
Tracery: An Author-Focused Generative
Text Tool

Kate Compton1(B), Ben Kybartas2, and Michael Mateas1

1 Department of Computational Media, UC Santa Cruz, Santa Cruz, USA
{kcompton,michaelm}@soe.ucsc.edu

2 Department of Intelligent Systems, TU Delft, Delft, The Netherlands
b.a.kybartas@tudelft.nl

Abstract. New communities of generative text practitioners are flour-
ishing in novel expressive mediums like Twitterbots and Twine as well
as the existing practices of Interactive Fiction. However, there are not
yet reusable and extensible generative text tools that work for the needs
of these communities. Tracery is an author-focused generative text tool,
intended to be used by novice and expert authors, and designed to sup-
port generative text creation in these growing communities, and future
ones. We identify the design considerations necessary to serve these
new generative text authors, like data portability, modular design, and
additive authoring, and illustrate how these considerations informed the
design of the Tracery language. We also present illustrative case studies
of existing projects that use Tracery as part of the art creation process.

1 Introduction

What does it mean to make an ‘author-focused’ generative text tool? We con-
sider the potential authors for such a generative tool to be creative persons who
are interested in the expressivity of language and the aesthetics of prose. They
may not self-identify as ‘programmers’ or want to write code, but they want
to create generative text that is algorithmically combinatorial and surprising,
while still seeing their authorial ‘voice’ in the finished text. With the success
of NaNoGenMo, the text-generating twin of National Novel Writing Month [2],
and the increasing popularity of Twitterbots [6], there is a coherent commu-
nity of practice around generating text that has little relation to many previous
academic approaches to narrative generation. Text generators are finding audi-
ence and community in new platforms like Twitter, Itch.io, and Twine. These
platforms have lower barriers to entry and less structured expectations than tra-
ditionally game-oriented hosting spaces like Steam or publishers like Eastgate,
so many text generators that could not stand alone as either games or liter-
ary experiences now have a chance to build a niche audience. These new works
often embrace an aesthetic of nonsense and absurdity, and make use of unex-
pected, unplanned, yet insightful juxtapositions. Many of them use templates
and grammars to create structured yet variable text, a technique used in the
ELIZA system [11] but still powerful and popular.
c© Springer International Publishing Switzerland 2015
H. Schoenau-Fog et al. (Eds.): ICIDS 2015, LNCS 9445, pp. 154–161, 2015.
DOI: 10.1007/978-3-319-27036-4 14



Tracery: An Author-Focused Generative Text Tool 155

1.1 What Is Tracery

We designed Tracery as an open source tool to write text-generating grammars,
for users who may be academics, IF authors, botmakers, or game-makers1. Gram-
mars are written as JSON objects in a simple and readable syntax, and then
recursively expanded by Tracery into finished text. The system has been kept
as lightweight and syntactically simple as possible to encourage its use in other
systems while maximizing accessibility for novice users, even non-programmers.
Grammars have been dismissed as insufficient for analyzing and generating
stories [1], and fallen out of fashion in interactive narrative. We show that, with
a good interface and some small additional features, grammars can be rehabili-
tated in interactive narrative, and can be used by authors, even casual ones, to
create a wide range of stories, poems, dialogue, and even images and code.

2 Related Work

Authors of Interactive Fiction have identified generative text tools as a missing
or poorly developed feature of their practice. In Emily Short’s survey of the IF
community, she notes the desire for: ‘the ability to have the computer describe
complex world model states or story events without having to hand-author every
possible variation,’ and catalogs the useful generative text features that have
appeared in existing IF authoring tools, such as pluralization, option selection,
and slurred-speech filters, among many others [8]. Previous story generation
systems commonly focus on story structure and the maintenance of narrative
causality [7] with planning algorithms or agent-based simulations. The price of
this causality, however, is a reliance on a carefully modeled database of world
knowledge, provided either as part of the system [12] or authored by the user
of the system [4]. The pleasures of writing, like creating dialogue and character,
playing with language, writing expressively, take a backseat to performing labori-
ous knowledge modeling. Several storytelling systems do, however, model poetic
language use, like Zhu and Ontañon’s Riu system [13], which creates analogy-
based stories using force dynamics, and Harrell’s GRIOT system [3], which uses
conceptually-linked axioms to pick content to fill in phrase templates. GRIOT
uses templating to create recognizable poetic structure, but requires the author
to create an ontology of axioms in order to create a new polypoem with its own
logic. Tracery takes a different approach by not explicitly modeling world knowl-
edge or axiomatic relationships. The only knowledge of the world consists of the
grammar of symbols and their rewrite rules provided by the author. Even with
only this very shallow data structure, the case studies included in this paper
show that authors can produce structured and interesting generative text with
a unique literary voice, even though that text may lack the logic of GRIOT and
Riu, or the narrative validity of MEXICA. As demonstrated in the MEXICA
case study included in Sect. 5, causality can be handled by an external system
which pipes a more rigorous story model into Tracery. To the large, diverse, and

