation or averages in these non-
linear, hyperbolic spaces. Euclidean acceleration structures,
including those listed above, rely on these properties and
can thus not be translated directly for use in hyperbolic
spaces. For example, the Barnes-Hut scheme [50] accelerates
the optimization by building a quadtree on the embedding
space. Here, equal-sized quadrilaterals form the nodes of
the tree and their midpoints act as accelerating proxies. In
hyperbolic spaces, no direct analog of such a tree can be built
due to the exponential growth and non-linear properties of
such spaces. Instead, existing approaches for hyperbolic t-
SNE turn to sampling the data in order to compute the
embeddings within a reasonable time frame. This limits the
visualization of the data to only a limited portion of the
input.

This paper introduces the first acceleration structure

ar
X

iv
:2

40
1.

13
70

8v
1

 [
cs

.H
C

]
 2

3
Ja

n
20

24

https://orcid.org/0000-0002-8126-0511
https://orcid.org/0000-0003-4971-3151
https://orcid.org/0000-0001-8125-1650
https://orcid.org/0000-0003-4153-065X
https://orcid.org/0000-0002-9196-3923
https://graphics.tudelft.nl/accelerating-hyperbolic-tsne

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

for hyperbolic embeddings. We use a polar quadtree [35],
designed to operate in hyperbolic spaces. However, we find
that the data structure needs to be adjusted to the specific
setting of embeddings by changing its build procedure to
provide a reliable speed-up of the optimization. Based on
this modified data structure, we proceed to formulate an
approximation of the cost function gradient used in the
optimization of hyperbolic t-SNE embeddings. By analyz-
ing the gradients of current state-of-the-art approaches for
hyperbolic embeddings [19], [25], [60], we show that our
acceleration technique can be adjusted to their respective
needs. Thus, it is a versatile building block for current
and future hyperbolic embedding approaches. Finally, we
present several experiments to validate our findings and
conclusions. In summary, the contributions of this paper are:

• the presentation of a polar quadtree data structure
for hyperbolic embedding computations,

• a new splitting rule for the data structure that en-
hances performance for embedding computations,

• a fast approximation scheme of hyperbolic gradient
descent iterations using the data structure, and

• an analysis of how to integrate this approximation
into existing approaches for hyperbolic embeddings.

2 BACKGROUND

In this section, we present the techniques and concepts
that our method is built upon. Specifically, we introduce t-
SNE, its Barnes-Hut acceleration for Euclidean embeddings,
and necessary concepts of hyperbolic spaces. Finally, we
present a hyperbolic data structure that was designed for
fast random graph generation in hyperbolic space and that
will serve as a basis for our acceleration of hyperbolic t-SNE.

2.1 t-distributed Stochastic Neighbor Embedding
A widely used technique for non-linear dimensionality re-
duction is t-distributed Stochastic Neighbor Embedding (t-
SNE), which creates a low-dimensional embedding of the
data while aiming at preserving local neighborhoods of
the high-dimensional data points [51]. This is achieved by
interpreting the high-dimensional input {x1, . . . ,xn} ⊆ Rd

as (conditional) probabilities by

pj|i =
exp

(
−∥xi − xj∥2 /2σi

)
∑

k ̸=i exp
(
−∥xi − xk∥2 /2σ2

i

) , pij =
pj|i + pi|j

2
,

(1)

where pi|i = 0 and σi is the variance of the Gaussian
centered on point xi. In practice, σi is chosen such that
the perplexity of the probability distribution Pi equals a
user-prescribed perplexity value. On the low-dimensional
embedding Q = {y1, . . . ,yn} ⊆ Rd′

, a corresponding prob-
ability distribution is given by

qij =

(
1 + ∥yi − yj∥2

)−1

∑
k ̸=ℓ

(
1 + ∥yk − yℓ∥2

)−1 . (2)

To compute the positions yi of the low-dimensional em-
bedding, t-SNE starts with an initial embedding obtained

3x y1

y1

y2

y2

rcell

ycell

y3 y9

y9

y8

y8

y7
y6

y5

y4

y3

y7y6y5y4

rcell
∥yi−ycell∥2 < θ

Fig. 1: The Barnes-Hut data structure, showing the quadtree
and the hierarchy. The influence of the points y1,y2,y3 on
point y9 is approximated using their midpoint ycell and the
cell diagonal rcell. Modified from [50].

by principal component analysis (PCA) [27] and then al-
ters the embedding by gradient-descent optimization of the
Kullback-Leibler divergence between the high- and the low-
dimensional probability distribution, which is given by

C = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

, (3)

with the gradient

δC

δyi
= 4

∑
j ̸=i

(pij − qij)
(
1 + ∥yi − yj∥2

)−1
(yi − yj). (4)

The naive implementation of t-SNE has a run time of O(n2)
as evaluating the gradient takes quadratic time in the num-
ber of input points. This is clear from rewriting δC/δyi as

δC

δyi
= 4

∑
j ̸=i

pijqijZ(yi − yj)−
∑
j ̸=i

q2ijZ(yi − yj)

 , (5)

where Z =
∑

k ̸=ℓ

(
1 + ∥yk − yℓ∥2

)−1
. The first sum can

be computed efficiently, if the probability distribution P is
sparse [50], that is if the Gaussians in Eq. (1) are truncated.
However, the second sum requires O(n2) operations.

2.2 Barnes-Hut Acceleration Structure for t-SNE
Several accelerating methods have been proposed to speed
up the gradient computation. A method inspired by n-body
simulation is to build a quadtree data structure, alternatively
called a Barnes-Hut tree, on the embedding points [50]. This
hierarchical data structure enables the approximation of the
second sum of Eq. (5). It does so by grouping points yj

far away from the query point yi on a higher level of
the quadtree hierarchy and using a summary of the cell
instead of the individual points. That is, when evaluating
the gradient for an embedding point yi, we traverse the
quadtree structure. At every cell, we evaluate whether

rcell

∥yi − ycell∥
< θ (6)

holds, where rcell is the length of the diagonal of the
cell, ycell denotes the arithmetic midpoint of all points stored
in the cell, and θ is a user-given parameter to steer the
approximation. Typically, θ is set somewhere between 0.2
to 0.8 [50]. If Eq. (6) holds, we do not further traverse the
hierarchy but instead utilize the midpoint ycell, weighted by
the number of embedding points represented by the cell, in

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Fig. 2: The Poincaré disk model of hyperbolic space with
a blue straight line in the left that appears curved and has
infinitely many parallels to it. On the right a regular tiling
illustrating how tiles visually shrink towards the edge of the
disk, while keeping their area within hyperbolic space.

the evaluation of the gradient. See Fig. 1 for an illustration
of this procedure.

2.3 Hyperbolic Space and the Poincaré Disk Model
As this work aims at embeddings in hyperbolic space, we
will recall several important notions. Working with hyper-
bolic space calls for choosing an appropriate model to work
with, for example, the Poincaré disk model, the Lorentz
hyperboloid model, or the Klein model [8, Sec. 7]. All
these models are compatible with each other and translation
from one model to another is not costly. Our embeddings
will be placed in the Poincaré disk, see Fig. 2. This is a
suitable model because it maps the entire two-dimensional
hyperbolic space to a finite disk. Furthermore, it has the
advantage of being conformal, which helps in splitting the
space into a hierarchy. However, we will use the Klein
model for the computation of the Einstein midpoint, see the
discussion after Eq. (11). Other embedding approaches have
turned to the Lorentz model, because of better numerical
precision [25]. However, since we will build our acceler-
ation structure directly on the Poincaré disk, that is, on
the embedding space, we obtain satisfactory results without
translating to the Lorentz model.

Formally, the Poincaré disk model is the
space D = {y ∈ R2 : ∥y∥ < 1} equipped with the metric

gDy = λ2
yg

E , where λy =
2

1− ∥y∥2
, (7)

with gE the standard scalar product of R2 and ∥.∥ the stan-
dard norm of R2, see [17, Eq. (1)]. The hyperbolic distance
dH(yi,yj) between two points yi and yj in the Poincaré
model is then given by [17, Eq. (2)].

dHij := cosh−1

1 + 2
∥yi − yj∥2(

1− ∥yi∥2
)(

1− ∥yj∥2
)
 . (8)

2.4 Polar quadtree
In hyperbolic space, data structures have to be adjusted to
fit the specifics of the space. A possible translation of the
quadtree, used by the Barnes-Hut acceleration of t-SNE in
Euclidean space, to hyperbolic space, is the polar quadtree
data structure [35]. The root cell in this case is not a square
or rectangle that encompasses all points, as in the Euclidean

Fig. 3: Building a polar quadtree: Poincaré disk with seven
points, initially split into four pie slices, and splitting one of
them along the angular and radial direction.

case, but a circle in the Poincaré disk that includes all input
points. This circle is then split along the angular and radial
directions, to form polar quadrilaterals as cells, see Fig. 3.

