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cHAPTER]

Introduction

This chapter introduces and motivates the topics coveréusrhesis. First, scientific visu-
alization and other visualization related topics are idtieed. Next, a high level overview
of cumulus clouds and research into their physical behdsigrovided. This is followed
by a discussion of visualization research challenges plgedmulus cloud data and the ap-
proaches taken in this thesis to address these challengesh@pter closes with an overview
of the rest of the thesis.

1.1 Scientific Visualization

Visualization, in the sense of the research field, deals wathverting raw data, typically
numbers, into meaningful, visual representations. Sommlifa examples are vital signs
monitors or stock market trend graphs. By converting tha tlag visual form, we can use
our highly-developed visual system to make sense of the &sa Figure 1.1. This can be
with the goal of gaining insight into the data but also witle tjpal of communicating our
understanding of the data to others.

Within the research field of visualization there are sevsuéltfields that deal with visu-
alizing specific types of data. Scientific visualizationdees on visualizing data from mea-
surements obtained from simulation or experimentationpdrticular, these measurements
usually reflect physical quantities, such as temperaturd,the spatial location where the
measurements were taken is usually physically meaningfwieather map is an everyday
example of this type of visualization.

Much of current scientific visualization research attentipfsrovide insight into complex
data. This data is often time dependent. That is, it repteseseries of measurements or

3
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Figure 1.1: Visualization converts data to a visual form, which can béesas understand.

calculated data in time. The data is frequently multi-fiettiere are multiple types of mea-
surements in the data. The data is also commonly three-diowed, representing measure-
ments taken at several points in space. Television weathecdsts often use visualizations
of these types of data. They show the past and expected futmrement of weather patterns,
which include indicators of temperature, precipitationgd o on. While the visualizations
used on television are often 2D, they are based on, amongtathgs, 3D simulations of the
atmosphere.

Visualization research also deals with supporting diffierespects of data analysis. Vi-
sualization can be used for browsing through data to get arvimw of what's in the data.
It can be used to automatically, or semi-automatically, ind visualize interesting features
in the data as well as measure their properties. These midesusers to develop and test
hypotheses about the phenomena recorded in the data. Whiergdeigzh simulations, vi-
sualization can also aid in interactively adjusting siniola parameters to understand their
effects or achieve a desired result. Visualization is atseffective means to share any dis-
coveries made during data analysis with others. Analyzirigl Bcan results from cancer
patients is an example that involves several of these aspottors must study the scan re-
sults to determine the nature and seriousness of any tumts patients. Their findings are
shared with the patients and, if necessary, are used foniplguisurgery or other treatment.

1.1.1 Visualization Pipeline

Visualization, scientific or otherwise, employs a commapefine. See, for example, Haber
and McNabb/[41]. This pipeline gradually transforms rawuihdata into images that users
can see and, ideally, interact with. See Figure 1.2. If doek, the visualization will serve
as a tool for users to develop insight into and understanafitige data.

For scientific visualization, the input to the pipeline i€ texperimental or simulation
data. In its original form, the data is usually not suitalde isualization. Instead, it must
first be processed. This processing can consist of sevénglsthif the data is noisy, it may
be smoothed. If the data is too large, it may be down sampledherwise compressed. If
the data is not in a suitable format, it may be converted. titewh to this type of processing,
more advanced filtering may be applied to the data. This aduceethe amount of data that
needs to be processed by identifying the interesting featand regions in the data. Further
processing may also include preparing the data for use ithial purpose data structures
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Figure 1.2: The visualization pipeline.

like kd-trees.

Once the data has been suitably prepared for visualizatioist be mapped to visualiza-
tion data such as geometry and color information. This fahmesbasis of what the user will
see. Some common techniques that are used in this procegsreeting isosurfaces using
marching cubes [63] and using color maps to map propertigs aross section such as a
cutting plane. All or part of this step may be performed @il prior to visualization, but for
interactive visualization applications, much of the maigpivill be performed dynamically in
response to the user’s actions.

Traditionally, the data mapping step has been distinct fiteerrendering step. However,
with the increasing power and programmability of graphioscpssing units (GPUSs), there
has been a trend to perform both steps at once on the GPU. Eesofithis include GPU-
based ray casting for volume rendering, fast line integoalolution for flow visualization,
and, more recently, generating isosurfaces dynamicallgdeguting marching cubes on the
GPU. Several of these techniques are detailed by Weisk0pl[1

The rendering step takes the geometry and color informaggerated from the visual-
ization data and generates the images that the user acseglty For rendering techniques
like ray tracing and ray casting, the image will be generégdirectly mapping the data to
color information without using geometry. For other tectugs, the color information will
be applied to the geometry during rasterization on the GPU.

It is also important to integrate user interaction into thstem. Without interaction, the
visualization result is either a static image or a pre-reedienovie. For some applications,
this may be sufficient, but frequently the user will be ingteel in viewing the data from
multiple angles or seeing the effects of changing the vizatbn parameters. The results
of user interaction can feedback into all stages of the ipelThe user can identify new,
interesting regions of the data to study. He can generasuiifaxes for new isovalues. He
can also simply view the current data from a new angle. Arcéffe visualization platform
should give the user freedom to interact with his data in rimgginl ways so that he can gain
insight into his data.

In some cases, it is also possible to take user interactierstap further and interactively
couple it with a simulation that generates the data for Viga@on. This is known as com-
putational steering and can allow the user to directly imfbgethe simulation results and the
related visualization. See Sectjon 1.1.5 for more abost thi



6 CHAPTER 1. INTRODUCTION

Figure 1.3: Left: isosurface of a cloud generated using the technigessribed in Chaptér|2. Right: ellipsoid
particles in a cloud velocity field generated using the pirtiracing techniques described in Chapter 5.

1.1.2 Flow Visualization

There are several specialized application areas undentbealla of scientific visualization,
such as medical visualizatidn [77,81] and flow visualizatiSince the dynamics of the atmo-
sphere can be seen as fluid flow, flow visualization is the nedetant research area for this
thesis. Flow visualization deals with both effective wafsisualization flow and techniques
for identifying features of interest in the flow, like shoclaves or vortices. Post et al. [76],
Laramee et al. [61], McLoughlin et al. [67], and Laramee e{&2] provide overviews of
many flow visualization techniques. Mallinson [65] alsoadisses flow visualization tech-
nigues with a focus on how derived data can be used to imphsvantderstanding.

Feature detection is used to find the interesting featurdiseirdata. If the data is time
dependent, then feature detection is performed on eachdfepein the data. To identify
correspondences in time between the features, featukertgeis used [76]. Once this process
is complete, individual features can be followed throughetin the data set.

In flow visualization, these features are typically vismadl using isosurfaces or glyphs.
Isosurfaces are used when the features are clearly defirtad mata and their shape gives
insight into their behavior. See Figure 1.3, left. Glyphs;tsas ellipsoids, are used for more
abstract features or to convey additional information.sehtechniques can also be combined
using techniques like line integral convolution [108], tismlay information on the feature
isosurfaces.

To directly visualize flow, two commonly used techniquesartting planes and particle
tracing. Other techniques that can be used (see [44]) iaciucbw plots or volume visu-
alization of the vector field, isosurfaces of vector field paments or derived values, and
texture-based approaches such as line-integral conenlu€utting planes, also called slic-
ing planes, are used to visualize a particular scalar oovegtantity in the flow. The plane
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is placed in the data and is colored or decorated with glypherding to the flow properties
along the plane. Particle tracing gives deeper insighttimonature of the flow by tracking
massless, virtual particles through the flow. The particks be visualized in a variety of
ways to show their movement through the flow or to emphasidaioeflow characteristics,

such as vorticity or velocity in a particular direction. J&igure 1.3, right. They can also be
combined together to form flow curves, such as pathlinesasilines and streaklines [75],
which can highlight flow patterns in time or space.

1.1.3 3D, Multivariate, Time-Dependent Visualization

Much scientific data is three dimensional, multivariate &gk dependent, representing the
state of some 3D object or volume at different points in tiridfectively visualizing such
data presents challenges throughout the visualizatiolipgadue to the size and complexity
of the data. Visualization research dealing with this kifdata often focuses on techniques
to overcome these challengedirBer and Hauser [14] discuss a wide variety of visualizatio
approaches used for complex data.

The size of the data itself is challenging to deal with whedaia set of several gigabytes
can be considered a small data set. The raw data is oftentalpieufor efficient processing
and must be first converted or reordered on disk in a more aptiray. Efficient processing
can also be facilitated by storing the data on media with bayhdwidth and low access times
such as disk arrays or solid-state memory. This size of the skts also means that they
often greatly exceed the memory capacity of the computezd tesvisualize them, which is
a further complication.

Aside from problems of data size, there are problems of datgtexity. The interesting
features in the data tend to be complex and dynamic. This e rit difficult to find and
track the features in the data. The 3D, dynamic features lsarba awkward for the user to
interact with inside of a visualization application. Additally, the wealth of information in
the data can leave scientists at a loss as to where to stay.CEm extract features, calculate
feature attributes, derive new data from the raw data, parftombinations of these and
many more tasks. In addition, they may have to examine nbeltigriables in the data to
make sense of it, each of which may lend itself best to diffevésualization methods.

Another difficulty arising from such data sets is time redat&he simulations or experi-
ments required to generate the data must be set up and exe€hresulting data must be
processed to prepare it for visualization. In general hegibf these steps can be performed
interactively. That is, if the scientists studying the datsh to alter the parameters that gen-
erated the data or change the data that is visualized, they nexinitiate the required steps
and wait for them to complete.

