
Sheared Polygonal Texture Filtering
Guowei Lu*

Delft University of Technology
Jerry Jinfeng Guo†

Delft University of Technology
Petr Kellnhofer‡

Delft University of Technology
Elmar Eisemann§

Delft University of Technology

0.15e-4 0.38ms

SPTF

Sponza

0.47e-4 1.58ms

EWA

1.8e-4 0.33ms

Aniso16

4.6e-4 0.15ms

EWA

0.86e-4 1.3ms 0.28e-4 0.18ms

Ref.

SPTFAniso16

Ref.

Vampire

Figure 1: Our Sheared Polygonal Texture Filtering (SPTF) demonstrates superior filtering accuracy compared to hardware-
accelerated Anisotropic filtering (ANISO16) at a lower computational cost in comparison to Elliptical Weighted Average (EWA).
(Left) In the first scene, the floor exhibits enhanced sharpness and intricate details at grazing viewing angles when rendered using
our method. (Right) Additionally, in the second scene, our approach successfully eliminates seams associated with atlas texturing.
Notice the barely discernible differences between the SPTF and the EWA outputs, which are more visible in the FLIP error maps [2].

ABSTRACT

Efficient and precise texture filtering is essential in various applica-
tions. However, there is often a trade-off between coarse real-time
approximations and accurate computationally-expensive supersam-
pling. We introduce a novel efficient texture-filtering method over
arbitrary quadrilateral footprints, achieving high accuracy at a low
computational cost. We achieve this by pre-computing integration
tables that sparsely sample the space of possible footprints. Finally,
we compare the qualitative and computational performance of our
method to commonly used techniques and demonstrate various appli-
cations for high-quality real-time image synthesis, including normal
filtering, soft shadow mapping, and glint rendering.

Index Terms: Image sampling, reconstruction, and filtering
techniques—Rendering algorithms

1 INTRODUCTION

Texture filtering is important for high-quality image generation in
computer graphics and common in real-time applications [12]. It
can prevent visual artifacts, such as aliasing and Moiré patterns asso-
ciated with the under-sampling of a high-frequency signal. However,
texture filtering implies costly integrations over large and deformed
pixel footprints in texture space.

The commonly used Mipmapping [25] technique enables real-time
performance through the precomputation of multi-scale filter outputs.
However, even in its Anisotropic variant [16], it remains susceptible
to aliasing under extreme viewing angles (Fig. 1a). More complex
filters, such as the Elliptical Weighted Average (EWA) [10], improve
upon that, but are computationally expensive, typically targeting
off-line rendering. Our work aims to bridge these two directions and
provide state-of-the-art accuracy with real-time performance.

A 2D Summed Area Table (SAT) [4] enables fast texture integration
over an axis-aligned rectangle. We target general quadrilaterals
using multiple tables. One related challenge is numerical errors that
could aggregate, which our approach Sheared Polygonal Texture

*e-mail: G.Lu-1@tudelft.nl
†e-mail: J.Guo-3@tudelft.nl
‡e-mail: P.Kellnhofer@tudelft.nl
§e-mail: E.Eisemann@tudelft.nl

Filtering (SPTF) addresses via the design of both our SATs as well
as filter footprints. In summary, our key contributions are:

• An algorithm to closely approximate integration over quadri-
lateral texture regions;

• A study of the filter-shape impact on accuracy and rendering
cost;

• Experimental validation of our solution against other methods;

• Various application examples (soft shadow-mapping, normal
filtering, and glint rendering).

In the rest of the paper, we first discuss the related prior work (Sec. 2).
Next, we explain our method (Sec. 3) and evaluate its performance
in several computer graphics tasks (Sec. 4). Finally, we discuss our
results and limitations (Sec. 5).

2 RELATED WORK

A rectangular screen pixel projected into the texture space of a
locally planar surface follows a homography leading to an arbitrary
quadrilateral [14]. Texture filtering integrates over this region, which
is computationally challenging in real-time [1]. There are many
solutions trading off accuracy for performance, which we cannot
cover all. Instead, we refer to two surveys [12, 28].