Denoting the angular direction by ϕ, a split in this direc-
tion is performed at midϕ = (maxϕ +minϕ)/2, where maxϕ
and minϕ are the respective maximal and minimal angular
values of the current cell. For each of the resulting four sub-
cells to represent the same area in hyperbolic space, a split
in radial direction r is performed at

midr = acosh

(
cosh(maxr) + cosh(minr)

2

)
. (9)

It can be shown that inserting a node into this tree
takes O(log n) time, when n nodes are present in the
tree [35, Sec. 3.2]. The polar quadtree data structure was
originally introduced for the fast generation of random
hyperbolic graphs. We will use it to translate the Barnes-
Hut acceleration of t-SNE to hyperbolic space.

3 RELATED WORK

Methods for dimensionality reduction can be classified ac-
cording to whether their embedding is obtained linearly
or non-linearly and whether they aim to preserve local or
global distances. Here, we focus on t-SNE [51], which is
a non-linear, locally preserving method. Other methods in
this class include LLE (Locally Linear Embedding) [45], LE
(Laplacian Eigenmaps) [3], LAMP (Local Affine Multidi-
mensional Projection) [23], and UMAP [2]. We refer to a
recent survey for the advantages and disadvantages of the
respective classes and methods [57]. The survey states that
non-linear embedding techniques, such as t-SNE, “preserve
local neighborhood[s] in [the] D[imensionality]R[eduction]
processes”. Furthermore, they find that t-SNE “perform[s]
the best in cluster identification and membership identifica-
tion.” This motivates our focus on t-SNE.

Considering the t-SNE gradient (Eq. (5)), the two sums
can be interpreted as attractive and repulsive forces, respec-
tively, acting on the embedding points yi. This interpre-
tation is in direct correspondence to force-directed graph
layouts, see [7] for a detailed discussion of the spectrum
of attractive and repulsive forces, related methods, and the
impact on embeddings. For a detailed discussion, we will
focus on two aspects: embeddings to hyperbolic space and
acceleration structures for t-SNE.

3.1 Hyperbolic Embeddings

Embeddings into hyperbolic space have been studied
widely in the context of graph embeddings. Here, it was

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

shown to be possible to embed trees into two-dimensional
hyperbolic space with arbitrarily low distortion [48]. Addi-
tionally, many real-world graphs and networks have prop-
erties that can be modeled using hyperbolic geometry. Ran-
dom graphs created in the hyperbolic plane [16], [30] exem-
plify some of these properties, such as the power-law degree
distribution, small diameter, and high clustering, similar to
those observed in real-world networks. Examples of such
graphs are the internet [6] and social network connec-
tions [52]. Recent works introduced embedding techniques
that scale well to large networks [5], [39], [47] and show the
relevance of hyperbolic space for biological data [62].

Subsequently, research started to investigate the poten-
tial of hyperbolic spaces for embedding high-dimensional
data sets without graph structures. In this area, sev-
eral works study extensions of multidimensional scaling
(MDS) [20] to hyperbolic space (h-MDS) [12], [53] as well
as extensions of self-organizing maps [28] to the hyper-
bolic setting [40]. By comparing MDS embeddings of high-
dimensional data into Euclidean and hyperbolic space, it
was found that the latter resulted in less metric distor-
tion [47]. This suggests that hierarchical, high-dimensional
data, similar to large networks as discussed above, follow an
intrinsic hyperbolic metric structure [33, Thm. 1]. On the flip
side, many high-dimensional data sets, like networks and
graphs, but also single-cell RNA sequencing measurements
are of a hierarchical nature [56], which spurred the interest
for dimensionality reduction [25].

Several extensions of t-SNE to hyperbolic space have
been proposed. The Cauchy Origin-SNE (CO-SNE) [19]
starts by interpreting the high-dimensional data as hy-
perbolic by computing the probability distribution P via
the Riemannian normal distribution. Furthermore, the low-
dimensional probabilities Q are derived using the Cauchy
distribution. Additionally, to preserve hierarchical struc-
tures, the cost function (Eq. (3)) has an additional term to
help preserve the distances between the high-dimensional
points and the origin.

An alternative extension of t-SNE to hyperbolic space
is given by the Poincaré maps [25]. Here, the starting
point is a nearest-neighbor graph on the high-dimensional
data to which additional edges are added until the entire
data set is represented by one connected component. The
weights on the edges are modeled by a Gaussian kernel.
The high-dimensional probabilities P are given by the Rel-
ative Forest Accessibility matrix on the graph, while the
low-dimensional probabilities Q are provided by Gaussian
kernels. As a cost function, a symmetric version of the
Kullback-Leibler divergence is used.

A third and final extension of t-SNE to hyperbolic
space is hyperbolic SNE (h-SNE) [60]. The cost function is
enhanced with a term to increase the sensitivity to large
distance values, as proposed in g-SNE [61]. A hyperbolic
embedding is obtained by replacing the Euclidean distance
terms in the gradient with hyperbolic distances. As a limita-
tion, the authors identify the lack of any acceleration scheme
and thereby the limitation on the size of the data set that can
be embedded. Their embedding scheme performs well until
a data set size of about 6,000 points [60, p. 11].

In conclusion, several extensions of t-SNE to hyperbolic
space have been proposed. These alter the algorithm to

accommodate different aspects of the embedding. Yet, all
suffer from the lack of acceleration structures and thus turn
to sampling the data before the embedding or performing
stochastic approximations of the gradient descent. In this
paper, we present an acceleration data structure suitable to
speed up the computation of hyperbolic t-SNE embeddings.

3.2 Accelerating t-SNE

In Section 2.2, we discussed the Barnes-Hut acceleration
method for Euclidean t-SNE. Several alternatives for this
acceleration are available. One of these uses the principle of
Fourier transforms [34]. For this approach, the embedding
domain is covered with a regular grid, and the probability
distribution Q is computed at the grid points instead of at
the points yi. The second term of Eq. (5) is then interpolated
between the grid values.

A similar approach rewrites Eq. (4) in terms of a scalar
field representing the point density and a vector field
representing the forces, both acting on the regular grid
points [42]. This enables the use of parallelized graphics
hardware to solve the embedding problem with linear com-
plexity, assuming that the grid size is ≪ n, with n points to
be embedded. Furthermore, this can be combined with the
quadtree approach, by building a dual-hierarchy setup on
both the embedding and its field representation [46]. This
approach provides a complexity of O(n) while significantly
reducing the number of interactions between the hierar-
chies, compared to the other accelerations.

One difficulty with embedding into hyperbolic space is
that it is not a linear space. For instance, it is not possible to
zoom in on a part of the hyperbolic space without changing
the fundamental structure of the embedding [13]. Both the
Fourier transforms and the vector field approach need a
regular grid representation of the embedding space, but
without a uniform scaling, there is only one fixed resolution
of such available in hyperbolic space. Similarly, it is not
possible to translate hierarchies with congruent cells on a
level and similar cells across levels, like Barnes-Hut [50] and
the dual quadtrees [46], as these require a similar, uniform
rescaling. Therefore, efficient computations of embeddings
in hyperbolic space must use the geometric structures of
hyperbolic space to their advantage [24]. We aim to address
this with our hierarchical acceleration data structure that we
present in the following.

4 A HIERARCHICAL ACCELERATION STRUCTURE
FOR HYPERBOLIC T-SNE

Our proposed solution for accelerating hyperbolic t-SNE
embeddings is based on a data structure, which we describe
in Section 4.1, that is adjusted to hyperbolic space. We then
proceed to explain how the data structure can be used to
approximate the hyperbolic gradient and thereby speed up
the gradient descent steps of the optimization (Section 4.2).
Finally, before going to some experimental validations, we
will investigate how our approach can be used to accelerate
the different variants of hyperbolic t-SNE (Section 4.3).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

D

Fig. 4: Left: Initial annulus root cell of a polar quadtree.
Center: Splitting the polar quadrilaterals such that they
represent equal hyperbolic area (top) or at the center of the
embedding coordinates (bottom). Right: Two polar quads
that have different elements as their respective longest in-
ternal distances, highlighted in blue.

4.1 Modified Polar Quadtree – Embedding Acceleration

We aim at building a hierarchical data structure correspond-
ing to the Barnes-Hut tree for t-SNE [50] but designed for
the Poincaré disk model of hyperbolic space. Recall that the
Barnes-Hut tree starts from an initial quadrilateral encom-
passing all points and is built hierarchically by splitting the
quadrilateral into four congruent quadrilaterals. Because of
the curved nature of hyperbolic space, hierarchical splitting
into congruent tiles is not possible. There exist tilings of
hyperbolic space with congruent tiles [11], see an example
in Fig. 2, but these do not support a hierarchy built from
similar tiles. Therefore, we abandon congruent tiles and in-
stead settle for a hierarchy that consists of similar tiles both
laterally at one level of the hierarchy and across different
levels. We achieve this by starting from an annulus on the
Poincaré disk, see Fig. 4 left, as the root node of our version
of a polar quadtree. This annulus contains all embedding
points yi and is split into four similar polar quadrilaterals
by cutting in the radial and angular directions.

