
Smooth, Interactive Rendering Techniques on Large-Scale, Geospatial Data in
Flood Visualisations

Christian Kehl, Tim Tutenel and Elmar Eisemann
Computer Graphics and Visualisation Group

Delft University of Technology
Email: [c.kehl, t.tutenel, e.eisemann]@tudelft.nl

Abstract—Visualising large-scale geospatial
data is a demanding challenge that finds applic-
ations in many fields, including climatology and
hydrology. Due to the enormous data size, it is
currently not possible to render full datasets
interactively without significantly comprom-
ising quality (especially not when information
changes over time).
In this paper, we present new approaches to

render and interact with detail-varying Light
Detection and Range (LiDAR) point sets. Fur-
thermore, our approach allows the attachment
of large-scale geospatial meta information and
the modification of point attributes on the fly.
The core of our algorithm is a dynamic GPU-

based hierarchical tree data structure that is
used in conjunction with an out-of-core, Level-
of-Detail (LoD)-Point-based Rendering (PBR)
algorithm to modify data on the fly. This com-
bination makes it possible to augment the ori-
ginal data with dynamic context information
that can be used to highlight features (e.g.,
routes, marked areas) or to reshape the entire
data set in real-time.
We showcase the usefulness of our algorithm

in the context of disaster management and
illustrate how decision makers can discuss a
flood scenario covering a large area (spanning
300 km2) and discuss hazards, as well as related
protection measures, interactively. One of our
presented reference point sets includes parts of
the AHN2 data set (14 TB of LiDAR data in
total). Previous rendering algorithms relied on
a long offline preprocessing (several hours) to
ensure a quick data display. This step made any
changes to the data impossible. With our new
approach, we can modify point sets without
requiring a new preprocessing run.

Introduction
An increasing amount of 3D geographic inform-

ation has recently become available as Digital
Elevation Model (DEM), height maps and LiDAR
point scans. These data are used in many do-
mains, such as climatology [12], [6] and hydrology
[7], [17], [10], to help in the decision making
processes. Topographic measurements, geospatial
meta data (i.e. area selections) and domain-
specific data (e.g. fluid simulation results, water

currents and cloud simulation data and measure-
ments) are combined in an illustrative manner.
Recent geographic point data, often captured

with terrestrial and aerial LiDAR technology, are
too large to be rendered directly. The data neither
fit in arendering-dedicated graphics memory, nor
in a workstation’s main memory. We refer to such
data sets as massive point sets.
Many tree- and graph-based solutions for ren-

dering large data sets [15], [4], [1], [11], [5], and
LiDAR data in particular [9], [8], [3], are already
available. Graph-based solutions continuously re-
quest new data nodes for the areas in view. The
data is often structured in trees in which nodes
correspond to a set of points in the corresponding
scene area. By limiting the descent in the tree,
the point density can be adjusted. We similarly
rely on a tree structure that allows us to ensure
a rendering-on-budget paradigm, such as explored
by Goswami et al.[5], to address the rendering of
massive, coloured LiDAR datasets. Further, we
avoid common popping artifacts that result from
adding/removing the points in a node and rather
add/remove them progressively, hereby ensuring
a smooth appearance.
Besides the rendering, interaction is another

key component for using massive point sets in a
decision making process. In this context, we refer
to "interaction" as the possibility to modify data
attributes (e.g. position, colour, visibility) on-the-
fly to highlight or adapt information and to get
instantaneous visual feedback of the performed
operation. Massive point sets are usually modified
in an offline process. This procedure is time con-
suming and not suitable for collaborative decision
making. The interactive modification of massive
point sets is currently not possible without visual
quality loss. Available point set editors [18], [14]
can only facilitate interactive modifications for
data as far as they fit in the computer’s main
memory. Wand et al. [15] presented an improved
system with the capability to process massive data
set in a batch-process manner using a tree hier-



archy. A main assumption of current approaches is
that modifying operations are permanently valid.
Regarding decision making processes and the goal
to provide techniques for collaborative, on-the-fly
information exchange, we assume that modifica-
tions are only temporarily valid.
The combination of the two presented tech-

niques makes it possible to augment the ori-
ginal data with dynamic context information that
can be used to highlight features (e.g., routes,
marked areas) or to reshape the entire data
set in real-time. We showcase the applicability
of our approach in the domain of flood haz-
ard management. Three use cases are presen-
ted that demand such large-scale modifications.
Our approach is able perform operations interact-
ively that formerly demanded substantial prepro-
cessing. We also briefly present first performance
assessment results.

