
Hierarchical Semantic Wave Function Collapse
Shaad Alaka

s.alaka@student.tudelft.nl

Delft University of Technology

Delft, The Netherlands

Rafael Bidarra

R.Bidarra@tudelft.nl

Delft University of Technology

Delft, The Netherlands

Figure 1: With the flat tile-set of conventional WFC, its output is always at detail level; with a hierarchically structured tile-set,

the output can be more conveniently configured and edited at meta-tile level (castle tile-set [1]).

ABSTRACT

There are few proposals to improve the interactivity and control of

wave function collapse (WFC) in a mixed-initiative setting. More-

over, most WFC algorithm variants operate on an simple, unstruc-

tured set of tiles. This limitation on the level of control provided to

designers hampers their creative work in various ways. We propose

Hierarchical Semantic WFC, a generalized approach to WFC that

organizes its tile-set into a hierarchy akin to a taxonomy induced by

the relation ‘consists-of’. In such a hierarchical structure, abstract

tiles (i.e. non-leaf nodes) can represent the first sketchy intentions

of a designer (e.g. forest, urban, desert,...) This allows a designer

to interactively collapse a given area into abstract tiles, while sub-

sequently, (and repeatedly, if desired) WFC can resolve each area

into a variety of particular instances, by further collapsing it into

(a valid combination of) its children tiles (whether leaves or not).

We identify how this subtle tile-set change affects the whole WFC

algorithm, describe a number of novel exploratory and interactive

functions that this enables, and showcase these with a variety of

examples generated with our prototype implementation. We con-

clude that these new mixed-initiative content generation methods

can considerably reduce design iteration times and improve the

assistance given to designers in expressing their creative intent.

KEYWORDS

procedural content generation, wave function collapse, mixed-initiative,

object semantics

This work is licensed under a Creative Commons Attribution International

4.0 License.

FDG 2023, April 12–14, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9855-8/23/04.

https://doi.org/10.1145/3582437.3587209

ACM Reference Format:

Shaad Alaka and Rafael Bidarra. 2023. Hierarchical Semantic Wave Function

Collapse. In Foundations of Digital Games 2023 (FDG 2023), April 12–14, 2023,
Lisbon, Portugal. ACM, New York, NY, USA, 10 pages. https://doi.org/10.

1145/3582437.3587209

1 INTRODUCTION

Since its inception in 2016, WFC has become a popular choice

for procedural generation of textures, objects and other grid-like

structures [1, 4]. Several variants have since then been proposed,

extending its functionality and convenience. In particular, proposals

to improve the interactivity and control of a WFC-based generator

are promising and much welcome. Among them, interactive gen-

erators that offer mixed-initiative editing possibilities can be very

convenient, effectively supporting artists while amplifying their

creative freedom [14]. One such approach was demonstrated by

the miWFC prototype
1
[8].

To the best of our knowledge, however, all such WFC algorithm

variants operate on a flat set of tile choices per cell. This implies

that each tile contains all the concrete and final detail about what it

exactly represents. This flat structure implicitly blurs much of the

semantics intentionally represented in those tiles by designers, who

typically include in them multiple semantic “hints”; for example,

the tile-set of Figure 1 includes tiles such as a horizontal straight

road that crosses water, a road left-turn on grass, a straight wall of

a castle on grass, etc.

Directly using such a detailed tile-set in a mixed-initiative con-

text can be overwhelming for artists, as theywill have to consciously

think about each of these semantic bits of information before they

can place any tile. This quickly becomes awkward and rather im-

practical, as shown on the left of Figure 1, showing (with a cyan

border) all the tiles required to create that output.

It is well known that artists prefer to sketch, in order to quickly

express the simple idea they have in mind [14, 19]. For example,

1
https://github.com/ThijmenL98/miWFC

https://orcid.org/0009-0001-2547-1277
https://orcid.org/0000-0003-4281-6019
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3582437.3587209
https://doi.org/10.1145/3582437.3587209
https://doi.org/10.1145/3582437.3587209


FDG 2023, April 12–14, 2023, Lisbon, Portugal Shaad Alaka and Rafael Bidarra

they would do this by quickly drawing a wall, or brushing a coast-

line. Ideally, after that, a generative system could assist and fill in

with the details of a possible solution. In this way, the general idea

gets captured, while the details can be left up to the machine and,

possibly, re-worked. However, in current mixed-initiative WFC

approaches, designers are unable to freely sketch, refine and re-

evaluate their ideas in a step-wise, creative fashion. On the one

hand, this is due to the lack of a semantic vocabulary for sketch-

ing and refinement with tiles. On the other hand, to modify and

re-evaluate some generated output, one should distinguish what

was manually placed with some intent, from what was simply pro-

cedurally generated [15]. But standard WFC does not keep track of

this information.

We propose a solution to these shortcomings by introducing (i)

the notion of meta-tile, an abstract tile that represents a semantic

group of tiles, along with (ii) a graph-like structure that is able to

represent the hierarchy among them and the constraints between

them.

Together, these elements provide a solid basis for a variety of

novel features that empower designers’ expressiveness, allowing

them to focus on what they want, rather than on how to make it. In
addition, some of these features significantly reduce the amount of

laborious operations during content creation and editing, allowing

designers to iterate more rapidly. This is clearly illustrated on the

right side of Figure 1, in which four different tiles are enough for

the creation of an identical output. Moreover, for the hierarchical

case, the artist can focus on their idea, rather than on how each

tile fits onto another tile. This core idea purposefully exploits a

fundamental property of mixed-initiative WFC: tile placement on

the grid is context-sensitive, and setting this context by means of

tile layouts allows one to enforce desired outcomes.