In the Euclidean case, when cutting a quadrilateral into
four congruent smaller quadrilaterals, each of these has the
same diagonal length. Thus, the maximum distance of two
points in one cell of a quadtree shrinks uniformly by a factor
of 0.5 from one level of the hierarchy to the next. There
are two important differences when going to the hyperbolic
setting. First, the longest distance within a polar quadrila-
teral is not necessarily the diagonal. While this is true for
polar quadrilaterals close to the origin, polar quadrilaterals
towards the outside of the disk have the longest distance
along their outer arc, see Fig. 4 right. Hence, when checking
for the largest possible difference between points within one
cell of the polar quadtree, we have to check not only the di-
agonal but also one of the radial and one of the polar edges
of the quadrilateral. Second, as the polar quadrilaterals on
one level of the hierarchy are not congruent anymore, they
can exhibit different longest distances within them. Thus,
there is no unique shrinkage factor across the levels of the
hierarchy. However, preliminary experiments suggest that
the shrinkage factor approaches 0.5 rapidly, after just a few
levels of the hierarchy.

As stated above, we choose an annulus including all
embedded points yi as root node, see Fig. 4 left. So far,
this approach has been following the polar quadtree con-
struction as outlined in Section 2.4. However, when splitting

Fig. 5: Effect of the two splitting choices on the polar
quadtree, note the long pieces towards the center when
splitting according to Eq. (9) on the left, while cells are more
compact when splitting according to Eq. (10) on the right.

cells in the polar quadtree, we strive for a tree that best
supports the subsequent approximation scheme, therefore
we divert from the original splitting procedure [35] and
alter it to better adapt to our case of data embedding.
We continue splitting in the middle of the angular direc-
tion, that is at midϕ = (maxϕ +minϕ)/2. However, in our
experiments, we observed that splitting along the radial
direction according to Eq. (9) creates larger quadrilateral
cells towards the center of the Poincaré disk, see Fig. 5. As
t-SNE begins with a PCA initialization placing all yi close to
the disk center [27], this way of building the polar quadtree
does not provide a good resolution, especially for these
first iterations. Therefore, we propose a different splitting
rule that creates more equal-sized quadrilaterals from the
perspective of looking at the Poincaré disk (Fig. 4 center):

midr =
maxr +minr

2
. (10)

We will evaluate the effect of this new splitting choice
on the performance of the approximation in Section 5.1.4.
Note that following this splitting choice leads to differently
shaped nodes and thus a different tree than the original
polar quadtree [35].

When building the polar quadtree, in addition to the
coordinates of each polar quadrilateral at the nodes, we
also store one piece of additional information. In the leaf
nodes, we store the single point yi located within the polar
quadrilateral of this node. In all other nodes, we store a
midpoint ycell of all points yi in this cell. In the Euclidean
setting, this is simply the arithmetic mean of the stored em-
bedding points, which is not available in hyperbolic space.
There, the midpoint is given by the Fréchet mean, which is
defined indirectly as the solution to a variance-minimization
problem. This could be solved to an (1 − ε)-approximation
by iteratively solving an optimization problem for every
cell during tree construction [9]. To avoid this, we turn to
a pseudo-Fréchet mean that has the closed form

m ({vj}) =
∑
j

(
γ(vj)∑
ℓ γ(vℓ)

)
vj , (11)

where γ(vj) = 1/
√
1− ∥vj∥2 and vj are the coordinates

of yj interpreted in the Klein model of hyperbolic space,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

which can easily be computed [18]. This is only an approx-
imation of the midpoint and comes with an error rate of
about 7% with regard to the Fréchet variance problem [36,
Appendix H], however, it enables us to compute the mid-
point as a rolling average. That is, we can build the tree by
successively adding points and updating the cell midpoints
on the fly, which means that inserting a new point and
updating all midpoint information still has O(log(n)) cost.

4.2 Approximating the Hyperbolic Gradient
There are different possible ways of adapting the objective of
the Euclidean t-SNE for hyperbolic embeddings. For our ex-
periments, we use an objective that resembles the Euclidean
case as closely as possible. Therefore, we keep the high-
dimensional probabilities (Eq. (1)). Replacing the Euclidean
distance in the low-dimensional probabilities (Eq. (2)) gives

qHij =

(
1 + (dHij)

2
)−1

∑
k ̸=ℓ

(
1 + (dHij)

2
)−1 , (12)

with dHij the hyperbolic distances (Eq. (8)) of yi and yj .
Thereby, in the gradient of the cost function, we need the
variation of the hyperbolic distance

δdHij
δyi

=
4((∥yj∥2 − 2⟨yi,yj⟩+ 1)yi/α− yj)

αβ
√
γ2 − 1

, (13)

where ⟨., .⟩ denotes the standard inner product and ∥.∥
the standard norm of R2. In addition, α = 1− ∥yi∥2,
β = 1− ∥yj∥2, and γ = 1 + 2

αβ ∥yi − yj∥2. The hyperbolic
gradient is the product of λ−1

yi
from Eq. (7) with the variation

δCH

δyi
= 4

∑
j ̸=i

(pij − qHij)(1 + dHij
2
)−1

δdHij
δyi

. (14)

The derivation of the gradient is analog to that of Co-
SNE [19] and h-SNE [62]. Similar to the Euclidean case, we
can rewrite the variations in a split form of two sums as

4

∑
j ̸=i

pijq
H
ijZ

H δdHij
δyi

−
∑
j ̸=i

(
qHij

)2
ZH δdHij

δyi

 , (15)

where ZH =
∑

k ̸=ℓ

(
1 + dHij

2
)−1

.
To ensure each gradient descent-step taken from yi in

the Euclidean tangent space Tyi
D of D is projected to the

correct point on the Poincaré disk, a standard procedure
is to utilize the exponential map, see Fig. 6. That is, for a
Euclidean direction v ∈ R2, we project the corresponding
step taken from a point yi in the Poincaré disk to

expyi
(v) = yi ⊕

(
tanh

(
λyi ∥v∥

2

)
v

∥v∥

)
, (16)

with λyi
from Eq. (7) and ⊕ the Möbius addition, which for

two points yi,yj ∈ D is defined as:

yi ⊕ yj =
(1 + 2⟨yi,yj⟩+ ∥yj∥2)yi + (1− ∥yi∥2)yj

1 + 2⟨yi,yj⟩+ ∥yi∥2 ∥yj |2
.

(17)

See [17] for a more general version incorporating varying
curvature of the hyperbolic space.

v ∈ TDD

expyi
(v)

yi

Fig. 6: The exponential map projects a step v at point yi

in the tangent space Tyi
D onto D. Thus, a step follows a

straight line in the Poincaré disk, as shown in Fig. 2.

Performing gradient descent close to the edge of the
Poincaré disk can move points outside of the disk. We follow
the previously suggested solution of projecting the points
back to the strict interior of the Poincaré disk after each
gradient step [39, p. 5]:

proj(yi) =

{
yi/ ∥yi∥ − ε if ∥yi∥ ≥ 1

yi otherwise
. (18)

The polar quadtree with our modified splitting rule
Eq. (10) will serve as the main acceleration tool to speed
up the evaluation of the hyperbolic gradient as given in
Eq. (15). Note that, just as in the Euclidean case, for a
sparse high-dimensional probability distribution P with
truncated Gaussians in Eq. (1), the first sum of Eq. (15)
can be evaluated without negatively affecting the algorithm
performance. To speed up the computation of the second
sum of Eq. (15), we proceed analogously to the Barnes-
Hut approach for Euclidean t-SNE [50]. That is, we observe
that if a cell of the polar quadtree is sufficiently small
and sufficiently far away from a point yi, the contribu-

tions −
(
qHij

)2
ZHδdHij/δyi will be similar for all points yj

inside this cell. Therefore, we replace these summands by

−Ncell

(
qHi,cell

)2
ZH δdH(yi,ycell)

δyi
, (19)

where Ncell is the number of points yj in the cell, ycell is
the midpoint of the cell according to Eq. (11), and

qHi,cellZ
H =

(
1 + dH(yi,ycell)

2
)−1

.

When evaluating the second sum in Eq. (5) for a point yi,
we perform a depth-first traversal of the polar quadtree. At
each node, we check the condition rcell/d

H(yi,ycell) < θ,
the hyperbolic analog of Eq. (6), and if it holds, we cull
the subtree and replace its summands by an approximation
according to Eq. (19). See Section 5.3, left, for an illustration
of the approximation, similar to the Euclidean illustration in
Fig. 1. We will evaluate the effectiveness of this approxima-
tion and its effects on the embedding quality in Section 5.

