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Fig. 1. Spectral renders of a scene lit by multiple illuminants (𝐷65, 𝐹𝐿2). We demonstrate several spectral modifications. 1, 4; metamer mismatching under
indirect illumination, for which mismatch volumes indicate valid color options at a surface. 2, 3; constrained metamer mismatching under direct illumination.

Spectral rendering has received increasing attention in recent years. Yet,
solutions to define spectral reflectances are mostly limited to uplifting tech-
niques which deterministically augment existing RGB inputs. Only recently
has uplifting been able to ensure a certain surface appearance under direct
illuminants. Yet, prior work in this area limits artist expressiveness and is not
well suited for designing the appearance of a scene, as indirect illumination
is ignored entirely.

We present an uplifting technique with fine-grained spectral appearance
control under direct and indirect illumination, even enabling the placement
of spectral constraints in a specific scene. Our approach allows for a flexible
authoring process, and solves for the resulting spectra efficiently. Addition-
ally, we show that our method’s memory overhead during rendering is kept
small, by introducing a compact spectral texture format.
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1 Introduction
Spectral rendering has started taking a critical role in production.
Trichromatic systems approximate radiance and reflectance as RGB
values, but spectra are required for accurate color reproduction un-
der different illuminants. However, spectral surface reflectances are
challenging to acquire at the scales required for texture data and
impose a memory impact during rendering. One option is spectral
uplifting, which generates spectra from existing RGB inputs. This
process is ill-posed due to metamerism (different reflectances pro-
ducing the same color under a given light source). Uplifting typically
establishes a one-to-one mapping, e.g., opting for the smoothest
reflectance, and hereby inherits problems of trichromatic rendering,
as a produced reflectance might exhibit a wanted appearance under
one illuminant only. Therefore, working in a full spectral pipeline
is challenging.

Recent work introduced constrained uplifting [Tódová et al. 2021;
van de Ruit and Eisemann 2023], focusing on appearance under
various illuminants. Yet, in practice, there are limitations, including
performance impacts, limited control, and ignored interreflections,
which can significantly impact scene appearance (Fig. 1).

Our spectral uplifting extends prior work, while being simple
and efficient. It supports reproducing spectral measurements, direct-
illumination color constraints, and constraints on color appearance
under complex indirect illumination. We uplift input RGB data via a
R3 convex polytope englobing the data with specific spectra on each
vertex. Its interior is tessellated into simplices, and interior vertices
can be added for fine-grained control. We retrieve the reflectance of
an RGB value by localizing the surrounding simplex and performing
interpolation between the spectra of the simplex’ vertices.We extend
prior work on metamer mismatch volumes [Finlayson and Morovic
2005; Logvinenko et al. 2013; Mackiewicz et al. 2019], incorporating
estimated light transport to handle indirect illumination. Using a
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small basis, we "bake" the uplifting into an efficient texture format,
which supports local constraints in parts of the scene, and is practical
for rendering. Finally, we make our source code available online1.

In short, we make the following contributions:
• A controllable spectral uplifting method via constraints;
• A solution for metamer color control under indirect light;
• A compact spectral texture format for rendering.

In the following, we cover relatedmaterial (Sec. 2) and ourmethod
(Sec. 3). We evaluate roundtrip error and authoring (Sec. 4), discuss
findings (Sec. 5), and conclude (Sec. 6).

2 Background
Color Theory. While light spectra consist of various wavelengths,

human color perception builds mainly upon three sensors. In conse-
quence, colors are typically equated to a sensor trio observing the
spectral distribution of light [Wyszecki and Stiles 1982], which are
described by observer functions. Denoting three observer functions
as 𝑒 , and given an illuminant distribution 𝑖 , we express the response
to surface reflectance 𝑟 under direct illumination as

Φ(𝑟 ) =
∫
Λ
𝑒 (𝜆) 𝑟 (𝜆) 𝑖 (𝜆) 𝑑𝜆, (1)

where Λ describes typically the visible spectrum (e.g. 360 − 830 nm).
This is formalized in the CIE XYZ standard observers and derived
color spaces such as sRGB. A color system combining observer and
illuminant describes a linear transformation Φ(𝑟 ) : X → R3. Of
particular interest is the valid region of responses {𝑟 ∈ X | Φ(𝑟 ) ≠ 0},
which forms a convex region called the object color solid.

The illuminant 𝑖 describes radiant energy over wavelength, while
reflectance 𝑟 describes a surface’s efficacy in reflecting said energy.
Illuminants are positively unbounded and vary in shapes dependent
on the underlying processes. Reflectances are [0, 1]-bounded and are
generally low-banded in the visible spectrum. This property holds
for most pigments, but not for structural colors [Maloney 1986]. We,
as most related work, restrict ourselves to smooth reflectances.