Given its ubiquitous hardware support, a technique of choice for
high-quality real-time rendering is anisotropic filtering [8]. It com-
bines multiple samples from pre-computed MIP maps to approx-
imate the intended filter kernel. However, the fixed number of
samples limits the kernel’s aspect ratio, leading to excessive blurring
or aliasing artifacts in regions with ratios greater than 16. In contrast,
our method does not introduce any aspect-ratio limits.

A high-quality approximation relies on EWA [10], assuming circular
pixels and a weighted combination of texture samples, correspond-
ing to a pre-integration by elliptical kernels of varying sizes and
orientations. Yet, large aspect ratios require many samples for a pre-
cise approximation, which makes the method costly. Our method has
a bound on the number of texture lookups, irrespective of kernel size,
and avoids the circular approximation. For real-time applications,
EWA samples can be approximated using hardware-accelerated
anisotropic filtering [17]. However, the quality depends on the spe-
cific hardware implementation. Our method is software-based and
produces device-independent outputs.

SATs allow the effective integration for axis-aligned rectangular
kernels [15], which has limited utility for texture filtering using a
projected pixel footprint. Novosad et al. [18] splits the quadrilateral
filter kernel into rectangular segments, which is typically inaccurate.

In this paper, we integrate directly over the area of the projected
quadrilaterals without simplifying the region or limiting the kernel
aspect ratio. Our objective is to produce results that closely match
the reference while maintaining efficiency.

3 OUR APPROACH

We extend the concept of SAT to Sheared Summed Area Tables
(SSAT) for a fast close-to-accurate integration over arbitrary polyg-
onal pixel footprints. In the following, we formalize the filter-
ing (Sec. 3.1), then outline our solution (Sec. 3.2) and introduce
our precomputation step (Sec. 3.3). Finally, we apply our solution
to texture filtering in two variants (Sec. 3.4).

3.1 Integral over a quadrilateral

We aim at integrating over a pixel’s footprint projected to texture
space. Its projection forms a general quadrilateral resulting from
the homography transformation of square pixels assuming a locally
planar scene surface.

For the quadrilateral Q representing a projected pixel (Fig. 2(a)), we
obtain:

I =
∫∫

Q
P(u,v)dudv, (1)

where P is the texture value at (u,v) and I is the area integral of P
over the region Q.

Q

(b) line integrals

(a) area integral

e1

e2 e3

e4

e3e2
e4e1

(c) evaluating line integrals

Figure 2: Integral over quadrilateral. We transform the area integral
over a quadrilateral (a) into line integrals over its boundary (b). Then,
we evaluate these 4 line integrals numerically (c). This method can
be extended to arbitrary polygons.

As shown in Fig. 2(b), we can divide the boundary C of the quadrilat-
eral Q= {pi}4

i=1 into four directed line segments {ei = (pa,pb)}4
i=1

where pa and pb are neighboring vertices enumerated in a consistent
counter-clockwise order. Finally, we refer to a line slope of ei as λi.

Next, Green’s theorem [23, p. 989, Eq. 6] relates a line integral
around the boundary C to an area integral over the region Q bounded
by C. By defining a vertical line integral M(u,v) =

∫ v
0 P(u,v′)dv′,

where (u,v) is a point on the boundary C, we obtain:

I =
∫∫

Q
P(u,v)︸ ︷︷ ︸

∂M
∂v

dudv =−
∮

∧∧

C

M(u,v)du

=−
4

∑
i=1

∫
ei

M (u,v)du =−
4

∑
i=1

L (ei), (2)

where L (ei) represents an area integral of all values under edge ei.
Note that the boundary C is divided into four directed line segments
and the sign of L (ei) depends on the edge orientation.

