
Chapter 8
Fuzzy Fibers: Uncertainty in dMRI
Tractography

Thomas Schultz, Anna Vilanova, Ralph Brecheisen
and Gordon Kindlmann

Abstract Fiber tracking based on diffusion weighted Magnetic Resonance Imaging
(dMRI) allows for noninvasive reconstruction of fiber bundles in the human brain. In
this chapter, we discuss sources of error and uncertainty in this technique, and review
strategies that afford a more reliable interpretation of the results. This includes meth-
ods for computing and rendering probabilistic tractograms, which estimate precision
in the face of measurement noise and artifacts. However, we also address aspects
that have received less attention so far, such as model selection, partial voluming,
and the impact of parameters, both in preprocessing and in fiber tracking itself. We
conclude by giving impulses for future research.

8.1 Introduction

Diffusion weighted MRI (dMRI) is a modern variant of Magnetic Resonance Imaging
that allows for noninvasive, spatially resolved measurement of apparent self-diffusion
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coefficients. Since fibrous tissues such as nerve fiber bundles in the human brain con-
strain water molecules such that they diffuse more freely along fibers than orthogonal
to them, the apparent diffusivity depends on the direction of measurement, and allows
us to infer the main fiber direction.

Based on such data, tractography algorithms reconstruct the trajectories of major
nerve fiber bundles. The most classic variant is streamline tractography, in which
tracking starts at some seed point and proceeds in small steps along the inferred
direction. In its simplest form, this results in one space curve per seed point. It has
been observed that many of the resulting streamlines agree with known anatomy
[11]. Tractography is also supported by validation studies that have used software
simulations, physical and biological phantoms [25].

Tractography is currently the only technique for noninvasive reconstruction of
fiber bundles in the human brain. This has created much interest among neuroscien-
tists, who are looking for evidence of how connectivity between brain regions varies
between different groups of subjects [60], as well as neurosurgeons, who would like
to know the exact spatial extent of specific fiber bundles in individual patients.

However, drawing reliable inference from dMRI is challenging. Even though a
randomized controlled study has shown that using dMRI in cerebral glioma surgery
reduces postoperative motor deficits and increases survival times [68], neurosurgeons
have observed that some methods for tractography underestimate the true size of
bundles [37] and they are still unsatisfied with the degree of reproducibility that is
achieved with current software packages [9].

In order to establish tractography as a reliable and widely accepted technique, it is
essential to gain a full understanding of its inherent sources of error and uncertainty.
It is the goal of this chapter to give an introduction to these problems, to present
existing approaches that have tried to mitigate or model them, and to outline some
areas where more work is still needed.

8.2 Noise and Artifacts

8.2.1 Strategies for Probabilistic Tractography

It is the goal of probabilistic tractography to estimate the variability in fiber bundle
reconstructions that is due to measurement noise. This is often referred to as precision
of the reconstructed bundle trajectory [33]. Due to additional types of error in data
acquisition and modeling, which will be covered later in this chapter, it is not the
same as accuracy (i.e., likelihood of a true anatomical connection) [35]. Current
approaches do not account for factors such as repositioning of the head or variations
in scanner hardware over time, which further affect repeatability in practice.

Rather than only inferring the most likely fiber direction, probabilistic approaches
derive a probability distribution of fiber directions from the data. The first generation
of probabilistic tractography methods has done so by fitting the diffusion tensor model
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Fig. 8.1 Volume rendering ensembles of orientation distribution functions highlights regions that
are included in most ensemble members. Subfigures a–c compare the uncertainty resulting from
different fiber configurations and measurement setups. Images provided by the authors of [28]. a
b = 4,000, SNR = 5, b b = 7,000, SNR = 10, c b = 7,000, SNR = 10

to the data, and using the result to parameterize a probability distribution in a heuristic
manner. This often assumes that the fiber distribution is related to a sharpened version
of the diffusivity profile [38], sometimes regularized by a deliberate bias towards the
direction of the previous tracking step [4, 19]. Programmable graphics hardware
accelerates the sampling of such models, and enables immediate visualization of the
results [40]. Parker et al. [45] present two different fiber distribution models that
are parameterized by measures of diffusion anisotropy. Subsequent work allows for
multimodal distributions that capture fiber crossings, and uses the observed variation
of principal eigenvectors in synthetic data to calibrate model parameters [44].