MetamerMismatching. Webriefly covermetamerism andmetamer
mismatching; for extended overviews, please refer to [Finlayson and
Morovic 2005; Logvinenko et al. 2013]. Given some color system,
consider the problem of inverting Equation 1, i.e. Φ−1 (Φ(𝑟 )) = 𝑟 . It
is ill-posed; as it is typically a set of reflectances:

Φ−1 (Φ(𝑟 )) = { 𝑟 ′ ∈ X | Φ(𝑟 ) = Φ(𝑟 ′) },
i.e. many reflectances achieve a particular color signal. Thismetamer
set is convex. Metamers produce the same signal under Φ, but in
a secondary color system Ψ (differing in observer or illuminant)
they can produce different responses. Mapping the set to Ψ, we find
a non-singleton color solid called a metamer mismatch region. We
describe the sampling-based method of Mackiewicz et al. [2019]
to find mismatch region boundaries, as we extend this method to
incorporate indirect illumination (Sec. 3.3).
Consider mapping T : X → R6, T (𝑟 ) = (𝜙,𝜓 ), where 𝜙 = Φ(𝑟 ),

𝜓 = Ψ(𝑟 ) form color signals in two color systems. For given signal
𝜙 , the set of mismatched signals under Ψ is a cross-section of T , i.e.:

M(𝜙,Φ,Ψ) = { 𝜓 ∈ 𝑅3 | (𝜙,𝜓 ) ∈ T },
1https://graphics.tudelft.nl/indirect_uplifting

where we simplify notations by identifying T with its image. While
this region’s interior can be complex, boundary spectra are unique
step-wise functions consisting only of transitions between zeroes
and ones. These optimal spectra are extrema [Logvinenko 2009;
Schrödinger 1920]. Finding the mismatch boundary 𝛿M thus re-
duces to extremizing spectra mapped to T , subject to Φ(𝑟 ) = 𝜙 . In
practice, one spherically samples unit vector 𝑢 ∈ R6, and projects
the color system spectra inT along𝑢. In the discrete case, reflectance
𝑟 is represented as a 𝑘-dimensional vector,Φ,Ψ are 𝑘×3 color system
matrices, and we can solve for the boundary with a linear program:

max
𝑟 ∈Φ−1 (𝜙 )

( [
Φ
Ψ

]
𝑢

)T
𝑟 (2)

This produces a discrete reflectance on the boundary 𝛿M(𝜙,Φ,Ψ).

Spectral Uplifting. A recent overview of the scope of spectral
uplifting is given by Weidlich et al. [2021]. Uplifting is having a
known color signal 𝜙 and then finding a metamer 𝑟 ∈ Φ−1 (𝜙).
Across different methods, three criteria are identifiable: smoothness
of produced reflectances, boundedness, and roundtrip error.
The earliest approaches to spectral uplifting are now of mostly

theoretical interest, as they produce blocky distributions or break
boundedness [MacAdam 1935; Smits 1999]. The later approach of
Meng et al. [2015] precomputes spectra on a grid spanning the
xy-chromaticity plane, uplifting colors through interpolation of
these spectra. It produces smooth reflectances, but requires scaling
for values above or below the plane, introducing errors. Otsu et
al. [2018] address this by clustering sets of spectra into a spatial
hierarchy covering the xy-chromaticty plane. Inside clusters, the
authors store localized bases for spectrum recovery. While efficient,
this approach introduces discontinuities between clusters, uplifting
gradients poorly. More recently, van de Ruit and Eisemann [2023]
precompute spectra on a convex polytope enclosing an input texture,
ensuring correct interpolation, if such a polytope can be found.

A separate class of techniques startedwith Jakob andHanika [2019],
who demonstrate a low-dimensional parameterization of a sigmoidal
function space, for which they precompute coefficients across a
three-dimensional color lookup table. Subsequent function recon-
struction is inherently fast, and produces smooth reflectances with
minimal roundtrip error. This approach has been extended to handle
out-of-gamut spectra [Jung et al. 2019; König et al. 2020]. Afterwards,
a more complex, Fourier-space approach is introduced by Peters et
al. [2019], addressing roundtrip issues of the sigmoidal.
As previously stated, most methods establish one-to-one map-

pings, associating a specific metamer with a color signal. Two
techniques differ in this aspect. Tódová et al [2021; 2022] extend
the Fourier-space representation [Peters et al. 2019], seeding that
method’s coefficient table s.t. specific measured spectra are repro-
duced during uplifting. Van de Ruit and Eisemann [2023] uplift
based on artist-specified color constraints. While their approach
enables targeting of specific color behavior, control is limited. We
detail these limitations later (Sec. 3.1), as we extend their work. Our
solution is the first to integrate indirect illumination constraints.
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3 Method
We now present our constrained spectral uplifting. We first cover
our method’s foundation (Sec. 3.1), followed by the basic uplifting
procedure (Sec. 3.2). We then derive a color system to constrain the
uplifting under indirect illumination (Sec. 3.3), and finally specify a
practical texture format for rendering (Sec. 3.4).