2 RELATEDWORK

In 2016, Maxim Gumin unleashed the WFC algorithm, publishing

a repository containing his initial implementation [1]. Since then,

WFC has had a profound impact on technical artists and game

developers, getting adopted, adapted and used in commercially pub-

lished and upcoming projects (Caves of Qud, Townscaper, Matrix

Awakens). The repository has become a hub of anything related

to WFC, linking to research, derived works, alternative implemen-

tations, etc. [3, 4, 7, 9, 11]. Years before, Merrel had published the

conceptually identical Model Synthesis algorithm, though it did not

catch on as much as WFC did, possibly due to its lower accessibility,

main 3D focus and computing requirements at the time [10].

For completeness, we provide here a generic description of how

WFC operates, to set the context for this work.WFC accepts as input

a set of tiles, adjacency constraints between them, and produces as

output a connected graph (in this case, assume e.g. a grid consisting

of cells). Tiles may be placed into cells, and each cell keeps track

of which tiles is it still allowed to contain, given the constraints

induced by its neighbouring cells. Initially, every cell of this grid

is empty and can potentially contain any tile (hence the analogy

with ‘wave function’). As the algorithm progresses (see Algorithm

1), the following three steps are iterated:

Algorithm 1 Basic WFC algorithm

initialize algorithm (building tile and constraint tables)

repeat

Choose next cell to collapse

Choose which tile to collapse it into

Collapse and propagate constraints

until Every grid cell is collapsed or a conflict occurred

(1) A cell is chosen to be ‘collapsed’: for this some heuristic can

be used, e.g. the cell allowing the least amount of potential

tiles (i.e. lowest entropy);

(2) a tile is chosen to collapse that cell into: for this, one of the

tiles is chosen among those allowed for that cell (possibly

weighted by its occurrence frequency in the input);

(3) This cell collapse spawns a propagation wave starting at its

neighbours, which will eliminate tile choices for the cells it

hits according to the adjacency constraints. The wave stops

propagating when there are no more changes occurring to

the tile choices.

This cycle repeats until either all cells have been collapsed, pro-

ducing a grid of tiles that satisfies the constraints given as input or,

alternatively, when a conflict is reached. The latter happens if a cell

ends up without any allowed tile choices after a propagation wave

hits it, rendering the current grid instance unsolvable.

As noted elsewhere [8], in this algorithm, both the cell to collapse

and the tile to collapse it into could potentially be chosen by a

human. This fact provides the basis for any interactive, mixed-

initiative WFC editor, in which the user may directly select, on the

output grid, which cell(s) to collapse into some selected legit tile.

In this setting, WFC can automatically validate that action, and

further propagate any changes across the output grid.

Being able to more accurately capture designer intent is desirable

because it will speed up the overall design process. This has been

done so far in a variety of ways. In one such example, an interac-

tive world editor [14] was augmented to capture design semantics,

introducing semantic constraints such as e.g. preserving line of

sight between world entities [13]. In another project, the designer

can input a rough design specification that guides a procedural

generator for room layouts [12].

Adding mixed-initiative interactivity to WFC to make the gener-

ation process more spatially controllable has been proposed with

miWFC, an interactive editor that allows you to place/overwrite

tiles with a brush, create snapshots, regenerate marked parts, and

spatially alter the tile probabilities [8]. In addition, other proposals

of WFC-based interactive editors have been made, various links

are available on the WFC Github repository [1]. Other types of

mixed-initiative interactivity have been proposed that do not in-

volve spatial control. Karth and Smith [5], for example, propose

to allow the designer to intuitively adapt constraints by provid-

ing positive and negative examples of tile combinations; to fulfil

them, a back-and-forth process progresses towards the generated

result. There are also applications of mixed-initiative WFC interac-

tivity within a game. In Townscaper, for example, Oskar Stålberg

practically shows the concept of a single meta-tile that is used for

painting towns, while WFC takes care of the propagation [17]. All



Hierarchical Semantic Wave Function Collapse FDG 2023, April 12–14, 2023, Lisbon, Portugal

these approaches demonstrate the flexibility of WFC when it comes

to involving humans in the generative process.

There have also been some efforts at incorporating hierarchies in

procedural content generation in general [6], e.g. by using a hierar-

chy of rules [2]. In particular, one approach that comes close to this

idea is rule-based layout solving [18], which also uses classes of ob-

jects in order to populate areas marked with those class constraints,

though it does not allow for a hierarchy that goes deeper than one

level. In another example, a 2D game map consisting of tiles is

divided into chunks and then clustered, in order to find high-level

tiles, which are similar in spirit to the meta-tiles presented in this

work, though again only representing a single level of depth [16].

3 METHOD

The core problem is the fact that the basicWFC algorithm is agnostic

to semantics when used as backbone for an interactive editor. This

problem manifests itself in two distinct ways:

(1) Semantic concepts, both concrete (e.g. ’on grass’) and ab-

stract (e.g. ’urban’), get blurred together, resulting in an

output of information-dense tiles.