An effective, interactive visualization system for 3D, itivdriate, time-dependent data
should address these challenges. To deal with data sizelatheshould be processed and
filtered such that the minimum necessary amount of data delb#or visualization, and the
system memory should be creatively used and filled duringaligation to maintain inter-
activity. To address the complexity, the system shouldgiredata features with sufficient
contextual and derived information such that scientistsdmvelop an understanding of the



8 CHAPTER 1. INTRODUCTION

data. Scientists should also be able to use appropriatalization techniques for visualizing
the different variables in the data. The system should asexbensible so that scientists can
introduce new data into the visualization based on instyky have gained into the data. The
system must also provide users an intuitive interface stiiey can easily interact with the
data, and the system must provide adequate exploratianftidhe data to be studied. Lastly,
the system should attempt to optimize the way researcherslgpme. It should shorten the
time required to adjust parameters both for generatingahedata and for generating the
data for visualization.

1.1.4 Visualization in Virtual Reality

Virtual reality (VR) is a generic term that is applied to theperience that some computer
systems can create where users have the impression thautmrgenerated objects and
environments are “real”. The more real these virtual olsjeatd environments feel to the
users, the more “immersive” the VR system is said to be. Thalfress” of objects includes
both their appearance as well as how they respond to usenactV/R systems can consist
of a variety of components and use several technologiesehuired features are presenting
the user with a 3D, virtual environment and allowing the usedirectly interact with the
environment. One important caveat to virtual reality i< B systems must be “interactive”
in order to maintain the feeling of immersion. This implie®tthings. First, the user should
be able to touch, manipulate, activate, and otherwisedotexith objects in the world in
a “natural” way. Second, the VR system must update the usig on the world at least
10 and ideally 30 or more times per second to provide suffidesdback about the user’s
interactions with the virtual world.

Most VR systems show users 3D environments in stereo, i.éffexaht view of the
environment is presented to each of the user’s eyes so tfatsithave a feeling of depth.
There are two common approaches to this: head-mountedgs(HMDs) and projection-
based systems. HMDs are special goggles with two small-ioudtreens for the left and
right eyes. Projection-based systems use projectors fegbrivvo different images onto a
real surface, e.g. a screen on a wall. The two images are shibther using two projectors
with special filters in front of them (passive stereo) or byngsone or two projectors to
rapidly alternate each of the two images (active stereo).bbth systems, users must wear
special glasses to ensure that each eye sees a differerd.imag

VR systems typically enable users to directly interact with virtual environment by
tracking their physical movements. The tracking is usuddigie by tracking the 3D location
and orientation of the user’s head and various interactiolstike styli and wands. Tracking
the user’s head allows the VR system to render the 3D world free user’s viewpoint, which
both gives the user the correct perspective on the worldetadHe user move his head around
to view the world from different vantage points. Trackinggiraction tools allows the user to
point at, select, and otherwise interact with the objectsdes in the virtual world.

Several factors make virtual reality attractive for viszialg 3D data. By providing users
with a stereo view of the 3D simulation or measurement dataaile, and particularly time-
varying 3D data, it's easier for them to understand whertufea of interest are in space and
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where they are in relation to each other. The direct intesad¢hat VR provides also simpli-
fies interacting with the data. Tasks like getting a difféndew of the data can be reduced
to moving one’s head. Features in the data can be selectedgoypointing at them with a
stylus. Once selected, a user can intuitively move andeabjects by moving and rotating
his hand. Since VR applications must be interactive, thisatao ease the visualization pro-
cess by providing users interactive feedback in responeetoactions. The immersion and
“wow” effect that VR provides are also an aid, particulady hovice users, in understanding
3D data. Van Dam et al. [20] and Koutek [58] discuss severed 0§ VR in scientific visual-
ization. Bryson|[12] also gives a good, if dated, introdostio scientific visualization in VR
and its related challenges.

1.1.5 Simulation and Visualization

In many applications, numerical simulation and visual@atare closely intertwined. Nu-
merical simulation involves running specialized compyiergrams that solve mathematical
equations describing the behavior of real-world phenomsmeh as fluid flows. Simulating
the real-world phenomena allows scientists to explore thelavior under a variety of con-
ditions simply by changing simulation parameters. Theltesf simulations, however, are
often difficult to interpret without specialized tools. Walization is one of the tools scientists
often turn to in order to help them understand their simafatesults.

The role of visualization is not limited to analyzing theuks produced by a simulation
run, though. Visualization can also provide valuable ihsig constructing the simulation
software itself. A visual inspection of the simulation irogress can reveal bugs in the math-
ematical model or software implementation that are morfecdif to identify using traditional
debugging tools. Similarly, when adjusting the simulatg@rameters to simulate new case
studies, visualization can be used to verify that the sitmarids behaving correctly.

For numerical simulations that are sufficiently fast, stga can use visualization to
help adjust and control the simulation. This is called cotafional steering [54]. That
is, by coupling the simulation with an interactive visuatibn, scientists can dynamically
adjust the parameters of a running simulation. This carwadloientists to rapidly explore
the effects of different parameters and also to guide theilsiion towards a desired state.
Koutek [58] describes an example from molecular dynamitsikitions where scientists can
exert forces on protein molecules to guide their folding. §htiet al. [109] provide a general
overview of computational steering and Mulder et al. [6%jadiss the components of various
computational steering environments.

For some simulation research, a combination of simulatimhvésualization techniques is
useful. For the initial work of determining useful simutatiparameters for a new case study,
it's useful to have a very fast simulation that is coupledwait interactive visualization. If the
effects of interactive parameter changes are readily apparhen visualizing the simulation,
then introducing computational steering capabilitiesfoatiner help in identifying interesting
parameters.

Once suitable simulation parameters have been identiftgehtists usually wish to run
much longer, much higher resolution simulations than thalnexperimental simulation
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runs. At this stage, it is less interesting to directly monthe simulation progress so the
simulations can be run off-line with the data stored fordatealysis. Once the simulations
are complete, it is still useful to visualize the final resulf the simulation. This is especially
true since a wider variety of visualization techniquestipalarly related to feature tracking,
can be employed when the data from the entire simulationg@available. Having the full

data set available also makes it easier to browse both fdraraat backward through time, in
time-dependent data sets, which is more difficult when mgtiie simulation interactively.

1.1.6 Open Problems

There are many open problems in the field of scientific viza#ilbn that are the subjects
of ongoing research. One of the better known discussionsesiet problems is provided by
Chris Johnson et al. [53]. These problems are posed, in [@ge by the increasing size
and complexity of the measurement and simulation data ttiahtists wish to visualize.
There are also challenges stemming from making efficientofigke technology available
for visualizing the data. Another group of problems reldtesffectively enabling domain
scientists to visualize their data.

Currently, scientific data is often 3D, multifield and timarying. Each of these types
of data poses unique challenges, and, taken together, #tlerapes are only more compli-
cated. Visualizing 3D data on a nhormal computer monitor eax ko difficulties in correctly
perceiving the depth of features in the data and their dpatition to each other. Features
closer to the viewer can obscure or completely occlude featthat are farther away from
the viewer. With multifield data, it is difficult to provide aeaningful visual representa-
tion of two or three data points at a given spatial locationrttiermore, different fields in
the data may be best suited to differing visualization téqines, which requires combining
the disparate techniques together into a unified visuadizatit's also difficult to visualize
the spatial correlation between the different fields in tagad With time-varying data, it is
challenging to give users accurate insight into how featimethe data evolve and change
over time. Another difficulty is helping users correlate igtantaneous 2D or 3D state with
the larger picture in time. Time-varying data also brings #iided complexity of tracking
features detected in the data in time.

Making efficient use of technology in combination with viSaation is another area of
visualization research. On one side, there are a wide yasfahput and output devices for
use with visualization. Some commonly used output devitesidle standard computer mon-
itors, stereoscopic displays, speakers, and speakesdora3D audio. Some commonly used
input devices include mice, keyboards, haptic devices 3nhttacked devices like wands or
styli. When attempting to put together an effective viswalan environment, decisions must
be made about which components to incorporate into the myskactors like cost versus
added benefit must be weighed carefully. Furthermore, dmealévices are incorporated
into a system, they must be combined into a user-friendriate that allows users to focus
on visualization tasks. On the other side, there is a wideetyaof computational technol-
ogy available for driving the visualization. These asp@utbide GPUs, computing clusters,
disk arrays, and so on. Visualization software may be design seamlessly take advan-
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tage of additional computing facilities that are availatide designed to make optimal use
of one particular type of facility. Both approaches requignificant effort and a thorough
understanding of the hardware involved.

The third, broad category of research challenges is ergadimain scientists to visualize
their data. One of the most basic challenges in this areaisiley how to effectively coop-
erate with domain scientists to develop techniques thaiseéul to them. When developing
new visualization techniques for domain scientists, id®amportant to bear in mind that
they are not visualization experts. Therefore, it's impnttto present them with intuitive
user interfaces that make it easy for them to adopt the nelmigees. Another challenge
is increasing both the quantity and the quality of the timegt the domain scientists spend
using visualization tools. When visualizing their datagstists should have the freedom to
explore the data, develop hypotheses and test these hgpstivith minimal effort.

1.2 Cumulus Clouds

One of the goals of atmospheric research is to make predicttout what the weather
and the climate will be like in the future. These predicti@me often based on computer-
driven simulations of the atmosphere, which make use of emagttical models of different
atmospheric phenomena and their effect on the weather @ndtel Climate simulations
often build on weather simulations by using informatiorrtesl from the weather simulations
to model the long term effects of the weather. Perhaps simgty, the effect of clouds, such
as cumulus clouds, on an evolving climate is one of the biggeknowns in the models
(Bony et al. [8], Heus [47]). Therefore, to improve climategiction, it is important to better
understand clouds. For clarity, the cumulus clouds diszlibgre are fair-weather cumulus
clouds, such as those seen in Figure 1.4.

The traditional view of cumulus clouds is that they are th&ible top of a column of
rising, warm, moist air. As the air rises, it begins to coallaat a certain height, the moisture
in the air condenses to form the cloud. As long as the thetimakolumn of warm air, exists,
the cloud also continues to exist. Once the thermal diestbatcloud also dies out. This
evolution of a cloud from its inception to when it dies outégarred to as the cloud life cycle.
See Figure 1.5.