3.1 Foundation
A color system (Equation 1) describes a linear transformation, pre-
serving convexity. Let 𝑟1, . . . , 𝑟𝑛 be 𝑛 reflectances with correspond-
ing mappings Φ(𝑟1), . . . ,Φ(𝑟𝑛). If we combine these mappings using
convex weights𝑤1, . . . ,𝑤𝑛 : ∀𝑖𝑤𝑖 ≥ 0 ∩ ∑

𝑖 𝑤𝑖 = 1, we observe:∑︁
𝑤𝑖Φ(𝑟𝑖 ) = Φ

(∑︁
𝑤𝑖𝑟𝑖

)
, (3)

i.e., the color signal of linearly combined reflectances equals the
linear combination of the corresponding color signals. When inter-
polating two metamers, the result itself is a metamer - but it also
holds for arbitrary reflectances. This principle is employed in most
prior work. Van de Ruit and Eisemann [2023] note that, minimally,
interpolation of R3 color signals must occur within a 3-simplex,
as planar methods unavoidably struggle with error [Mallett and
Yuksel 2019; Meng et al. 2015; Otsu et al. 2018]. However, instead
of a simplex, they solve for a complex polytope enclosing an input
RGB texture. Uplifting then reduces to a linear mixture of the poly-
tope’s uplifted vertices. The authors enable targeted uplifting by
constraining the vertex spectra, but this is limited in effect; vertices
necessarily lie on the polytope, away from the input, and there-
fore constraints never affect or modify the input’s uplifting directly.
In contrast, our method allows for interior constraints, which can
directly affect the uplifting of specific RGB inputs.

3.2 Tessellated Color System
Convex reconstruction of a polytope interior avoids roundtrip er-
ror, which is why we also use this as our foundation. However, we
select a polytope that describes the color-system boundary, which
encloses all color inputs. Given the polytope vertices, we can con-
struct a Delaunay tessellation, which results in a set of 3-simplices,
each associated with four vertices. Each vertex contains a spectrum
producing the color encoded by the vertex position under the illu-
minant of the color system. We detail spectrum generation further
below. Uplifting a color input then reduces to (a) localizing the
enclosing simplex for the color within the tessellation, and (b) a
barycentric interpolation of the simplex’ associated spectra (Equa-
tion 3). Further, we can constrain the interior by inserting vertices
into the tessellation, which then affect the uplifting. Fig. 2 shows an
overview of the uplifting procedure.

Boundary spectra. Reflectances on the color-system boundary are
extrema, being the MacAdam limits. Interpolation between such
saturated distributions results in correct but physically implausible
spectra. We therefore find a smaller boundary formed by smooth
spectra as outlined below.
Like prior methods, we use a weighted PCA basis to construct

low-banded spectra [Cohen 1964; Fairman and Brill 2004; Otsu et al.
2018; Parkkinen et al. 1989; Tzeng and Berns 2005; van de Ruit and
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an enclosing boundary on the input’s color system, while artist-specified
constraints then specify spectra in the interior. Boundary and interior spec-
tra are connected using a Delaunay tessellation, and inputs are then uplifted
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Fig. 3. Color system support. We show sample boundary spectra and the
effective support of our basis with𝑚 = 32, 24, 16, 8 components. We further
show support of a discrete system (𝑘 = 64) with sampled MacAdam limits,
as well as the sRGB gamut, which is enclosed for all choices of𝑚.

Eisemann 2023]. We use a dataset of ∼ 41𝑀 measured reflectances
(400 − 700 nm) from a variety of materials [Zhang et al. 2016]. Let
reflectance 𝑟 be a discretized 𝑘-dimensional vector. We apply PCA
to the dataset and retain the first𝑚 principal components as a 𝑘 ×𝑚
matrix 𝐵. Then we represent a reflectance as 𝑟 = 𝐵𝑤 , where𝑤 are𝑚-
dimensional coefficients. Though𝑚 = 3 suffices to reproduce most
colors [Cohen 1964], we retain𝑚 > 3 as in prior work [van de Ruit
and Eisemann 2023]. Otherwise, if the systemwere fully determined,
we would eliminate the ability to output metamers.

To generate a boundary within this basis, we employ the method
of Mackiewicz et al. [2019]. We spherically sample a unit vector
𝑢 ∈ R3, and project the 𝑘 × 3 discretized color system Φ onto 𝑢.
Maximizing this projection necessarily results in a position on the
system boundary. Expressed in our basis, this becomes:

max
𝑤

(Φ𝑢)T𝐵𝑤, with ∀𝑖0 ≤ (𝐵𝑤)𝑖 ≤ 1. (4)
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As PCA acts as a dimensionality reduction, resultant spectra become
low-banded, enabling their use for interpolation. Fig. 3 illustrates
color system support and boundary spectra for choices of𝑚.

Interior spectra. In the polytope interior, we allow user-specified
constraints. Each provides a color signal - in effect a vertex position
- and an associated reflectance, uplifted or directly specified. We
detail three constraint types across this and prior work.