The computational cost of the integral in Eq. 1 is proportional to the
number of texels inside the quadrilateral. Yet, if the cost of L (ei)
was constant, it would follow that the cost of the sum in Eq. 2 is
constant for a quadrilateral. In the following section, we will see
how to precompute these terms to approximate the integral.

3.2 Sheared Summed Area Table

λ λ

λ
-

(a) SSAT

-

(b) SAT

Show SVG Download SVG

T\lambdaEnter LaTeX

Figure 3: Our SSAT represents vertical integration under a line seg-
ment with a slope λ (a). We use shear transformation, to convert this
problem to integration under a horizontal line segment which can be
solved using SAT (b).

In a classical summed area table, SAT (p) represents the integral over
a rectangular area between the origin and point p = (u,v). Our SSAT
generalizes this to a sheared coordinate system described by a shear
slope λ (Fig. 3(a) in blue). Instead of integrating along the slope
directly, we linearly transform the texture using a shear operator Tλ

such that the slope becomes zero and the SSAT becomes equivalent
to a classical SAT (Fig. 3(b)):

SSAT (λ ,p) =
∫∫

Z(λ ,p)
P(u,v)dudv

=
∫∫

R(u′p,v′p)
P(u′,v′)

∣∣∣T−1
λ

(u′,v′)
∣∣∣︸ ︷︷ ︸

1

du′dv′

= SAT (p′), (3)

where (u,v) and (u′,v′) are the coordinates in the original and
sheared texture spaces respectively, and Tλ is the corresponding
transformation p′ = Tλ (p). Z denotes the area of a trapezoid under
a line with a slope λ between the origin and p (see Fig. 3(a)), while
R denotes an area of a rectangle corresponding to Z transformed to
the sheared space.

While this formulation does not avoid interpolation errors in the
texture transformation, it ensures that these errors are consistent for

all SSAT values computed for the same λ and, hence, they cancel
out when computing segment integrals.

3.3 Lookup table construction
We now present a three-step algorithm for producing a lookup table
for our SSAT (see Fig. 4): a forward shear transformation Tλ , an
SAT, and an inverse transformation T−1

λ
.

We use a linear filter when resampling the original texture following
the shear operator Tλ in Eq. 3. An output texture is vertically ex-
panded to accommodate the transformed texels. After computing a
standard SAT, the output contains many empty texels (shown in gray
in Fig. 4(b,c)). To reduce the memory footprint, we do one addi-
tional remapping from the (u′,v′) sheared coordinates to the (u′′,v′′)
coordinates used for SSAT readout. This is done using the inverse
shear operator T−1

λ
with nearest sampling to avoid additional inter-

polation errors (Fig. 4(d)). The composed coordinate transformation
T can then be simplified as:

(u′′,v′′) = T (u,v,λ) = (u,v+λu−floor(λu)). (4)

1 2

4 3

0

0.5 2.5

2.5 1.5

2 0

1

5

94.5

6.02

10

(a) Original texture (b) Sheared texture (c) SAT (d) Sheared SAT

5

5 9

4.5 6.0

2 2

10

bilinear nearest

Figure 4: SSAT construction. (a) Original texture, (b) Vertical shear
transformation with a bilinear sampler creates a sheared texture, (c)
classical SAT, and (d) Inverse shear operation with a nearest sampler
removes unused texels and produces our final SSAT texture.

Lookup table parameterization
A shear transformation with λ ∈ (−∞, +∞) leads to an unbounded
expansion of the image. We avoid this by rotating the original texture
before the SSAT computation such that λ /∈ [−1,1] corresponds
to a λ ∈ [−1,1] for the rotated texture. This reduces the worst
case memory overhead to a factor of 2 per table. We define a
corresponding transformation operator Tλ for λ ∈ (−∞, +∞) as:

Tλ =

{
Sλ λ ∈ [−1,1]
S−1/λ Rπ/2 λ /∈ [−1,1],

(5)

where Rπ/2 ∈ R2×2 is a rotation and Sλ ∈ R2×2 a vertical shear.