4.3 Application to other hyperbolic t-SNE Schemes

This approach of translating the Barnes-Hut approximation
data structure to hyperbolic space enables the acceleration
of t-SNE embeddings in hyperbolic spaces. Note that the
data structure and the approach described here are not con-
tradictory but rather complementary to previous hyperbolic
variants of t-SNE [19], [25], [60]. All these methods can be
augmented by our data structure to efficiently compute the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Fig. 7: Evaluations from left to right: (1) Run time behavior of the exact hyperbolic t-SNE embedding vs. the accelerated
version on various input data sizes. For each data set, measurements are connected as a line; black trend lines for O(n2)
and O(n log2(n)) are fitted to the data by regression. (2) Run time behavior of equal area splitting (Eq. (9)) vs lengths
splitting (Eq. (10)). (3) Estimating asymptotic run time of the accelerated and the exact hyperbolic t-SNE embeddings. (4)
Run time behavior of accelerated hyperbolic t-SNE embeddings for different values of θ.

t-SNE gradient (Eq. (5)) and thus provide faster results.
In that sense, we provide a new building block for hy-
perbolic dimensionality reduction. Here, we briefly discuss
the gradients of the methods [19], [60] to discuss how our
acceleration can be implemented there.

Hyperbolic SNE [60] uses the cost function

C + λĈ = KL(P ||Q) + λKL(P̂ ||Q̂)

from [61], where λ ∈ R is a weighting parameter and

p̂ij =
1 + ∥xi − xj∥2∑

k ̸=ℓ(1 + ∥xk − xℓ∥2)
, q̂ij =

1 + ∥yi − yj∥2∑
k ̸=ℓ(1 + ∥yk − yℓ∥2)

.

In the hyperbolic case, the variations δ(C + λĈ)/δyi

are 4
∑

j ̸=i(pij − qij)
(
1 + ∥yi − yj∥2

)−1
(yi − yj) −

4λ
∑

j ̸=i(pij − qHij)
(
1 + (dHij)

2
)−1 δdH

ij

δyi
, where the first part

corresponds to a scaled version of Eq. (4) and the second
part corresponds to Eq. (14). Thus, both can be accelerated,
respectively.

CO-SNE [19] uses the cost function λ1C + λ2H =

λ1 KL(P ||Q) + λ2

n

∑n
i=1

(
∥xi∥2 − ∥yi∥2

)2
with the

variations δ(λ1C + λ2H)/δyi equal to 4λ1

∑
j ̸=i(pij −

qHij)
(
1 + (dHij)

2
)−1 δdH

ij

δyi
+ 4λ2

n

(
∥xi∥2 − ∥yi∥2

)
yi,where

the first part can be rewritten equal to Eqs. (14) and (15)
while the second part does not need any acceleration as it
can be evaluated in constant time.

Note that the gradient used by the Poincaré maps ap-
proach [25] is not explicitly given in the publication. The
derivation of the gradient is outside the scope of this pub-
lication. Still, at least the first summand can be rewritten
equivalently to Eq. (15) and the second symmetric sum-
mand, can either be rewritten similarly or approximated
otherwise. This shows that our method is versatile in the
sense that it provides a building block to integrate into
existing hyperbolic t-SNE implementations.

5 EVALUATION

In this section, we will experimentally evaluate our hyper-
bolic acceleration scheme. For our experiments, we use the
data sets listed in Table 1.

The first three data sets and the last one contain data
obtained from single-cell RNA sequencing [1]. The data by
Lukk et al., the Planaria data set [44], and the C.Elegans are
experimentally obtained gene expression atlases. The first
contains human cell data, the latter two contain flatworm
data. In contrast, the MyeloidProgenitors data consists of
synthetic data, obtained via a boolean gene regulatory net-
work [31]. These data sets are chosen due to their size
variation and their use in previous hyperbolic t-SNE ap-
proaches [19], [25], [62]. We further include the MNIST data
set, as it is a frequently used test set for dimensionality
reduction algorithms. It contains 70,000 hand-written im-
ages of the ciphers 0 to 9. For the WordNet data set [15],
consisting of word relations, we follow the general approach
as outlined in previous work [39]. That is, we trained a
network for 400 epochs, after which no significant change
occurred. From this training, we pick the checkpoint with
the lowest cost function value as input for our embeddings.

TABLE 1: Data sets used in the experiments with the number
of points, the dimension, and the number of labeled classes.

Name Data Type # Points # Dim. # Cl.
LUKK single-cell 5,372 369 4
MYELOID8000 single-cell 8,000 11 5
PLANARIA single-cell 21,612 50 51
MNIST images 70,000 784 10
WORDNET lexical 82,115 11 n/a
C ELEGANS single cell 89,701 20,222 37

When computing a hyperbolic t-SNE embedding of these
data with our method, we perform the following steps that
reflect best practices for Euclidean t-SNE as closely as possi-
ble. First, we employ principal component analysis (PCA) to
reduce the data to 50 dimensions to speed up computations
as previously recommended [51, Sec. 4.2]. Then, we further
employ regular t-SNE strategies by first performing early
exaggeration, that is, a series of gradient descent steps for
which the attractive forces pij are amplified by multiplying
them with a factor, see [51, Sec. 4.3]. We use an exaggeration
factor of 12, following a corresponding ablation study [4].
We then apply several non-exaggerated gradient descent
steps, that is, steps with regular pij as defined above, as
with usual t-SNE [51, Sec. 3.4].

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

Accelerated [s] Exact [s]
Data set min / avg / std / max min / avg / std / max
LUKK 0.13 / 0.17 / 0.03 / 0.46 1.07 / 1.20 / 0.09 / 2.13
MYELOID8000 0.04 / 0.30 / 0.07 / 0.45 1.87 / 2.57 / 0.12 / 2.84
PLANARIA 0.73 / 1.62 / 0.29 / 3.35 16.7 / 19.3 / 1.65 / 22.3
MNIST 2.33 / 4.57 / 0.27 / 5.48 176. / 191. / 15.4 / 227.
WORDNET 1.91 / 4.84 / 0.45 / 6.25 245. / 273. / 22.0 / 318.
C ELEGANS 5.28 / 6.31 / 0.42 / 7.47 263. / 316. / 25.0 / 374.

TABLE 2: Run time statistics over five runs for six datasets.

For the learning rate, we align with a heuristic from the
Euclidean case. In the Euclidean case, the initial learning
rate is set to η = n/12 [4]. We observe that this setting
alone causes embeddings that tend to the boundary of the
Poincaré disk very quickly. To slow this progression down
and to enable a more thorough development of clusters in
the hyperbolic case, we modify the Euclidean heuristic and
set the initial learning rate to

η =
n

12 · 1000
. (20)

This is also because, within the hyperbolic disk, the distance
between the left boundary and the right one is not large,
for instance, dH

(
(−1 + 10−4, 0), (1− 10−4, 0)

)
≈ 80. Thus,

the embedding has to grow significantly slower than in the
Euclidean case, where embeddings easily grow to diagonal
sizes of several hundred units.

From this initial learning rate, we use momentum and
gains as described for the Euclidean setting [22], [51]. Gra-
dient descent optimization with momentum is available
for hyperbolic space [10, Alg. 2] and we implement it
via the machinery discussed above [17]. This allows us
to rely on the comparatively rather small initial learning
rate that builds up with momentum and gains. We default
to the same parameters used in the Euclidean case, that
is, a momentum of 0.5 during early exaggeration and a
momentum of 0.8 during the non-exaggerated iterations.
Furthermore, we run all experiments with a uniform per-
plexity of 30, which is in the recommended range [4, Tab. 2]
and corresponds to the default values used in previous
experiments [26]. Furthermore, all accelerations use θ = 0.5,
if not specified otherwise, as is used in previous work [50].

5.1 Time Gain by Acceleration
As a first set of experiments, we will investigate the time
gain obtained by our acceleration. Here, we are interested in
the absolute time gained for each iteration (Section 5.1.1), an
estimate of the asymptotic time gain (Section 5.1.2), and the
effect of parameter θ (Section 5.1.3) and structural choices
(Section 5.1.4) on the data structure.

5.1.1 Reduction of the Absolute Run Time
First, we want to measure the effectiveness of our accel-
eration structure with the following experiment. For each
data set listed in Table 1, we consider the ten sample
sizes n/10, 2n/10, . . . , n, where n is the number of points
in the data set. Then, for each size, we draw five random
samples and perform 250 iterations of early exaggeration
followed by several non-exaggerated iterations of gradient
descent. When running these non-exaggerated iterations,
we check regularly whether any point has a distance smaller

than 10−4 from the boundary of the Poincaré disk, measured
in embedding coordinates. If so, we stop the optimization as
the embedding has now sufficiently spread across the disk.
At the latest, we always stop the gradient descent after 750
iterations, as in previous studies [4]

After the optimization, we average the time it took for
each iteration across all five random runs. This provides us
with ten different average times per data set, dependent on
the size of the sample. In Fig. 7, first, we plot a trend line
for each data set, both for the exact version, not using our
acceleration, and the accelerated version where we approx-
imate the second sum in Eq. (5) via the polar quadtree as
described in Section 4. Note that Fig. 7, first, uses a log-scale
on both the x- and the y-axis, hence the dashed trend line
for O(n2) becomes a linear graph of slope 2.