In contrast to these techniques, which use the model parameters from a single
fit, a second generation of probabilistic tractography methods estimates the poste-
rior distribution of fiber model parameters, based on the full information from the
measurements, which includes fitting residuals. Behrens et al. [3] do so in an objec-
tive Bayesian framework, which aims at making as few assumptions as possible, by
choosing noninformative priors. They have later extended the “ball-and-stick” model
that underlies their framework to allow for multiple fiber compartments [2].

Bootstrapping estimates the distribution of anisotropy measures [43] or fiber direc-
tions [31, 55] by repeated model fitting, after resampling data from a limited number
of repeated scans. This has been used as the foundation of another line of probabilistic
tractography approaches [35, 39]. As an alternative to estimating the amount of noise
from repeated measurements, wild bootstrapping takes its noise estimates from the
residuals that remain when fitting a model to a single set of measurements [67]. This
has been proposed as an alternative to repetition-based bootstrapping for cases where
only a single acquisition is available [32]. Residual bootstrapping [12] builds on the
same basic idea, but allows for resampling residuals between gradient directions,
by modeling the heteroscedasticity in them. It has not only been combined with the
diffusion tensor model, but also with constrained deconvolution, which allows for
multiple fiber tractography [27].

To visualize the distributions estimated by bootstrapping, Jiao et al. [28] volume
render ensembles of orientation distribution functions (ODFs). As shown in Fig. 8.1,
this highlights regions included in most ensemble members, representing the most
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Fig. 8.2 Uncertainty in fiber directions has been visualized using cones of uncertainty, which
include 95 % of all estimated directions (a) [31] The characteristics of the distribution are shown
in greater detail by HiFiVE glyphs, which decompose it into a main direction, shown as colored
double cones, and a residual PDF, shown as a gray surface (b) [55]

certain part of the ODF. For tractography, the main features of interest are the inferred
fiber directions. The uncertainty in these directions has traditionally been visualized
using cones that represent 95 % confidence intervals around a main direction [31].
Figure 8.2 compares this approach to the alternative, more recent HiFiVE glyph,
which provides a more detailed impression of the distribution [55].

8.2.2 Rendering Probabilistic Tractograms

After estimating the reproducibility of white matter fiber tracts by one of the above-
described methods, we can represent the results in one of two ways: voxel-centric
or tract-centric. The voxel-centric representation assigns scores to individual voxels,
where each voxel stores the percentage of tracts passing through it. They represent
the reproducibility with which a connection from one voxel position to the seeding
region is inferred from the data. The resulting 3D volume data sets are sometimes
called probability or confidence maps, and are often visualized by volume rendering
techniques, as in Fig. 8.3b, and 2D color maps [40].

Tract-centric techniques include the ConTrack algorithm [59], which assigns a
score to each generated tract. It reflects confidence in the pathway as a whole, based
on its agreement with the data and assumptions on fiber length and smoothness.
Ehricke et al. [15] define a confidence score that varies along the fiber, and color
code it on the streamline. Jones et al. [30, 32] use hyperstreamlines to visualize the
variability of fiber tracts obtained using bootstrap or wild-bootstrap methods. They
also demonstrate that using standard streamlines to render all fiber variations equally
fails to give an impression of which fibers are stable and which are outliers.

Brecheisen et al. [6] propose illustrative confidence intervals where intervals are
based on distances or pathway scores. Illustrative techniques, i.e., silhouette and out-
lines, are used to visualize these intervals. Interaction and Focus+Context widgets are
used to extend the simplified illustrative renderings with more detailed information.
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Fig. 8.3 Equally rendering all fiber variations from a seed (blue ball) as standard streamlines (a)
makes it difficult to see which of them are most stable, and which are isolated outliers. Volumetric
representations (b) are a popular alternative. Images from [53]. a Tract-centric visualization, show-
ing all streamlines traced from a common seed. b Nested isosurfaces indicate different levels of
confidence

Schultz et al. [57] cluster the voxels in which probabilistic tractography terminates,
based on the seed points from which they are reached. They then derive a per-voxel
score that indicates how frequently the voxel was involved in a connection between
two given clusters. Fuzzy fiber bundle geometry is defined by isosurfaces of this
score, with different isovalues representing different levels of precision.