1 https://github.com/galaxykate/tracery.

https://github.com/galaxykate/tracery


156 K. Compton et al.

mostly non-academic communities engaged in generative text practices outside
of knowledge-modeling traditions, these limitations do not seem to matter as
much as we might have expected from previous academic theory.

3 Design Considerations

Tracery was intentionally designed to be easy to author with. The content cre-
ated by an author is a simple object (a formal grammar) written mostly in
plaintext, and advanced syntax is kept as readable and minimal as possible
(see Sect. 3.1 for details). In addition, we followed other design considerations
that we knew would be important to our potential authors: modularity, bal-
ancing generativity and control, and modifiability. Tracery is a modular
ecosystem of interworking parts: a parseable language, an expansion engine, and
many visualization and integration tools for building larger works, each of which
can be used independently (see Sect. 4). Modules can communicate through the
data format of a grammar, a list of symbols and rewrite rules, which provides
a lingua franca that can be understood by any tool in our set, even those not
authored by us. Maintaining open data formats and good encapsulation is a
standard practice in software industry, and it has many useful side effects, such
as allowing an independent user to turn it into a Node.js library (Sect. 4), serv-
ing Tracery server-side to run Twitterbots. Seeing interesting and unintended
juxtapositions is one of the great pleasures of generative text systems. Many
users make satisfying generators using only the most basic syntax: hashtags to
signal expandable symbols. At the same time, some authors also need control
over some facets of generation, like maintaining a persistence of a character’s
name and pronouns. Advanced users can opt in to more control when they need
it, by using higher-level features like push-pop actions and modifiers, or chang-
ing the random distribution, while still taking advantage of randomness when it
suits them. JavaScript, conveniently the dominant language of the web, is well
suited to this project by being highly mutable. If an author includes Tracery in
a larger JS project, any exposed library variable or object can be modified and
added to, at runtime. They can add new modifier functions, read or write rules,
and add new symbols, as in ‘Interruption Junction’ [9]. No library can provide
all features for all projects, so this modifiability allows authors to bend Tracery
to their needs.

3.1 Syntax

Symbols and Rules. Tracery’s main data structure is a formal grammar, a
mapping of symbols to sets of rewrite rules, as in this example:

color: ["red", "green", "indigo", "ecru", "violet"],

animal : ["panda", "ocelot", "meerkat", "platypus"],

mood: ["joyful", "morose", "alert", "sleepy", "pensive"],

pet: ["puppy", "#mood# kitty", "#mood# #color# #animal#"],

tale: ["This is the story of a #pet#...", "Once there was a #pet#"]



Tracery: An Author-Focused Generative Text Tool 157

Each rule can be written as plaintext or with Tracery’s special syntax to
specify recursively expandable symbols, as in a formal grammar. We use a hash-
tag syntax to signal recursion: #animal# tag in pet’s rules can be replaced
with the available rules for the animal symbol, and as shown in the rules for
tale, rules can expand recursively to an arbitrary depth. This syntax defaults to
allow the user to write in normal natural language, so an author can write: The
hero walked into a bar, and then incrementally replace parts with symbols
and alternative rules to add variability over time, until eventually #theHero#
#walked# into #someBar# can expand to many different heroes, many bar
names, and many ways of walking into them.