The exact computation of the gradient (Eq. (4)) on a
set of n points requires O(n2) operations. Hence, in Fig. 7,
first, we observe a quadratic growth of the average iteration
time. In contrast to that, our accelerated embeddings build
a hierarchical data structure, which has a theoretical run
time of O(n log(n)). The time taken is mostly two orders of
magnitude below the time taken by the exact method, which
amounts to a significant speed-up. This still holds, even
when taking variation into account, which can be confirmed
in Table 2, where we report statistics on the run times. Values
are given for the respective full data set. Note that for all
data sets, on average, an iteration saves one—for larger data
sets even two—orders of magnitude of run time.

5.1.2 Estimated Asymptotic Run Time

We will use the experimental data to estimate the asymp-
totic cost of the computation. To do so, for a pair of
input sizes (ni, ni+1) and corresponding average iteration
times (ti, ti+1) on these input sizes, we estimate the order α
of the asymptotic run time O(nα) as α = log(ti+1)−log(ti)

log(ni+1)−log(ni)
,

which is the inverse of the experimental order of conver-
gence, as adapted from Senning [49, Equ. (9)].

As we run ten sample sizes on each data set, we obtain
nine estimated values of α by comparing the run time
of each sample size with the run time on the next larger
sample. Consider Fig. 7, third, for a plot of these estimates.
First, we can observe that the asymptotic order for the
exact method is estimated around α = 2, that is, the exact
approach takes quadratic run time. Second, while the esti-
mated asymptotic order fluctuates with the different data
sets for our method, the convergence rate α is always well
below 2. This shows that there is an asymptotic time gain,
which highlights the increased impact of our method for
growing data set sizes.

5.1.3 Effect of θ on the Run Time

Just like with the Barnes-Hut data structure [50], the main
steering parameter of our acceleration is θ, which deter-
mines whether or not a subtree of the hierarchy is explored
or approximated following Eq. (6). For θ = 0, no approxima-
tion is performed, and for growing values of θ, an increasing
number of subtrees is approximated. We measure this effect
by embedding the full data sets listed in Table 1 with
varying approximation values θ ∈ {0, 0.1, . . . , 1.0}, using
250 iterations of early exaggeration and 750 iterations of

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Fig. 8: Embedding the MNIST data set into the Poincaré disk
exactly (left) and using our accelerated method (right).

non-exaggerated gradient descent, possibly stopping earlier,
as discussed in Section 5.1.1. We then report the average run
time of these iterations, see Fig. 7, fourth.

We see a similar effect as with the Barnes-Hut data
structure [50], in the sense that increasing the value of θ
significantly reduces the run time of the iterations. When
comparing to the behavior of the Barnes-Hut tree in the
Euclidean setting [50, Fig. 3], we see a similar tendency for
our method to reach a plateau, which is not as notable with
the log-scale y-axis in Fig. 7, fourth, as it is with the linear
scale of [50, Fig. 3]. Yet, these experiments show that our
method successfully replicates the run time reduction from
Euclidean t-SNE, but for hyperbolic t-SNE implementations.

5.1.4 Time Gain by Splitting Choices

The previous experiments were run with a polar quadtree
built by splitting according to Eq. (10), as opposed to the
splitting strategy proposed in the original publication, see
Eq. (9). To show that this change in the data structure has
a positive effect on the run time, we repeat the experiment
described in Section 5.1.1, but this time, we compare the two
different splitting options, see Fig. 7, second.

Averaged over all runs, utilizing our proposed splitting
option Eq. (10) outperforms the original splitting method
Eq. (9). While this gain is different across the data sets, we
obtain an average time reduction per iteration of 11% for
Lukk, 20% for Myeloid, 64% for Planaria, 34% for MNIST,
42% for WordNet, and 45% for C.Elegans. As a concrete
example, in the largest size of C.Elegans, with 89,701 points,
the average iteration run time goes down from about 12
seconds for equal area splitting (Eq. (9)) to roughly 6 seconds
for equal lengths splitting (Eq. (10)). This justifies our choice
of implementing a new splitting behavior for the accelera-
tion data structure, which also sets our data structure apart
from the polar quadtree as presented in previous work [35].

5.2 Quality Retention under Acceleration

We now turn to the quality of the obtained embeddings. To
measure the embedding quality, on the one hand, we turn to
method-intrinsic measures, such as the norm of the gradient
field Eq. (14) and the value of the cost function Eq. (3). On
the other hand, we investigate method-extrinsic measures,
such as the one-nearest neighbor error [50].

5.2.1 Retention of the Gradient and the Cost Function
Ultimately, our acceleration method approximates the ex-
act variations (Eq. (15)) by introducing the summarized
terms (Eq. (19)). To measure the quality of this approx-
imation, we compare the summarized gradient term to
the exact one. Experimentally, for each of the six data
sets from Table 1 and for each of the sample sizes from
Section 5.1.1, we compute a hyperbolic embedding using
our accelerated method performing 250 iterations of early
exaggeration and 750 iterations of non-exaggerated gradi-
ent descent. At iterations i ∈ {0, 50, 100, 150, 200, 249} of
early exaggeration and iterations i ∈ {0, 50, . . . , 700, 749} of
non-exaggerated gradient descent (possibly less if stopping
earlier, see Section 5.1.1), we compute the relative error of
the exact version gi and the approximated version ĝi as√∑

i d
H(gi,ĝi)

2

√∑
i d

H(0,gi)
2

, that is we relate the norm of the distance

field between the two gradients to the norm of the exact
gradient field. In Table 3, we report the average of all
such relative errors, measured at the iterations indicated
above, for each of the sample sizes and runs as laid out in
Section 5.1.1. From the values presented, we can conclude
that the relative approximation error of the gradient in each
iteration is about 1 to 2.7 permille.

TABLE 3: Mean relative gradient and cost function error.

Data set Gradient Cost Function
Lukk et al. 1.754 · 10−3 0.343 · 10−6

MyeloidProgenitors 1.141 · 10−3 0.801 · 10−6

Planaria 0.974 · 10−3 2.357 · 10−6

MNIST 1.673 · 10−3 1.690 · 10−6

WordNet 2.715 · 10−3 0.654 · 10−6

C.Elegans 2.015 · 10−3 0.343 · 10−6

Furthermore, we turn to the cost function of the full
embedding obtained after all iterations. We evaluate the cost
function (Eq. (3)), utilizing the hyperbolic low-dimensional
probabilities (Eq. (12)), providing an exact value C of the
non-accelerated embedding and a cost function value C ′ of
the accelerated embedding. We compute the relative error
of these as |C − C ′|/C . In Table 3, we present the mean
of all these relative cost function errors across the data
sets, averaged over the runs explained in Section 5.1.1.
This shows that while there is a gradient approximation
error of about 1 to 2.7, the effect on the cost function of
the final embedding is three orders of magnitude smaller.
Hence, our method is efficient at accelerating the embedding
procedure while not affecting the quality of the results, see
the qualitative comparison in Fig. 8 and Fig. 9.

5.2.2 Effect of the Acceleration on the Embedding Quality
It was shown for the Barnes-Hut acceleration method, that
larger values of θ lead to larger 1-nearest neighbor errors
in corresponding embeddings [50, Fig. 3]. The 1-nearest
neighbor error is given by the percentage of points whose
nearest neighbor in the embedding does not have the same
class label as the query point. Note that for k = 1, this is the
inverse of the neighborhood hit, as discussed by Espadoto
et al. [14]. We utilize this measure to investigate the effect
of the acceleration on the embedding quality. See Table 4 for
the errors obtained on five of the six data sets. Note that the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

Fig. 9: Embedding the Planaria data set into the Poincaré disk exactly (left) and using our accelerated method (right).

WordNet data set has been removed from this measure as it
does not have a clear cluster structure.

TABLE 4: The 1-nearest neighbor error for the exact and
accelerated embeddings with θ = 0.5.

Data Set Exact Accelerated
Lukk et al. 4.13% 4.11%

MyeloidProgenitors 20.46% 21.39%
Planaria 15.89% 16.12%
MNIST 4.12% 3.96%

C.Elegans 29.40% 26.07%

The experimental results in Table 4 show that the lo-
cal quality of the embedding, measured by the 1-nearest-
neighbor error remains the same under acceleration. That is,
our method produces embeddings that capture local cluster
structures, as well as the exact hyperbolic t-SNE formulation
while being considerably faster.