1 2

4 3 1
2 3

4

Figure 5: Sampling of SSAT (Eq. 7) for slope λ ∈ (1,∞) (yellow
dashed line). A SAT (blue rectangle) is combined with a rotated
SSAT (cyan triangle) lookup to obtain the intended integral (red area).
λ ∈ (−∞,−1) is analogous.

A consistent integration direction is required in Eq. 2, but the
rotation Rπ/2 in Eq. 5 violates this. Therefore, in the respective cases,

we compute a complementary vertical integral with an additional
SAT lookup for the bounding rectangle (see Fig. 5) and, hence, the
line segment integral L (ei) for ei = (pa,pb) is:

L (ei) = SSAT ′(λ ,pb)−SSAT ′(λ ,pa), (6)

where

SSAT ′(λ ,p) =

SAT (p)−SSAT (λ ,T (R π

2
p, −1

λ
)) λ ∈ (−∞,−1)

SSAT (λ ,T (p,λ)) λ ∈ [−1,1]
SAT (p)+SSAT (λ ,T (R π

2
p, −1

λ
) λ ∈ (1,∞).

(7)

Since SAT (p) = SSAT (0,T (p,0)) = SSAT (0,p), this does not
yield an additional pre-computation cost.

In combination with Eq. 2, this allows for fast integration over an
area of an arbitrary polygon assuming the existence of SSAT tables
for all necessary slopes λi.

Step size
An enumeration of all endpoint pairs necessary to ensure the avail-
ability of all possible slopes λ in a texture with size n× n yields
O(n4) complexity (Fig. 3(a)). This is intractable even after ac-
counting for duplicate slope values. Instead, we limit the memory
footprint of SSAT to O(kn2) where k is a fixed slope count. We
uniformly sample the slope λ with a step s = 4/k to cover range
[0,1] for the four possible combinations of a rotation and a mirroring
that together fill the entire space of λ ∈ (−∞, +∞) and define our
slope set Γ. In practice, we find s = 0.5 (i.e., 8 tables) sufficient for
accuracy comparable to EWA [10]. Please refer to Sec. 4 for a more
in-depth analysis.

3.4 Texture filtering
We model screen-space pixels as squares [3] and their projection to
locally planar surfaces as a homography [13]. Filtering the resulting
general quadrilateral polygons is integrated using our tables derived
from the discrete slope sampling. We will present two different
approximations - a nearest quadrilateral (Fig. 6(b)) and a semi-axis-
aligned parallelogram (semi-parallelogram for short, see Fig. 6(c)).

Given a quadrilateral Q with arbitrary edges {ei}4
i=1 each with its

slope λi, we search for the nearest slopes λ ′
i = argminλ |λi − λ |

subject to λ ′
i ∈ Γ. A new quadrilateral QQ, which can be evaluated

using our SSAT, is then constructed by intersecting lines with slopes
{λ ′

i }4
i=1. We integrate over the area of QQ following Eq. 2 and refer

to this filtering process as SPTFQ.

To reduce the number of required SSAT samples further, we can
approximate Q with a semi-axis-aligned parallelogram QS. To this
extent, from Q, we derive a 2×2 covariance matrix C = T T T , where
T = [∂uv/∂x,∂uv/∂y] is formed by two screen space gradients of
the texturing coordinates uv along the x and y axes (see Fig. 6(c)
left). In practice, we obtain the necessary gradients from the built-
in OpenGL functions dFdx and dFdy. Next, we apply Cholesky
decomposition C = LLT to obtain L ∈ R2×2 with one axis-aligned
vector vL and one general vector uL that jointly define the semi-
parallelogram QS (see Fig. 6(c) right). Finally, we refer to integration
over the area of QS as SPTFS.

Since SPTFQ allows for up to 4 different slopes, integration over
each of the edges requires 2 or 4 unique texture samples depending
on λ (see Eq. 6). In contrast, SPTFS avoids integration over the
vertical edges since they cancel out in the final sum. Also, a combi-
nation of the two opposing diagonal edges avoids additional lookups
when λ /∈ [−1,1]. Therefore, SPTFS always requires only 4 unique
SSAT samples similar to standard SATs for a rectangular area. Refer
to Sec. 4 for analysis of the impact on accuracy.