(2) It makes impossible to track the initial semantic intent a

designer had when choosing a tile, because this information

is in the designer’s mind and not stored in the output.

Both problems hinder designers: due to (1), they are required

to consider all the semantics associated with a tile before being

able to choose it, even though they may only have some specific

semantic intent in mind; because of (2), the semantic decisions that

a designer ends up making get lost in the output, even though this

information would be useful in subsequent editing iterations or

other applications.

Therefore, our main goal with augmenting the WFC algorithm

is to enable it to distinguish tiles with bunched up semantics and

the relevant relations between them, so that they can be reasoned

over, stored and used separately.

3.1 Hierarchy of semantic nodes

There are many different ways to represent semantic concepts and

how they are related. One such way is in the form of a graph, in

which the semantic concepts are represented by nodes, while the

edges represent relations between them.

It is neither feasible nor useful to model all possible relations

between semantic concepts, in the context of a virtual environment

editor. Inherent to WFC, of course, is the “can-be-adjacent-to” rela-

tion, which is kept by the algorithm and used for its propagation

step.

For our purposes of creating a hierarchy, it will suffice to repre-

sent the “consists-of” relation, which is unidirectional by definition.

In a real-world setting, recursion does not occur with this relation-

ship, which eliminates cycles in the graph. Finally, we will consider

that every node can be reached from one particular node, called

the root node. The root node represents the state of any fully non-

collapsed cell, which can potentially collapse into any other node.

Nodes that have no outgoing edges are leaves. This structure is very
similar to a tree, except that a node 𝑥 may have multiple parents

(i.e. each parent may somehow "consist-of" of 𝑥). This is a type of

directed acyclic graph (DAG), and we will refer to it as such, as it

Figure 2: General hierarchical structure of the proposed DAG.

Green corresponds to leaf nodes, blue to meta-tile nodes, and

black to the root, representing the initial meta-tile on every

cell.

also admits the use of terminology such as "root", "leaves", "parents"

and "children" in the same fashion as a tree; see Figure 2.

These choices were made in order to make the structure resemble

a hierarchy; the further a node is from the root, the more detailed

and specific it is in terms of semantics, taking on the semantics of

all its predecessors. This has benefits for both the designer, due to

the correspondence to detail levels, and for the algorithm operation

itself, as we will see.

The DAG leaves represent the most detailed concepts; in a way,

they correspond to the usual tiles used as input to the standard

WFC algorithm, with all the semantics bunched up, which we will

refer to as leaf-tiles. In contrast, all other nodes are also represented

by a new type of tile, which will be called a meta-tile. Just like
leaf-tiles, meta-tiles may also be involved in constraint definitions,

between each other or with leaf-tiles. Finally, as indicated in Figure

2, every DAG edge, between parent node 𝑥 and child node 𝑦, has

a weight associated with it, which can be interpreted as "which

fraction of 𝑥 consists of 𝑦".

3.2 Algorithm extension

The DAG, with its meta-tiles and weights, allows us to extend the

WFC algorithm according to the following:

Initialization and input All cells on the grid are initialized

to the root meta-tile of the DAG. The input is defined as a set

of single-colored meta-tiles and leaf tiles, a DAG that speci-

fies how the meta-tiles flow into the leaf-tiles, and a set of

adjacency constraints that may be specified among/between

them.



FDG 2023, April 12–14, 2023, Lisbon, Portugal Shaad Alaka and Rafael Bidarra

Intermediate collapse states When collapsing a cell auto-

matically, only the direct children of the DAG node rep-

resenting the tile that is currently on that cell can be chosen

as replacement of that tile. This allows a cell to collapse mul-

tiple times, with the nodes in the DAG acting as intermediate

collapse states. A cell can no longer collapse further when it

reaches a leaf-tile.

Child choice Which child of a meta-tile 𝑥 gets chosen for re-

placing it is determined by the weights on the DAG edges

from 𝑥 to its children.

Adjacency constraint inference For a correct propagation,

the usual adjacency constraints used by the WFC algorithm

are now augmented with the additional constraint informa-

tion that is inferred from the sub-graphs corresponding to

each of the tiles being tested.

Partial propagation and leaf reachability In certain cases,

a meta-tile may no longer be allowed to collapse into some

of its children. This must be correctly propagated; since all

adjacency information eventually trickles down to the leaves,

it is sufficient to omit a tile if there exists no path from its

node to any leaf.

Collapse paths The collapse path that a cell takes in the DAG

is recorded and stored in the output. Such collapse paths

can be used to backtrack to the higher level semantics a tile

originated from.

3.3 Overlapping model and generality

The novel notion of a tile hierarchy generalizes to the WFC overlap-

ping model, to other types of adjacency models and even to using

other types of constraints, as its method has no hard dependencies

on either 2D grids or the simple tiled model.

There are, however, some subtleties brought in by the overlap-

ping model, which influence one particular ability: the specification

of meta-meta or leaf-meta adjacencies in the input. Because of the

overlapping zones of the patterns, these may become ambiguous.

Therefore, a choice has to be made for using a fitting tile for that

transition, if such a pattern was not already present. While it is

possible to use a fixed color for this, it is probably preferable to

allow a designer to specify transitional tiles by filling these gaps

only for the patterns they want to be involved. Note that this is not

required if the appropriate patterns are already present. In that case

a meta-tile can immediately act as a convenient wild-card, which

allows the creation of patterns that only focus on the features of

interest, or that allow for querying certain features on the grid.

