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Abstract

Player classification allows for considerable improvements
on both game analytics and game adaptivity. With this paper
we aim at reversing the ad-hoc tendency in player classifica-
tion methods, by proposing an approach to player classifica-
tion that can be integrated across different games and gen-
res and is particularly suited to be used by game designers.
This paper describes our generic method of interaction-based
player classification, which consists of three components:
(i) intercepting player interactions, (ii) finding player types
through fuzzy cluster analysis and (iii) classification using
Hidden Markov Models (HMM). To showcase our method
we developed Blindmaze, a simple web-based hidden maze
game publicly available, featuring a bounded set of interac-
tions. All data collected from a game is interaction-based,
requiring minimal implementation effort from the game de-
velopers. It is concluded that our method makes player clas-
sification even more available by making it generic and re-
usable across different games.

Introduction

The ability to track player’s behavior can greatly aid game
development. It not only allows you to assess whether games
were experienced as intended by designers, but it can also
serve as a basis for adaptive games (Lopes and Bidarra
2011). Recently much research has been done in game
adaptivity, i.e. adjusting the properties (e.g. of the player
or non-playing characters), content (objects, and even com-
plete worlds) or other aspects of a game to the player behav-
ior. This has brought to game development the challenge of
both modeling the player behavior and adapting content.
Using game analytics in game development has thus
evolved beyond its initial goal of assessing behavior and
performance towards better game design. It is also needed
to model player behavior on-the-fly for a variety of games
which can be made adaptive. Furthermore, there is an in-
herent need to still include game designers in this process
(Lopes, Tutenel, and Bidarra 2012). For these adaptive
games to work, game design must shift from designers au-
thoring static games with fixed content to designers author-
ing dynamic systems with player modeling and automatic
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generation. This includes, among other challenges, the in-
clusion of player modeling techniques in the game develop-
ment cycles of different games, and its use by game design-
ers.

In this paper, we investigate a method towards this goal.
We propose a generic interaction-based system for auto-
matic player behavior classification. This method, that uses
fuzzy cluster analysis and Hidden Markov Models, can be
applied to analyze player behavior for whatever purposes,
including to model players in adaptive games by classifying
their behavior. Our main contribution lies on the generic na-
ture of our method, as it can be applied by game designers
to many different games and genres.

Following this introduction, we will first examine previ-
ous work related to player modeling. Second, we will in-
troduce various concepts that are relevant for our method.
Third, we introduce the various components that make up
our method. Fourth, we will introduce Blindmaze, an exper-
iment that was executed to showcase our method. Finally, a
discussion and conclusion are included before the introduc-
tion of our future work.

Other related work

Various methods of player modeling have been introduced
recently. From methods relying on neural network imple-
mentations as seen in (Henderson and Bhatti 2001), as well
as other AI techniques as seen in (Kirman and Lawson
2009), (Geisler 2002), (Davidson et al. 2000), (Henderson
and Bhatti 2001), (Norling 2003). While these methods pro-
vide solutions to the problem of player modeling, the intro-
duction of these methods within games might be a complex
and non-trivial task. Data that is used to train is complex
and deciding what data to use within learning from player
data is an error-prone task (Harrison and Roberts 2011).
This complexity induces the ad-hoc tendency seen in most
player classification methods, since specific methods are in-
troduced that do not focus on generic player behavior mod-
eling (Charles and Black 2004)(Spronck and den Teuling
2010).

Player modeling techniques using Al principles like neu-
ral networks or evolutionary processes are typically slow,
in contrast to simple operations on simple data collected
from a game. Other methods aim at modeling experience
in sense of emotions (Pedersen, Togelius, and Yannakakis



2010), instead of real play styles. Our method relies on find-
ing play styles, i.e. classes as those described in (Smith et al.
2011). For that, we use FLAME fuzzy cluster analysis (Fu
and Medico 2007) designed for DNA analysis inspired by
(Kerr, Chung, and Iseli 2011). The clusters found are used
to train Hidden Markov Models using the forward-backward
Baum-Welch algorithm (Welch 2003). For the actual clas-
sification component of the system, we rely on the Viterbi
algorithm (Viterbi 1967) for finding the most likely state (or
in our case, style) that fits a player. This structure is self-
supporting, the only input required is player data and the
actual application to be determined by the game developers.

