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Abstract. The analysis and visualisation of Diffusion Tensor Images
(DTI) is still a challenge since it is multi-valued and exploratory in na-
ture: tensors, fiber tracts, bundles. This quickly leads to clutter problems
in visualisation but also in analysis.
In this paper, a new framework for the multi-resolution analysis of DTI is
proposed. Based on fast and greedy watersheds operating on a multi-scale
representation of a DTI image, a hierarchical depiction of a DTI image
is determined conveying a global-to-local view of the fibrous structure of
the analysed tissue. The multi-resolution watershed transform provides
a coarse to fine partitioning of the data based on the (in)homogeneity
of the gradient field. With a transversal cross scale linking of the basins
(regions), a hierarchical representation is established.
This framework besides providing a novel hierarchical way to analyse
DTI data, allows a simple and interactive segmentation tool where dif-
ferent bundles can be segmented at different resolutions.
We present preliminary experimental results supporting the validity of
the proposed method.

1 Introduction

In the fairly recent Diffusion Weighted MRI acquisition techniques, introduced
by Basser [1], Diffusion Tensor Imaging (DTI) is subject of intense research
due to its feasibility in clinical practice, simplicity and established mathematical
frameworks. DTI constitutes a valuable tool to inspect fibrous structures in a
non-invasive way. Among the most important applications of DTI is the study of
brain connectivity or fibrous structure of muscle tissues such as the heart [2, 3].
DTI has also been used to identify abnormalities in several diseases such as
stroke, schizophrenia and multiple sclerosis [4].

In DTI, at least six gradient directions are measured, enough to compute
the diffusion tensor (DT) per voxel, representing the local pattern of directional
tissue diffusivity. Formally, a diffusion tensor is a 3×3 positive definite symmetric
matrix.

A common way to visualize the tensor data (Vilanova et al. [2]) is by fiber
tracking. Given the DT field, fiber tracking techniques try to reconstruct the



fibrous structures (i.e., fiber tracts). In several applications higher semantic level
structures, e.g., coherent white matter bundles such as the corpus callosum or the
corticospinal tract, are of greater interest [5–8]. This hierarchical nature of the
information, i.e., tensors, fiber tracts, bundles, pathologies, drives the inspection
of this data to be exploratory in essence.

Clustering techniques have been used to group individual fiber tracts into co-
herent structures [9]. However these methods deal with derived structures from
the tensor field (i.e., do not use directly the full tensor information), therefore
they are very sensitive to the used fiber tracking method. An alternative to clus-
tering fibers is the direct segmentation of the tensor field in volumetric regions.

Image segmentation is necessary to determine regions of interest where sub-
sequent quantitative analysis and visualisation is performed. It provides tools
to extract shape, appearance and other structural features than can then be
used for the analysis of pathologies, or, for instance, to identify the cognitive
development of different types of population such as neonates or elderly people.

Scalar image segmentation has been widely studied and different algorithms
have been proposed through the years. However, the relatively new DTI segmen-
tation is still a challenging task. Some approaches have been proposed [5–7, 10]
though, they often do not allow a full segmentation of the data, i.e., they seg-
ment one object at a time, have a multitude of parameters that must be set
to achieve the desired result and have limited user interaction, preventing the
added value of clinical users’ expert knowledge in the segmentation.

In this work, we use a multi-scale watershed algorithm for the segmentation of
DTI structures. The driving idea behind our framework is to help the user focus
on accomplishing a given analysis task, by first presenting a simplified view of the
data, while still maintaining a global one (i.e. context). While segmentation is
an obvious usage, our framework allows for more general tasks. For example, the
ability to focus on a given ROI may help in exploratory analysis and statistical
studies, as the user is presented a greatly simplified view of the data.

Given an input DTI, a scale-space representation is constructed [11]. The
main motivation is that when increasing the scale, small details due to noise dis-
appear, while main fibrous tissue structures (having predominant orientations)
can still be reliably recovered. At each scale a watershed transform [12] is ap-
plied. Ideally, a structure would be outlined by a single region, however, in many
situations, specially given the anisotropic nature of the involved tissues, the wa-
tersheds do not directly resolve to the anatomical structures. By linking several
regions across scales, we infer a meaningful hierarchical representation of the
data allowing novel ways to analyse and visualise diffusion tensor fields.

The main contributions of this paper are:
– a hierarchical representation of the diffusion tensor field, which allows for

interactive grouping, in an exploratory manner;
– a method for linking several interest regions across scales, such that one can

infer a meaningful hierarchical representation of the data, unravelling novel
ways to study diffusion tensor fields;

– a multi-resolution segmentation method, presented as a proof of concept of
the proposed framework.