Other than that, specializing the notion of semantic hierarchies

for the overlapping model also brings exciting opportunities that

should be further explored, such as using actual patterns for the

meta-tiles instead of single colors, which could be done by tweak-

ing the adjacency constraint inference. Figure 4 shows our proof

of concept prototype, using hierarchical semantic WFC with the

overlapping model.

4 EDITING FACILITIES

The algorithm extensions introduced in the previous section sup-

port several novel design workflows, enabled by a few new editing

facilities, which can be made available to designers in an mixed-

initiative editor. In this section, we show the usefulness of each

of them, by means of examples based on the simple input DAG of

Figure 3.

Note that we are addressing two types of designers here, since

the newly enabled facilities benefit both groups:

(1) The input designer, who defines the tiles and the constraints

between them, and how their corresponding nodes are re-

lated in the DAG.

(2) The environment designer, who creates an environment de-

sign specification using the input, and then generates a final

output for this.

In what follows, we indicate (in the subsection title, between

brackets) which of the two designer groups is addressed with each

editing feature.

Furthermore, in order to consistently and clearly refer to the

tiles and the constraints among them, we use the symbol <-> to

denote an adjacency constraint between two tiles, allowing them to

be adjacent, and we use small capitalswhen referring to some tile.

For example, land <-> water denotes that adjacency is allowed

between the meta-tile representing "land", and the meta-tile repre-

senting "water". In this paper, we will not handle any uni-directional

adjacency constraints, so all presented constraints are assumed to

be bi-directional.

4.1 Meta-tile constraints [1]

Since the input now supports constraint definitions between meta-

tiles, or between meta-tiles and leaf-tiles, we can let the input

designer add additional constraints with very little effort. Examples:

• You can specify that land can be adjacent to wall, which

will ensure that any tile in the sub-graph of wall can have

adjacent any tile in the sub-graph of land.

• One can say that a house collapses into wall and floor,

and then specify wall <-> floor. Building on the above

point, this implies that when you place a wall meta-tile

somewhere, it can either collapse into a lone wall, or get a

floor meta-tile attached to it, which would cause it to turn

into a house, since floor must be surrounded by wall.

• This feature can also be used for transitions; the designer

could specify a new meta-tile dense-forest that has the

same children as forest, except with a much larger weight

on the edge pointing to tree, and then only specify forest

<-> dense-forest, which means that it will always try to

surround itself with forest first when automatically collaps-

ing.

Without this feature, the input designer would have to tediously

define the constraints between all the possible leaf-tiles, while now

entire sub-graphs in the DAG can be addressed with one constraint.

This also makes it much easier to add e.g. one more sibling tile, as it

will simply acquire all constraints from the parent meta-tile. Lastly,

meta-tile constraints enable a basic form of semantic transitions,

allowing one to morph the distribution of contents gradually over

an area.



Hierarchical Semantic Wave Function Collapse FDG 2023, April 12–14, 2023, Lisbon, Portugal

Figure 3: The DAG for the example use case. The nodes are

colored according to their meta-tile. The leaf nodes have the

leaf-tiles they correspond to attached to them.

4.2 Meta-tile weights [1]

When the designer brushes over de canvas using meta-tiles, the

rest of the detailed work can be carried out through automatic

WFC. However, the weights that influence which tiles will then be

chosen can still be interactively adjusted by the designer within

the editor. This allows for control over the distribution/density of

tiles. Examples:

• The designer can control, in the DAG, the relative frequency

of occurrence for the children of meta-tile house, by ad-

justing the weights on their edges. Note that both city and

village "consist of" house; yet, thanks to the different edge

weights, house can be made more common in village than

it will be in city.

• Likewise, city would likely contain more apartment than

house. Although both consist of, say,wall and floor,house

can have a much higher floor weight, causing WFC to gen-

erate larger structures for it.

• The amount of tree tiles in forest can be controlled through

the corresponding edge weights. One can design multiple

forest tiles with different densities. Without this, the de-

signer would not be able to differentiate between semantic

groups through the distribution of tiles, or easily tweak the

distribution of tiles within some area representing a semantic

concept.

• The weights can also be used to completely deactivate a tile

from appearing in automated generation, by putting them to

zero. This can be used to prevent the generation of some tile

that, for instance, is needed under somemeta-tile as a filler to

facilitate a plausible generation process. For instance, house

allows grass to prevent it from running into a contradiction

when the shape of an area that was painted with house is

not fully filled with wall or floor, but in general we don’t

want grass to generate under house unless necessary.

4.3 Meta-tile placement [2]

The designer can now collapse a group of cells on the grid to a

meta-tile, e.g. with a brush, which allows for a spatial expression of

semantics. Moreover, for this the designer can choose a meta-tile

at any level of detail, and at any time. Examples:

• A designer wishes to have a village in some location, without

wanting to be specific about how the houses look or are

distributed, therefore village will be placed.

• One of the houses in this village area should have a specific

shape. The designer can “zoom in” and draw that shape with

a house brush within the previously collapsed village area.

Without this, the designer would have to either tediously describe

each of the houses or none of them, unable to choose where to

be specific. This basic feature clearly expresses the usefulness of

meta-tiles in a mixed-initiative context, turning the iterative de-

sign process into a declarative semantic specification, rather than

focusing on a detailed tile painting.