Methods
Rendering-on-Budget
Our initial approach spatially subdivides the

point set into tiles of 1000 metre by 1250 metre.
Each tiles’ points are distributed uniformly along
the levels of details [2], [7]. Using this technique,
lots of points need to be loaded as a bucket imme-
diately if the user approaches higher detail levels.
Our method always loads at least the roughest
detail level for each bucket in the dataset. This
results in spatial limitations on the presentable ex-
tent of LiDAR datasets in practice. This could be
solved by employing additional, view-dependent
criteria. As formerly discussed [7], this bucket-
loading behaviour leads to visual discontinuities
that irritate the user.
In our new approach, we apply the rendering-

on-budget paradigm to provide a constant render-
ing speed for large point sets [16]. Hence, The cur-
rently available budget depends on the data size
and the technical capabilities of the rendering sys-
tem. The budget is adapted using a Proportional-
Integral-Differential (PID) controller, which keeps
track of the number of rendered points in relation
to total rendering time.
During the rendering, we traverse the LoD tree

structure in breadth-first order. For each node in
the tree, we render its points as long as rendering
budget is still available. We use the local density
as a measure to decide which particular should
be rendered next. Because the rendering decision
is taken on per-point-basis rather than the per-
node point bucket of the initial approach, the new

technique offers a smooth LoD transition while
preserving rendering speed.

On-line Modification of Large-Scale, Geospatial
LiDAR point sets
We adapt the point attributes via GPU shaders

in an indirect manner. In order to describe the
modifications, we use interactively-places, tex-
tured 2D polygons. One can imagine that these
are defined on a map of the point-cloud region and
the changes will affect all points that are covered.
They include line-like structures for route descrip-
tions and polygons definitions for areas. These
geometric shapes are stored as structured vector
lists. In contrast to Scheiblauer and Wimmer [13]
the vector format is independent of the point
cloud. Further, it is not limited to a uniform grid
size (such as geometry, given as Volume Images).
Our approach allows us to achieve an accurate
rendering at varying scales. Nevertheless, we want
to avoid preprocessing the data set, which would
result in hours of computation. Instead, we resolve
the issue at runtime. For each rendered point, we
test whether it falls in one of the polygons and
then modify its attributes according to the regions
definition.
During the rendering stage, we can not evaluate

the bare polygon geometry because the point
vertices and the polygon vertices are part of the
same global vertex set. Hence, to overcome this
drawback, we store the polygon geometry in a
texture that can subsequently be evaluated for
each point cloud vertex.
As a first step, we need to find the polygon each

point belongs to. In this case, each point needs to
be tested with each polygon for an intersection.
We need to do this because there is no other
reference information available (apart from the
point’s 3D position) to establish a point-polygon
relation. If this localisation succeeds, we can apply
our attribute modification. Our initial algorithm
presented in Alg. 1.
Calculating the intersection of a point and a

polygon is computationally expensive and existing
implementations of this procedure do not map
well on GPU architectures. It is thus not practical
to use a point-in-polygon check for the number
ofLiDAR points and annotations we intend to
handle. Hence, we simplify Alg. 1 by transforming
the polygons into 2D triangular meshes. This
exchanges the PointPolygonIntersection-test with
a PointTriangleIntersection-test, which is much
simpler to compute and implement on a GPU.



Algorithm 1 Apply point attribute modification
function ModifyAttribute(pointlist, polygons)

for all point ∈ pointlist do
for all polygon ∈ polygons do

if PointPolygonIntersect(point, polygon)
is true then

attribute← GetAttribute(polygon)
else

attribute← 0
end if
ApplyAttribute(point, attribute)

end for
end for

end function

On the other hand, transforming the 2D poly-
gon to a valid triangular mesh that includes ex-
clusively triangles inside the (possibly concave)
polygonal border is another challenge. We ap-
proach this problem by first computing a con-
strained 2D Delaunay Triangulation. This guar-
antees that the polygonal borders are part of
the triangulation. The triangulation generates a
convex mesh representation, which means it may
also include exterior triangles outside of the poly-
gon constraint. In a second step, we consequently
eliminate the unnecessary triangles. We extract
the triangles for each polygon separately. Thus,
we know which polygon each triangle belongs to.
The resulting meshes for an example region are
shown in Fig. 1(a)- 1(b).