The multi-resolution watershed segmentation method is presented in Section
3. In Section 4 experimental results are presented supporting the validity of the
methods.

2 Background

Different algorithms have been proposed for the segmentation of tensor fields.
Zhukov et al [6] proposed a level-set method over a scalar field derived from
anisotropy measures. However this method fails to distinguish between regions
with same anisotropy but different direction.

Level-set methods using the full tensor information have been proposed by
Zhizhou and Vemuri [5] and Rousson et al [7], however, these iterative gradient
descent based solutions seek a local solution and therefore are highly sensitive
to initialization and parameter settings.

Watershed based methods, such as proposed by Rittner and Lotufo [12], are
well known by their over segmentation results. More recent and more efficient
methods like the globally optimal graph-cuts have been applied to DTI by Welde-
selassie and Hanarneh [10], however they provide a binary partition of the data,
into one object and the background.

More recent work, such as Niethammer et al. [13], focus on the specific prob-
lem of segmenting a tubular structure such as the cingulum.

The concept of scale space has been widely studied in the image analysis field
[14, 15]. An image is represented as a one-parameter family of blurred images.
It derives from the observation that objects are composed of different structures
at different scales and therefore may appear different at different scales. The
attractiveness of the method lies also in the link between scale-space theory and
the biological process of vision.

Scale-space theory has been widely explored in many medical imaging prob-
lems. In Dam’s work [16] for the multi-scale segmentation of scalar volumes,
such as Computed tomography (CT) images, a volume is partitioned in several
regions and it’s up to the user to sculpt his desired object by selecting the ap-
propriate ’building blocks’ in different scales. Although a somewhat cumbersome
practice, given the gain in speed by orders of magnitude, compared to manual
segmentation, this work has been used in clinical setup with promising results.

Following the definition of a consistent multi-scale space for semi positive
definite tensors by Florack and Astola [11] we extend such multi-resolution ge-
ometric studies to diffusion tensors fields. We present a multi-resolution seg-
mentation algorithm that operates by applying the watershed transform to the
different images in a generated DTI scale-space. The well-known watershed’s
over-segmentation, a shortcoming in most cases, is actually a core element of
the presented framework.

This fast and simple partitioning of the image, applied to each level in the
scale-space, allows the creation of the hierarchical representation of the data.
This establishes an automated, general and interactive segmentation framework
that equips the user with tools to explore and quickly segment the data.
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Fig. 1. Global gist of the hierarchical segmentation.

In the following, we describe the several stages involved in the creation of a
hierarchical representation of the data, see Figure 1 for a global gist of the pro-
cess. A scale space stack of tensor field images is created by successively blurring
the acquired DTI image. To each of these images, the watershed transform is
applied, thus obtaining a partitioning of the structures at each scale. Next, the
several basins are linked to each other in a bottom-to-top manner. With this
pipeline a hierarchical representation of the data is obtained allowing further
visualization/interaction possibilities.

3.1 Scale-Space Representation of DTI

Florack and Astola [11] formulated a consistent scale-space representation for
symmetric positive definite tensors. This follows the work proposed by Arsigny
et al., Pennec et al., and Fillard et al. [17–19], e.g. the so-called log-Euclidean
framework. The multi-scale representation for a tensor field f , at scale σ is
achieved by the blurring operator

F (f, σ) = Exp(Log f ∗ φσ), (1)

where Exp(·) is the exponential map, Log(·) is its unique inverse, i.e. the loga-
rithmic map, and φσ is the isotropic Gaussian scale-space kernel in n dimensions,
i.e.,

φσ(x) =
1

√
2πσ2

n exp(−1
2
‖x‖2

σ2
). (2)

Since in a multi-scale representation all scales are equivalent, a natural way
to probe the archetype of DTI data is provided, resulting in a coarse-to-fine
approach, see Figure 2.



Fig. 2. Superquadric glyphs [20] illustrating Eq. (1) for five exponentially increasing
scales σi. The synthetic DTI shows two fiber bundles crossing at a 65◦ angle.

3.2 Watershed Representation

The watershed method regards an image as a topological map, a landscape. As
rain falls, water gathers in pools from the lowest points in the landscape. The
landscape defines these pools, the catchment basins. As the water level rises,
dams are built to prevent the merging of the pools. These boundaries constitute
the watersheds. This concept was introduced by mathematicians in [21]. The
watershed provides a simple partitioning of the image based not on the original
one but on a dissimilarity image. The gradient magnitude is a typical, simple
and general measure defining region borders from the image edges.