To further quantify the quality of our embeddings, we
turn to the precision/recall metric [41]. For that, we fol-
low the previous work and fix a maximum neighborhood
size kmax = 30. Then, for each k ∈ {1, . . . , kmax}, we com-
pute the number of true positives as TPk = Nkmax

(X) ∩
NK(Y), that is, the points that are in the high-dimensional
neighborhood and also in the low-dimensional embedded
neighborhood, given the respective metrics. From this value,
we obtain the precision as PRk = |TPk |/k and the recall
as RCk = |TPk |/kmax. That is, ideally, the precision is
always 1, while the recall grows as k/kmax, yet, a data set
might not exhibit such a solution, nor does t-SNE necessarily
find this solution. Instead, we want to show that our accel-
eration does not influence this resulting quality significantly
while achieving a significant speedup.

See precision/recall curves for all data sets in Figure 10.
While the preservation of the accelerated embeddings falls
slightly off, in particular for the larger embeddings, overall
the preservation behavior is similar. This further demon-
strates how our acceleration keeps local neighborhoods at
a quality comparable to that of the exact method while
obtaining the embeddings significantly faster.

5.2.3 Effect of θ on the Embedding Quality
As discussed in Section 5.1.3, the main parameter of our
acceleration data structure is θ. Here, we investigate the
effect different choices of θ have on the quality of the
final embedding. We choose θ ∈ {0.0, 0.1, 0.2, . . . , 1.0} and
embed the MNIST data set using 250 iterations of early
exaggeration and up to 750 iterations of non-exaggerated
gradient descent, possibly stopping earlier, as discussed in
Section 5.1.1. For each of the embeddings, we then compute
the neighborhood preservation via a precision/recall curve.
These curves are shown in Fig. 11. While the approximations
fall off slightly when compared to the exact solution θ = 0.0,
the neighborhood quality remains very stable within the
explored range of θ.

Note that θ = 0 is the exact version and obtains the
best, upper-rightmost curve. However, the curves for other,
increasing values of θ are very comparable and do not fall
off significantly in comparison. Therefore, we deduce that
the acceleration has a small enough effect on the embedding
quality to make its time gains a reasonable trade-off.

5.3 Embedding of Large-Scale Data Sets
Due to the slow processing of larger data sets, previous
approaches turned to subsampling data to show hyperbolic
embeddings. For instance, the Poincaré maps approach took
a sub-sample of 40,000 data points from the C.Elegans data
set, and its GPU implementation spent 2–3 hours to compute
an embedding [25]. With our acceleration structure, we can
embed not only the full C.Elegans data set (Section 5.3), but
also to do so on the CPU within 45 minutes. Generally, these
time gains mean that, with our acceleration structure, hyper-
bolic embeddings can be computed without costly graphics
cards and thus become more widely available to researchers.
The larger size of data sets that can be handled furthermore
unlocks previously infeasible application scenarios.

6 CONCLUSION

In this paper, we have presented an acceleration data struc-
ture for hyperbolic t-SNE embeddings and discussed how
to approximate the hyperbolic gradient with it. We have

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

Fig. 10: Comparison of the precision/recall curves for exact and accelerated hyperbolic embeddings.

Fig. 11: Nearest-neighbor preservation on the MNIST data
set for varying values of θ.

Fig. 12: Left: Our polar quadtree acceleration structure on
top of the C.Elegans data points. The red mark indicates a
query point and the polar quads include groups of points
that are summarized via the quad midpoints, shown as
blue dots. Right: Final embedding of the full C.Elegans data
set (89,701 points) into hyperbolic space.

shown that this approach is a potential building block for
existing and upcoming hyperbolic embedding techniques.
Our experimental results validate the time gain while show-
ing that there is no significant loss in embedding quality.

Our work focuses on hyperbolic t-SNE-type embed-
dings, and extending our acceleration to other embedding
approaches is left for future work. Furthermore, it remains
to be investigated how to translate Fourier transform ap-

proaches or stochastic gradient descent to the hyperbolic
t-SNE scenario. While there are generalizations of Fourier
transform to hyperbolic space [21], [58], the main challenge
for the context of embedding computations would be to
build a regular grid with a clear control on the number
of grid points and the grid-cell shape in hyperbolic space.
As for stochastic gradient descent, sampling the gradient
causes the repulsive forces of the cost function to become
unbalanced with the attractive forces. The main challenge
lies in balancing the sampling rate with a re-normalization
of the forces. Furthermore, it remains to be investigated
how these approximations affect both the run time and the
embedding quality.

SUPPLEMENTAL MATERIALS

The data sets used in our experiments are avail-
able as follows: Lukk et al. (https://www.ebi.ac.
uk/biostudies/arrayexpress/studies/E-MTAB-62),
MyeloidProgenitors (https://github.com/scverse/
scanpy usage/tree/master/170430 krumsiek11), Pla-
naria (https://shiny.mdc-berlin.de/psca/), MNIST (https:
//yann.lecun.com/exdb/mnist/), C.Elegans (https:
//github.com/Munfred/wormcells-data/releases),
and WordNet (https://github.com/facebookresearch/
poincare-embeddings).

The implementation of the acceleration structure as
well as all scripts for the experiments outlined in
this paper can be found at https://graphics.tudelft.nl/
accelerating-hyperbolic-tsne.

FIGURE CREDITS

Figure 1 is an adapted reprint of [50, Fig. 2]. Figure 2,
left, is a reprint of https://commons.wikimedia.org/wiki/
File:Poincare disc hyperbolic parallel lines.svg, which is
in the public domain. Figure 2, right, is a reprint
of https://commons.wikimedia.org/wiki/File:*732 tiling
on the Poincar%C3%A9 Disk.svg, by Murdock Grewar,
available under the Creative Commons Attribution-Share
Alike 4.0 International license.

ACKNOWLEDGMENTS

Martin Skrodzki’s work was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) – 455095046. Nicolas F. Chaves-de-Plaza was funded in

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-62
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-62
https://github.com/scverse/scanpy_usage/tree/master/170430_krumsiek11
https://github.com/scverse/scanpy_usage/tree/master/170430_krumsiek11
https://shiny.mdc-berlin.de/psca/
https://yann.lecun.com/exdb/mnist/
https://yann.lecun.com/exdb/mnist/
https://github.com/Munfred/wormcells-data/releases
https://github.com/Munfred/wormcells-data/releases
https://github.com/facebookresearch/poincare-embeddings
https://github.com/facebookresearch/poincare-embeddings
https://graphics.tudelft.nl/accelerating-hyperbolic-tsne
https://graphics.tudelft.nl/accelerating-hyperbolic-tsne
https://commons.wikimedia.org/wiki/File:Poincare_disc_hyperbolic_parallel_lines.svg
https://commons.wikimedia.org/wiki/File:Poincare_disc_hyperbolic_parallel_lines.svg
https://commons.wikimedia.org/wiki/File:*732_tiling_on_the_Poincar%C3%A9_Disk.svg
https://commons.wikimedia.org/wiki/File:*732_tiling_on_the_Poincar%C3%A9_Disk.svg

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

part by Varian, a Siemens Healthineers Company, through
the HollandPTC-Varian Consortium under Grant 2019022,
and in part by the Surcharge for Top Consortia for Knowl-
edge and Innovation (TKIs) from the Ministry of Economic
Affairs and Climate.

REFERENCES

[1] T. S. Andrews, V. Y. Kiselev, D. McCarthy, and M. Hemberg.
Tutorial: guidelines for the computational analysis of single-cell
rna sequencing data. Nature protocols, 16(1):1–9, 2021.

[2] E. Becht, L. McInnes, J. Healy, C.-A. Dutertre, I. W. Kwok, L. G.
Ng, F. Ginhoux, and E. W. Newell. Dimensionality reduction for
visualizing single-cell data using UMAP. Nature Biotechnology,
37(1):38–44, 2019. doi: 10.1038/nbt.4314

[3] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral tech-
niques for embedding and clustering. In Proc. NIPS, vol. 14, pp.
585–591. The MIT Press, Boston, 2001. doi: 10.7551/mitpress/1120
.003.0080

[4] A. C. Belkina, C. O. Ciccolella, R. Anno, R. Halpert, J. Spidlen, and
J. E. Snyder-Cappione. Automated optimized parameters for t-
distributed stochastic neighbor embedding improve visualization
and analysis of large datasets. Nature Communications, 10(1):5415,
2019. doi: 10.1038/s41467-019-13055-y

[5] T. Bläsius, T. Friedrich, A. Krohmer, and S. Laue. Efficient em-
bedding of scale-free graphs in the hyperbolic plane. IEEE/ACM
Transactions on Networking, 26(2):920–933, 2018. doi: 10.1109/TNET
.2018.2810186

[6] M. Boguná, F. Papadopoulos, and D. Krioukov. Sustaining the
internet with hyperbolic mapping. Nature Communications, 1(1):62,
2010. doi: 10.1038/ncomms1063

[7] J. N. Böhm, P. Berens, and D. Kobak. Attraction-repulsion spec-
trum in neighbor embeddings. Journal of Machine Learning Research,
23(95):1–32, 2022.

[8] J. W. Cannon, W. J. Floyd, R. Kenyon, W. R. Parry, et al. Hyperbolic
geometry. Flavors of Geometry, 31(59-115):2, 1997.