Earlier, Matsumoto and Thawonmas introduced a similar
method of player classification using Hidden Markov Mod-
els (Matsumoto and Thawonmas 2004) and applied it to a
simple MMOG. This method features similar classification,
but it predefines player types: game developers still need to
pre-specify all types of players a game will attract. Since
their approach requires such assumptions, it is less applica-
ble as a design tool for use in the development of different
games.

Behavior and Interactions

Defining behavior becomes highly important when doing
behavior-based player classification. We define player be-
havior as a sequence of time-bound actions performed by the
player. Actions are activities performed by a player, and they
can be either transitive (i.e. relating to an object, e.g. shoot
a hand gun) or not (e.g. jump). For simplicity, in this paper,
we will use the terms action and interaction interchageably.

It is very interesting to identify tendencies and prefer-
ences in player behavior. From our definition, this means to
single out individual actions from a behavior sequence. For
tracking this, we introduce a scoring system for every indi-
vidual action, where the cumulated scores will characterize
the ’popularity’ of actions within the player’s behavior.

From our definition, tracking player behavior means in-
tercepting the actions that are performed by a player. Ac-
tions do not require further information other than the action
that was performed (eventually its score and object) and a
timestamp marking the moment at which the action was per-
formed. Since a simple registry of actions can be constructed
from these fields, introducing this interception of actions in
a game will be a simple and trivial task; merely a method for
intercepting game actions needs to be introduced.

Most interesting in our definition of behavior is that player
behavioral profiles can be derived from it. Our aim is that,
when tracking multiple players, certain groups of players
(profiles or classes) will naturally emerge from the data. In
a sense, this is a dynamic variant of Bartle’s types (Bartle
1996); for example, in a real-time strategy game, we would
find players who enjoy building and defend, players who en-
joy creating large army’s and fight, and various players types
in between these styles. From our method, these player pro-
files are the intersection of all cumulated scores of all col-
lected player action data.

With our method, player behavioral profiles are flexible
enough to support both absolute and relative player profil-
ing. With absolute profiling, players are classified with ex-
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Figure 1: An overview of the various components

actly one profile. With relative profile, players have a varied
behavior which is shares high cumulated scores from more
than one profile. Player profiles and their classification are
explained in detail below (section Cluster Analysis).

Defining behavior solely in terms of in-game actions
might seem limited at first. One might advocate that a case
where we have a ’shoot’ action and two players of diver-
gent skill level, the ’shoot’ action does not provide equal
information about both players. Imagine a case with two
different players: the first one is always able to ’shoot’ head
shots directly, and the second always needs 10 or more shots
to kill an enemy. In this case, the ’shoot’ actions of the
first player are less frequent than the ’shoot’ actions of the
second one. Since we track sequences of actions, includ-
ing the ’shoot’ and ’kill’ actions, we can simply recognize
how many ’shoot’ actions lead to ’kill” in both cases. Thus,
sequences of actions, like the number of ’shoot’ leading to
’kill” actions, can be enough to provide accurate classifica-
tion.

Benefits in using this definition of behavior are twofold.
On one side, the inputs and outputs of the system are easily
understandable by designers. Actions and interactions are
natural design terms for them, rich enough to support intu-
itive clustering of actions into player classes. Additionally,
using actions and objects is a powerful mechanism, generic
by nature, since these are concepts which are recurrent in the
majority of games.

Interaction Registry

As seen in Figure 1, our generic player behavior classifi-
cation approach consists of three components: Interaction
registry, cluster analysis and HMM. Naturally, this generic
method will be useful when these components are integrated
with an external game.

The interaction registry serves as the data storage for sep-
arate actions provided by the game and is responsible for
maintaining cumulative score values per interaction. Prior to
the calculation of cumulative scores, scores per action need
to be defined, i.e. some sort of scoring logic needs to be
implemented. Figure 2 is an example of action scoring. A
decay, starting to decrease the action score after 15 seconds,
was implemented. This decay can, for example, be used to
set the importance of frequent and new interactions. The
score of older actions that were not recently performed will
slowly decrease exponentially. The decay strength F' deter-
mines the falloff for the time based decay.



struct Action {

Timestamp =T
InteractionIndex := I
Value =V
Score := 0.0
void SetValue () {
S := log(Value);
dT := Time - Timestamp;
if (seconds > 15)
{
X = seconds - 1;
S = S x exp(F » X % X);

Score := S

Figure 2: Score update routine

Furthermore, like stated earlier, a registered action should
have a timestamp (initialized by a time 7") and an interac-
tion index (initialized by an integer I), later used to identify
the action. A value V' could be provided to give certain ac-
tions a higher initial value over other actions. Finally, the
initial score will be set to zero and later updated by the Set-
Value routine. Since the properties of an Action object are
limited to these four fields, we are able to maintain scalabil-
ity even when processing a large amount of Action or large
sequences of Actions.