1. Measurement: Given a concrete spectral reflectance 𝑟 , we project
it into the PCA basis, which gives a𝑤 , minimizing | |𝐵𝑤 − 𝑟 | |, and
then insert vertex Φ(𝐵𝑤). Similar to Tódová et al. [2021], we can
reproduce the representations of spectral measurements. We inves-
tigate full spectral texture reproduction in Sec. 4.2.

2. Direct color: Given 𝑛 color constraints {𝜓1, . . . ,𝜓𝑛} under color
systems {Ψ1, . . . ,Ψ𝑛}, the linear program

min
𝑤

| |𝐵𝑤 | |, with ∀𝑗Ψ𝑗𝐵𝑤 = 𝜓 𝑗 and ∀𝑖0 ≤ (𝐵𝑤)𝑖 ≤ 1 (5)

produces coefficients for a constraint-satisfying metamer, which we
insert as vertex Φ(𝐵𝑤). Following van de Ruit and Eisemann [2023],
we restrict inputs to the intersection of relevant mismatch regions.

3. Indirect color: Given a scene with observer, and an observed
surface position with reflectance 𝑟 , we enable constraining observed
color 𝜓 at this position under an indirect color system Ψ(𝑟 ). We
derive this color system in the following (Sec. 3.3).

3.3 Indirect Color System
While prior constraint types enable uplifting control, they only
account for mismatching in a linear form. Yet, in complex scenes,
illuminant-induced mismatching can occur due to complex light
transport (Fig. 4). To control this effect, we derive a convex formula-
tion of a non-linear color system, w.r.t. a constraint reflectance 𝑟 at
some surface position in a scene. In the following, we estimate the
indirect light transport from this point and then factor out 𝑟 . We
then use this factorization to formulate a maximization that finds
the metamer mismatch boundary under indirect illumination.

Path-integral formulation. For an environment with a particular
constrained reflectance 𝑟 at a given surface point, we define a color
system over a per-wavelength incident radiance 𝐼𝑟 and observer 𝑒:

Ψ(𝑟 ) =
∫
Λ
𝑒 (𝜆) 𝐼𝑟 (𝜆) 𝑑𝜆. (6)

The radiance measure can be expressed using a path-integral for-
mulation of light transport [Veach and Guibas 1995]:

𝐼𝑟 (𝜆) =
∫
Ω
𝑓𝑟 (𝑥, 𝜆) 𝑑𝜇𝑥 (7)

where 𝜇 forms a measure over samples in path domain Ω, and
𝑓𝑟 : (Ω,Λ) → R denotes the per-wavelengthmeasurement contribu-
tion along a path of length 𝑛, 𝑥 = {𝑥1, . . . , 𝑥𝑛}. This contribution de-
scribes light throughput (geometric terms, cosine attenuation, bidi-
rectional reflectance, illuminant) along the path. Let {𝑟1, . . . , 𝑟𝑛−1}
be underlying reflectances at path vertices not on a light source. We
factor out these reflectances using a secondary function 𝑓0 : Ω → R,

Left metamer Right metamer

1
2
3
4
5
6 1 2

3
4

5 6Mismatch volumes
λ λ

Fig. 4. Two folded patches on a white plane under 𝐷65. While metameric in
direct light, these concave patches differ due to interreflections. At equidis-
tant points on a patch, we show generated indirect mismatch volumes.

λ
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r

r

Fig. 5. Formulation. We show a light path {𝑥1, 𝑥2, 𝑥3}, and constraint re-
flectance 𝑟 at surface 𝑥1. Further reflectances are expressed as convex com-
binations of spectra in simplices from our tessellation, which can contain 𝑟 .

which is independent of reflectances (∀𝑟 ∈X 𝑟 (𝜆) = 1). We express

𝑓𝑟 (𝑥, 𝜆) = 𝑓0 (𝑥)
𝑛−1∏
𝑖=1

𝑟𝑖 (𝜆), (8)

which implies that BRDFs have to allow for associative rearrange-
ment of surface reflectances.

Following this, we can express path reflectance 𝑟𝑖 w.r.t. constraint
reflectance 𝑟 . Recall that uplifting is the convex combination of four
spectra, associated with vertices of a 3-simplex. As 𝑟 is one vertex
in our tessellated color system, each encountered spectrum 𝑟𝑖 on
surfaces along the path either uses 𝑟 or not. Fig. 5 illustrates an
example. Next, we denote simplex spectra and associated convex
weights as (𝑠1, 𝑎1), . . . , (𝑠4, 𝑎4), such that 𝑟𝑖 =

∑4
𝑗=1 𝑠 𝑗𝑎 𝑗 . Then:

𝑟𝑖 =

{
𝑎𝑘𝑟 +

∑4
𝑗≠𝑘

𝑠 𝑗𝑎 𝑗 (∃𝑘 𝑠𝑘 = 𝑟 )
0𝑟 + ∑4

𝑗=1 𝑠 𝑗𝑎 𝑗 (𝑒𝑙𝑠𝑒)
→ 𝑟𝑖 = 𝑎𝑖𝑟 +𝑤𝑖

where 𝑎𝑖 ≥ 0 is either zero or a convex weight, and 𝑤𝑖 sums the
weighted remainder spectra. This enables expansion of Equation 8:

𝑓0 (𝑥)
𝑛−1∏
𝑖=1

(𝑎𝑖𝑟 +𝑤𝑖 ) = 𝑓0 (𝑥) ( 𝑟𝑛−1 (𝑎1𝑎2 · · ·𝑎𝑛−1) (9)
+ 𝑟𝑛−2 (𝑤1𝑎2 · · ·𝑎𝑛−1 + 𝑎1𝑤2 · · ·𝑎𝑛−1)
+ 𝑟𝑛−3 (𝑤1𝑤2𝑎3 · · ·𝑎𝑛−1 + · · · )
.
.
.

+ 𝑟0 (𝑤1𝑤2 · · ·𝑤𝑛−1))
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For a power 𝑏 < 𝑛, we define 𝑡𝑏 as the coefficient of 𝑟𝑏 in Equa-
tion 9. The contribution then simplifies to a truncated power series:

𝑓𝑟 (𝑥, 𝜆) = 𝑓0 (𝑥)
𝑛−1∑︁
𝑏=0

𝑡𝑏 (𝑥, 𝜆) 𝑟𝑏 (𝜆)

We can now revisit the path-integral formulation (Equation 7). Given
the complexity of light-transport problems, we apply Monte Carlo
integration, introducing the estimator

𝐼𝑟 (𝜆) ≈ 𝐼𝑟 (𝜆) =
1
𝑁

𝑁∑︁
𝑖=1

𝑓𝑟 (𝑥𝑖 , 𝜆)
𝑝 (𝑥𝑖 )

,

converging to the expected value as 𝑁 → ∞. Here 𝑝 (𝑥𝑖 ) is the
probability density of sample 𝑥𝑖 . Given a known, finite length 𝑛

across paths - noted as approximation - the estimator becomes

𝐼𝑟 (𝜆) =
1
𝑁

𝑁∑︁
𝑖=1

𝑓0 (𝑥𝑖 )
𝑝 (𝑥𝑖 )

𝑛−1∑︁
𝑏=0

𝑡𝑏 (𝑥𝑖 , 𝜆) 𝑟𝑏 (𝜆)

=

𝑛−1∑︁
𝑏=0

(
1
𝑁

𝑁∑︁
𝑖=1

𝑓0 (𝑥𝑖 ) 𝑡𝑏 (𝑥𝑖 , 𝜆)
𝑝 (𝑥𝑖 )

)
𝑟𝑏 (𝜆) (10)

=

𝑛−1∑︁
𝑏=0

𝑐𝑏 (𝜆) 𝑟𝑏 (𝜆) , where 𝑐𝑏 (𝜆) := 1
𝑁

𝑁∑︁
𝑖=1

𝑓0 (𝑥𝑖 ) 𝑡𝑏 (𝑥𝑖 , 𝜆)
𝑝 (𝑥𝑖 )

,

producing a simplified expression. In practice, we can estimate
coefficient spectra 𝑐0, . . . , 𝑐𝑛−1 by accumulating incident radiance
along 𝑁 paths and factoring out 𝑏 interreflections of constraint
reflectance 𝑟 . Given these coefficients, we next employ Equation 10
to express light transport under mismatching constraint reflectances.
This follows prior numerical approximations of interreflections
treating surfaces as a finite number of patches [Nayar et al. 1991].

Mismatch volume boundary. We employ Equation 10 to specify an
estimate of the indirect color system (Equation 6), which becomes

Ψ(𝑟 ) ≈ Ψ̂(𝑟 ) =
∫
Λ
𝑒 (𝜆) 𝐼𝑖 (𝜆) 𝑑𝜆 =

∫
Λ
𝑒 (𝜆)

𝑛−1∑︁
𝑏=0

(𝑐𝑏 (𝜆) 𝑟𝑏 (𝜆)) 𝑑𝜆,

which forms a non-linear system. We build upon the method of
Mackiewicz et al. [2019] to determine mismatch boundary 𝛿M. First,
we discretize the color systems (3 × 𝑘), specifically the uplifting’s
color system Φ with known signal 𝜙 , and define discretized indirect
color system spectra as Ψ̃0, . . . , Ψ̃𝑛−1, where Ψ𝑏 = 𝑒 ◦ 𝑐𝑏 ; here ◦ de-
notes a component-wise multiplication. We then spherically sample
a unit vector 𝑢 ∈ R6, along which we project color system spectra.
As with the linear form (Sec. 2), maximizing in the direction of this
projection results in a position on the region’s boundary. We denote
𝑢 := (𝛼, 𝛽), where 𝛼, 𝛽 ∈ R3, forming

max
𝑟 ∈Φ−1 (𝜙 )

(Φ𝛼)T𝑟 +
𝑛−1∑︁
𝑏=0

(Ψ̃𝑏𝛽)T𝑟𝑏 (11)

which adopted to our basis becomes

max
𝑤

(Φ𝛼)T (𝐵𝑤) +
𝑛−1∑︁
𝑏=0

(Ψ̃𝑏𝛽)T (𝐵𝑤)𝑏

with ΦT (𝐵𝑤) = 𝜙 and ∀𝑖0 ≤ (𝐵𝑤)𝑖 ≤ 1.