4.4 Storing the collapse paths [2]

Storing the collapse paths allows tracing back the meta-tiles in the

DAG and highlighting or selecting areas that correspond to some

specific meta-tile, also allowing for the bulk-execution of certain

semantically meaningful operations. Examples:

• The designer can choose to select all cells with tiles that have

house in their collapse path DAG, highlighting all houses

(but not any apartments).

• Some editing operations can be performed on such a selec-

tion, for example, clearing, as well as regenerating, in order

to obtain different houses.

The operation of regenerating (groups of) meta-tiles is impossible

without the present algorithm extensions; even if one would be able

to select all the generated structures that correspond to e.g. houses,

there would be no way to constrain the generation process to gen-

erate semantically equivalent structures. With meta-tiles, though,

one restricts tile collapsing to remain within the corresponding

sub-graph.

4.5 Automated collapsing

Currently WFC is mostly used as a procedural generator in prac-

tice, without necessarily involving a human in a mixed-initiative

generation process. Still, hierarchical semantic WFC brings benefits

even if we limit the scope to automated generation:

• We can now use the chosen tile’s depth in the tree as a cell

selection metric, which allows for level-by-level collapsing

• The weights on the tree allow for a hierarchical form of

density control

• By using a tile’s depth as selection metric, we can make

adjacency constraints between meta-tiles at the same level

more meaningful, allowing for the automatic generation of

transitions among them.

5 RESULTS

We implemented the hierarchical semantic WFC method described

so far, and made it the backbone of an editor that offers the new

editing facilities identified in Section 4. In this section, we briefly



FDG 2023, April 12–14, 2023, Lisbon, Portugal Shaad Alaka and Rafael Bidarra

Figure 4: A screenshot of the current pygame-based prototype

editor while collapsing meta-tiles into leaf-tiles, combining

the overlapping model with hierarchical semantic WFC.

Figure 5: A screenshot of the current web-based prototype

editor, paused while it was auto-collapsing.

describe our prototype implementations, and then focus on demon-

strating the usefulness of those editing features within a use case,

consisting of interactively designing a top-down level for an open

world game.

5.1 Prototype implementations

Two prototypes were conceived: one for development and testing
2
,

and another one that is intended for interactive use by designers
3
.

The former one was written in Python, using data structures from

numpy4 for fast vectorized operations on matrices, and using the

fast deque from collections5 to accelerate the algorithm, and

the graphical user interface (GUI) is rendered using pygame6 by

means of blitting. This version of the prototype is responsible for

the outputs shown throughout this section. It has several debugging

features, such as being able to record and visualize propagation

2
Python prototype: https://github.com/Archer6621/HSWFC-editor-pygame

3
Web prototype: https://github.com/Archer6621/HSWFC-editor

4
https://numpy.org/

5
https://docs.python.org/3/library/collections.html

6
https://www.pygame.org/news

waves and show what tiles were disallowed because of it, showing

the canvas entropy on a second panel, at the right; see Figure 4. It

also has some more advanced editing features, such as the ability

to overwrite meta-tiles with their ancestors and (un)propagate

this accordingly, which can act as an eraser or re-generation tool

depending on how it is used.

The second prototype is much more user friendly in its design

from the ground-up, and is intended as testbed for benchmarking

the usefulness of the novel editing facilities for designers; see Figure

5. It is built in Quasar
7
, and uses a webworker to run the algorithm

in a background thread. The algorithmwas built in Javascript, using

mathjs8 as a convenient substitute for numpy and a fast deque im-

plementation
9
for the propagation queue. A demo of a development

version is available online for everyone to try out
10
. This demo will

be kept up to date with the latest developments.

Both prototypes allow simultaneous editing and automated col-

lapsing, which ensures a fast and responsive user experience while

editing the environment. At the moment, both prototypes imple-

ment a version of the simple-tiled WFC algorithm on a 2D grid. In

addition, the Python prototype also implements the general WFC

overlapping model, as shown in Figure 4. This was mostly done to

confirm that the notion of semantic tile hierarchies generalizes to

other forms of WFC as well.

5.2 Use case

Level and environment design is a crucial task in video game de-

velopment. Various game development tools exist with first-class

support for the incremental creation of such environments. In many

games (e.g. Caves of Qud, Legend of Zelda, Rimworld, Minecraft)

these environments are laid out on a grid of tiles or voxels, and this

feature very well suits the output of WFC.

As a use case, we consider here a map editor for a top-down

2D game, where the designer wants to rapidly sketch out a world

with the key elements that should be present, and then recur to

hierarchical semantic WFC to detail and fill the gaps iteratively.

First, we evaluate the generation of a map from a sketched input.

For this, we use the tile-set and DAG of Figure 3.

In Figure 6 the west-side adjacency matrix for this particular

tile-set is shown (you need one for each cardinal direction). Note

that land <-> wall leaves was specified, which according to the

DAGwill allow any of grass, tree, forest and sand to be adjacent

to the children of wall. In fact, if the designer wishes to add more

tiles and makes sure that landwill be the ancestor of this tile, it will

automatically receive these adjacency constraints with the house

walls as well. This example clearly illustrates the power of meta-tile

constraints in action.

In Figure 7 a design specification has been sketched out by an

environment designer. Note how the meta-tile painting feature was

used here; land, village and forest are all meta-tiles, whilewater

is a leaf tile, also showing how the designer can fluently incorporate

both on the same grid in their design, thanks to adjacency inference.