While the atmosphere underneath the fair-weather cumutusis| the sub-cloud layer,
is turbulent, the atmosphere is fairly calm where the cldhdmselves form. The traditional
view holds that, in this calmer region, the clouds represeiatrceful, upward protrusion of
air from below. In response to this upward force, the atmesplbetween the clouds then
settles downward toward the more turbulent, sub-cloudrl&§ee Figure 1.6.

1.2.1 Research Topics of Interest

There are still fundamental questions about the behavionwiulus clouds without definitive
answers. Attempting to answer two such questions has beentieating factor in much of
the work related to the project. The first question is: whatthe defining characteristics of
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Figure 1.5: Traditional view of the cumulus cloud life cycle.
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Figure 1.6: Traditional view of the subsiding air around cumulus clouds.
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Figure 1.7: Large-Eddy Simulation resolves large-scale turbulenckd(galdies) but models small scale effects
(dashed eddies).

cumulus clouds in the life-cycle stages depicted in Figub® TThe second question is: how
does a cumulus cloud interact with and influence the dry aurad it? Or, alternatively, how
does the dry air around a cumulus cloud compensate for thandpierce from the buoyant
cloudy air?

Collecting the necessary data to answer these questionisecdane through either ob-
serving real cumulus clouds or through simulating cumulosds. While observation is a
popular approach, simulation offers many advantages wbadonming large-scale studies of
many clouds. Simulations are less expensive, more eagiatable, and they provide sig-
nificantly more data about the clouds and their environmEatthermore, observation data
often requires processing before it can be analyzed whitelstion data can be analyzed
directly. For simulation, though, observation is neces$ar validation, setting simulation
parameters and so on.

The work presented in this thesis has been used by atmossleéntists to help answer
these questions. Their findings have departed from thetivadl views presented in pre-
ceding section. Where appropriate, results from their rebegre highlighted in this thesis
together with descriptions of how the work presented heaggd a role in the research. See,
for example, Section 2.5.2, Section 3.5, and Section 6.5.

1.2.2 Large-Eddy Simulation

Atmospheric scientists use a variety of simulation techegto study cloud dynamics. The
technigue most relevant to the work presented in this thesiarge-Eddy Simulation (LES).
LES is so named because it directly simulates only largke saebulence and eddies. The ef-
fects of smaller scale eddies are calculated using a cortiqmeily cheaper statistical model.
See Figure 1.7.

For studying clouds, LES is used to simulate the large-shad@mics of a small portion
of the atmosphere under certain conditions. These dynamstisde the wind, the temper-
ature, water evaporation and water condensation. By asdyisimulating these dynamics,
clouds will form in the simulation, which can then be analjze
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The challenge associated with LES is that it produces vegglamounts of data. A small
to medium-sized simulation run can simulate.4% 6.4 x 3.2km portion of the atmosphere
over the course of several hours. It does this by dividingstiece into 12& 128x 80 dis-
crete cells and generating and saving snapshots, 6 sequerdiscd quantities like the average
temperature, wind speed, and humidity in each discrete Belbending on the size and du-
ration of the simulation, this can add up to anywhere from itlgytes to several hundred
gigabytes or more of data. The process of identifying, aniatyand understanding the inter-
esting phenomena in the data is difficult without an appaiprset of tools. Developing such
a set of tools is the focus of this thesis.

1.3 Visualizing Cumulus Clouds in Virtual Reality

In order to visualize cumulus clouds, many of the open problén scientific visualization
must be addressed. The cumulus cloud data is very largejr8Bvearying, multifield data.
Typical data sets have 6 variables, hundreds of time stepp@mnvariable time-step sizes of
2 to 20 megabytes. The data variables consist of both saadawector quantities.

Visualizing this data has challenges at each stage of thzation pipeline. The data
processing must be able to detect and track features in theltmust also support extracting
new data based on insight gained from visualization. Whemimagyhe features to geometry,
care must be taken to overcome bottlenecks between stondgaain memory and between
main memory and the GPU. When visualizing the data, the aditiprocessing power GPU
must be effectively used to provide rich and interactivaialzations. These visualizations
must also make the relationship between multiple variatdash as liquid water and air
velocity, clear. Where appropriate, VR should also be usesht@nce insight into the data
and ease interaction with the data.

Perhaps the most difficult challenge with visualizing cunsutiouds is embedding new
techniques into the atmospheric science workflow. Closklgotation with atmospheric
scientists is required for developing useful visualizatiools. Furthermore, the visualization
tools must be presented to the scientists in such a way asiminé the adoption threshold.
The tools must be easy to use, and the software environmantdin in must also be easily
accessible and easy to use. When looking toward the futweghthllenge of combining the
simulation and visualization together into one interactyplication must also be addressed.

1.3.1 System Requirements

Answering scientific questions about cumulus clouds usatg éfom Large-Eddy Simula-
tions requires a system with certain components in places&hequired components allow
scientists to interpret the raw simulation data at a higheell That is, they can study the
clouds, their properties, and their interaction with th@@gphere rather than working with
the vast arrays of numbers that the raw data consists of.

The first major required component is a virtual environmehérg scientists can see the
clouds in the data. Within the cloud viewing environmentestists must be able to browse
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through time in the simulation data and focus their attentio interesting clouds. Browsing
through time is a logical extension of being able to see thadd. This allows scientists to
visually perceive patterns in the clouds as they evolve times. It also allows them to relate
their observational experiences of clouds with the behasidhe simulated clouds. Being
able to focus on interesting clouds is important for deviglgfa detailed understanding of
individual cloud behavior. The focusing should entail exithg uninteresting clouds from
view as well as providing additional information about theeresting clouds.

In addition to the viewing environment, scientists needt@beisualization tools to study
the clouds with. These tools should also be specific to theareb questions the scientists
wish to investigate. In order to study cloud life cyclesestists need to be able to see and
understand the cloud behavior in time. The clouds can baligd with isosurfaces or direct
volume rendering. Their behavior in time can be directlyestssd by playing through the
data in time and also by supplementing the “realistic” 3Dudloview with statistical plots
of cloud properties over time. In order to study the motiorainfalong cloud boundaries,
the scientists need to be able to visualize air movement i€ simultaneously. The air
movement can be visualized using particle tracing and itlmamelated to the clouds by
including transparent or wireframe cloud isosurfaces.

From the practical side, the scientists also need a (graPhiser interface for interac-
tively controlling the visualization. For interaction,etlscientists should be able to use the
available input devices. These are the mouse and keyboadeédktop versions of the visual-
ization and direct interaction tools like a stylus for thewal reality environment. With these
devices, he should be able to select, rotate, and zoom in @indnoclouds of interest. He
should also be able to play through time. The visualizatiptioms can be controlled from
within the visualization environment by incorporating ieaus buttons and menus.

There are many factors involved in developing a system td these requirements. New
and existing visualization techniques must be developedaaiapted to deal with the com-
plex nature of the data. Atmospheric scientists must beultatsto refine the visualization
techniques for atmospheric data. The set of visualizagohriiques must be integrated with
each other and be made usable for the scientists. The cotiolpirtd these factors makes it
an interesting challenge for a visualization researchadtlress.

1.3.2 Existing Visualization Systems

There are many existing visualization systems. The exjstirstems broadly fall into two
categories: general purpose and special purpose. Theal@uepose systems take a Swiss
army knife approach to visualization, where the tools thiggraan be applied to a myriad of
problems. Special purpose systems are by definition motiteliihn their application areas,
but they provide superior tools for their area of speciiiza

General purpose systems incorporate a wide variety of Nistimn and data processing
algorithms in the form of components, which are combine@tigr to suit the user’s needs.
In these systems, the burden is often on the user to combinedmponents together to
create a visualization pipeline for the data he wishes taoalize. Most of these systems
present users with the algorithms as building blocks wighutrand output ports. These ports
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are connected together in a network or tree structure to thipeaw data through various
processing steps and ultimately generate a visualizatmm ft. Well known examples of
this type of system include OpenDX [64] and AVS [101]. PamW¥i4, 45], which builds on

top of the Visualization Toolkit [86] and Amira [94] are marecent examples of this type of
system.

Special purpose systems focus more on specific types of datpplications. This re-
striction allows them to exploit additional knowledge abthe data that will be visualized
in order to offer improvements over general purpose systdingse improvements can take
the form of, among others, simpler user interfaces, bett@rgssing and visualization perfor-
mance, and better visualization quality. One such systéwast to this thesis is Vis5D [49].
Vis5D was not wholly specialized, but it was primarily used¥isualizing data from numeri-
cal weather simulations. Ziegeler et al. present a morettijreelevant system for visualizing
meteorological data in VR: MetVR [110]. Haase et al. desekdSUAL and other systems
used by the German Meteorological Office for visualizing enetlogical data [40].

While there are many existing general-purpose visualinagigstems, none are particu-
larly well-suited to visualizing the type of cumulus cloudtd discussed in this thesis. Sys-
tems like OpenDX and AVS tend to suffer from being jacks ofwadlualization tools but
masters of none. To create effective visualizations, users navigate a complex user inter-
face to construct a complex network or tree of visualizaiomponents. Once the pipeline
is in place, the visualization tends to be static or difficaldynamically control and often
suffers from poor performance. The support for time-vagyilata in these systems is also
generally poor. These types systems can usually be extéryddsl/eloping and incorporating
new modules, but it is difficult to overcome their performatimitations.

There are also no suitable special purpose systems awaiMibbD could have developed
into a reasonable candidate, but it has a number of limitati®evelopment work stopped
on it several years ago, which means it is not taking advantéthe possibilities offered by
modern GPUs. Its user interface is very complex, makindficdit to use. Vis5D along with
MetVR and VISUAL focus more on numerical weather data, whdells with phenomena
on a scale of tens or hundreds of kilometers whereas the €ldisdussed here are on a
scale of tens to hundreds of meters. This difference of sadefocus led to incorporating
visualization tools, such as displaying weather data ogetographic maps, which are not
relevant for cloud research. VISUAL and MetVR also focus arercomplicated data input
formats such as curvilinear grids or unstructured gridstaldathese formats requires extra
care that is not necessary for the cumulus cloud data pextséete.