We show mismatch volumes generated over a patch with varying
interreflections in Fig. 4. Note that this problem is convex as the
solution spans 𝑟 , which is [0, 1]-bounded, while 𝑏 ≥ 0 and ∀𝑏𝑐𝑏 ≥ 0.
As our basis uses negative components, convexity does not hold. In
practice, we may find mismatch boundaries that are interior to the
exact boundary, which is sufficient in practice.

Indirect reflectance generation. We next generate a metamer in the
mismatch volume. Given indirect color constraint𝜓 and discretized
color system spectra Ψ̂1, . . . , Ψ̂𝑛−1, we extend Equation 5, solving:

min
𝑤

∥𝐵𝑤 ∥, 𝑤𝑖𝑡ℎ ∀𝑖0 ≤ (𝐵𝑤)𝑖 ≤ 1

with 𝜙 = Φ𝑇 (𝐵𝑤) and𝜓 =
∑𝑛−1
𝑏

Ψ̂𝑇
𝑏

(𝐵𝑤)𝑏 .

Note that, as the mismatch volume we present to the user to spec-
ify 𝜙 is a color solid, we can avoid this minimization. Instead, we
tessellate this solid in R3, localize𝜓 ’s enclosing simplex within the
tessellation, and perform barycentric interpolation of the simplex’
vertex coefficients. This𝑤 encodes the wanted metamer 𝐵𝑤 .

3.4 Texture format
Our uplifting is a reconstruction, localized to a simplex in the tessel-
lation. A direct approach to storing an uplifted input, is the index to
its enclosing simplex, together with three interior convex weights,
as the fourth can be deduced (

∑
𝑎𝑖 = 1). Given that weights are

in [0, 1] and the number of simplices in the tessellation is low, a
low-bit RGBA texture typically suffices. However, users may de-
fine conflicting constraints, as we discuss in Sec. 5, which implies
additional operations during rendering.

Instead, we preprocess and "bake" our reflectances, representing
each reflectance in the orthonormal basis 𝐵. We already rely on
coefficients in this basis throughout our entire pipeline, including the
reflectances stored in vertices of the tessellation. Hence, to encode
an uplifted reflectance, we find the enclosing simplex and use the
interpolated basis coefficients. This representation is compact and
conversion is easily parallelized. We scale our basis to a [−1, 1]
boundary on the projection of PCA inputs; recovered coefficients
are thus [0, 1]-bounded. This enables a fixed-point representation; in
practice, we store 128 bits per pixel, packing 8, 12 or 16 coefficients
at 16, 10 or 8 bits respectively. Note that texture filtering is applied
to coefficients after unpacking; the filtered result is then used for
uplifting. We evaluate variants of our representation in Sec. 4.1.

4 Evaluation
In the following, we discuss implementation, evaluate uplifting
quality (Sec. 4.1) and spectral texture recovery (Sec. 4.2). Afterwards,
we demonstrate the indirect color system (Sec. 4.3).

Our implementation relies on a sequential quadratic program-
ming [Kraft 1994] algorithm in theNLopt framework [Johnson 2007]
for the constrained optimization and Qhull [Barber et al. 2013] for
the Delaunay tessellations. Uplifting and rendering use OpenGL,
and we employ continuous wavelength hero sampling [Wilkie et al.
2014]. During uplifting, discrete spectra use 𝑘 = 64 bins to handle
high-frequency illuminants. For color solid sampling, we use 128
spherical samples in all cases. Our method supports any spectral
range, but uses 400− 700 nm due to the dataset underlying our basis.
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Fig. 6. Unconstrained reflectances. We show sample spectra from uncon-
strained uplifting (𝐹𝑖𝑔. 11) for our method (𝑚 = 12), the sigmoidal [Jakob
and Hanika 2019] and the boundedMESE [Peters et al. 2019]. All spectra
accurately reproduce the RGB input under 𝐷65.