At each scale, the Log-Euclidean gradient [17]

dLE(A,B) =
√

tr((Log(A)− Log(B))2) (3)

is applied, hence objects are outlined with respect to the scale at which the
gradient is calculated. Naturally, different object sizes require different scales.

Other dissimilarity measures for DTI watershed segmentation have been pro-
posed such as in Rittner and Lotufo [22]. However, many different distance mea-
sures have been proposed (Peeters and Rodrigues et al [23] for a survey), but
they capture different DT degrees of freedom, thus which one to use is a problem
per se. For consistency with the scale-space representation of the DTI data, we
used the Log-Euclidean gradient as a common and generic dissimilarity measure.

3.3 Cross-Scale Linking

Well-known scale-space theory [14] studies the progression of basins across scales.
Because, each basin is intrinsically related to the local minimum of the gradient
magnitude, succinctly, basins can be afflicted by annihilation, creation, merge
and split events. As the scale increases, the number of catchment basins decrease



- they gradually merge into larger basins. These minima can be tracked by a
linking process, forming a singularity string, across scales. With this process,
we combine the simplification provided by the (high level) selection scale with
the fine scale basins in the (low level) representation scale (see Figure 3). This
method has been implemented for clinical use in medical imaging with promising
results [16].

Conceptually, in an iterative process, a region in a given scale is linked to the
region at the next scale with maximum spatial overlap. From this linking process,
a hierarchical representation of the data results, where each basin is linked to
exactly one region at the next higher scale level, see also Figure 5. This linking
tree can be used for a ”region focusing” process, where a simplified region at
a selection scale is substituted by the regions at the lower representation scale.
This selection scale determines the abstraction level that the user chooses to
inspect the data, i.e., how simplified the data is.

Fig. 3. Region focusing across scales. Following the linking tree from the selection scale
to the representation scale, fine detail is obtained; last image shows the regions at the
Selection scale represented with basins of the lower, Representation scale.

The stack of scale-space images is produced by blurring the data-scale DTI
image with increasing σ. In order to obtain a sufficiently fine space, considering
its exponential nature, σ is changed per scale i

σi = σ0 exp(λi) , λi = i
− ln(∆λ)

3
, (4)

where parameter ∆λ indicates the ratio at which the number of basins decrease,
see Figure 4.

3.4 Region Grouping

With a partitioned Selection Scale, given by applying the watershed transform
to the selected scale, a connectivity graph G(ni, ej) is built where: each node ni
holds the Log-Euclidean mean tensor [17], representing the corresponding basin;
each edge ej holds the Log-Euclidean distance [17] between each neighbouring
basin. The average weight of all the edges within users’ selected basins (sample
seeding basins) µ is taken as predicate to a simple region growing algorithm
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Fig. 4. Graph plot showing the relation between increasing the scale-space parameter
σ and the (decreasing) number of basins, using ∆λ = 0.5.

operating on the edges in graph G. A new, spatially connected, basin is added
if the edge connecting it to the growing region is less than the average µ × r,
where r is a user define ratio. This algorithm, quickly groups similar connected
basins. These can then be ’focussed’ to the lowest Representation Scale.

4 Results

The synthetic image shown in Figure 5 has five distinct regions, with different DT
populations. Despite having distinct DTs, some properties are shared between
regions but are different to others, e.g., R4 has the same anisotropy as R3 and
R5, but different main diffusivity direction to R3. With this synthetic data we
illustrate the hierarchical nature of the proposed segmentation.

The DT in the five regions have realistic eigenvalues: λR1 = [3, 10, 10] ×
10−3mm2/s, λR2 = [5, 5, 5]× 10−3mm2/s, λR3 = [14, 2, 2]× 10−3mm2/s, λR4 =
[17, 3, 3] × 10−3mm2/s and λR5 = [17, 3, 3] × 10−3mm2/s. In order to mimic a
real DTI acquisition, noise was added to the 128 × 128 synthetic image. From
the noiseless DTs, using the inverse Stejskal Tanner [24] relation, the signal
attenuations were obtained. To each direction value, Rician noise was added
with SNR = 15.3, and the tensors re-estimated.

Fig. 5. The hierarchical nature of the watershed scale-space segmentation. Different
basins are linked to the ones above. Colours indicate different regions. Red outline
indicates the original five regions.

Figure 5 shows the obtained basins for the computed scale space. We can
see the segmentation consequences of choosing appropriate selection scales and



automatically tracking down objects to the lowest representation scale. As the
selection scale decreases, we clearly see the hierarchical segmentation occurring.
At Scale σ3 we obtain regions R4 and R5 as a unique object, since they are very
similar, whereas at scale σ2, these two regions constitute different segmentation
objects.