1.3.3 Cloud Explorer and GALES

In this thesis, two specialized approaches have been takbrvisualizing cumulus cloud
data. These approaches have culminated in the creationcoéxperimental visualization
systems: Cloud Explorer and GALES. Figure 1.8 provides & légel comparison of these
systems. These have served as platforms for developingliziation techniques to deal with
complex, atmospheric data. They have also been targete@eting visualization needs
of atmospheric scientists by providing interactive visetion and exploration environments
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Figure 1.8: Left: Cloud Explorer forms part of the traditional, simulatiprocessing-visualization pipeline. Right:
GALES is the fusion of simulation and visualization.

with sufficient visualization tools and interaction metbdd help the scientists understand the
data. The developments of this thesis have not been limit€ldud Explorer and GALES,
however. A number of the visualization techniques disadi$sehis thesis have been also
incorporated into stand-alone experimental tools, such particle tracing environment, to
demonstrate their wider applicability.

Cloud Explorer, Figure 1.8, left, fills the traditional radé¢a VR visualization system. It
consists of two separate components: data processing sunaization. The data processing
is an off-line process that prepares the raw simulation fimteisualization. The processing
can take place on the supercomputers that ran the origmalation or on a local computer.
The visualization environment offers a variety of visuatian tools mentioned in this chap-
ter: slicing planes, particle tracing, isosurfaces, ampmentary statistical plots. It also
allows the user to browse through time, select interestimgds and switch between different
visualization modes. This environment itself can run dsegit virtual reality application or
as a stand-alone, desktop application.

GALES, Figure 1.8, right, is an integrated, interactive @imion and visualization en-
vironment. It runs the atmospheric Large-Eddy simulatiwat generates the cloud data on
the GPU of the visualization computer. The simulation idisigtly fast that it can be in-
teractively visualized while running. GALES also providasentists with some statistical
plots that give information about running simulations. Séliminates the lengthy simulation
and processing steps in the Cloud Explorer pipeline, whickva scientists to get immediate
feedback about their simulations.

With the recent advances in GPU computing power, interactimulation approaches
like GALES are feasible, but GALES is not a replacement fayudl Explorer. Cloud Ex-
plorer can process data for large spatial domains. It canddsadvanced data processing
and feature tracking as it has access to all time steps of@ation. GALES, in contrast, is
limited to smaller spatial domains and can only move forwatime through the simulation.

Cloud Explorer and GALES can be best used in combination edtth other. GALES
is more suited to the initial, experimental stages of cloeskarch when scientists are ex-
perimenting with new mathematical models, simulation paters and case studies. These
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can be quickly tested in GALES's interactive environmenhc®they have been finalized,
longer, higher-resolution simulations can be run off-lkimesupercomputers. Cloud Explorer
can then be used to study the final data in more detail.

1.3.4 Research Contributions

The research contributions in this system touch on a nunftaeas. From a high level per-
spective, this thesis presents a complete system, ingjymtimcessing and visualization, for
cloud visualization that has been motivated by the visaibn needs of atmospheric scien-
tists. The system has been a means to develop, integratexpadment with several visual-
ization techniques and interfaces. Many of its componemtsavel, represent improvements
over what is available in the literature or have been splgdiaigeted at atmospheric research.
These include feature detection and tracking for semiraatic cloud selection, data process-
ing and reprocessing for generating visualization dateyactive, GPU-accelerated particle
tracing for air motion analysis, and a VR visualization eomiment visualizing the data in.
Enhancements to the data handling include region-oféstextraction for feature-specific
data processing and multi-resolution particle tracingeyrélso include bounded-error vector
field compression to help overcome bottlenecks in moving éi@m storage to the GPU.
Enhancements to the visualization environment includegiratting the particle tracing and
incorporating 2D statistical graphs providing contextudbrmation. The Ul of the visual-
ization environment has also been designed for ease of uséoamorking both as a VR
application and a desktop application. This thesis alssgms the first GPU-accelerated
atmospheric LES, GALES, which provides direct visuali@atof running simulations.

1.4 Thesis Structure

The structure of this thesis parallels the logical progoessf the research presented. In
Chapter 2, the groundwork for Cloud Explorer is laid. Detegtand tracking the clouds in

the data is discussed and the initial visualization envirent for viewing the clouds is pre-

sented. Chapter 3 builds on Chapter 2. The processing stagtended to support generating
derived data from the simulation data. The visualizatiovirenment is updated to support
displaying the derived data. The Ul is improved and slicitanps are also introduced into
the environment. Chapter 4 addresses one of the major hetts in the visualization sys-

tem: getting data from disk to the video card. Vector comgimesis explored as an option

for reducing the size of isosurface geometry and velocity fimta on disk so that it can be
more efficiently sent to the GPU. In Chaptér 5, GPU-basedgtattacing is discussed. The

particle tracing is incorporated into Cloud Explorer andaststand-alone visualization ap-
plications as a means to interactively visualize the flowrid around the clouds. Chaptér 6
presents the final overview of the Cloud Explorer system awd ihwas used to answer cu-

mulus cloud research questions. Chapter 7 introduces GAtHeSGPU-based Atmospheric
Large-Eddy Simulation, which combines simulation and aimation. Chapter 8 concludes
the thesis and provides an overview of future directionsitbek can take.
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Feature Tracking in VR for Cumulus Cloud Life-Cycle Studies

This chapter was originally presented as a peer-reviewparp@6] at the Eurographics
Workshop on Virtual Environments in 2005.

Abstract

Feature tracking in large data sets is traditionally anlio#; batch processing operation
while virtual reality typically focuses on highly interagt tasks and applications. This paper
presents an approach that uses a combination of off-linergecessing and interactive visu-
alization in VR to simplify and speed up the identificationimieresting features for further
study. We couch the discussion in terms of our collaboratigearch on using virtual reality
for cumulus cloud life-cycle studies, where selectingatli clouds for study is simple for
the skilled observer but difficult to formalize. The prepessing involves identifying indi-
vidual clouds within the data set through a 4D connected corapt labeling algorithm, and
then saving isosurface, bounding box, and volume informnatilhis information is then in-
teractively visualized in our VR Cloud Explorer with var®tpols and information displays
to identify the most interesting clouds. In a small pilotdstureasonable performance, both
in the preprocessing phase and the visualization phaségessmeasured.

2.1 Introduction

Feature tracking and virtual reality often have conflictiequirements. Virtual reality must
be interactive to be effective and maintain a feeling of imstan. Feature tracking often re-

19



20 CHAPTER 2. FEATURE TRACKING IN VR

===
' Al
Large Eddy E> E> E> [ Ay Further
Simulation (S = B == Study
NN L ’ ’
Il
i Cloud I £ Interactive Visualization Visual Identification of
Raw Data ouc sosurtaces in Virtual Reality Interesting Clouds

and Other Data

Figure 2.1: Raw data is generated by the LES, which, in turn, is processetentify and track clouds in the data
and produce isosurfaces and other data for them. The closdrfages and other relevant data are visualized in our
virtual reality Cloud Explorer. A skilled user browses thgh the cloud field interactively and identifies interesting
clouds for further study.

quires reading and processing large, time-dependent detalsmited reading speeds from
storage generally mean that feature tracking cannot be idoreal-time. However, certain
types of features are relatively simple to track in softwdmet it is difficult to determine
which of those are actually interesting to researchers.utih €ases, visualization enables
scientists, whose backgrounds are in observational stuttieuse their perceptual skills to
select features worthy of further study. Traditional stfenvisualization, though, can be
awkward and unwieldy when dealing with 3D features and, rsoravhen those features are
also timedependent. VR, on the other hand, brings 3D dasaéife in three dimensions,
which evokes a stronger perceptual response. This, couptedhe more natural and di-
rect 3D interaction it provides, makes VR an attractive cador dealing with 3D data sets.
It is our claim that scientific visualization in virtual rélis the logical choice when aid-
ing scientists in identifying the most interesting, 3D, ¢imependent features to investigate
further.

This study arose out of our work on simulating cumulus clouibk Large-Eddy Simula-
tions, or LES, and using VR visualization to explore the lssurhe long term goals of this
collaborative project are to gain better insight into clalythamics through interactive explo-
ration in VR. One of the first hurdles to be overcome in thegubjthough, is the selection
of suitable clouds to study.

The size of the data sets and the nature of the clouds makalierbing to identify in-
teresting clouds. The clouds develop unpredictably overctiurse of a simulation run, and
it is common for pieces of clouds, or entire clouds, to meagether or split apart. These
factors make it difficult to even track individual cloudsdbgh the data set. However, for an
individual cloud to be interesting, it must satisfy certgimlitative criteria, such as being of
sufficient size, going through the proper life-cycle stadpesng a relatively cohesive, and not
merging with other clouds. These properties are difficulptid into a consistent and auto-
mated algorithm. The situation is further complicated btadzets that are several gigabytes,
and even up to 1 TB or more, in size. These difficulties aretfating for atmospheric sci-
entists because they are accustomed to selecting cloued ba®bservation. When they are
presented with the opportunity to observe the clouds evobee time, it is trivial for them to
identify the most interesting clouds.

Traditionally, cloud selection for research has been aglishred through the painstak-



2.2. BACKGROUND 21

ing efforts of atmospheric scientists. We have streamlithedprocess with a combination
of preprocessing and interactive visualization in virteeality. Individual clouds evolving
over time are identified and tracked in preprocessing thiaugD connected components
algorithm, and then isosurface, bounding box, and cloudmael data are generated. This
data is then visualized interactively in our Virtual RealEloud Explorer, which provides
various tools and information displays. Scientists usihgu@ Explorer are then able to se-
lect certain clouds for further study. Using the connectahgonents data, we are then able
to extract only those portions of the data containing theregting clouds. See Figure 2.1.
This data can then be used to study the cloud dynamics ovenotirse of the life-cycles by,
for example, generating mass flux plots or velocity profiléke authors have successfully
employed Cloud Explorer in a small pilot study to identifyaresting clouds, and reasonable
performance, both in preprocessing and in visualizatias,ieen measured.