The meta-tiles allow the designer to loosely specify the spatial

layout of the environment. What will end up being generated can

7
https://quasar.dev/

8
https://mathjs.org/

9
https://www.npmjs.com/package/denque

10
Web prototype demo: https://archer6621.github.io/hswfc-editor-dev/

https://github.com/Archer6621/HSWFC-editor-pygame
https://github.com/Archer6621/HSWFC-editor
https://numpy.org/
https://docs.python.org/3/library/collections.html
https://www.pygame.org/news
https://quasar.dev/
https://mathjs.org/
https://www.npmjs.com/package/denque
https://archer6621.github.io/hswfc-editor-dev/


Hierarchical Semantic Wave Function Collapse FDG 2023, April 12–14, 2023, Lisbon, Portugal

Figure 6: The west-side adjacency matrix that accompanies

the DAG from Figure 3. Blue denotes an input adjacency,

yellow an augmented adjacency from a meta-tile constraint,

and purple an upwards cascaded adjacency.

Figure 7: A design specification painted in the prototype edi-

tor implementation of hierarchical semantic WFC. Note that

a mix of meta-tiles (e.g. village) and leaf-tiles (e.g. water)

was used here. Recall that the black tile corresponds to root.

vary, but will be constrained by what is in the sub-tree of those

meta-tile nodes, as shown in the DAG of Figure 3.

Subsequently, the designer can choose to resume automated col-

lapsing, which will continue collapsing the meta-tiles downwards

until all cells on the grid contain a leaf-tile. As this is a stochastic

process, the design specification can result into multiple concrete

manifestations, as shown in Figure 8. This process can be controlled

to an extent by adjusting the weights on the DAG. In the right out-

put, house was made slightly less common in village by adjusting

the weight on the edge connecting them to be 0.02 instead of 0.1,

resulting into a less dense village. This shows how the meta-tile

Figure 8: Two variations of environment generation from the

design specification of Figure 7, but with different weights

for the villagemeta-tile.

Figure 9: Regenerating the village highlighted in blue, after

being able to select it through the collapse paths. The new

still-generating village on the right clearly has a different

layout.

weights are useful in controlling the distribution of entities based

on their semantics.

Ultimately, after sketching and resuming the automated collapse

for several iterations, the designer ends up with an output they are

mostly satisfied with as seen in figure 9, except for the particular

layout of the village. The designer can choose to select all tiles

that have village in their collapse path (highlighted in blue), and

simply regenerate only the village until a layout is found that is

satisfactory.

The usefulness of this last feature extends beyond the designer’s

scope, as other systems can make use of this semantics to identify

separate objects/bodies as well. For example, the village in our

example contains house meta-tiles, which can be easily used (in

our hypothetical game) to add interactivity to all houses. For this,

one could analyze cells’ collapse paths and state that the player

can interact with any tile that “originated” from house in some

specific way. Another example would be to connect all houses with

a road network using a dedicated algorithm. For that, all clusters of

tiles originated from house can be treated as a node, as they would

represent the houses in this network.

In Figure 10, various output examples are shown, demonstrating

a variety of scenarios. One can see for instance that leaving areas

unpainted (i.e. at the root tile) basically makes the generator decide

what happens there, though one still has the freedom to tweak the



FDG 2023, April 12–14, 2023, Lisbon, Portugal Shaad Alaka and Rafael Bidarra

outgoing edges from the root node to make this suit the use case.

Also note how in (v) the designer can constrain the output in a

variety of ways by drawing certain shapes with the wall meta-tile.

Finally, in (vi) we can see the designer mixing various detail levels

seamlessly, showing how you only need to specify the elements

that matter to you, and leave the rest of the environment to the

generator.

6 DISCUSSION

From the interactive examples in the previous section, we can iden-

tify a first clear benefit of our hierarchical semantic WFC approach:

environment designers can focus on what they want to place, rather

than having to worry about the detailed semantics blurred in each

leaf tile. For instance, with the appropriate input, they can just

place the semantic embodiment of a "house", which WFC will then

collapse to the required tiles based on the context.

Secondly, the probabilities of “choosing” some tile can be tweaked

thanks to the weights in the DAG structure. This gives control over

the distribution and proportions of the contents of any semantic

group. Designers can tweak this to express they want more of some

concept (e.g. tree in a forest) in some area, and less in another

(e.g. tree in a city). Without a hierarchical structure, this would be

non-trivial.

Thirdly, the input designer has now control over the semantic

composition and clustering of entities under each meta-tile, includ-

ing the specification of their weights and of the constraints among

them. This does not only save time, it also clarifies the intent of

some constraint (e.g. use simply land <-> wall, instead of grass

<->wall, grass <->wall-corner, forest <->wall-horizontal-
stretch, etc).

While promising in many respects, there are still challenges

ahead to consider. For one, a sensible input remains an essential

requirement for any WFC implementation, either created by the

designer or obtained from third parties. The semantic power of an

editor using WFC is limited by the quality of the input, and the

designer would have to make amendments if the input is deemed

insufficiently powerful or does not fully cater to their needs.