8.3 Other Factors

8.3.1 Impact of Parameters

One source of uncertainty in dMRI tractography that has not received much atten-
tion is parameter sensitivity. Most tractography algorithms depend on user-defined
parameters, which results in a poor reproducibility of the output results. Some repro-
ducibility studies for concrete applications have been reported [13, 65]. However,
there does not exist an automatic solution that resolves the problem in a general
manner. The stability of the parameter setting is relevant information for both neu-
roscientists and neurosurgeons who are trying to assess whether their fiber tracking
results are stable. Visualization can play an important role to help this assessment.

Brecheisen et al. [7] build a parameter space by sampling combinations of stop-
ping criteria for DTI streamline tractography. Stopping criteria primarily affect fiber
length. The investigation of parameter sensitivity is based on generating a streamline
set that covers the whole parameter space of stopping criteria. Afterwards, selective
culling is performed to display specific streamline collections from the parameter
space. This is done by selecting parameter combinations using 2D widgets such
as the feature histogram displayed in Fig. 8.4. An example feature is average fiber
density per voxel. These views help the user to identify stable parameter settings,
thereby improving the ability to compare groups of subjects based on quantitative
tract features.
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Fig. 8.4 Main viewports of Brecheisen et al. [7] exploration tool. Top-left 3D visualization of fiber
tract together with anatomical context and axial fractional anisotropy slice. Top-right Color map
view used for selecting individual threshold combinations and definition of color detail regions.
Bottom-right Feature map view showing changes in quantitative tract features as a function of
threshold combination at discrete sample points of the parameter space. Bottom-left Cumulative
histograms of both threshold and feature values. © IEEE Reprinted, with permission, from IEEE
Transactions on Visualization and Computer Graphics 15(6)

Jiao et al. [29] introduce a toolkit based on three streamline distances that are used
to measure differences between fiber bundles. The user can vary parameters that affect
the results of the fiber tractography and measure the resulting differences based on
these distances. This allows them to quantify the variation and reproducibility of the
fiber bundles due to different sources of uncertainty and variation in the tractography
input parameters.

Although these methods provide a first step to study uncertainty due to parameter
settings, it remains a time consuming exploratory task for the user. This is especially
true if parameters are correlated, and their interrelation needs to be investigated.
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8.3.2 Model Uncertainty and Selection

Methods for tractography that seek to recover more than a single fiber direction in a
given area have to make a judgement about how many fiber directions can be meaning-
fully recovered from the dMRI data. The combination of measurement noise, partial
voluming, and the practical constraints on how many diffusion weighted images may
be acquired create uncertainty in the number of fibers present. Qualitatively different
than the angular uncertainty in a single fiber direction, the traditional focus of prob-
abilistic tractography, this uncertainty can be a viewed as a kind of model selection
uncertainty, which is described further in Sect. 8.4.1.

Uncertainty in fiber number has been handled by different tests that either sta-
tistically sample or deterministically choose a level of model complexity (with an
associated fiber number) from a nested set of models. Behrens et al. [2] use Automatic
Relevance Determination (ARD) to probabilistically decide the number of “sticks”
(fibers) in their ball-and-multiple-stick model. Within their probabilistic tractogra-
phy, this achieves Bayesian Model Averaging [22] of the fiber orientation. For deter-
ministic tractography, Qazi et al. [50] use a threshold on the (single, second-order)
tensor planarity index cp [66] to determine whether to fit to the diffusion weightes
images a constrained two-tensor model [46] that permits tracing two crossing fibers.