The remainder of this paper is structured as follows. Thésestion provides an overview
of feature tracking, LES, and other attempts to visualineds$. The data preprocessing phase
is discussed in Section 2.3. Cloud Explorer is describeckti®n 2.4. Some results are pre-
sented in Sectidn 2.5, and the paper concludes with Section 2

2.2 Background

2.2.1 Feature Tracking

Feature extraction is an approach to visualizing very latg& sets. It entails detecting
structures or objects within the data that are of particirterest to scientists for a given
research task. The features and their properties can besmyed in a format that is both
suitable for interactive exploration and much more complagh the original data. In fact,
data reduction ratios of up to 4@r 10" can be achieved.

Feature tracking is the extension of feature extractiointe warying data sets. Applying
feature extraction to time varying data sets involves mbem tjust extracting the features
from each time step. The correspondence between featussaequent time steps must
also be determined. By tracking the features across tinps stiee temporal behavior of the
features can be studied. A further step can be the detedtiomportant changes in the life-
time of features. These changes, or so-called events, ce la@pearance or disappearance
of features, but they can also be the merging together dtisglapart of features.

Several approaches to feature tracking and event detdtdiom been published. Corre-
spondence between features can be determined by extrélotirfgatures directly from the
4D spatio-temporal domain [105] or by searching subsedfuemntes for corresponding fea-
tures. This can be done by looking at the spatial extentseofethtures [89] or by calculating
feature attributes and searching for the feature with thetramnilar attributes in the next
frame [79]. For a survey of techniques, see [76].
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2.2.2 Large-Eddy Simulation

LES is a popular numerical tool in the atmospheric scienzgs/e insight into characteristics
of flows in the Atmospheric Boundary Layer, or ABL, where alystional methods, e.g.
by satellites, airplanes or radar, are limited because tleepot give access to the entire
3D flow field. In LES, the Navier-Stokes equations are solvpdaia certain scale. In
this way, the largest and most energetic flow circulatiomsdulies, are resolved, and the
influence of smaller eddies are approximated via a stadistiodel. This type of simulation
was developed during the sixties and seventies, e.g. [8Hplve turbulent flows for large
(kilometer sized) domains and time scales while still tgkiimto account the dissipation of
energy, which takes place at scales of motion arogiiimm) and is of vital importance
for the dynamics of the mean flow. Our simulations are peréattoy a parallelized version
of the code described by Cuijpers [17]. The data sets useedtidsl 2.5 are cases of the
Barbados Oceanographic and Meteorological EXperimentB®), which is documented
in [87].

To simulate a field of cumulus clouds, which are relativelyaralouds located in the
ABL, a typical domain size is .@ x 6.4 x 3.2km. The simulation keeps track of several
variables: three velocity components, temperature, diquater, and total moisture. These
are updated in the simulation by integrating between tirepsstepresenting 2 seconds of
real time. Using, for example, a grid size of 3lghd outputting every third simulation time
step, the data set produced for simulating 1 hour of real tiitlebe more than 500 GB.
Thus, the size of the dataset can be a disadvantage whermptittgrto investigate specific
features of the flow. This is especially true for exploring #volution of flow characteristics
in time since this requires both a suitable cloud in spacekandledge of its history. While
a thorough selection procedure can slim the dataset caabigiein many cases it is still
insufficient. In those cases, a 3D, interactive environnika®V/R can be an excellent way to
increase the amount of data that can be handled by a usehasdlso enable searches of
the dataset for criteria that can be most readily identifigtitoman perception.

2.2.3 Cloud Visualization

Many examples exist of cloud visualization. One early exan55]) describes techniques
for ray tracing volume density fields, resulting in fuzzyowt-like images. Later examples
are mainly concerned with clouds for application in animis$i or games, aiming at visual
realism using complex lighting models [80, 85], or high penfiance [42,104]. In our case,
we are mainly interested in the physical accuracy of thectkimulation, although visual

realism may be of some help to benefit from the observatioqm@rence of the atmospheric
researchers.
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Figure 2.2: This figure depicts the 26 neighboring cells of dell,ym,tp) in a three dimensional, i.e. two spatial
dimensions and one temporal dimension, binary array.

2.3 Data Preprocessing

The first phase of our approach is data preprocessing, whabapes the raw data for vi-
sualization in VR (Figure 2/1). This phase proceeds in twgomstages: feature tracking
and isosurface generation. For the purposes of this workiefez to clouds as features in
the data. We incorporate the usual feature detection steghe tracking phase because it
is straightforward in our case. In the tracking phase, iddial clouds in the data set are de-
tected, identified and tracked through time. We also recatd dbout the clouds during this
stage. Once the tracking is complete, we generate isossrfepresenting the cloud shape
for later visualization.

The cloud data sets that we worked with are three dimensigsiames for each time
step. The volumes are 128128 80 or 256x 256 160 grid cells in size. The volumes are
periodic in both thex andy directions. This means that clouds may “wrap around” thessid
as they move with the wind. For preprocessing, we are onlgeared with one of the scalar
gquantities generated by the LES: the quantity of liquid watehe air, which is centered at
each grid cell. A non-zero amount of liquid water indicatesré is visible cloud in the grid
cell, and we use this for cloud detection.

2.3.1 Cloud Tracking

Tracking clouds can be quite complex. Fortunately, atmegplscientists are not interested
in clouds that go through large-scale merging events. We sakvantage of this to greatly
simplify the tracking. We label all cloud masses that evenedan contact with each other as
a single cloud. During the later visualization process in, gBentists can quickly identify
and disregard any undesirable “clouds” that result fromtiplel collisions or subdivisions.
To accomplish the feature tracking, we employ a four dim@meivariety of the standard
connected components labeling algorithm. This type ofrélgm is commonly used in com-
puter vision. A general approach to connected componestitahis described in [24]. In
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such an algorithm, a binary array, of arbitrary dimensismexamined, and all array cells that
have a 1 value are assigned a label based on their neighlpasifi€ally, a cell will have the
same label as its neighbor cells, and no two distinct setsltf will have the same label. In
this way, neighboring cells with 1 values are “clusteredjetner. For the four dimensional
algorithm, we consider all 80 spatio-temporal neighborse Bigure 2.2 for a simplified il-
lustration. We construct the four dimensional binary amgyconsidering each successive
time step, and we assign a 1 value for each grid cell with azesn-amount of liquid water
and a 0 value otherwise. All cells in the binary array with ealue are considered part of a
cloud. Two grid cells that are part of cloudd, = (x1,y1,21,t1) andv2 = (X, 2, 2, t2) with

t; andt, representing time steps, are said to be neighbors, and énusfithe same cloud, if:

max(|xy — Xz, [y1 — ¥z|, |z — 22|, [ts — t2]) < 1.

The one caveat we must consider is thatxtendy axes are periodic, whereas thandt
axes are not.

The 4D connected component labeling is attractive for sd¢veasons. It will work in
almost all cases, except for some small and uninterestigls| because of the slow cloud
development and significant overlap between frames. liefudg handles merging and split-
ting of clouds. This has the added advantage that it lump lgroups of merging clouds
together, which allows them to be more readily ignored. ttamputationally inexpensive,
and it makes identifying corresponding features in adjatise steps trivial. Furthermore, it
offers fine-grained tracking, which other approaches likgpte bounding box overlap may
lack.

While creating the connected components, we also keep tfaather data. We record
the cloud volume by totaling the number of grid cells eacludloccupies in each time step.
Additionally, we keep track of the bounding boxes for eacht p& a cloud in each time
step. In a brief post processing step, these bounding bogesniarged for aesthetic reasons,
and overlapping boxes are merged. These bounding boxesedanisosurfacing and later
visualization.

2.3.2 Isosurface Creation

Isosurface creation is a pipeline process. First, we pesiber data, and then we generate the
initial isosurfaces with the marching cubes algorithm [68]e refine the resulting triangle
meshes with a series of filters, and finally we convert the eefimeshes to triangle strips.
We must take some care in this process, however. We want [ptReesize of the isosurface
data as small as possible to ease the burden on Cloud ExXpliotteractivity, and we would
like the clouds to have a more cloud-like appearance. Aaftifly, the triangle stripping
algorithm we use requires manifold triangle meshes as input

Creating the initial isosurfaces is fairly straightfondaFirst, an empty volume is created
that is twice the size of the data volume in both #hendy directions. Next, the data for a
particular time step is selectively placed into this empijume. This is necessary for creat-
ing “complete,” i.e. manifold, isosurfaces of clouds wheleuds wrap around the periodic
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Figure 2.3: If the data for a time step is selectively placed into a largdnme in the fashion shown, each cloud will
only appear in the volume once, and that one instance will beréfoha object.

Figure 2.4: The centroid of the triangle lies within a cube where eacmeoof the cube is a grid cell. The black
corner belongs to cloud 5 while the white corners do not lgetorany cloud. Therefore, the triangle is part of cloud
5.

boundaries. By considering which cloud each grid cell bgéoto and what the bounding
boxes of that cloud are, it is possible to place the data fetr gme complete copy of each
cloud into the volume. See Figure 2.3. Marching cubes camlteeapplied to this volume to
generate triangle meshes representing the cloud shape.

After isosurfacing, the triangles are prepared for evdrgtaage and visualization. The
first step is to separate the triangles into sets of meshessgqting the individual clouds. By
performing a look up into the connected components datdé&céntroid of each triangle, all
the triangles can be separated into appropriate sets. §aeF.4. This produces a collection
of sets of triangular meshes where each mesh representseagdia cloud and each set of
meshes represents a single cloud. Next, we perform thraatapes on the triangle meshes.
These are, in order of application, a windowed-sinc filtesrtwooth the mesh, a decimation
pass to reduce the number of triangles in the mesh, and a@gssnérate smooth normals
for the mesh and improve its appearance. See Figure 2.5daesults of this.