Games are integrated with our method via the inter-
action registry. This is done through the registration of
actions/interactions and its cumulative scores. For ac-
tive polling of the current action and registration of all
the player’s actions, the interaction registry routine Up-
dateScoreForIncrement (Figure 3) needs to be invoked.

Typically, a game update routine should call the Up-
dateScoreForIncrement routine, registering a new action
with the interaction registry. Every update tick, the com-
plete set of actions is iterated and the new score values are
defined. The cumulated session values per action type are
then written to a designated field in the session set. In Fig-
ure 3, Session is a set containing our cumulated sessions
values. Actions is a set containing the complete sequence
of actions throughout the session as Action instances (2).
At the end of a game, the Analyzation.Session set will
thus contain the cumulated session values over the complete
player session and will be processed later on.

The session data that is collected from a play session is
stored in a matrix file to be processed by the cluster analy-
sis component. Figure 4 gives an example of such a matrix
showing all action scores of five play sessions. Example ac-
tions are shown for moving right, left, down, up, making a
stop, and walking back a path that has already been visited
(loop). We can clearly see that the ’loop’ action was only
performed by two players in these five sessions. The ’loop’

struct Analyzation {

Session := {}

Actions := {}

void New () {
Session := {0, O, 0, 0O, 0, 0}
Actions := {}

}

void UpdateScoreForIncrement () {
E = new Action (I)

Actions.push (E)

for each (Action in Actions) {
Action.SetValue ()
}

Session = {0, 0, 0O, 0, 0, O}

for each (Action in Actions) {
N = Action.InteractionIndex
Session[N] += Action.Score

Figure 3: The polling and cumulative scoring routine

Right | Left | Down Up Stop | Loop
39.50 | 11.09 | 3535 | 13.86 | 4.15 0
2218 | 693 | 16.63 | 9.70 | 7.62 | 40.89
30.49 | 13.86 | 23.56 | 14.55 | 14.55 0
13.16 | 21.48 | 22.87 | 13.16 | 20.10 0
30.49 | 11.09 | 2495 | 1247 | 11.09 | 14.55

Figure 4: Matrix showing results of five play sessions

action for the second play session (second row) has the high-
est score value of all actions during these five sessions.

Cluster Analysis

The cluster analysis component is responsible for player
classification, i.e. identifying and defining the player be-
havior profiles. The data collected by the interaction reg-
istry and stored in the matrix is processed by the FLAME
fuzzy cluster analysis component. This component deter-
mines cross sections of actions, by clustering player session
data for all players.

Figs. 6 and 5 show two examples of clustering graphs
containing approximately 190 analyzed play sessions, for a
matrix like the one in Figure 4. Each color represents a dif-
ferent cluster and each dot is the cumulated score value of
one play session. The clusters identified by the cluster anal-
ysis correspond to play styles, i.e. player classes or profiles.
Typically, a game designer inspects and interacts with these
graphs to identify the clusters that have high score values
for certain actions. Designers are responsible for finding
clusters which emerge from the data and interpreting their
meaning, i.e. the common gameplay features they refer to.
When looking solely at Figure 6, we can clearly see a blue



* ]
§ Sy go8
e
4 R o o 3 8 o
¢ o °o &
= ase
K e L
=] e ee og §
T, 8, 82 °
30 o e ¢ % o® fo
o L
L]
8,%e
° 9
2 8
L o
b °
o o
[ ° L
°
- L]
b o °

Figure 5: Graph showing the clusters found with the
’left’ action on the x-axis and the ’right’ action on the
y-axis

cluster containing “doubtful” players, i.e. reading high val-
ues on the stop action. The linearity of the graph is obvious,
since it is impossible to perform both stop and move at the
same time. When looking further along the x-axis, yielding
an increase of the move score, we can see an intermediate
light blue cluster and a variety of clusters in the higher move
action score region. This higher move action score region
starts with the lower purple cluster and includes green, yel-
low and red clusters, the latter almost never performing the
stop action.