A supplemental video shows real-time spectral modifications on a
RTX 3070. When a user first places an indirect constraint in a scene,
we trace 65K paths GPU-side, and reduce to a power series CPU-
side, which takes under a second. Texture baking occurs whenever
a relevant constraint is edited, and takes 12.5 ms for a 4K texture.
Throughout the evaluation, we compare with the sigmoidal up-

lifting [Jakob and Hanika 2019] and the Fourier-space bounded
MESE [Peters et al. 2019]. For the latter, we select𝑚 = 12 coefficients
(11 moments). This method has high accuracy on RGB roundtrip
with fewer coefficients; however, it proved insufficient to reproduce
complex metamers on mismatch boundaries. Note that the method’s
reconstruction time is quadratic w.r.t. the choice of𝑚. In the authors’
implementation, we use their mirrored, warped configuration.
We evaluate color accuracy for the different methods using CIE

Δ𝐸00 color difference [Sharma et al. 2005]. Note the following thresh-
olds: Δ𝐸 ≤ 1 implies no perceptible difference; Δ𝐸 ∈ (1, 2] implies a
very close match; Δ𝐸 > 2 implies close but visible mismatching.

4.1 Reconstruction of RGB data
We first evaluate unconstrained uplifting of RGB input data. We
measure color reproduction of BabelColor Average patches [Babel-
Color Company 2019] under 𝐷65. Prior methods achieve sufficient
accuracy here; ideally we produce the same roundtrip error or less.
For our method, we test bases with𝑚 = 8, 12, 16 principal compo-
nents at 32 bit, and low-bit packed variants storing 16, 10, 8 bits per
coefficient. For the boundedMESE, we likewise test a variant storing
10 bits per coefficient, using the same code as our method.

Fig. 10 shows roundtrip results for all methods and Table 1 lists
mean and maximum Δ𝐸00. While roundtrip of full-precision vari-
ants of our method consistently improves on prior methods, none
produces perceptible error. The exception is our method’s𝑚 = 16
packed variant, which visibly mismatches darker colors due to the
low bitrate. As packed variants are intended for practical rendering
we discard𝑚 = 16 variants in the following.

Fig. 11 shows unconstrained uplifting of RGB textures, achieving
similar error. All methods uplift correctly, though in packed variants
our method avoids mismatching, while the boundedMESE struggles
with darker colors. We further show uplifted spectra from these
textures (Fig. 6); evidently, the basis can introduce an oscillating
behavior near spectral range boundaries, compared to the smoother
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Fig. 7. Constrained reflectances. We show sample spectra from constrained
spectral texture reconstruction (Fig. 12) for our method (𝑚 = 12), the sig-
moidal [Jakob and Hanika 2019] and the boundedMESE [Peters et al. 2019].
Our uplifting is constrained with 𝑛 random samples from the input texture.

outputs of prior methods. This is explained by the use of warped
coefficients, which was presented by the authors of bounded MESE;
i.e. greater precision is given to the centre of the visible range.

4.2 Reconstruction of spectral data
We next demonstrate recovery of hyperspectral textures. Given
their size, such data is typically impractical for rendering. We ap-
proximate the textures in a compact format. We repeat a prior ex-
periment [van de Ruit and Eisemann 2023], fitting textures from
the HyTexila dataset [Khan et al. 2018]; each 10242 texture stores
186 spectral channels over 400 − 1000 nm (744𝑀𝐵). We then sample
𝑛 = 0, 1, 4, 16, 64, 256 spectra from the texture, inserting these in our
tessellation as measurement constraints. As 𝑛 increases, we expect
our method to increasingly resemble the input texture. We could fit
all pixels into our basis directly instead. However, as spectral texture
capture is challenging, we test whether a smaller input suffices. For
the boundedMESE, we fit per pixel, though we note that the work of
Tódová et al. [2021; 2022] enables a compact fitting of this method.

Fig. 12 compares outputs under standard illuminants 𝐷65, 𝐹𝐿11,
and 𝐿𝐸𝐷 − 𝑅𝐺𝐵1. All unconstrained methods correctly handle re-
covery under 𝐷65, but visibly mismatch under one of the other
illuminants. Given any number of constraints, our method’s output
strongly improves. For 𝑛 ≥ 16, all outputs achieve mean Δ𝐸00 ≤ 1.2,
outperforming prior methods. We show several output spectra for
all methods and sample counts in Fig. 7.

4.3 Reconstruction of indirect color constraints
Finally, we evaluate indirect color constraining (Sec. 3.3). We set up
a simple scenario; a neutral-gray surface, illuminated by a constant
𝐷65 environment. The surface consists of flat and folded parts,
perpendicular to an orthogonal camera. We constrain the flat part to
simply reproduce the input RGB color. We then constrain the center
of the fold, where interreflections occur andmetameric mismatching
is possible. We generate a mismatch volume for the constraint, and
select constraint values that we subsequently apply to the surface.
Fig. 8 displays results; for each position, we render with the

𝑚 = 12, 𝑝𝑎𝑐𝑘𝑒𝑑 variant of our method. All variants of the surface
correctly reproduce the intended colors; roundtrip error remains
below perceptible limits. Error on the flat patch (mean Δ𝐸00 = 0.34)
is partially due to the low-bit representation used for rendering.
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Table 1. Perceptual error metrics. We list mean and maximum CIE LAB Δ𝐸00 for unconstrained RGB uplifting (Fig. 11). We compare output for our method
(𝑚 = 8, 12, 16), low-bit variants, the sigmoidal [Jakob and Hanika 2019] and the bounded MESE [Peters et al. 2019].