Furthermore, hierarchical semantic WFC certainly requires a

more complex input, needing a hierarchy specification in the form

of a DAG. While there are known methods for deriving an input

tile-set and constraint-set from an image for the original WFC im-

plementation, there are no known methods for deriving a semantic

hierarchy from an image, hence to even get started with an editor

that uses this algorithm, an appropriate input needs to be crafted

by a designer first. This burden can be reduced slightly by using ex-

isting WFC inputs that have definitions for the constraints and tiles,

and then simply expand the hierarchy with additional constraints

involving meta-tiles in hindsight.

7 CONCLUSION

We have shown that extending WFC with a semantics-based hier-

archical structure and meta-tiles enhances its potential as a driving

algorithm for an interactive environment editor. This is achieved

by facilitating novel editing features otherwise impossible or very

tedious. These novel features allow a designer to express semantics

much more clearly, use this semantics as a powerful input to WFC,

and ultimately, maintain this semantics in generated environment,

throughout its iterative refinement.

The implemented prototypes have proven that these extensions

can be realized, and are effective without any deterioration of al-

gorithm performance. We are presently working on up-scaling the

approach to an environment editor that can be used by designers,

with which we will perform a number of user studies to assess the

design experience improvement, in terms of expressiveness and

iteration time.

Looking further ahead, there are several interesting directions

for future work. First, we would like to look into how the collapse

chains in the output cells can be used for detecting semantic objects

and specifying higher level constraints between them. Another

interesting direction would be to examine more closely the editing

workflow enabled by our method, which allows a designer to work

on several scales at once, switching between detailed and global

views at will.

It is definitely worth further exploring the integration of a se-

mantic tile hierarchy notion with other WFC implementations

(e.g. overlapping model, graphs), and identify additional promis-

ing features, both for automatic and for mixed-initiative content

generation.

One could also look into making the automated generation step

more useful, e.g. by allowing certain meta-tiles to have their own

procedural generator, e.g. taking a number of contextual parameters

for influencing the child-choice weights, in order to steer towards

more desirable output. Lastly, it could be very interesting to inves-

tigate which other kinds of semantic relations could be modelled

between the nodes in the DAG, e.g. relations that are based on

proximity, where one type of tile is likely to occur close by another

type of tile.

REFERENCES

[1] Maxim Gumin. 2016. Wave Function Collapse Algorithm. personal repository.

https://github.com/mxgmn/WaveFunctionCollapse

[2] Peter Kan, Andrija Kurtic, Mohamed Radwan, and Jorge M Loaiciga Rodriguez.

2021. Automatic interior Design in Augmented Reality Based on hierarchical

tree of procedural rules. Electronics 10, 3 (2021), 245.
[3] Isaac Karth and Adam Smith. 2021. WaveFunctionCollapse: Content Generation

via Constraint Solving and Machine Learning. IEEE Transactions on Games PP
(05 2021), 1–1. https://doi.org/10.1109/TG.2021.3076368

[4] Isaac Karth and Adam M. Smith. 2017. WaveFunctionCollapse is Constraint

Solving in the Wild. In Proceedings of the 12th International Conference on the
Foundations of Digital Games (Hyannis, Massachusetts) (FDG ’17). Association
for Computing Machinery, New York, NY, USA, Article 68, 10 pages. https:

//doi.org/10.1145/3102071.3110566

[5] Isaac Karth and Adam M. Smith. 2019. Addressing the Fundamental Tension of

PCGML with Discriminative Learning. In Proceedings of the 14th International
Conference on the Foundations of Digital Games (San Luis Obispo, California, USA)

(FDG ’19). Association for Computing Machinery, New York, NY, USA, Article 89,

9 pages. https://doi.org/10.1145/3337722.3341845

[6] Jassin Kessing, Tim Tutenel, and Rafael Bidarra. 2012. Designing semantic game

worlds. In Proceedings of PCG 2012 - Workshop on Procedural Content Generation,
co-located with the Seventh International Conference on the Foundations of Digital
Games. ACM, Raleigh, NC, 40–48.

[7] Hwanhee Kim, Seongtaek Lee, Hyundong Lee, Teasung Hahn, and Shinjin Kang.

2019. Automatic Generation of Game Content using a Graph-based Wave Func-

tion Collapse Algorithm. Proceeding of IEEE Conference on Games 1, 1 (08 2019),
1–4. https://doi.org/10.1109/CIG.2019.8848019

[8] Thijmen SL Langendam and Rafael Bidarra. 2022. miWFC - Designer empower-

ment through mixed-initiative Wave Function Collapse. In Proceedings of the 17th
International Conference on the Foundations of Digital Games (Athens, Greece)
(FDG ’22). Association for Computing Machinery, New York, NY, USA, Article 66,

8 pages. https://doi.org/10.1145/3555858.3563266

https://github.com/mxgmn/WaveFunctionCollapse
https://doi.org/10.1109/TG.2021.3076368
https://doi.org/10.1145/3102071.3110566
https://doi.org/10.1145/3102071.3110566
https://doi.org/10.1145/3337722.3341845
https://doi.org/10.1109/CIG.2019.8848019
https://doi.org/10.1145/3555858.3563266


Hierarchical Semantic Wave Function Collapse FDG 2023, April 12–14, 2023, Lisbon, Portugal

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Figure 10: More examples of meta-tile paintings with three variations of their generated output, from top-to-bottom: (i) Clusters

of house surrounded by land, causing houses to generate only inwards; (ii) houses in forest, (iii) shoreline village and forest,

(iv) shoreline with margin, (v) various wall configurations, (vi) mixed detail: grassy path along some forest, walls, a river, and a

village at the bottom.