(a) (b)

Figure 1. polygon-conform constrained 2D Delaunay Tri-
angulation: A straight implementation of the constrained
2D Delaunay Triangulation creates exterior triangles (a),
which need to be eliminated. We do this by testing if each
triangle is inside the polygon. The result is a polygon-
conform 2D mesh (b).

Due to the massive point sets and the numerous
triangles, it is still not possible to test each point
with each triangle for intersections while main-
taining interactive frame rates. We incorporate
the triangles in a quadtree data structure in order
to reduce the number of triangles that needs to be
checked. In the quadtree construction, we start off
with a single cell and sequentially add triangles to

the quadtree. If the number of triangles in a cell
exceeds a limit X (X = 4 in our experiments), we
split the cell into 4 equal parts. We continue the
subdivision up until a certain maximum depth Y
(Y = 5 in our experiments). Applying this max-
imum depth limits the tree traversal processed
and proved efficient in our implementation.
During runtime, we traverse the tree to de-

termine for each point its respective quadtree
node. After extracting a reduced list of candidate
triangles (resp. leafs of the final node) for each
point, we perform the aforementioned PointTri-
angleIntersection-test to accurately establish a
point-triangle relation while maintaining interact-
ive frame rates.
At this point, we have access to the triangle

attributes (such as colour and texture coordin-
ates) and their textures. By applying the stored
triangle colour or evaluating its texture coordinate
inside the texture, we can recover the modification
operation for the given point.
Currently, we support the following operations:
• colour a point according to the triangle colour
• discard a point if it is inside the triangle
• colour a point according to the triangle’s

texture
• displace a point according to a displacement

map
The final algorithm is shown in Alg. 2 and 3.

Results
In a first use case, we apply our algorithm

together with the discard-operation to create a
historic visualisation of the 1953 North Sea flood
in the Dutch provinces of South Holland, North
Brabant and Zeeland. This visualisation spans an
area of 45 km by 60 km, containing around 2
TB of coloured LiDAR data. The problem for a
historic visualisation is the amount of landscape-
and water protection changes that occurred since
1953, in comparison to the acquired data we
currently have. In order to recreate the scenario,
we have to adapt the landscape and cut out struc-
tures that were added since then. Without the
presented approach, this would mean to re-process
the 2 TB dataset and discard unavailable points
in the process. This process takes several days of
computing time. With our current method, we
can define the areas we want to exclude from
the visualisation, and all point vertices that are
covered by the defined areas are discarded by the
GPU during rendering. The result is shown on
parts of the data set in Fig. 2(a) and 2(b).



Algorithm 2 triangle texture generation
function PolygonToTriangleMesh(polygon)

ConstrainedDelaunay2D(polygon)
for all triangles ∈ trianglelist do

if triangle not inside polygon then
Delete(triangle,trianglelist)

end if
end for
return trianglelist

end function

function MeshToTexture(trianglelist)
. converts mesh into a quadtree, then encodes

as texture
create quadtree with root node
for all triangles ∈ trianglelist do

locate node in quadtree for triangle
if depth(node) < Y then

if length(siblings(node)) > X then
sibling ← SplitNode(node)
node← sibling

end if
end if
AddTriangleLeaf(node,triangle)

end for
texture← Texture1D()
SerialiseQuadTree(quadtree, texture)
return texture

end function

Algorithm 3 point attribute modification on the
GPU
for all point ∈ pointlist do

function GetAttribute(pointlist, texture)
quadtree← Texture1D(texture)
node← root
while (depth > 5) ∧ (point ∈ node) do

node← Sibling(point, node)
if node = NULL then

attribute← 0
return attribute

end if
end while
for all triangle ∈ node do

if PointTriangleIntersect(point,
triangle) is true then

attribute← GetAttribute(triangle)
return attribute

end if
end for
attribute← 0
return attribute

end function
ApplyAttribute(point, attribute)

end for

(a) (b)

Figure 2. Visualisation of the 1953 North Sea Flood:
originally acquired data (a) and historically adapted data
(b)

In a second use case, flood hazard managers
can use the system to interactively discuss dyke
adaptation strategies. For this case, we generate a
displacement map together with the area marking.
The displacement can be modified during the
runtime to update the point vertex displacement
at the dyke. This allows interactive discussions on
future adaptation strategies. In combination with
the flood simulation visualisation, it allows first
estimates of the discussed measures’ applicability.
The adapted point cloud can be seen in Fig. 3(b),
the related displacement map in Fig. 3(a).