Schultz et al. compare different strategies for deciding the appropriate number
of fiber compartments, based on the diminishing approximation error [56], thresh-
olding compartment fraction coefficients of a multi-fiber model [58], or by learning
the number of fiber compartments using simulated data and support vector regres-
sion [54], which represents uncertainty in the form of continuous estimates of fiber
number (cf. Fig. 8.5).

Much of the work on determining the number of per-voxel fiber components has
been described outside of any particular tractography method, but may nonetheless
inform tractographic analysis. Alexander et al. [1] use an F-Test to find an appropri-
ate order of Spherical Harmonic (SH) representation of the ADC profile. Jeurissen
et al. [26] decide the number of fibers by counting significant maxima in the fiber
orientation distribution after applying the SH deconvolution (constrained by posi-
tivity) of Tournier et al. [62]. The SH deconvolution of Tournier et al. [62] in some
sense involves model selection, because the deconvolution kernel is modeled by the

Fig. 8.5 Support vector
regression estimates the
number of fiber compartments
per voxel as a continuous
quantity, indicating regions in
which a discrete number of
fiber compartments can only
be determined with
considerable uncertainty [54]
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SH coefficients of the voxels with the highest FA, presumably representing a single
fiber.

Aside from the question of counting fibers, other work has examined more broadly
the question of which models of the diffusion weighted signal profile are statistically
supported. Bretthorst et al. [8] compute Bayesian evidence (see Sect. 8.4.1) to quan-
tify the fitness of various models of the diffusion weighted signal, producing maps
of model complexity in a fixed baboon brain, and of evidence-weighted averages of
per-model anisotropy. Freidlin et al. [17] choose between the full diffusion tensor and
simpler constrained tensor models according to the Bayesian information criterion
(BIC) or sequential application of the F-Test and either the t-Test or another F-Test.

8.3.3 Partial Voluming

Tractography works best in voxels that contain homogeneously oriented tissue.
Unfortunately, many regions of the brain exhibit more complex structures, where
fibers cross, diverge, or differently oriented fibers pass through the same voxel [1].
This problem is reduced at higher magnetic field strength, which affords increased
spatial resolution. However, even at the limit of what is technically possible today
[20], a gap of several orders of magnitude remains to the scale of individual axons.

Super-resolution techniques combine multiple images to increase effective reso-
lution. Most such techniques use input images that are slightly shifted with respect
to each other and initial success has been reported with transferring this idea to MRI
[47]. However, due to the fact that MR images are typically acquired in Fourier
space, spatial shifts do not correspond to a change in the physical measurement, so
it is unclear by which mechanism repeated measurements should achieve more than
an improved signal-to-noise ratio [48, 51]. It is less controversial to compute images
that are super-resolved in slice-select direction [18, 52] or to estimate fiber model
parameters at increased resolution via smoothness constraints [42].

Track density imaging [10] uses tractography to create super-resolved images
from diffusion MRI. After randomly seeding a large number of fibers, the local
streamline density is visualized. It is computed by counting the number of lines
that run through each element of a voxel grid whose resolution can be much higher
than during MR acquisition. Visually, the results resemble those of line integral
convolution, which had been applied to dMRI early on [23, 69].
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8.4 Perspectives

8.4.1 Evidence for Model Selection

Many of the methods for finding per-voxel fiber count (or more generally the per-
voxel signal model) described in Sect. 8.3.2 share two notable properties which may
be reconsidered and relaxed in future research. First, they deterministically calculate
the single best model, with hard transitions between the regions best explained by
one model versus another [1, 17, 26, 50, 56, 58]. Yet we know that partial voluming
(Sect. 8.3.3) creates smooth transitions between different neuroanatomic tissue
regions. Though computational expensive, Markov Chain Monte Carlo (MCMC)
sampling of both model parameter space and the set of models enables averaging
information from more than one model [2, 8]. Second, most methods work within
a particular hierarchical set of linearly ordered models (SH of different orders [1],
ball and multiple sticks [2], sum of higher-order rank-1 terms [58]). One can easily
imagine configurations, however, that confound such a linear ordering: an equal mix
of two fibers crossing and isotropic diffusion (perhaps due to edema), or a mix of
one strong fiber and two weaker equal-strength fibers. Furthermore, there is rarely
objective comparison or reconciliation between disjoint sets of models.