(b) SPTFQ

(c) SPTFS

(a) screen

Figure 6: Pixel footprint approximation for SPTF. (a) A square screen-
space pixel is projected to a quadrilateral Q in the texture space of
the surface. (b) SPTFQ: A new quadrilateral QQ is constructed with
edges following the nearest slopes λ ′ within our SSAT sampling space
γ . (c) SPTFS: A semi-parallelogram QS is constructed by factorization
of a covariance matrix.

4 EVALUATION

In this section, we compare our algorithm to various texture fil-
tering techniques and assess the accuracy and computational effi-
ciency for game-like assets and a checkerboard (Sec. 4.1). Next, we
demonstrate its versatility in various computer graphics applications
(Sec. 4.2) before discussing its properties and limitations (Sec. 4.3).

4.1 Rendering Results
Reference. We obtain reference images via the PBRT ray tracer [19]
configured to render pure albedo. Each pixel is sampled 2048 times
for anti-aliasing. All experiments are conducted on an NVIDIA
GeForce RTX 3090 GPU.

Baselines We compare to hardware anisotropic filtering with 16
samples (ANISO16) and a high-quality offline implementation of
Elliptical Weighted Average filtering (EWA) with a one-pixel width.
We use the visual difference predictor FLIP [2] as well as Mean
Squared Error (MSE) to gauge resulting differences.

SPTFQ

SPTFS

SAT
EWA

Figure 7: Filter footprint accuracy is measured as a mean Intersection
Over Union between the filter kernels and the true pixel footprints Q.
Vertical and horizontal viewing angles relative to the rendered surface
are shown on horizontal axes with [0,0] representing orthogonal view-
point. Both SPTFQ and SPTFS achieve consistently higher accuracy
than the nearest rectangle filter implemented by a standard SAT and
filtering by ellipse kernels in EWA. The accuracy of EWA is notably
poor even for the orthogonal viewing angle due to the shape mismatch
between a square pixel and an ellipse. A step size of s = 0.05 was
used for our methods.

Texturing In Table 1, we provide a quantitative assessment of
our method’s variants and the ANISO16 and EWA baselines for
three scenes; Checkerboard - a classical challenging pattern with
high frequency signal, Sponza - a real-time asset showcasing the
capabilities of anisotropic filtering, Vampire - a model utilizing a

Ref. Error map (FLIP)

SPTFQ0.35e-3 0.15e-3

1.5e-3Aniso16 EWA 0.72e-3

SPTFS

2.5e-3

Aniso16

1.3e-3

EWA

0.84e-3

SPTFS

9.3e-3 4.2e-3 1.0e-3

0.061e-3

SPTFQ

0.078e-3

Figure 8: Checkerboard analysis. Top: FLIP error maps [2] show that
both our method variants produce clearly lower errors than ANISO16,
and EWAwhen compared to the ground truth reference (left top) in
this texture minification task. Middle: Histograms of the full FLIP
maps weighted by the error magnitudes as proposed by the FLIP
authors [2]. Bottom: Two zoomed-in regions and their FLIP maps.

texture atlas. See Fig. 8 and Fig. 1 qualitative comparisons. We use
a smaller step size s = 0.1 for our higher-accuracy method variant
SPTFQ and a higher step size s = 0.5 for our lower-weight method
variant SPTFS to further emphasize their distinct strengths.

Our lighter method SPTFS achieves a consistently lower MSE than
both the real-time ANISO16 and the costly EWA, while maintain-
ing at least 2/3 of the best case framerate in each scene. ANISO16
tends to favor over-blurring to avoid aliasing. Our more accurate
method SPTFQ then provides further improvement of accuracy mea-
sured by MSE, while maintaining computational cost comparable to
EWA.