[9] X. Cao. Poincaré Fréchet mean. Pattern Recognition, 137:109302,
2023. doi: 10.1016/j.patcog.2023.109302

[10] M. Cho and J. Lee. Riemannian approach to batch normalization.
Advances in Neural Information Processing Systems, 30, 2017.

[11] J. H. Conway, H. Burgiel, and C. Goodman-Strauss. The symmetries
of Things. A.K. Peters, 2008.

[12] A. Cvetkovski and M. Crovella. Multidimensional scaling in
the Poincaré disk. Applied Mathematics & Information Sciences,
10(1):125–133, 2016. doi: doi:10.18576/amis/100112

[13] D. Eppstein. Limitations on realistic hyperbolic graph drawing.
In Proc. GD, pp. 343–357. Springer, 2021. doi: 10.1007/978-3-030
-92931-2 25

[14] M. Espadoto, R. M. Martins, A. Kerren, N. S. Hirata, and A. C.
Telea. Toward a quantitative survey of dimension reduction
techniques. IEEE Trans. on Visualization and Computer Graphics,
27(3):2153–2173, 2019. doi: 10.1109/TVCG.2019.2944182

[15] C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press,
1998.

[16] T. Friedrich and A. Krohmer. Cliques in hyperbolic random
graphs. In Proc. INFOCOM, pp. 1544–1552. IEEE, 2015. doi: 10.
1007/s00453-017-0323-3

[17] O. Ganea, G. Bécigneul, and T. Hofmann. Hyperbolic neural
networks. In Proc. NEURIPS, vol. 31, 2018.

[18] C. Gulcehre, M. Denil, M. Malinowski, A. Razavi, R. Pascanu,
K. M. Hermann, P. Battaglia, V. Bapst, D. Raposo, A. Santoro, and
N. de Freitas. Hyperbolic attention networks. In Proc. ICLR, 2019.

[19] Y. Guo, H. Guo, and S. X. Yu. CO-SNE: Dimensionality reduction
and visualization for hyperbolic data. In Proc. CVPR, pp. 21–30,
2022. doi: 10.1109/CVPR52688.2022.00011

[20] S. Ingram, T. Munzner, and M. Olano. Glimmer: Multilevel MDS
on the GPU. IEEE Transactions on Visualization and Computer
Graphics, 15(2):249–261, 2008. doi: 10.1109/TVCG.2008.85

[21] H. Isozaki and Y. Kurylev. Fourier transforms on the hyperbolic
space. In Introduction to Spectral Theory and Inverse Problem on
Asymptotically Hyperbolic Manifolds, vol. 32, pp. 11–46. Mathemati-
cal Society of Japan, 2014. doi: 10.2969/msjmemoirs/03201C010

[22] R. A. Jacobs. Increased rates of convergence through learning rate
adaptation. Neural Networks, 1(4):295–307, 1988.

[23] P. Joia, D. Coimbra, J. A. Cuminato, F. V. Paulovich, and L. G.
Nonato. Local affine multidimensional projection. IEEE Transac-
tions on Visualization and Computer Graphics, 17(12):2563–2571, 2011.
doi: 10.1109/TVCG.2011.220

[24] M. Keller-Ressel and S. Nargang. Hydra: a method for strain-
minimizing hyperbolic embedding of network-and distance-based
data. Journal of Complex Networks, 8(1):cnaa002, 2020. doi: 10.1093/
comnet/cnaa002

[25] A. Klimovskaia, D. Lopez-Paz, L. Bottou, and M. Nickel. Poincaré
maps for analyzing complex hierarchies in single-cell data. Nature
Communications, 11(1):1–9, 2020. doi: 10.1038/s41467-020-16822-4

[26] D. Kobak and P. Berens. The art of using t-SNE for single-cell
transcriptomics. Nature Communications, 10(1):5416, 2019. doi: 10.
1038/s41467-019-13056-x

[27] D. Kobak and G. C. Linderman. Initialization is critical for
preserving global data structure in both t-SNE and UMAP. Nature
Biotechnology, 39(2):156–157, 2021. doi: 10.1038/s41587-020-00809-z

[28] T. Kohonen. Self-organized formation of topologically correct
feature maps. Biological Cybernetics, 43(1):59–69, 1982. doi: 10.
1007/BF00337288

[29] E. Kopczyński and D. Celińska-Kopczyńska. Navigating higher
dimensional spaces using hyperbolic geometry. arXiv preprint
arXiv:2110.00327, 2021.

[30] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Bo-
guná. Hyperbolic geometry of complex networks. Physical Review
E, 82(3):036106, 2010. doi: 10.1103/PhysRevE.82.036106

[31] J. Krumsiek, C. Marr, T. Schroeder, and F. J. Theis. Hierarchical dif-
ferentiation of myeloid progenitors is encoded in the transcription
factor network. PloS one, 6(8):e22649, 2011.

[32] J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based
on hyperbolic geometry for visualizing large hierarchies. In Proc.
of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 401–408, 1995.

[33] Y.-W. E. Lin, R. R. Coifman, G. Mishne, and R. Talmon. Hyperbolic
diffusion embedding and distance for hierarchical representation
learning.

[34] G. C. Linderman, M. Rachh, J. G. Hoskins, S. Steinerberger, and
Y. Kluger. Fast interpolation-based t-SNE for improved visualiza-
tion of single-cell RNA-seq data. Nature Methods, 16(3):243–245,
2019. doi: 10.1038/s41592-018-0308-4

[35] M. v. Looz, H. Meyerhenke, and R. Prutkin. Generating random
hyperbolic graphs in subquadratic time. In Proc. ISAAC, pp. 467–
478. Springer, 2015. doi: 10.1007/978-3-662-48971-0 40

[36] A. Lou, I. Katsman, Q. Jiang, S. Belongie, S.-N. Lim, and C. De Sa.
Differentiating through the Fréchet mean. In Proc. MLR, vol. 119,
pp. 6393–6403. PMLR, 2020.

[37] J. Miller, S. Kobourov, and V. Huroyan. Browser-based hyperbolic
visualization of graphs. In 2022 IEEE 15th Pacific Visualization
Symposium (PacificVis), pp. 71–80. IEEE, 2022.

[38] A. Narechania, A. Karduni, R. Wesslen, and E. Wall. VITALITY:
Promoting serendipitous discovery of academic literature with
transformers & visual analytics. IEEE Transactions on Visualization
and Computer Graphics, 28(1):486–496, 2022. doi: 10.1109/TVCG.
2021.3114820

[39] M. Nickel and D. Kiela. Poincaré embeddings for learning hierar-
chical representations. Proc. NIPS, 30, 2017.

[40] J. Ontrup and H. Ritter. Large-scale data exploration with the
hierarchically growing hyperbolic SOM. Neural Networks, 19(6-
7):751–761, 2006. doi: 10.1016/j.neunet.2006.05.015

[41] N. Pezzotti, T. Höllt, B. Lelieveldt, E. Eisemann, and A. Vilanova.
Hierarchical stochastic neighbor embedding. Computer Graphics
Forum, 35(3):21–30, 2016. doi: 10.1111/cgf.12878

[42] N. Pezzotti, J. Thijssen, A. Mordvintsev, T. Höllt, B. Van Lew,
B. P. Lelieveldt, E. Eisemann, and A. Vilanova. GPGPU linear
complexity t-SNE optimization. IEEE Transactions on Visualization
and Computer Graphics, 26(1):1172–1181, 2020. doi: 10.1109/TVCG.
2019.2934307

[43] P. Pirolli, S. K. Card, and M. M. Van Der Wege. Visual information
foraging in a focus+ context visualization. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp.
506–513, 2001.