(a) (b)

Figure 3. Dyke adaptation to discuss water protection
policy measures, with applied displacement (a) and the
resulting point cloud of the dyke (b).

In the final use case, we show an area of 15
km by 20 km near the Dutch city of Barneveld.
In this use case, policy managers can discuss
protection strategies by marking different areas
of importance interactively. For this use case,
we colour the point cloud according to polygon
colours that are given by a GoogleMaps KML-
file. This allows policy managers to use familiar
interfaces via mobile devices in order to interact
with the point cloud data. In the example shown
in Fig. 4(a) and 4(b), we distinguish between an
industrial area and the residential parts of the city
(marked in red respectively green).
Our initial performance assessment on the in-

teractive point cloud modification reveals a tight
correlation between the rendering speed and the
geometric complexity of the polygon (i.e. the num-



(a) (b)

Figure 4. Interactive colouring of big LiDAR data (b) using GoogleMaps interfaces (a).

ber of triangles resulting from the triangulation).
For the assessment, we have chosen data sets of
3, 10 and 20 areas, including 20, 42, and 298
triangles. Renderings of these data sets are shown
in Fig. 5. The speed measurements are presented
in Fig. 6. The test system was a workstation with
a 6 x 3.2GHz Intel Xeon processors (HT), 16GB
of main memory and an NVIDIA GeForce GTX
680 graphics adapter.

Figure 6. rendering speed measurements for geo-
information integration with 3, 10 and 20 areas.

Conclusions
We presented an approach to render and inter-

act with massive aerial LiDAR point sets.
Our rendering-on-budget approach results in

a smooth level-of-detail transition at real-time
frame rates.
With our on-line modification algorithm and

its implementation, we have shown that even
out-of-core datasets allow on-the-fly modification

without tedious preprocessing procedures. The al-
gorithm is a first step towards more elaborate pro-
cedures that allow on-the-fly marker placement
and interaction as well as full 3D-modification via
volume images or 3D polygons.
Our system, combining all discussed methods,

enables decision makers in flood hazard manage-
ment to collaboratively discuss protection scen-
arios and devise new protection measures.

Acknowledgements
This project was funded by the Dutch Re-

search Program Knowledge for Climate (KfC) and
partially supported by the Intel VCI, and the
European Project Harvest4D.

References
[1] Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and

Elmar Eisemann. GigaVoxels: ray-guided streaming
for efficient and detailed voxel rendering. In Proceed-
ings of the 2009 symposium on Interactive 3D graphics
and games, I3D ’09, pages 15–22, New York, NY,
USA, 2009. ACM. Cited by 0115.

[2] G. de Haan. Scalable visualization of massive
point clouds. Nederlandse Commissie voor Geodesie
KNAW, 49:59–67, 2009.

[3] Zhenzhen Gao, Luciano Nocera, and Ulrich Neu-
mann. Fusing oblique imagery with augmented aerial
LiDAR. In Proceedings of the 20th International
Conference on Advances in Geographic Information
Systems, SIGSPATIAL ’12, pages 426–429, New York,
NY, USA, 2012. ACM.

[4] Enrico Gobbetti, Fabio Marton, and JosÃľ Antonio Ig-
lesias GuitiÃąn. A single-pass gpu ray casting frame-
work for interactive out-of-core rendering of massive
volumetric datasets. The Visual Computer, 24(7–
9):797–806, 2008.

[5] Prashant Goswami, Fatih Erol, Rahul Mukhi, Renato
Pajarola, and Enrico Gobbetti. An efficient multi-
resolution framework for high quality interactive ren-
dering of massive point clouds using multi-way kd-
trees. The Visual Computer, February 2012.