Figure 6 shows the results of the semi-automatic segmentation tool provided
by the method. In a 30 × 30 × 20 volume, two fiber bundles forming ’tubes’
with radii of 2 voxels intersect each other. Here, the tensors, with eigenvalues
λ = [17, 3, 3] × 10−3mm2/s and oriented tangentially to the centre line of the
tube, are estimated using a mixed tensor model, as in [25]. Rician noise is added
with SNR = 15.3. In this experiment, due to the use of an isotropic Gaussian
scale-space kernel, no appropriate selection scale is found in order to achieve the
desired segmentation: automatically distinguish the two tubes. Users’ knowledge
is here utilized. An appropriate Selection scale is chosen by the user, i.e., an
appropriate simplification of the data is selected. Then, in a typical visualisation
such as FA map, the user interactively picks some points in the structure of
interest (see Figure 6). These points select the correspondent basins, at the
simplified Selection scale, which are then linked down to the Representation
scale aggregating the several voxels forming the final segmentation.

Fig. 6. Synthetic image with two crossing tubes. User’s interactive picking are repre-
sented by the white lines. Three segmentation results arise depending on the stroke
selection: crossing region, tube one or tube two.

Employing an isotropic Gaussian kernel, in a real brain dataset, as in Fig-
ure 7, fails to deliver an appropriate high level selection scale for the automatic
segmentation of the larger structures. Brain tissue, white matter, manifests it-
self in DTI images as anisotropic structures. In the isotropic scale space, these
structures of interest successively disappear. Nevertheless, the semi automatic
segmentation still gives satisfactory results.

A typical user interaction follows, as illustrated in Figure 7:

1. An appropriate Selection scale is chosen, by inspection of the level of sim-
plification provided by a scale, with a view of the correspondent basins;



2. In a typical main eigenvector RGB colour mapping (Figure 7(left)), by
stroking some points in the image, seeding basins at the chosen scale are
selected (Figure 7(middle));

3. The region grouping algorithm collects similar connected basins, which are
then ’focussed’ into the Representation scale.

Figure 7(right) shows two bundles segmented in two different scales: the
corpus callosum in red, visible in a higher scale σ4; and the cingulum in green,
visible in a lower, more detail scale σ4.

Fig. 7. A 128× 64× 64 DTI brain image. The user selects points in his segmentation
task (Left), the correspondent basins in the respective Selection Scale are highlighted
(Middle) and a smooth isosurface wraps the grouped similar connected regions (Right).

5 Conclusions and Future Work

In this paper, we presented a hierarchical segmentation algorithm, using wa-
tersheds, for diffusion tensor fields. In a semi automatic manner, a hierarchical
representation of the data is assembled providing a new way to visualize and
interact with this type of data. A multitude of possibilities arise. The automatic
partitioning of the data can be used to assess statistical properties of the data.
Combined with other typical uses of DTI like fiber-tracking, this can be used to
study the connectivity of the different regions of the brain. Although this work
has a medical end goal, the framework is general.

The use of Log-Euclidean gradient embodies the watershed segmentation
with a unclear intuition. It expresses dissimilarity between the diffusion tensors,
however its connection to the underlying tissue structure is not clear. The use of
other gradient alternatives, such as the tensorial morphological gradient [22] al-
lowing the use of known distance measures [23], or Schultz’s structure tensor [26]
combining the intuitive Kindlmann’s [27] decomposition of the tensor changes
into six different gradients will be subject of future study.



Given the anisotropic nature of the brain tissue (as for muscle fibers), the
use of a Gaussian isotropic kernel hinders the creation of an adequate scale
space, preventing the hiearchical linking to give the desired results. However,
the proposed tool is versatile enough to allow the semi-automatic segmentation
of the structures of interest by combining the several building blocks. Future
work will study the use of anisotropic kernels based on the diffusion tensor at
each voxel as in [28] so to improve the inference of tissue archetype.

A more robust and anatomical significant improvement to the hierarchical
linking lies on the use of homogeneity indices in addition to the spatial overlap
between adjacent scales, since a bundle, by definition, groups together similar
DTs.

The creation of a meaningful hierarchical representation of the data unrav-
els new visualisation and interaction possibilities and thus novel ways to study
diffusion tensor fields. One can use well-established techniques for graph visu-
alization and interaction, to directly manipulate the data. Illustrative rendering
may as well be used, to augment the more abstract graph visualization.

The proposed hierarchical methodology is also relevant for high angular res-
olution diffusion imaging (HARDI) given its close analytical connection to DTI.

Artificial and real data shows the potential of the presented method. However,
doing a more elaborated evaluation is necessary, and a comparison to other
methods should also be performed.
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