The differences are smaller for the Vampire scene, where grazing
surface angles testing the anisotropic performance are not as promi-
nent. Finally, we further analyze the residual filtering artifacts for
the Checkerboard scene in Fig. 8.

Footprint Analysis The accuracy depends on the match be-
tween the approximated kernel and the intended integration area.
We illustrate the favorable characteristic of both our kernel approxi-
mations in Fig. 7. An accuracy of one means a perfect reproduction
of the intended pixel footprints as measured for a realistic pixel grid
projected to a planar surface under different viewing angles. The
graph shows that our two variants maintain a high footprint accuracy
even for extreme viewing angles and beat both analyzed baselines.

Temporal Analysis Inspired by [20], we evaluate the temporal
stability by measuring the SSIM reference metric variation during
smooth camera motion (Fig. 9(a)). We observe that the temporal
variation is lower for our SPTF and the costly EWA than for the
commonly used ANISO16 filtering. We further demonstrate this
stability qualitatively in the supplemental video.

REF. ANISO16 EWA SPTFQ SPTFS

Num. lookups adaptive 1 adaptive 8-16 4
Memory (relative) 1 1∗ 1 40† 8†

Checkerboard Frame rate (rel.) - 100% 25% 38% 66%
MSE 0 1.5e-3 0.72e-3 0.15e-3 0.35e-3

Sponza Frame rate (rel.) - 100% 20% 36% 90%
MSE 0 7.4e-5 3.8e-5 0.6e-5 3.2e-5

Vampire Frame rate (rel.) - 100% 11% 9% 81%
MSE 0 7.5e-5 6.8e-5 6.7e-5 6.7e-5

Table 1: A comparison between our method variants and commonly used baselines. *The memory footprint of ANISO16 does not include the
implementation-specific MIP tables. †The additional pixel row per table is not included for SPTF (asymptotically negligible for resolution → ∞).

Memory analysis We conducted an analysis of image quality
by varying both step size s and texture size (Fig. 9(b)). It shows
that a relatively low number of 8 or 16 lookup tables, corresponding
to s = 0.5 and s = 0.25 respectively, is sufficient for high quality
results. Additional tables are only beneficial for high resolution
textures.

(a) Temporal Analysis (b) Memory Analysis

Figure 9: (a) SSIM relative to the reference measured during a camera
motion (corresponds to the number of lookup tables, in parentheses).
(b) Impact of the lookup table resolution (corresponds to the texture
resolution, in parentheses) and their count k on MSE. Both are mea-
sured in the Checkerboard scene.

4.2 Applications
We demonstrate three additional applications: Normal Mapping,
Soft Shadows, and Real-time Glints.

Normal Mapping Normal maps are commonplace inputs for
algorithms, such as bump mapping, but accurate filtering remains a
challenging problem. Due to the non-linearity of surface shading,
we cannot pre-filter normal maps directly [11]. Instead, we replace
the original anisotropic filter with our SPTFS and use Toksvig’s
model [24] to calculate the specular contribution. As illustrated for
normal mapping in Fig. 10, our filter preserves fine-grained details
better than the baseline.

Soft shadows Eisemann et al. [6, 7] introduced a plausible
soft-shadow method based on occlusion texture pre-filtering. They
utilize a box filter with a rectangular kernel and propose warping the
scene to handle elongated light sources, which lowers the resolution.
Our method can instead rely on anisotropic filtering.

With the baseline method, we also observe distinct aliasing for nar-
row penumbra radii (Fig. 11(a)). To address this, we convolve the
original shadow filter kernel with projected kernels of individual
image pixels. This results in semi-parallelogram kernels [21,22] suit-
able for our SPTFS method. Finally, we obtain smoother and better-
quality soft shadows for the grazing view displayed in Fig. 11(b).