The last step before storing the meshes is to convert theratmte strips to reduce the
size of the stored data. We use a variation of the strippiggrahm presented by Gopi and
Eppstein [30]. Their algorithm produces a single triandt@sf given a manifold triangle
mesh as input, but it introduces new mesh vertices to do seciud meshes are manifold,
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Figure 2.5: The top row illustrates the triangle mesh while the bottom stmws the corresponding shaded model.
From left to right: raw output from marching cubes, after gpm a windowed-sinc filter, after decimating the mesh,
and after generating smooth normals.

but we do not insert new vertices so we end up with multipbgie strips. It is important to
note, though, that the resulting triangle strips are jugisbf adjacent triangles, and actually
consist of alternating sequences of triangle fans anddigastrips (Figure 2J6). We keep
track of when the strips alternate between fans and stripsagave are able to recreate the
surface later with consistent winding.

2.4 Virtual Reality Cloud Explorer

The second phase of our approach is interactive visualizaiVR. Our VR Cloud Explorer
application allows users to interact with evolving cumutisuds produced by LES. The in-
terface provides tools to allow users to focus on potentiateresting clouds. By examining
these clouds more closely within Cloud Explorer, they cask miut certain ones to study
further, e.g. for life-cycle studies. The application wasltbon top of OpenGL Performer
and the RWB library, which is a custom VR library described58][ In the remainder of
this section, we present a sample scenario for using CloptbEet, and then we describe the
components and relevant interactions in more detail.

2.4.1 Interaction Scenario

The user begins her interactions with Cloud Explorer oneevibualization data is loaded
and the application is running. She first watches the clodd di¢er the entire simulation run
(Figure 2.7a). This gives her a feel for the clouds that aesgmt, and she can quickly tell if
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Figure 2.6: A strip generated by Gopi and Eppstein’s algorithm [30] begis a triangle strip, and then alternates
between triangle fans and triangle strips. Triangle farsraticated with gray triangles.

anything went wrong with the simulation run. If the cloudsigereasonable, she proceeds to
hide all clouds not going through the entire life-cycle asythre not of interest (Figure 2.7b).
She continues to browse through time to spot potentiallgr@dting clouds among those
remaining visible. She selects one of those clouds to examhia plot of its volume over
time (Figure 2.7c, Section 2.4.2). This gives her an ove@ndéhow the cloud evolves. She
is looking for clouds with bellshaped volume plots, whiclizates that they go through the
proper life-cycle stages. If it is acceptable, she limits time playback to the cloud’s life-
cycle so she can focus on the time steps from just before thuiel lomes into existence to just
after it dies out (Figure 2.7d). Next, she hides all cloudsegt the cloud she is examining
(Figure| 2.7e). She then lets the application play throughdloud's life-cycle while she
orients the cloud field and examines it from various perspest(Figurd 2.7f). If she is
satisfied that the cloud is worthy of further study, she nthhesnumber of the cloud down.
Once she is done looking at a cloud, she shows all the cloudg gmough the complete life-
cycle again, and she examines any other potentially initageslouds in a similar manner.
When she is finished with the application, she uses the nurobére clouds she has written
down, along with the connected components data, to exuatthe portions of the data set
that contain the interesting clouds. She can then perforinugpostprocessing steps on this
data to further analyze the clouds, and she can also gemeoagedetailed simulation results
focusing on these particular clouds.

2.4.2 Application Components and Interaction

Cloud Explorer provides users with three interaction téghes: ray casting, direct manipu-
lation, and world-in-miniature, or WIM. Ray casting and direnanipulation are used inter-
changeably for object selection and manipulation. Theuwdefateraction is ray casting, but
if the tip of the interaction device, a stylus in our case, ithim an object, then we switch to
direct manipulation. Currently, we only use WIM as a methatbigenting the cloud field.
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Figure 2.7: Cloud Explorer in various stages of use. See also Figureri®action 2.4.2 for more details.
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Figure 2.8: Cloud Explorer components: a) cloud field, b) volume graph, dyWi) buttons, and e) time control
panel.
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The user’s primary view on the data is the cloud field. Thitieslarge box (Figure 2.8a),
which displays the cloud geometries. In the default modeh &toud appears in the cloud
field in a distinct color. Above each cloud, a unique, ideti§ number is displayed for
collaboration between multiple users and use in post psitgs If the user has selected a
particular cloud in the cloud field, that cloud will be dispéal within its bounding box. The
user also has the ability to hide certain clouds in the cloeld fivith the provided buttons
(Figurel 2.8d). In particular, he may choose to hide all cioowthich do not go through the
entire life-cycle or all clouds except the currently sedeitloud. If he chooses to only display
the selected cloud, then that cloud’s bounding box and ifyémg number will be hidden.

The user’s secondary view on the data is the volume grapls. gdniel displays two plots
of the currently selected cloud’s volume over time (Figu&b2. One is relative to the cloud’s
maximum volume, and the other is relative to the largestdimaximum volume. The plots
give users an estimate of the currently selected cloudiivel size and behavior over time.
When the user selects a new cloud, the plots are updated, andetttifying number of the
selected cloud is displayed above the plots. To assist e tiie volume graph has several
indicators. One indicates where along the time axis theeotiime step lies. Two others
mark the cloud’s birth and death. The final two indicate whiche span the playback is
currently limited to.

For additional perspective and control, the user is praVvidéh the world-in-miniature,
or WIM (Figure| 2.8c). The WIM and the cloud field maintain the saonientation, making
the WIM a convenient tool for reorienting the cloud field. Hwee the WIM also plays a
minor informational role since it always displays all thewds in the current time step and
indicates the selected cloud with its bounding box. In addljtthe positive directions in each
of the x, y, and z directions are indicated in the WIM to serva asference point should the
user become disoriented. If the user finds the WIM unhelpfelishable to remove it from
view.

The time control panel gives the user control over the tinmeedision. It consists of two
scroll bars and several video player-like buttons (FiguBeR The top scroll bar controls
the frequency at which new time steps are displayed, andutierts control the time step
sequence. The lower scroll bar gives the user more intgeactintrol over which time steps
are displayed. He can move the slider around to rapidly beaWwsough time or jump to a
time of interest. He can also limit the range of time steps the playback cycles through.
Whenever the slider or the limits are moved on this scroll ther,corresponding indicators
on the volume graph are also updated. In this way, the usarsma combination of the time
control panel, the volume graph, and the cloud field to exptbe evolution of the clouds
over time.

Cloud Explorer provides a set of button widgets for extracfionality (Figure 2.8d). The
buttons provide tools to change the current mode of operéioCloud Explorer rather than
methods to directly interact with the data. With these, habite to zoom in or out on the
cloud field, cycle through the clouds in the data set, andraéte which clouds are visible
in the cloud field.
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Grid SizexTime Steps g Size  Total Size
A (128x 128x 80) x 600 1.46 GB 8.76 GB
B (128x128x80)x1184 2.89GB 17.34GB
C (256x 256x 160)x2169 42.36 GB 254.16 GB

Table 2.1: Three data sets consisting of three dimensional grids fdn gawe step for each of six variables. For

preprocessing, we are only interested the varigplewhich indicates liquid water. 600 time steps represent one
hour of real time, with one time step every 6 seconds.

CPUTime Peak Mem. Usage Avg. Mem. Usage
A 9m 44s 203 MB 156 MB
B 31m 24s 278 MB 223 MB
C 11h38m22s 2557 MB 1836 MB
A* 2m 49s 163 MB 117 MB
B* 6m 59s 238 MB 189 MB
Cc* 2h 04m 58s 1600 MB 1011 MB

Table 2.2: Processing time and memory usage for the three data sets. Wa dgati3.60 GHz Pentium Xeon Linux
machine with hyperthreading and 3 GB of RAM, and the data waedton a RAIDO system with read speeds up to
320 MB/s. 4 time steps were processed simultaneously. In trasss marked with a star, only clouds going through
the entire life-cycle were fully processed.

2.5 Results

2.5.1 Preprocessing

We implemented the preprocessing phase as a multi-threatiadi-alone application. The
application is crossplatform, running on both Linux and Wiws. We used three data sets
(described in Table 2.1) to measure the application’s perdmce in three key areas: overall
processing time, memory usage, and data reduction.

For each data set, we produced two sets of output. In all casefirst identified and

Number Output Data Compression
of Triangles Size Ration (vsy)

A 11,731,822 165 MB 54:1 (9:1)
B 33,468,700 468 MB 36:1 (6:1)
C 517,110,152 6.9GB 36:1 (6:1)
A* 2,493,716 39MB 228:1 (38:1)
B* 6,456,066 99MB 180:1 (30:1)
C* 46,824,994 679MB 384:1 (64:1)

Table 2.3: The number of triangles, total output data size, and thetiegudompression ratios when compared with

the total input data set size and just tjesize. In those cases marked with a star, only clouds goingigirthe
entire lifecycle were fully processed.
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tracked all clouds in the data set via the connected compdaleeling algorithm. We then
used the data collected in this stage to filter some cloudefdahe subsequent processing. In
both sets, we eliminated all clouds having an average voloinkess than ten grid cells per
time step. In the second set of output, we also eliminatedailids that did not go through
the full life-cycle, i.e. those clouds present in the firstamt time step. Table 2.2 relates the
processing time and memory usage required for the premingesTable 2.3 gives a sense of
the content and size of the resulting data, as well as the @ssion ratios.