Modifiers. Capitalization, pluralization, a/an choice, and conjugation are com-
mon hassles of generative text, so Tracery provides functions that can be applied
after a symbol is expanded. These built-in modifiers (.a, .ing, .ed, .pluralize
and .capitalize) are provided as convenient though imperfect utilities. While
we plan to improve the built-in modifiers, we also encourage advanced users
to build their own modifiers for the languages and genres they work in: bet-
ter pluralization, Spanish verb conjugations, or adding gender declensions for
Icelandic nouns. Any function that can take text, modify it, and return it can
be a modifier. Functions that work on full texts, such as a pirate-speak filter
or a drunkenness filter, can be added, so that ‘Aye’, said the old sailor,
‘#longRamblingStory.piratize.drunkenize#’ will produce a story with the
necessary flavor, regardless of what longRamblingStory originally generates.

Push-Pop Stacks. Often, authors want to save and reuse some generated text,
such as the main character’s name, species, possessions, or appearance. To this
end, Tracery allows rules to write to the grammar when they run, ‘overwriting’
symbols (or creating them if they don’t exist). Each symbol, instead of just
having one set of rules, actually has a stack of rule sets, only the topmost of
which is used to select a rewrite rule. Because these actions affect only their
current sub-tree, an author can create a recursive nested story-within-a-story.
This technique uses the grammar itself as a sort of blackboard to store and read
information over time, balancing random generation with control.

4 A Modular Architecture: One Format, Many Tools

Tracery’s main component is a lightweight text-expansion library. A grammar
is a key-value array matching symbols to arrays of expansion rules, written in
the syntax in Sect. 3.1. This grammar is loaded into Tracery, which can then
respond to requests to expand Tracery-syntax strings by using the grammar’s
rules to recursively generate text. Each generated trace represents one tree-
shaped path through the possibility space of the grammar: each symbol encoun-
tered is a choice of available possible expansion rules. Thus the trace can be
returned as either flattened plaintext, or as the original tree-shaped path. The
grammar and the traces provide a data structure that can be used by other



158 K. Compton et al.

independent modules, which may operate independently or alongside the expan-
sion library, depending on the use case. In this section, we present the modules
and apps that take these structures as input to create text, visualizations, Twit-
terbots, or hosted shareable generators. The intentional modularity of Tracery
makes such an ecosystem possible.

Visualizations. Tracery grammars can become very deeply nested and inter-
connected for non-trivial works, but good visualizations can clarify even a com-
plex grammar. We created several visualizations, for understanding connectivity
and reuse of symbols in a grammar, and seeing the commonality and range
between multiple traces (Fig. 1).

Fig. 1. Different ways to visualize the expansion of “Detective #firstName# #sur-
name# #sipped# the #coffee#. It was #coffeeJudgement#, like life”. Right: visual-
izing the grammar’s connectivity shows how each symbol (in dark blue) can expand
to many different options (pale blue). Left: visualizing five sample expansions demon-
strates where each story varies or remains the same. Bottom-left: fully expanded text,
as it would be read by the end reader (Color figure online).

CheapBotsDoneQuick and Twinecery. Tracery is being adopted by mem-
bers of other established interactive fiction communities, some of whom have
built tools to support the genres in which they write. Tracery’s portability and
common data format enabled these tools to be built with little or no additional
support from us. Matthew Balousek, a student who had worked with Tracery,
repackaged the expansion library to generate text inside of Twine2. The most
successful Tracery tool so far was not created by us at all. George Bucken-
ham, an independent game designer, created Cheap Bots Done Quick! (http://
cheapbotsdonequick.com) independently for a bot-making workshop as a way for
novice botmakers to quickly create and host expressive bots. Users sign in with
Twitter, add a Tracery grammar, and can use it to preview generated tweets
or set it to post automatically. This tool has encouraged both novice and very
advanced IF authors (including Squinky, Emily Short, and Porpentine) to try
Tracery and bot-making. At least 135 bots have been made so far, including some
that generate orcish insults, fussy hipster cocktails and poetic space explorations
(@orcish insults, @HipsterCocktail, @DeepSpaceProbe), as well as non-prose like

2 https://dl.dropboxusercontent.com/u/8790624/twinecery/twinecery.html.

http://cheapbotsdonequick.com
http://cheapbotsdonequick.com
https://dl.dropboxusercontent.com/u/8790624/twinecery/twinecery.html


Tracery: An Author-Focused Generative Text Tool 159

valid query links for IFDB (@emily testbot) and ASCII art (@infinitedeserts).
Both Cheap Bots and Twinecery would not have been possible if we had not
packaged and released Tracery for modification by others.