Ours (8) Ours (12) Ours (16) Ours (8P) Ours (12P) Ours (16P) Sigm. MESE (12) MESE (12P)
Δ𝐸00, 𝜇 0.00046 0.00056 0.01024 0.00048 0.11862 0.60964 0.01467 0.05829 0.29709

Δ𝐸00,max 0.00588 0.00725 0.07291 0.01079 0.87168 1.89340 0.03181 0.17747 1.39676
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Fig. 8. Indirect color constraining. Bottom-right. Scene setup; flat and folded
patches under constant 𝐷65. We constrain the surface at the indicated
positions. Bottom-left. A mismatch volume showing potential colors under
interreflections in the fold. We select four color constraints. Top. Renders
with the constrainedmetamers. We show Δ𝐸00 for the unchanged flat patch.
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Fig. 9. Examples. Mug. We enforce metamerism under 𝐹𝐿2, hiding the sur-
face texture. Cornell box. We constrain the surface to cancel red scattering.
Ajar A. We constrain wall reflectances, obtaining differing interreflections
under 𝐷65. Ajar B. We constrain the door’s wood texture.

5 Discussion
Reflectance reconstruction. Our method recovers metamers with

excellent roundtrip under 𝐷65, outperforming or matching prior
methods even in the (𝑚 = 12, packed) variant. While produced re-
flectances remain smooth, prior methods better target a low-banded
output through their smaller basis or warped coefficients, though
at the cost of potential mismatching under secondary illuminants.
Specifically in Fig. 12, all unconstrained methods mismatch for one
or more illuminants. We hence emphasize the necessity of con-
strainable uplifting, as even a single interior constraint allows us to
recover smooth, correctly matching spectra. If no constraints are
present, one can even insert smooth spectra into the interior.

Our theory supports specular materials but our implementation
is for diffuse surfaces. Their view-independence makes constraint
placement intuitive. Implementing general BRDFs is future work.

Scene constraint specification. In our implementation, users can
specify constraints by directly clicking in the scene. We then sample
the underlying surface color and construct an interior vertex in
the tessellation. This process enables significant user control; Fig. 9
demonstrates example scene modifications.

However, as users edit different parts of a scene, they might define
conflicting constraints, e.g., two metamers which share the same
tessellation vertex and affect the same object. Multiple reflectances
per vertex can be supported by using a texture atlas; the user can
then guide the process via a brush metaphor. Texture masks encode
weights for each constraint, which are blended during uplifting.
While this implies that additional operations are needed during
uplifting, it is irrelevant in practice because our compact texture
encodes a basis representation, which has constant evaluation cost.

Basis function encoding. We employ 𝑚 = 12 basis functions in
most results, enabling constrained metamerism. To store basis coef-
ficients in our compact texture, we scale the basis, enabling low-bit
representation of [−1, 1] coefficients. Instead of the current basis
which encodes a full color system, we can compute a targeted basis
for just the output spectra in a texture. This may allow us to improve
the precision or size of memory-efficient variants of our texture.
Nevertheless, having a different basis per scene does not allow us to
easily merge scenes, which is of practical relevance in production.

6 Conclusion
Our solution enables practical, authorable spectral rendering. The
tessellated uplifting improves upon prior solutions in expressivity,
while remaining compact for rendering. Further, we introduced
indirect illuminant constraints for uplifting, which can form a novel
artistic tool for designing scene appearance. Our representation is
efficient - our implementation reaches interactive frame rates, as
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demonstrated in the supplementary video - while offering greater
control over uplifting than prior work. Our work opens up new
avenues for spectral material design.
In this work, we targeted accurate reflectance representations.

In the future, we may focus on perceptual aspects. For one, cur-
rent representations may be further compressed without visible
difference. For another, our work shows that, despite the human
visual system’s limitations, we can differentiate high-dimensional
reflectances in a scene context. Yet, during material design, this
context is often lacking. Novel interfaces relying on our solution
may one day alleviate this problem.
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Fig. 10. Unconstrained color uplifting. We uplift color patches [BabelColor Company 2019] and render under 𝐷65. Left. Output for our method (𝑚 = 8, 12, 16),
low-bit variants, the sigmoidal [Jakob and Hanika 2019] and the bounded MESE [Peters et al. 2019]. Right. Δ𝐸00 values are listed for all results.
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Fig. 12. Constrained texture recovery. We reproduce a spectral texture dataset [Khan et al. 2018] under three standard illuminants for the sigmoidal [Jakob
and Hanika 2019], the bounded MESE [Peters et al. 2019], and our method (𝑚 = 12) using 𝑛 = 0, . . . , 256 constraints. Mean Δ𝐸00 is listed for all outputs.
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