Eliminating clouds that did not go through the entire lifeleyyielded significantly smaller
output, which is also reflected in the shorter processing tiequired. This is because each
data set has one or two “super clouds”, which do not go thrdabhghentire life-cycle and
are present throughout most or all of the time steps. Theselslconsist of several clouds
that continuously merge and split. Removing them meansrfétaangles are generated in
isosurfaces, which in turn means less mesh refinement iss&ge

2.5.2 Cloud Explorer

To test the effectiveness of Cloud Explorer, we performedrple pilot study on our Re-
sponsive Workbench (Figure 2.9) using data set C from TafileQurrently, Cloud Explorer
loads all of the visualization data into memory for perfono@areasons. This did not fit into
memory so we, instead, confirmed the suitability of the datébg examining a handful of
time steps of the full output, and then we worked with the atigontaining only clouds going
through the entire life-cycle. Aside from these minor diffieces, our VR session proceeded
similarly to Section 2.4J1 During the session, we expesgrftame rates between 20 and 30
FPS.

Using Cloud Explorer, we identified seven clouds of particiriterest. We then extracted
the relevant parts of the data set. Using this per cloud degagenerated mass flux plots
indicating the motion trends within the clouds over thetycles. See Figure 2.10 for one
of the plots. The resulting plots were quite consistent, ti@y demonstrated interesting
profiles when the clouds were decaying. We feel that the stersty in the graphs is a good
preliminary indicator that our approach is successful.

2.6 Conclusions and Future Work

Cumulus cloud simulations generate very large, timevaryiata sets of up to hundreds of
gigabytes.We showed how feature tracking and VR can help#d dith such large data
sets and how it can help scientists to interactively selectgclouds for further study, e.g.
life-cycle studies.

The interactive selection is performed by first preprocessihe data and then interac-
tively visualizing the results. Through the efficient regeetation of the clouds as isosur-
faces, sufficient data reduction is achieved to allow therattive VR visualization as done
in our Cloud Explorer application. VR has proved to be a vealpable tool for interactive
exploration, allowing theoretical and observational ¢desations to be combined.
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Figure 2.9: Playback of a recorded session on the Responsive Workbench.

33
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Figure 2.10: A mass flux plot for a cloud selected with Cloud Explorer. Rasftux (right of the zero line) indicates
the cloud mass is moving upwards at that altitude. The clouthbég decay at approximatefy= 32 minutes. After
this point, the cloud is no longer being fed by a thermal, anllifts upwards and dies out. Interestingly, the profile
retains most of its shape until the final minutes.
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Having made their selections, the scientists extract tlevaat parts of the data. They
can then perform more detailed analyses of, for example, flatterns and heat exchange
at every stage of a cloud’s life-cycle. This combination iofidation and VR visualization
techniques will allow these types of studies to be done fewntry first time.

This work is part of a larger project with many possible fetdirections. We hope to
further formalize and automate the cloud selection prodégsswvould also like to incorporate
documentation facilities and new visualization technijirdo Cloud Explorer. The aim of
these steps is to further enable the atmospheric scietdistske use of their observational
skills, though, rather than to eliminate them from the gipeel Additionally, we will need
to incorporate other large data handling facilities, susloat-of-core and multi-resolution
representations, to cope with the full magnitude of the data LES can produce.
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CHAPTER3

Quantitative Data Analysis in Virtual Environments through
Reprocessing

This chapter was originally published in the proceedingthef2007 conference for the Ad-
vanced School for Computing and Imaging [35]. The confeeepaper was an expanded
version of a peer-reviewed short paper [34] originally preed at the ACM Symposium on
Virtual Reality Software and Technology in 2006.

Abstract

This paper presents an approach to help speed up and uniéxpheration and analysis of
time-dependent, volumetric data sets by easily incorpayatew qualitative and quantitative
information into an exploratory virtual environment (VB)e new information is incorpo-

rated through one or more expedited offline “reprocessitgfis which compute properties
of objects extracted from the data. These objects and theepties are displayed in the ex-
ploratory VE. A case study involving atmospheric data isspreed to demonstrate the utility
of the method.

3.1 Introduction

Today, many researchers make use of complex simulationsalyze various phenomena.
These simulations often produce time-dependent datawkish are growing increasingly
large as more sophisticated simulation techniques andrfastnputing technology emerge.

37
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Figure 3.1: Left: The VE in use. Right: A closer view of the VE.

However, the time required to extract meaningful resultsnfthese simulations is also in-
creasing with the complexity and size of the simulation atitpirtual reality (VR) can help
scientists make sense out of such data sets, but most VRaseffar data visualization is de-
signed for specific problems and often lacks integration ihe larger data analysis process.

Due to the lack of adequate exploratory environments fa dats produced by such sim-
ulations, researchers must often spend a significant anodtimie moving between several
existing tools or devising new special purpose tools in otdenalyze and understand their
data. As the scientists investigate their data, they ofbemecup with yet more properties they
would like to examine. This can lead to using and developirenenore tools, which then
further slows the process down. By providing these scientigth a more unified process
consisting of a set of flexible tools that are coupled withitafile environment for exploring
these large, time-dependent data sets, it is hoped thadtibeof time the scientists spend on
exploration and analysis versus tool selection and dewsdop can be significantly increased.

This paper proposes an approach to help speed up and unéynéhesis and exploration
of large, time-dependent data sets. This is accomplistredgh the combination of an ex-
ploratory virtual environment (VE) and a data processimg. tbhe VE provides standard ma-
nipulation and data probing tools for exploring the 3D, rvaltiate data, and it incorporates
quantitative and qualitative information generated bydhéa processing tool (Figure 3.1).
The data processing tool generates this information byguaisimple expression parsing
grammar to perform a variety of computations on the datathEamore, the same data pro-
cessing tool can be reused during an arbitrary number ofémgssing” steps to generate
new output data for inclusion in the VE. Currently this takéesce offline after examining the
data in the VE, but we plan to incorporate it as an interactizal-time component of the VE
in the future.

The work presented in this paper stems from our cumulus cteadarch project. As
the work evolved, we closely followed the analysis cycleadéed by Upson et al. [101]
(Figure 3.2). Later in the paper, we describe the iteratiwasvent through, and we relate
how the combination of the exploratory VE and the data prsiogstool we have developed
support the steps we took.

The remainder of this paper is organized as follows. We dscelated work in the next
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Figure 3.2: The analysis cycle as described by Upson et al. in [101]. Sitimr data is filtered to produce data
for visualization, which is then mapped to geometric primgiv€hese primitives are rendered and studied yielding
insight, which can be used to initiate a new round of filtering

secion. In Section 3.3, we give a general overview of ouraggh. In Section 3.4, we present
our software system and the salient points in its evolutiomfour previously developed VE

exploration tool for life-cycle studies [36]. In Sectiorb3we describe how this work relates
to the atmospheric research in our cooperative project. Mielade the paper in Sectibn 3.6,
and we discuss our plans for creating a fully interactiveéespsfrom the current one.

3.2 Background and Related Work

In their presentation of the AVS software, Upson et al. [1dd3cribe the scientific data anal-
ysis process as largely a filter, map, render loop (Figurg @#2ich transforms the simulation
data into meaningful images that researchers can analyze Iobp gives scientists insight
into their data, which also helps drive further iteratiorighe loop. Researchers may also
generate plots, movies, or other visual representationsdmmunicating the insight they
have gained. This model, however, focuses mainly on thealiimtion software itself, and
it does not really consider the supplemental tasks, whiehséll an important part of the
process.

Springmeyer et al. [93] further characterized the scientifaita analysis process. He
breaks the process down into four components: analysingseptations of the data, per-
forming calculations, maneuvering through and in the datd,expressing the ideas gleaned
from the process. These components each encompass a wdtti@biks that researchers per-
form during the analysis process. Based on these tasksggests five functional require-
ments for software that is to support scientific data analyallow interactive, quantitative
exploration; assist in maintaining records of sessiong; thaterials from different stages of
a study; simplify navigation requirements; and providepsrpfor culling large data sets. We
have attempted to incorporate most of these into the saftwarhave developed.

A variety of exploratory data visualization environmentése Popular examples using
the network data flow architecture are AVS [101], OpenDXdmrdlly IBM Visual Data
Explorer) [64] and IRIS Explorer [27]. These environmentspédoy a modular, visual pro-
gramming approach to allow users to piece together a vimatan pipeline that generates
one or more views on their data. Another common approachhsitd a custom application
on top of libraries such as the Visualization ToolKit (VTK3[]. However, these environ-
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ments tend to be more geared towards image or film generatibarrthan the exploration
process itself. Interaction with the data can be clumsy duled limitations of the mouse and
keyboard interface, and it is often difficult to effectivéhtegrate multiple views on the data.

Much work has also been done on data visualization within $& [16, 19] for a variety
of examples. Still, as Johnson points outlin [52], effedyiwdsualizing time-varying, mul-
tivariate data remains a challenging and open problem. Gkaglesystems, and to a lesser
extent in VR, this is further complicated by a lack of effgetinteraction tools. Another
weakness Johnson points out in current systems is theirdgitkegration with the overall
problem solving environment. With our method, we are attimgpto address these chal-
lenges by bringing together data processing and the exptgrE and incorporating more
information into the VE.

In a process of 'selective visualization’, Van Walsum [108¢d expression parsing tech-
nigues to compute derived data from an original data fieldheased in defining Boolean
selection expressions for selecting important parts ofitita. Facilities for performing ma-
trix/vector operations, calculating gradients, and deieation of descriptive statistics were
included in this system. However, no facilities for diregpkoration of the derived data were
available. This issue was addressed by an approach catl&ddl derived spaces’ [46], in
which derived quantities could be calculated and also Visedhin user-defined 2D coordi-
nate spaces that were directly linked to the original dataur approach, a similar expression
parsing facility is used to calculate new data, but in ouedhs new data are imported in the
VE, so the full range of visualization and exploration teicjues is available to the user.

3.3 Method Overview

With our previous Cloud Explorer application [36], we suppd a research pipeline illus-
trated in Figuré 3.3a. This linear approach helps cull tha dat by allowing the scientists to
study only those portions of the data containing intergstibjects, but the narrow focus of
the preprocessing and the VE prevent the scientists fronirgafurther insight into the data.
Instead, they must continue to rely on their traditionakegsh software and methods.