Hosting: Tracery.io. Though we are delighted by the success of Cheap Bots
and new users it brought to Tracery, the bot authors lack a way to show
the ‘source code’ of their grammars, or to learn from the grammars of others.
We are building a hosting site (http://tracery.io/) where authors will be able
to write and test grammars, browse the work of others, and examine and reuse
elements of their grammars. This hosting provides templates hooking generated
output to rogue-like RPGS, music generators, and image generators, as well as
styling choices for dressing up plaintext Tracery output.

5 Evaluation: Case Studies

For a tool like Tracery, our evaluation metric is whether it has been successfully
used to make works, by ourselves and others. Tracery has been developed while
working on many of our own fully-implemented works (rather than just toy
examples) and in conversation with authors writing real works. This kept our
development grounded in the needs of the authors, leading us to the design
considerations outlined in Sect. 3. Below are some of the works: several of our
own, and one from independent designer Dietrich ‘Squinky’ Squinkifer, with
the lessons we learned from them, and several pilot experiments showing new
directions that Tracery may go in the future.

Eternal Night Vale. Eternal Night Vale was the first released stand-alone
project using Tracery, and was created by us for ProcJam 2014, the procedural
generation jam. It created possible episodes in the style of the podcast Welcome
To Night Vale. A deeply nested grammar of about fifty symbols, each with many
possible rewrite rules, was used to expand an ‘#episode#’ rule recursively into
the highly-structured segments of a Night Vale episode, filling in details with
absurd generated vignettes that would be appropriate to the very idiosyncratic
world of Night Vale. A review in Rock Paper Shotgun praised the work as ‘a
great little tool which condenses the tone and main elements of the show into
just a few paragraph’ [10]. By mimicking the distinctive structure and language
of the show, we were able to capture the spirit of the show in a relatively short
grammar, in the short time-frame of a one-week jam.

Interruption Junction. ‘Interruption Junction’ [9] by game artist Squinky is
the first major game released using Tracery. In their words, it is ‘a short one-
button conversation game about being lonely in a group of people!’ The player
is in a conversation in which three other friends are discussing the activities of
mutual acquaintances. The player can mash the space bar to interrupt and begin
rambling about video games, but unilaterally dominating or retreating from the

http://tracery.io/


160 K. Compton et al.

conversation will cause people to fade from the conversation. The dialogue is
generated by Tracery, using a grammar by Squinky, and is meaningless, absurd,
and endless, a good fit for the theme of the game. Unlike Eternal Night Vale,
Tracery dialogue is just one element of this game, which also has interactivity,
animation, and sound. Interruption Junction showed that the encapsulation of
Tracery works well in actual practice of professional game making.

Neverbar. Neverbar is a scifi dating sim that we are developing in parallel
with Tracery to inform Tracery’s development with the needs of a real game.
Neverbar needs to maintain consistent world state, such as tracking the gender
of the protagonist, their name, their current location in the bar, their drink, and
the gender, name, and species of their love interest, and other story information.
We found this to be a common need for users using Tracery in larger more
interactive works like Interruption Junction, so we are developing an optional
‘plumbing’ layer on top of Tracery to automate the most common tasks we
encounter. The ‘plumbing’ is able to generate options with display text, keep
track of their potential values, and specify handlers to be called on activation or
cancellation, like pushing the values into the game’s world state. It can also move
values from the world state back into the grammar to maintain synchronization.

MEXICA: Testing Integration with Other Narrative Systems. Many
narrative generation systems focus on knowledge modeling, narrative, or simu-
lation, features that Tracery lacks. Can we pair Tracery with these existing sys-
tems to create coherent stories augmented with expressive generative language?
A recent paper on MEXICA included an XML output of the generator [5], which
we translated into a JavaScript object, and then tasked Tracery with providing
interesting and variable text interpretations for this skeleton story. Each concept
in the MEXICA data is converted to a Tracery symbol and rules representing
ways to describe it. The skeleton of the story remains the same, maintaining
structure, but the language used creates very different stories. Although this
test was done with exported XML data, any live narrative system that can
communicate with JS will be able to use Tracery in the same way.