FDG 2023, April 12–14, 2023, Lisbon, Portugal Shaad Alaka and Rafael Bidarra

[9] Alain Lioret, Nicolas Ruche, Etienne Gibiat, and Cédric Chopin. 2022. GAN

Applied to Wave Function Collapse for Procedural Map Generation. In ACM
SIGGRAPH 2022 Posters (Vancouver, BC, Canada) (SIGGRAPH ’22). Association
for Computing Machinery, New York, NY, USA, Article 59, 2 pages. https:

//doi.org/10.1145/3532719.3543198

[10] Paul Merrell and Dinesh Manocha. 2010. Model synthesis: A general procedural

modeling algorithm. IEEE Transactions on Visualization and Computer Graphics
17, 6 (2010), 715–728.

[11] Tobias Nordvig Møller, Jonas Billeskov, and George Palamas. 2020. Expanding

Wave Function Collapse with Growing Grids for Procedural Map Generation.

In Proceedings of the 15th International Conference on the Foundations of Digital
Games (Bugibba, Malta) (FDG ’20). Association for Computing Machinery, New

York, NY, USA, Article 28, 4 pages. https://doi.org/10.1145/3402942.3402987

[12] Konstantinos Sfikas, Antonios Liapis, and Georgios N. Yannakakis. 2022. A

General-Purpose Expressive Algorithm for Room-Based Environments. In Pro-
ceedings of the 17th International Conference on the Foundations of Digital Games
(Athens, Greece) (FDG ’22). Association for Computing Machinery, New York,

NY, USA, Article 64, 9 pages. https://doi.org/10.1145/3555858.3563262

[13] Ruben Smelik, Krzysztof Galka, Klaas Jan de Kraker, Frido Kuijper, and Rafael

Bidarra. 2011. Semantic Constraints for Procedural Generation of Virtual Worlds.

In Proceedings of the 2nd International Workshop on Procedural Content Generation
in Games (Bordeaux, France) (PCGames ’11). Association for Computing Machin-

ery, New York, NY, USA, Article 9, 4 pages. https://doi.org/10.1145/2000919.

2000928

[14] Ruben M Smelik, Tim Tutenel, Klaas Jan de Kraker, and Rafael Bidarra. 2011. A

declarative approach to procedural modeling of virtual worlds. Computers &
Graphics 35, 2 (2011), 352–363.

[15] Ruben M. Smelik, Tim Tutenel, Klaas Jan de Kraker, and Rafael Bidarra. 2010.

Integrating procedural generation and manual editing of virtual worlds. In Pro-
ceedings of PCG 2010 - workshop on Procedural Content Generation, co-located with
the Fifth International Conference on the Foundations of Digital Games. ACM, Mon-

terey, CA, 8 pages. http://graphics.tudelft.nl/Publications-new/2010/STDB10d

[16] Sam Snodgrass and Santiago Ontanon. 2021. A Hierarchical MdMC Approach

to 2D Video Game Map Generation. Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment 11, 1 (Jun. 2021), 205–
211. https://doi.org/10.1609/aiide.v11i1.12794

[17] Oskar Stålberg. 2021. Townscaper. Raw Fury, Steam, Epic Games Store, GOG,

Nintendo Switch, xBox, App Store, Google Play. https://oskarstalberg.com/

Townscaper/

[18] Tim Tutenel, Rafael Bidarra, Ruben M. Smelik, and Klaas Jan de Kraker. 2009.

Rule-based layout solving and its application to procedural interior generation.

In Proceedings of the CASA’09 Workshop on 3D Advanced Media in Gaming and
Simulation. Utrecht University, Amsterdam, The Netherlands, 15–24. http:

//graphics.tudelft.nl/Publications-new/2009/TBSD09a

[19] Barbara Tversky and Masaki Suwa. 2009. Thinking with Sketches. Oxford Univer-

sity Press, Oxford, Chapter 4. https://doi.org/10.1093/acprof:oso/9780195381634.

003.0004

https://doi.org/10.1145/3532719.3543198
https://doi.org/10.1145/3532719.3543198
https://doi.org/10.1145/3402942.3402987
https://doi.org/10.1145/3555858.3563262
https://doi.org/10.1145/2000919.2000928
https://doi.org/10.1145/2000919.2000928
http://graphics.tudelft.nl/Publications-new/2010/STDB10d
https://doi.org/10.1609/aiide.v11i1.12794
https://oskarstalberg.com/Townscaper/
https://oskarstalberg.com/Townscaper/
http://graphics.tudelft.nl/Publications-new/2009/TBSD09a
http://graphics.tudelft.nl/Publications-new/2009/TBSD09a
https://doi.org/10.1093/acprof:oso/9780195381634.003.0004
https://doi.org/10.1093/acprof:oso/9780195381634.003.0004

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Hierarchy of semantic nodes
	3.2 Algorithm extension
	3.3 Overlapping model and generality

	4 Editing facilities
	4.1 Meta-tile constraints [1]
	4.2 Meta-tile weights [1]
	4.3 Meta-tile placement [2]
	4.4 Storing the collapse paths [2]
	4.5 Automated collapsing

	5 Results
	5.1 Prototype implementations
	5.2 Use case

	6 Discussion
	7 Conclusion
	References

