

A semantic approach to patch-based procedural generation of urban road networks

Edward Teng and Rafael Bidarra

Manhattan

problem statement

shortcomings of procedural road network generation methods

- output looks often 'canned'
- poor and non-intuitive control
- hard to master for non-experts
- challenges
 - integration of patch-based and parametric-based methods
 - representation and utilization of patch semantics

contributions

- use of patch semantics to guide the road generation
- intuitive configuration of road generator settings
- high expressive range parametric-based generation method

video

representation

road network as a geometric graph

representation

road network as a geometric graph

representation

road network as a geometric graph

general approach

- segment length
- segment length deviation range
- minimum street length
- minimum street angle
- vertex degree range
- angle deviation range
- snap radius

G

- segment length
- segment length deviation range
- minimum street length
- minimum street angle
- vertex degree range
- angle deviation range
- snap radius

- segment length
- segment length deviation range
- minimum street length
- minimum street angle
- vertex degree range
- angle deviation range
- snap radius

- segment length
- segment length deviation range
- minimum street length
- minimum street angle
- vertex degree range
- angle deviation range
- snap radius

G

- segment length
- segment length deviation range
- minimum street length
- minimum street angle
- vertex degree range
- angle deviation range
- snap radius

- segment length
- segment length deviation range
- minimum street length
- minimum street angle
- vertex degree range
- angle deviation range
- snap radius

patch-based method - semantic identification 🔊

patch-based method - semantic identification Service S

Intersections

patch-based method - semantic identification 🔊

patch-based method - semantic identification 🔊

general approach

patch-based method - cell initialization

patch-based method - network propagation

G

Algorithm 1 Network propagation						
1:	Input: graph, patches, cell					
2:	Output: graph					
3:	while graph.candidateVertices.Count >0 do					
4:	$currentVertex \leftarrow graph.candidateVertices.pop()$					
5:	propagationDirection					
6:	if propagationDirection is valid then					
7:	$filteredPatches \leftarrow$ filter available <i>patches</i>					
8:	if filteredPatches.isEmpty() then					
9:	apply parametric-based growth on currentVertex					
10:	else					
11:	suitablePatch					
12:	if $suitablePatch == null$ then					
13:	suitablePatch					
14:	if suitablePatch != null then					
15:	attach suitablePatch on currentVertex					
16:	else					
17:	apply parameteric-based growth on currentVertex					

network propagation - breadth-first

network propagation - breadth-first

rating formula:

 $1 - \frac{|distancePatchPair - distanceGraphPair|}{distanceGraphPair}$

patch fitting:

- extend or shorten an edge
- calculate the rotation

network propagation - depth-first

method - adaptation

- **connect** road segment to nearby vertex (1) /edge (2). Discard:
 - angle lower than minimum angle
 - length road segment lower than minimum length
 - maximum vertex degree reached
- clip intersecting road segments (3)
- **create** bridge to cross river (4)
- discard steep road segment (4)

results:

Tags exclusion	P. available	P. total used	P. unique used	Time
None	98	381	58	25
Curved	39	354	29	13
Straight	59	335	38	16
Loop	75	362	44	21
Cul-de-sac	84	345	52	22

findings:

- differences in generation time
- #unique patches used significantly lower than #available patches

expressive range

- street connectivity and street density as metrics
 - Connected Node Ratio:

#intersections

#intersections + #deadends

- Total street length per area unit
- variations on minimum street angle and vertex degree range
- all other parameters fixed:
 - ▶ segment length (50m)
 - ▶ segment length deviation range (10m)
 - minimum street length (20m)
 - ▶ street angle deviation range (10%)
 - ▶ snap radius (20m)

hexagonal bin plots to visualize

- connectivity ranging between 0.6 and 1
- density ranging between 15 and 55

- high connectivity and density -> high vertex degree range and low minimum angle
- high connectivity and low density -> low vertex degree range and low minimum angle
- Iow connectivity and density -> low vertex degree range and high minimum angle
- Iow connectivity and high density not covered
- conclusion: wide expressive range

conclusion

novel road network generation

- use of patch semantics to help guiding patch-based road network generation
- controllable parametric-based road generation with a broad expressive range
- integration of patch-based and parametric-based methods
- high level settings scheme that allows non-experts to easily create and modify road networks

future work

- use patterns during propagation
- patch selection to connect more than two vertices
- expressive range analysis for the patch-based generator

G