Real-time Glints Rendering The distribution of tiny specular
particles and their orientation with respect to the object surface can
be described by the Normal Distribution Function (NDF). However,
high-frequency representations can lead to aliasing [26, 27]. Instead

(a) Aniso16 (b) Ours

Figure 10: A bump mapping effect with a normal map integration
using ANISO16 and SPTF filters. With ANISO16 normal filtering,
these regions are averaged to a nearly flat surface (a). By contrast,
our method keeps more details in distant regions (b).

of filtering the NDF [9], we propose to directly encode the spatial
distribution of particles as a surface texture containing particle count
and their mean normal in each texel. During rendering, we integrate
this map over pixel footprints using our SPTFS before computing
the specular contributions. For the normal component, we use the
same approach as in the Normal Mapping application. We observe
that our simple representation produces visually plausible results
and avoids unwanted spatial and temporal aliasing (Fig. 12). Please
see our video for a comparison to the method of Deliot et al. [5]
which we modified to use the same particle distribution texture. We
observe that our method removes aliasing visible in the baseline
results during camera motion.

4.3 Limitations

While the results show the accuracy of our method, it remains ap-
proximate due to the discretely sampled slope space (Sec. 3.4).
Furthermore, the linear interpolation required for the forward shear
operation (Fig. 4(b)) does not accurately describe the non-linear
contribution of partially included pixels when integrating along
non-horizontal slopes. In practice, we observe that this leads to
acceptable errors for common textures, although it could have an
impact on data with highly unnatural distributions.

(a) Baseline (b) Ours

Figure 11: Soft shadows computed using the baseline method [7] and
our SPTF-based modification. Top: A scene overview illustrating the
narrow slit between the two beams. Bottom: Our method reconstructs
the lit gap between the two penumbra even at a grazing view angle.

(a) Particle Count

(a) particle normals and counts (b) glint rendering

Figure 12: Our real-time glint rendering. We use a texture to represent
per-texel particle counts and mean normals (a). We integrate this
texture to obtain specular contributions for the glint effect (b).

Our method supports texture atlases (Fig. 1). However, texture
repetition for tiling can only be partially resolved. If the maximum
number of wraps per filtering query can be bounded, we can expand
the original texture accordingly before SSAT construction. Beyond
this limit, we could transition to a standard filtering method.

5 CONCLUSION

We showed that high accuracy can be obtained at low cost using our
SPTF method that builds upon a simple mathematical insight. We
proposed an efficient lookup table encoding, making our approach
well-suited for real-time rendering. The solution is general and we
illustrated its usefulness in various applications. Our work improves
standard texture filtering, normal map filtering, soft shadow mapping,
and the rendering of glints, which illustrates SPTF’s versatility.

ACKNOWLEDGMENTS

The work is part of VR-Renovate (project number 403.19.222),
financed by the Dutch Research Council (NWO).

REFERENCES

[1] T. Akenine-Mo, E. Haines, N. Hoffman, et al. Real-time rendering.
2018.

[2] P. Andersson, J. Nilsson, T. Akenine-Möller, M. Oskarsson, K. Åström,
and M. D. Fairchild. Flip: A difference evaluator for alternating images.
Proc. ACM Comput. Graph. Interact. Tech., 3(2):15–1, 2020.

[3] J. F. Blinn. What is a pixel? IEEE computer graphics and applications,
25(5):82–87, 2005.

[4] F. C. Crow. Summed-area tables for texture mapping. In Proceedings
of the 11th annual conference on Computer graphics and interactive
techniques, pp. 207–212, 1984.

[5] T. Deliot and L. Belcour. Real-time rendering of glinty appearances
using distributed binomial laws on anisotropic grids. 2023.

[6] E. Eisemann and X. Décoret. Plausible image based soft shadows using
occlusion textures. In Proc. of the Brazilian Symposium on Computer
Graphics and Image Processing, 19 (SIBGRAPI), 2006.

[7] E. Eisemann and X. Décoret. Occlusion textures for plausible soft
shadows. In Computer Graphics Forum, vol. 27, pp. 13–23. Wiley
Online Library, 2008.