An informative perspective on these situations may be gained by directly visual-
izing, either on data slices or by some form of volume rendering, the fitness of a large
palette of possible models. In a Bayesian setting, the model fitness can be quantified
by the marginal likelihood of the data x given the model Mk , or the model evidence,
computed by integrating over the model parameter space θk [36].

P(x|Mk)
︸ ︷︷ ︸

evidence

=
∫

P(x|θk, Mk)
︸ ︷︷ ︸

likelihood

P(θk |Mk)
︸ ︷︷ ︸

prior

dθ . (8.1)

Bretthorst et al. [8] have pioneered the calculation and visualization of model
evidence for dMRI, but many possible directions are left unexplored, including the
application to counting fibers, and to models that account for intra-voxel fanning or
bending [41].

8.4.2 Reproducibility, Seeding, and Preprocessing

The reproducibility of tractography depends on many factors. The manual placement
of seed points is an obvious concern. Detailed written instructions improve repro-
ducibility between operators [13], especially across sites [65]. Combining multiple
seed regions with logical operators makes the results more reproducible [21, 24] and
seeding protocols for up to 11 major fiber bundles have been developed this way [65].
Warping individual brains to a standard template has also been reported to increase
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reproducibility [21, 64]. Selecting streamlines from a whole brain tractography via
three-dimensional regions of interest [5] or semi-automated clustering [63] is an
alternative way to reproducibly extract fiber bundles.

When the same person places the seeds on a repeated scan, the resulting variability
is generally higher than when different observers follow a written protocol to place
seeds in the same data [13]. Within the same session, measurement noise is the main
limiting factor [14]. Between sessions, differences in exact head positioning and
other subtle factors increase the variability noticably [64].

Reproducibility suffers even more when repeating the measurement on a different
scanner [49]. Even a pair of nominally identical machines has produced a statistically
significant bias in Fractional Anisotropy [64]. Improving calibration between ses-
sions or scanners via software-based post-processing appears possible [64], but has
not been widely explored so far.

More time consuming measurement protocols generally afford better repro-
ducibility. Even though Heiervang et al. [21] report that the improvement when using
60 rather than 12 gradient directions was not statistically significant, Tensouti et al.
[61] report a clear improvement between 6 and 15 directions, which continues—at
a reduced rate—when going to 32 directions. Farrel et al. [16] use 30 directions and
demonstrate a clear improvement when averaging repeated measurements.

Finally, reproducibility depends on the tractography algorithm [61], its exact
implementation [9], as well as the methods used for pre-processing the data [34,
64] and their parameter settings. Given that the reproducibility of tractography will
be crucial for its wider acceptance in science and medicine, more work is needed
that specifically targets these problems.

8.5 Conclusion

Reproducibility of dMRI tractography is a fundamental problem that limits the accep-
tance of this technique in clinical practice and neuroscience research. Although some
effort has been made to include uncertainty information in the tractography results,
several open issues remain that need further investigation.

Probabilistic tractography is established, but visualization research has concen-
trated on deterministic streamline-based techniques, and few techniques have been
developed to visualize the information obtained by probabilistic methods. There are
several sources of uncertainty in the tractography visualization pipeline. However,
only a few of them have been explored, and if at all studied, they are often consid-
ered independently with no connection to each other. Techniques that investigate the
impact of parameters on the fiber tracking results and that aim to reduce the impact
of user bias through parameter selection have been investigated only recently. Model
selection and data preprocessing have hardly been studied with respect to their effects
on tractography results.

Techniques that allow the combined analysis of uncertainty from different sources
in the same framework, and that facilitate an understanding of their influence on the
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final tractography result are still missing. One challenge faced by visualization sys-
tems that aim to aid understanding of these uncertainties is to display this additional
information efficiently and effectively, without causing visual clutter.

Ultimately, uncertainty visualization should contribute to making fiber tracking
a more reliable tool for neuroscience research, and to conveying the information
needed for the decision making process in clinical practice.
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