The fuzziness of the cluster analysis allows us to have in-
tersections between clusters. A play session could not only
be a member of one specific cluster, but also possibly con-
tribute to the value of multiple clusters.

With this analysis, player classes emerge from the clus-
tered data. This means there are no pre-specified assump-
tions about the player classes which a specific game will at-
tract. This not only makes this method generic and re-usable
across different games, but it allows designers to build on
top of it. The player data should be typically collected for
a game in development, during testing. This way, designers
can use the clusters as a basis to create adjustments to the
game rules, properties or other game content. In an adaptive
game these adjustments would occur on-line, dependent on a
player model which uses the same player classes. However,
designers can now be responsible for creating these depen-
dencies between adjustments and player classes, by using
cluster analysis as its basis and justification. As an example
one could think of an adventure game featuring a rope gun
used to bridge large distances. A game designer would pos-
sibly feel the need to adjust the rope length property of the
rope gun for more adventurous player classes derived from
our method.
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Figure 6: Graph showing the clusters found with the
’move’ action on the x-axis and the ’stop’ action on the
y-axis

Hidden Markov Models

The final component of our method is responsible for fitting
player classes. In essence, it is a simple player modeling
method which can be used in combination with interaction
registry and cluster analysis. Typically, this component is
not used in the design stage, but during gameplay, for an
adaptive game. Its goal is to classify new players, as they
play, in order to find an appropriate and dependent game
adjustment, as explained above.

The actual classification of players is performed by using
Hidden Markov Models. The Hidden Markov Models are
trained using the same data of the cluster analysis and the
forward-backward Baumm-Welch algorithm, feeding obser-
vations in the following format:

0=33333333,1,1,1,1,5,5,3,3

Each value in the set of observations O is the interaction
index we earlier defined for the registered action in the in-
teraction registry.

Training the Hidden Markov Model with these observa-
tions leaves us with a model that we can then use to search
the most likely state given a new set of observations. Since
states are player classes and symbols are player actions, this
method will predict a player class for a set of new observa-
tions.

Blindmaze

For showcasing the interaction registry and cluster analysis
components, we executed a simple experiment where we in-
tegrated these components with a new game. We developed
Blindmaze, a web-based maze game! illustrated in Figure 7.

"http://photon.marlonetheredge.name/blindmaze/index.html



Figure 7: An overview of the Blindmaze game

In this game, players need to find a path from start to finish
while they are not able to see the complete maze, but only
12 blocks, 2 in each adjacent direction, 1 diagonal. Our aim
was that this restriction would encourage players to choose
a certain play style, e.g. players that have a preference for
moving to the left, or players with different abilities in mem-
orizing and getting an overview of the maze (since visual
information is lacking).

For tracking a player’s behavior we keep track of the ac-
tions left, right, up, down, stop, loop, as explained for Figure
4. The current action a player performs is stored, and every
100 ms this action is polled and stored in a separate registry.
This registry is continuously updated to determine cumula-
tive scores per player per action.

In Blindmaze’s web-page, several visualization tools are
available for further exploration. Since scored actions are
collected individually, a live interaction graph is presented
to the player, as seen in Figure 8. Scores are presented on
the y-axis and each interaction has it’s own index on the x-
axis. These indexes are:

Right: The player moves to the right
Left: The player moves to the left
Down:  The player moves down

Up: The player moves up

Stop: The player stands still

wohk WD = o

Loop: The player visits an already visited cell

Statistics, as seen in Figure 8, are presented to the player
and updated in real-time. This gives players (and who-
ever else is observing gameplay) direct insights in his ac-
tion score values without having to read a table like Figure
4. Seen in this graph is a high reading of the stop action (4)
and low score values on the left (1), up (3) and loop (5) ac-
tions. Both right (0) and down (2) actions read intermediate
score values, but are high compared to the low score value
actions.

Figure 8: The real-time statistics presented to the player

Additionally, all cluster analysis is being performed in the
background and presented in Blindmaze’s web page. The
graphs from Figs. 5 and 6 were taken from the latest dataset
of all play sessions. Visitors can interact with the graph clus-
ters, selecting which two actions to plot.