[8] J. P. Ewins, M. D. Waller, M. White, and P. F. Lister. Implementing
an anisotropic texture filter. Computers & Graphics, 24(2):253–267,
2000.

[9] L. E. Gamboa, J.-P. Guertin, and D. Nowrouzezahrai. Scalable ap-
pearance filtering for complex lighting effects. ACM Trans. Graph.,
37(6):277–1, 2018.

[10] N. Greene and P. S. Heckbert. Creating raster omnimax images from
multiple perspective views using the elliptical weighted average filter.
IEEE Computer Graphics and Applications, 6(6):21–27, 1986.

[11] C. Han, B. Sun, R. Ramamoorthi, and E. Grinspun. Frequency domain
normal map filtering. In ACM SIGGRAPH 2007 papers, pp. 28–es.
2007.

[12] P. S. Heckbert. Survey of texture mapping. IEEE computer graphics
and applications, 6(11):56–67, 1986.

[13] P. S. Heckbert. Fundamentals of texture mapping and image warping.
1989.

[14] P. S. Heckbert et al. Texture mapping polygons in perspective. Techni-
cal report, Citeseer, 1983.

[15] J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and A. Lastra.
Fast summed-area table generation and its applications. In Computer
Graphics Forum, vol. 24, pp. 547–556. Citeseer, 2005.

[16] R. D. Larson and M. S. Shah. Method for generating addresses to
textured graphics primitives stored in rip maps, June 22 1993. US
Patent 5,222,205.

[17] P. Mavridis and G. Papaioannou. High quality elliptical texture filtering
on gpu. In Symposium on Interactive 3D Graphics and Games, pp.
23–30, 2011.

[18] J. Novosad. Advanced high-quality filtering. GPU gems, 2:417–435,
2005.

[19] M. Pharr, W. Jakob, and G. Humphreys. Physically based rendering:
From theory to implementation. MIT Press, 2023.

[20] C. Schied, C. Peters, and C. Dachsbacher. Gradient estimation for real-
time adaptive temporal filtering. Proceedings of the ACM on Computer
Graphics and Interactive Techniques, 1(2):1–16, 2018.

[21] L. Shen, J. Feng, and B. Yang. Exponential soft shadow mapping. In
Computer graphics forum, vol. 32, pp. 107–116. Wiley Online Library,
2013.

[22] L. Shen, G. Guennebaud, B. Yang, and J. Feng. Predicted virtual soft
shadow maps with high quality filtering. In Computer graphics forum,
vol. 30, pp. 493–502. Wiley Online Library, 2011.

[23] G. B. Thomas Jr, M. D. Weir, J. Hass, C. Heil, and T. Edition. Early
transcendentals, 2014.

[24] M. Toksvig. Mipmapping normal maps. journal of graphics tools,
10(3):65–71, 2005.

[25] L. Williams. Pyramidal parametrics. In Proceedings of the 10th annual
conference on Computer graphics and interactive techniques, pp. 1–11,
1983.

[26] L.-Q. Yan, M. Hašan, W. Jakob, J. Lawrence, S. Marschner, and R. Ra-
mamoorthi. Rendering glints on high-resolution normal-mapped spec-
ular surfaces. ACM Transactions on Graphics (TOG), 33(4):1–9, 2014.

[27] L.-Q. Yan, M. Hašan, S. Marschner, and R. Ramamoorthi. Position-
normal distributions for efficient rendering of specular microstructure.
ACM Transactions on Graphics (TOG), 35(4):1–9, 2016.

[28] C. Yuksel, S. Lefebvre, and M. Tarini. Rethinking texture mapping.
In Computer Graphics Forum, vol. 38, pp. 535–551. Wiley Online
Library, 2019.

	Introduction
	Related Work
	Our approach
	Integral over a quadrilateral
	Sheared Summed Area Table
	Lookup table construction
	Texture filtering

	Evaluation
	Rendering Results
	Applications
	Limitations

	Conclusion