[6] H. Jänicke, M. Bottinger, and G. Scheuermann.
Brushing of attribute clouds for the visualization of
multivariate data. IEEE Transactions on Visualiza-
tion and Computer Graphics, 14(6):1459–1466, 2008.



(a) (b) (c)

Figure 5. Geo-information integration use cases: 3 (a), 10 (b) and 20 (c) area data set

[7] Christian Kehl and Gerwin de Haan. Interactive simu-
lation and visualisation of realistic flooding scenarios.
In Intelligent Systems for Crisis Management, 2012.

[8] Bostjan Kovac and Borut Zalik. Visualization of
LIDAR datasets using point-based rendering tech-
nique. Computers & Geosciences, 36(11):1443–1450,
November 2010.

[9] Oliver Kreylos, Gerald W. Bawden, and Louise H.
Kellogg. Immersive visualization and analysis of
LiDAR data. In George Bebis, Richard Boyle,
Bahram Parvin, Darko Koracin, Paolo Remagnino,
Fatih Porikli, Jörg Peters, James Klosowski, Laura
Arns, Yu Ka Chun, Theresa-Marie Rhyne, and Laura
Monroe, editors, Advances in Visual Computing, num-
ber 5358 in Lecture Notes in Computer Science, pages
846–855. Springer Berlin Heidelberg, January 2008.

[10] Wenqing Li, Ge Chen, Qianqian Kong, Zhenzhen
Wang, and Chengcheng Qian. A VR-Ocean system
for interactive geospatial analysis and 4Dvisualization
of the marine environment around antarctica. Com-
puters & Geosciences, 37(11):1743–1751, November
2011.

[11] Ruggero Pintus, Enrico Gobbetti, and Marco Agus.
Real-time rendering of massive unstructured raw
point clouds using screen-space operators. In Proceed-
ings of the 12th International conference on Virtual
Reality, Archaeology and Cultural Heritage, VAST’11,
pages 105–112, Aire-la-Ville, Switzerland, Switzer-
land, 2011. Eurographics Association.

[12] W. Ribarsky, N. L. Faust, Z. J. Wartell, C. D. Shaw,
and J. Jang. Visual query of time-dependent 3D
weather in a global geospatial environment. 2002.

[13] Claus Scheiblauer and Michael Wimmer. Out-of-core
selection and editing of huge point clouds. Computers
& Graphics, 35(2):342–351, 2011. <ce:title>Virtual
Reality in Brazil</ce:title> <ce:title>Visual
Computing in Biology and Medicine</ce:title>
<ce:title>Semantic 3D media and content</ce:title>
<ce:title>Cultural Heritage</ce:title>.

[14] Michael Wand, Alexander Berner, Martin Bokeloh,
Arno Fleck, Mark Hoffmann, Philipp Jenke, Benjamin
Maier, Dirk Staneker, and Andreas Schilling. Inter-
active editing of large point clouds. In Proceedings
of Symposium on Point-Based Graphics (PBG 07),
pages 37–46, 2007.

[15] Michael Wand, Alexander Berner, Martin Bokeloh,
Philipp Jenke, Arno Fleck, Mark Hoffmann, Benjamin
Maier, Dirk Staneker, Andreas Schilling, and Hans-
Peter Seidel. Processing and interactive editing of
huge point clouds from 3d scanners. Computers &
Graphics, 32(2):204 – 220, 2008.

[16] Berend Wouda. Visualization on a budget for massive
lidar point clouds. Master’s thesis, Delft University of

Technology, 2011.
[17] Izham Mohamad Yusoff, Muhamad Uznir Ujang, and

Alias Abdul Rahman. 3D dynamic simulation and
visualization for GIS-based infiltration excess over-
land flow modelling. In Jiyeong Lee and Sisi Zlatan-
ova, editors, 3D Geo-Information Sciences, Lecture
Notes in Geoinformation and Cartography, pages 413–
430. Springer Berlin Heidelberg, 2009.

[18] Matthias Zwicker, Mark Pauly, Oliver Knoll, and
Markus Gross. Pointshop 3D: an interactive system
for point-based surface editing. ACM Trans. Graph.,
21(3):322–329, July 2002.


	References