[44] M. Plass, J. Solana, F. A. Wolf, S. Ayoub, A. Misios, P. Glažar,
B. Obermayer, F. J. Theis, C. Kocks, and N. Rajewsky. Cell type
atlas and lineage tree of a whole complex animal by single-cell
transcriptomics. Science, 360(6391):eaaq1723, 2018.

https://doi.org/10.1038/nbt.4314
https://doi.org/10.7551/mitpress/1120.003.0080
https://doi.org/10.7551/mitpress/1120.003.0080
https://doi.org/10.1038/s41467-019-13055-y
https://doi.org/10.1109/TNET.2018.2810186
https://doi.org/10.1109/TNET.2018.2810186
https://doi.org/10.1038/ncomms1063
https://doi.org/10.1016/j.patcog.2023.109302
https://doi.org/doi:10.18576/amis/100112
https://doi.org/10.1007/978-3-030-92931-2_25
https://doi.org/10.1007/978-3-030-92931-2_25
https://doi.org/10.1109/TVCG.2019.2944182
https://doi.org/10.1007/s00453-017-0323-3
https://doi.org/10.1007/s00453-017-0323-3
https://doi.org/10.1109/CVPR52688.2022.00011
https://doi.org/10.1109/TVCG.2008.85
https://doi.org/10.2969/msjmemoirs/03201C010
https://doi.org/10.1109/TVCG.2011.220
https://doi.org/10.1093/comnet/cnaa002
https://doi.org/10.1093/comnet/cnaa002
https://doi.org/10.1038/s41467-020-16822-4
https://doi.org/10.1038/s41467-019-13056-x
https://doi.org/10.1038/s41467-019-13056-x
https://doi.org/10.1038/s41587-020-00809-z
https://doi.org/10.1007/BF00337288
https://doi.org/10.1007/BF00337288
https://doi.org/10.1103/PhysRevE.82.036106
https://doi.org/10.1038/s41592-018-0308-4
https://doi.org/10.1007/978-3-662-48971-0_40
https://doi.org/10.1109/TVCG.2021.3114820
https://doi.org/10.1109/TVCG.2021.3114820
https://doi.org/10.1016/j.neunet.2006.05.015
https://doi.org/10.1111/cgf.12878
https://doi.org/10.1109/TVCG.2019.2934307
https://doi.org/10.1109/TVCG.2019.2934307

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

[45] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction
by locally linear embedding. Science, 290(5500):2323–2326, 2000.
doi: 10.1126/science.290.5500.2323

[46] M. v. d. Ruit, M. Billeter, and E. Eisemann. An efficient dual-
hierarchy t-SNE minimization. IEEE Transactions on Visualization
and Computer Graphics, 28:614–622, 2021. doi: 10.1109/TVCG.2021
.3114817

[47] F. Sala, C. De Sa, A. Gu, and C. Ré. Representation tradeoffs for
hyperbolic embeddings. In Proc. MLR, vol. 80, pp. 4460–4469.
PMLR, 2018.

[48] R. Sarkar. Low distortion delaunay embedding of trees in hyper-
bolic plane. In Int. Symp. on Graph Drawing, pp. 355–366. Springer,
2011.

[49] J. R. Senning. Computing and estimating the rate of convergence.
Technical report, Gordon College, Wenham, 2007.

[50] L. Van Der Maaten. Accelerating t-SNE using tree-based algo-
rithms. The Journal of Machine Learning Research, 15(1):3221–3245,
2014.

[51] L. Van der Maaten and G. Hinton. Visualizing data using t-SNE.
Journal of Machine Learning Research, 9(11), 2008.

[52] K. Verbeek and S. Suri. Metric embedding, hyperbolic space, and
social networks. Computational Geometry, 59:1–12, 2014. doi: 10.
1016/j.comgeo.2016.08.003

[53] J. A. Walter. H-MDS: a new approach for interactive visualization
with multidimensional scaling in the hyperbolic space. Information
Systems, 29(4):273–292, 2004. doi: 10.1016/j.is.2003.10.002

[54] J. Wang, W. Zhang, H. Yang, C.-C. M. Yeh, and L. Wang. Visual
analytics for rnn-based deep reinforcement learning. IEEE Transac-
tions on Visualization and Computer Graphics, 28(12):4141–4155, 2021.
doi: 10.1109/TVCG.2021.3076749

[55] J. Wu, D. Liu, Z. Guo, Q. Xu, and Y. Wu. TacticFlow: Visual ana-
lytics of ever-changing tactics in racket sports. IEEE Transactions
on Visualization and Computer Graphics, 28(1):835–845, 2021. doi: 10
.1109/TVCG.2021.3114832

[56] Z. Wu and H. Wu. Accounting for cell type hierarchy in evaluating
single cell rna-seq clustering. Genome Biology, 21(1):1–14, 2020.

[57] J. Xia, Y. Zhang, J. Song, Y. Chen, Y. Wang, and S. Liu. Revisiting
dimensionality reduction techniques for visual cluster analysis: An
empirical study. IEEE Transactions on Visualization and Computer
Graphics, 28(1):529–539, 2021. doi: 10.1109/TVCG.2021.3114694

[58] H. Xiao, X. Liu, Y. Song, G. Y. Wong, and S. See. Complex hyper-
bolic knowledge graph embeddings with fast fourier transform.
In Proc. EMNLP, pp. 5228–5239. ACL, Abu Dhabi, UAE, 2022.

[59] C. Zhang, X. Wang, C. Zhao, Y. Ren, T. Zhang, Z. Peng, X. Fan,
X. Ma, and Q. Li. PromotionLens: Inspecting promotion strategies
of online e-commerce via visual analytics. IEEE Transactions on
Visualization and Computer Graphics, 29(1):767–777, 2023. doi: 10.
1109/TVCG.2022.3209440

[60] Y. Zhou and T. O. Sharpee. Hyperbolic geometry of gene expres-
sion. IScience, 24(3):102225, 2021. doi: 10.1016/j.isci.2021.102225

[61] Y. Zhou and T. O. Sharpee. Using global t-SNE to preserve inter-
cluster data structure. Neural Computation, 34(8):1637–1651, 2022.
doi: 10.1162/neco a 01504

[62] Y. Zhou, B. H. Smith, and T. O. Sharpee. Hyperbolic geometry of
the olfactory space. Science Advances, 4(8):eaaq1458, 2018. doi: 10.
1126/sciadv.aaq1458

7 BIOGRAPHIES

Martin Skrodzki is an assistant professor with
a special focus on education at the Computer
Graphics and Visualization Group at the Depart-
ment of Intelligent Systems at Delft University of
Technology. His research interests include the
use of illustrations in mathematics, visualization
of high-dimensional data, discrete geometry pro-
cessing as well as interactions between mathe-
matics and arts.

Hunter van Geffen studied Computer Science
at the Delft University of Technology where he
graduated with a Master’s Degree in 2022. His
studies focused on Data Science and Visualiza-
tion and he wrote his thesis about accelerating
T-SNE for hyperbolic embeddings. Currently, he
is a Scientific Software Engineer at VORTech.

Nicolas F. Chaves-de-Plaza is a Ph.D. stu-
dent at the Department of Intelligent Systems
at the Delft University of Technology. He works
on developing visualization and interaction tools
to support clinician-driven segmentation of 3D
medical images in the context of Adaptive Proton
Therapy.

Thomas Höllt is a tenured Assistant Profes-
sor at the Computer Graphics and Visualization
Group at the Department of Intelligent Systems
at Delft University of Technology. His research
interests include Visualization and Visual Ana-
lytics, with a focus on high-dimensional data and
bio-/medical applications.

Elmar Eisemann is a Full Professor heading the
Computer Graphics and Visualization Group at
the Department of Intelligent Systems at Delft
University of Technology. His research interests
include real-time and perceptual rendering, vi-
sualization, alternative representations, shadow
algorithms, global illumination, and GPU accel-
eration techniques.

Klaus Hildebrandt is an Assistant Professor at
the Computer Graphics and Visualization Group
at the Department of Intelligent Systems at Delft
University of Technology. His research inter-
ests include Visual Computing, Geometric Data
Processing, Physical Simulation, and Computa-
tional and Discrete Differential Geometry.

https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1109/TVCG.2021.3114817
https://doi.org/10.1109/TVCG.2021.3114817
https://doi.org/10.1016/j.comgeo.2016.08.003
https://doi.org/10.1016/j.comgeo.2016.08.003
https://doi.org/10.1016/j.is.2003.10.002
https://doi.org/10.1109/TVCG.2021.3076749
https://doi.org/10.1109/TVCG.2021.3114832
https://doi.org/10.1109/TVCG.2021.3114832
https://doi.org/10.1109/TVCG.2021.3114694
https://doi.org/10.1109/TVCG.2022.3209440
https://doi.org/10.1109/TVCG.2022.3209440
https://doi.org/10.1016/j.isci.2021.102225
https://doi.org/10.1162/neco_a_01504
https://doi.org/10.1126/sciadv.aaq1458
https://doi.org/10.1126/sciadv.aaq1458

	Introduction
	Background
	t-distributed Stochastic Neighbor Embedding
	Barnes-Hut Acceleration Structure for t-SNE
	Hyperbolic Space and the Poincaré Disk Model
	Polar quadtree

	Related Work
	Hyperbolic Embeddings
	Accelerating t-SNE

	A Hierarchical Acceleration Structure for Hyperbolic t-SNE
	Modified Polar Quadtree – Embedding Acceleration
	Approximating the Hyperbolic Gradient
	Application to other hyperbolic t-SNE Schemes

	Evaluation
	Time Gain by Acceleration
	Reduction of the Absolute Run Time
	Estimated Asymptotic Run Time
	Effect of on the Run Time
	Time Gain by Splitting Choices

	Quality Retention under Acceleration
	Retention of the Gradient and the Cost Function
	Effect of the Acceleration on the Embedding Quality
	Effect of on the Embedding Quality

	Embedding of Large-Scale Data Sets

	Conclusion
	References
	Biographies
	Biographies
	Martin Skrodzki
	Hunter van Geffen
	Nicolas F. Chaves-de-Plaza
	Thomas Höllt
	Elmar Eisemann
	Klaus Hildebrandt