6 Future Work and Conclusions

We designed Tracery as an ‘author-focused’ generative text tool targeting the
communities of practice around NaNoGenMo, Twine, and Twitterbots. We built
a lightweight, modular, and easy-to-use library (and associated tools) using
known best practices and design considerations drawn from those communities
of practice. Our goal was seeing it adopted and used by a wide range of authors
and toolmakers; it has been very successful by that metric. Our next steps will
be launching Tracery.io and finishing and releasing the plumbing module and
visualization tools. Intriguing recent experiments suggest that Tracery can gen-
erate syntax for HTML,3 SVG, or even valid JavaScript, opening the door for
3 https://twitter.com/ranjit/status/605149881200713728.

https://twitter.com/ranjit/status/605149881200713728


Tracery: An Author-Focused Generative Text Tool 161

automatic code generation in the future. We look forward to seeing how Tracery
continues to evolve as we add new authors and tools.

References

1. Black, J.B., Wilensky, R.: An evaluation of story grammars*. Cogn. Sci. 3(3),
213–229 (1979)

2. Dzieza, J.: The strange world of computer-generated novels, November 2014.
http://www.theverge.com/2014/11/25/7276157/nanogenmo-robot-author-novel

3. Harrell, D.F.: Walking blues changes undersea: imaginative narrative in interactive
poetry generation with the GRIOT system. In: AAAI 2006 Workshop in Compu-
tational Aesthetics: Artificial Intelligence Approaches to Happiness and Beauty,
pp. 61–69 (2006)

4. McCoy, J., Treanor, M., Samuel, B., Tearse, B., Mateas, M., Wardrip-Fruin, N.:
Authoring game-based interactive narrative using social games and Comme Il Faut.
In: Proceedings of the 4th International Conference & Festival of the Electronic
Literature Organization: Archive & Innovate (2010)

5. Montfort, N., ý Pérez, R.P.: Integrating a plot generator and an automatic narrator
to create and tell stories. In: On Computational Creativity (2008)

6. Neyfakh, L.: The botmaker who sees through the internet, January 2014.
http://www.bostonglobe.com/ideas/2014/01/24/the-botmaker-who-sees-through-
internet/V7Qn7HU8TPPl7MSM2TvbsJ/story.html

7. Riedl, M.O., Bulitko, V.: Interactive narrative: an intelligent systems approach. AI
Mag. 34(1), 67 (2012)

8. Short, E.: Procedural text generation in IF, November 2014. https://emshort.
wordpress.com/2014/11/18/procedural-text-generation-in-if/

9. Squinkifer, D.S.: New game: interruption junction, January 2015. http://squinky.
me/2015/01/19/new-game-interruption-junction/

10. Warr, P.: Welcome to eternal night vale, November 2014. http://www.
rockpapershotgun.com/2014/11/19/eternal-night-vale/

11. Weizenbaum, J.: ELIZA: a computer program for the study of natural language
communication between man and machine. Commun. ACM 9(1), 36–45 (1966)

12. ý Pérez, R.P., Sharples, M.: MEXICA: a computer model of a cognitive account
of creative writing. J. Exp. Theor. Artif. Intell. 13(2), 119–139 (2001)

13. Zhu, J., Ontanón, S.: Story representation in analogy-based story generation in
Riu. In: 2010 IEEE Symposium on Computational Intelligence and Games (CIG),
pp. 435–442. IEEE (2010)

http://www.theverge.com/2014/11/25/7276157/nanogenmo-robot-author-novel
http://www.bostonglobe.com/ideas/2014/01/24/the-botmaker-who-sees-through-internet/V7Qn7HU8TPPl7MSM2TvbsJ/story.html
http://www.bostonglobe.com/ideas/2014/01/24/the-botmaker-who-sees-through-internet/V7Qn7HU8TPPl7MSM2TvbsJ/story.html
https://emshort.wordpress.com/2014/11/18/procedural-text-generation-in-if/
https://emshort.wordpress.com/2014/11/18/procedural-text-generation-in-if/
http://squinky.me/2015/01/19/new-game-interruption-junction/
http://squinky.me/2015/01/19/new-game-interruption-junction/
http://www.rockpapershotgun.com/2014/11/19/eternal-night-vale/
http://www.rockpapershotgun.com/2014/11/19/eternal-night-vale/

	Tracery: An Author-Focused Generative Text Tool
	1 Introduction
	1.1 What Is Tracery

	2 Related Work
	3 Design Considerations
	3.1 Syntax

	4 A Modular Architecture: One Format, Many Tools
	5 Evaluation: Case Studies
	6 Future Work and Conclusions
	References