The memory usage of Blindmaze for one player session
proves to be 10464 bytes for the set of performed actions
and 48 bytes for the set of cumulated session scores (over 6
interactions).

Discussion

Since interactions featured in Blindmaze are very simple,
pinpointing differences between clusters is simple. We
found six clusters on six interactions. The most appealing
differences in clusters are the differences between stopping
and moving in Figure 6, where we can see the differences
between uncertain players standing still for long periods of
time (one cluster), intermediate players that tend to stop
more often than moving (one cluster). And four clusters of
faster players, varying between moving most of the time, or
almost never standing still. When joining the findings of
Figure 6 with the findings of Figure 5 that set out left and
right actions, we logically state that for each frequent mov-
ing cluster there is one preferring left over right and vice
versa. Non-frequent moving clusters or intermediate clus-
ters tend to use the left and right actions less often, explica-
ble, since the reading of the stop action is much higher with
respect to the decay decreasing score values for non-frequent
interactions.

Implementation of our method within Blindmaze is a triv-
ial task. Like described, the sole task for a game devel-
oper when integrating our method is catching interactions.
Within Blindmaze this means storing the current interac-
tion a player is performing (e.g. player is moving to the
left) and feeding this action to the interaction registry on
a set interval. The interaction registry in our case is im-
plemented in Blindmaze itself. For general-purpose use of
our method, presenting game developers with a software li-
brary encapsulating our method should ease implementation
of our method even more.

Apart from the simple interactions featured in Blindmaze,
the generic principle of our method allows it to be imple-
mented in more (complex) games featuring a large set of
interactions. One can think of the implementation within a
first-person shooter where one interaction per weapon, tool
or item may be intercepted by our method. Imagine this first-
person shooter to have a variety of weapons, tools and items,
each featuring some action routine triggered upon perform-
ing the primary action of the object. When intercepting the



action routine on these objects, we could distinguish be-
tween players using certain types of weapons (e.g. players
having a preference for long-range weapons, sniper rifles, or
high-explosive weapons, rocket launchers), tools (e.g. play-
ers favoring a wrench to repair vehicles over a med-pack to
heal wounded players) or items (e.g. a player prone to find-
ing keycards to open locked doors). Like with Blindmaze,
the score values per interaction will embody preferences for
certain interactions, or groups of interactions. Practicalities
of our method are only dependent of the interactions game
developers integrated within a game.

Other than game development, use within other branches
of software development may be figured. As an example we
could think of intercepting actions within a more traditional
application like a web store. Actions in this case might be
viewing a product, adding a product to a shopping cart and
checking out a product. Individual score values per product
per action will represent the likings of a customer for a cer-
tain product and might lead to the classification of groups of
customers favoring similar products.

Conclusions and Future Work

Player classification has allowed us to greatly improve on
both game analytics and game adaptivity. With our method,
we aim to make player classification even more available, by
making it generic and re-usable across different games. We
conclude that we can achieve this by following two main
design principles. The first one defines player behavior as a
sequence of game actions. With this sort of behavior, player
classification can be applied across different game domains,
since game actions are an ubiquitous concept across existing
games. The second principle offers game designers action-
based cluster analysis. With no clusters (player classes) pre-
specified, it is up to designers to identify them. The first
principle is a key cornerstone of the second one. Using be-
havior defined as game actions to plot and identify clusters
(classes) allows both: (i) that designers can relate to the data
and actually find meaning in clusters, and (ii) that clustering
analysis can be applied across different games.

With our case study, we concluded that our method pro-
vides a generic and simple way of finding existing styles of
play within a game. Finding such play styles was possible by
identifying the gameplay meaning of the output of the clus-
ter analysis. We concluded that directly using actions as be-
havior allows a clear interpretation of the processed clusters
into meaningful insights on gameplay. Furthermore, from
the Blindmaze case, we believe the interaction-based nature
of our method allows game developers to easily integrate
this method with their games.

We are presently working on a new case study, introduc-
ing our method in a game featuring a wider set of (more
complex) interactions. We will introduce the notion of lay-
ered interactions, where we will be able to share similar in-
teractions over multiple differing objects and thus grouping
similar objects (i.e. weapons). Our aim is to integrate this
method within a larger approach to adaptive games. We aim
to use actions and interactions, specifically its properties, not
only as the basis for identifying play styles, but also as the
adjustments to be done in-game, in an adaptive fashion.
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