Our newly proposed pipeline incorporates five steps:
Step 1 Simulation
Step 2 Data (re)processing
Step 3 Data visualization
Step 4 Repeat Steps 2 and 3 as needed
Step 5 Generate quantitative results.
The approach is reflected in Figure 3.3b. Aside from the geization away from clouds,
the most important change is the data “reprocessing” cytteduced into the process with
the optional jump from Step 4 to Step 2. With this, the new liigeclosely parallels the
analysis cycle described by Upson et al. [101] seen in Figute

The crux of the initial data processing phase is identifyimgortant objects in the data.
The lifespans and bounding boxes of these objects are datrand saved to disk. At the
researchers’ request, new copies of the raw data are cre@téaining only those portions of
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Figure 3.3: a) This pipeline represents the pipeline supported by ouiiraldCloud Explorer application [36])
This pipeline represents our newly proposed pipeline, lvfricorporates a “reprocessing” cycle.

the data set contained in each object’s bounding box. Thigceatly speed up later process-
ing of the data as, in our experience, objects often only pgasmall percentage of the total
data space and scientists are most interested in objecth@indnmmediate surroundings.

The data visualization is the most important step in the ottihe visualization process
gives the researchers insight into the data. This insighirtspire new lines of investigation
into the behavior and properties of the objects of interBgtintegrating quantitative infor-
mation about the objects into the environment, researatarscorrelate object properties
with their behavior in time, and they can test the validityttodir hypotheses by comparing
several objects during a session in the VE.

The data reprocessing step is the key new step in the metlhiglinfroduces a cycle into
the process, and it helps researchers spend more time irBhehile making the time spent
in the VE more productive. By making the data processingfterible enough, it can be used
to generate new quantitative data based on the objects itatfacand expressions supplied
by the scientists. Due to the initial data processing stap,reprocessing can proceed quite
quickly. The generated information can then be directlylghinto the virtual environment.

The last step of the process is the generation of commumiaaisults, in the form of
statistical data, plots, numbers, animations, or otheregmtations. The researchers must
transform what they have learned from the VE into a form, Wwidan effectively convey the
insight gained to other scientists or a wider audience. iPafibn or public demonstration
quality visual and numerical results often require preeisilexibility, and functionality be-
yond that which is sufficient for the exploration process.nétg this is currently left as a
post-processing step for the researchers to tackle witle mecialized tools. In the future,
however, we would like to incorporate more of this functilityanto the VE.
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<input>
<path>/data/simulation001</path>
<variable name=4l” file="gl.001" / >
<time steps=2000' />
<grid x="256' y=" 256" z="160' / >
</input>

Figure 3.4: This example snippet of the input section from a processiegifipation file describes the grid size, the
number of time steps, and the name and location on disk of oneatioubariable.

3.4 Software System

The software described in this paper can be seen as an extemsl generalization of our ini-
tial work on the Cloud Explorer application [36], and it isiatermediate step along the way
towards our goal of a fully interactive virtual environméat exploring and analysing large,
time-dependent, volumetric data sets. The expansion amerglezation of Cloud Explorer
involved three major steps: generalization of the premsiog, extension of the preprocess-
ing, and expansion of the Cloud Explorer environment.

3.4.1 Preprocessing Generalization

The Cloud Explorer software was specially designed for daomoapheric research project.
The result was successful, but it was not really applicableher data sets because it placed
some restrictions on the format and nature of the data.

In the new system we have developed, most of these restisctiave been eased or
eliminated. The data can now be periodic in any directiorit can be completely aperiodic.
The objects in the data are now identified by a user specifiegiold, and they no longer
need to have manifold surfaces. The data must still be sewedsequence afmajor grids,
but allowances are now made for file and time step headersaitets.

The data processing program loads and interprets a pragessecification file, which is
in extensible markup language (XML) [10] format. The spesifion file is broken into three
sections, which describe the input data (the simulatioa)d#ie desired output data, and any
necessary mappings from the input data to the output degard-B.4 illustrates an example
portion of the input section.

3.4.2 Preprocessing Extension

Our primary goal when developing this software was to be &biecorporate more quantita-
tive information in the VE. However, it is difficult to know iadvance what type of quantita-
tive information will be interesting to the research sdgst Therefore, the data processing
needed to be flexible enough to generate arbitrary quangéitdata from the data set. To
make the software practical to use and to facilitate exfitamawe required that it be possible
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to later generate new quantitative data from the data setl¥dewvanted it to be able to work
with multivariate data sets to take advantage of the fulyjeanf information generated by the
simulations.

The first and most basic extensions to the data processitigatpm are the production of
subvolumes extracted from the data and downsampled versfdhe data. The downsampled
versions of the data are for use with slicing tools, and theslumes, which each contain a
object and some of its surroundings, are used as a meansfedliag up data calculations in
two ways. First, the size of all the subvolumes for a paréictime step is often significantly
smaller than the size of the total grid, which means that titwalumes can be read in from
disk much more quickly. Secondly, the researchers are @fterested in the properties of
the objects themselves, or just around the objects, andftiteronly necessitates performing
calculations on the subvolumes for each object insteadeoéttire volume for a given time
step.

To support calculations based on the data set, we have irepketha small domain spe-
cific language (DSL). See [23] for an overview of DSLs. Thiedaage supports simple
mathematical expressions involving numbers, variabled,fanctions. Variables can be ei-
ther scalar or vector values or multidimensional matriceset of functions, in addition to
basic mathematical operations, has been included in thyiéaye to support various oper-
ations. These include summing and averaging data acroslsi@e®r a single dimension;
basic image processing functions like clustering, thrshg, and dilation / erosion opera-
tions; detecting maxima, minima and extents; and extrgaisubvolume. Operations like
gradients are not currently supported, but could be easilgrporated in future versions.

We then coupled this DSL with the generalized data procgsapplication. The user
writes expressions, which describe how to convert the idptd into a meaningful quantita-
tive result. These are included in processing specificdiienThe user specifies which input
variables are required for the expressions, how they shmeilotepared, e.g. limit the calcu-
lation to the object itself or also include the surroundiodume, and what output should be
saved from the evaluation of the expressions. The data gsogeapplication then evaluates
the expressions on the relevant (appropriately prepasejat grids for each object in each
time step and saves the results to disk.

Currently, the data processing program can generate tvas tgpquantitative data. The
first is simply one scalar value for each object for each titep,swhich allows traditional
plots of object properties as a function of time. The secagralvector value for each object
for each time step. The intention with the vector values igaperate a scalar value for each
voxel plane along a coordinate axis in the subvolumes (Ei@us). Taking the example of
thez axis, an image can be generated where the pixel coordiregtessent time and vertical
height in the (sub)volume and the pixel color or intensityresents the value for that voxel
plane at that point in time. Figure 3.8 illustrates sasfector images.

Consider the following set of expressions follows:

bin.grid = bin(grid)

volume sum(bin_grid)

gl_vec sumdim(sumdim(grid, 0), 0) /
sumdim(sumdim(bin_grid, 0), 0)
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Figure 3.5: An illustration of a vector value. Here, each value in theteecepresents the sum of all values in the
corresponding-y voxel plane.

Figure 3.6: Left: The old Cloud Explorer interface. Right: The new apation interface. New additions include
the use of windows, the slicing plane, and the new graph windo

Here,grid is the input subvolume, which has had all voxels not beloggirthe object in
guestion set to 0. Thiein function converts all non-zero voxels to a 1, and sben function
adds up the values of all voxels in the grid. Thuslumeis set equal to the object volume,
in terms of voxel units. Theumdim function reduces the dimensionality of the data by
summing all values along the specified dimension. In thigcte effect is to segl_vec
equal to the average liquid water value at each height inthedume. See Figure 3.8 for an
example of the result.

The final extension was the inclusion of the “reprocessitgilitg. This allows the pro-
cessing description file to be updated with new sets of exjfmes. If the data processing
program is then run again, any new output results are add#tetexisting output without
having to recompute all prior calculations. This lets thestists quickly see new quantitative
information in the VE.

3.4.3 Cloud Explorer Expansion

The last part of the generalization and expansion procesdavapdate the Cloud Explorer
application itself. For this we updated the user interfasguded new data probing tools, and
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Figure 3.7: An illustration of the graph window.

we expanded the capabilities for displaying graphs and 2ayes for selected objects. We
also incorporated the IntenSelect interaction metaphortime environment to make selec-
tion and manipulation tasks easier, especially with smalbets. See [37] for a description
of the interface widgets and the IntenSelect interactiotapteor. Figuré 3.6 illustrates the
difference between the old interface and the new interface.

One revision worth describing in detail here is the new gnaptdow. For each selected
cloud, up to five, a graph window is displayed with informatimbout that cloud. See Fig-
urel 3.7 for an illustration of the window and Figufes 3.6 ar@bJor examples of the actual
windows. The window has a caption, displaying the numbehefdoud it is showing data
for. This can also be used to move the window around. Nexte¢a#ption are either one or
two buttons, denoted by up or down wedges, used for addingneoving plot display areas
to the window. Next to these buttons are buttons for puttigwindow into windowshade
mode and hiding the window. In the lower right corner is argjavidget, which can be used
to resize the window. The main area of the window is divided ome or more plot display
areas. For each plot display area, there is the actual gliapda, which displays one or more
user selected plots. This allows users to overlay varioats b check for correlations or
other interesting properties. Below the display area igallduar representing time. This in-
cludes sliders to adjust the time limits for playback as wslthe currently visible time step.
Rectangles over the display area highlight those sectibtiseoplots represented by each
of the three sliders. To the left of the scroll bar is a buttwhjch opens the plot selection
window. This window allows the user to choose which plotsigpldy in each plot area.

With the new interface, scientists can spend more time usiag/E. They are able to
view quantitative information about several clouds at dneet This helps them compare
the properties of objects in the data and ascertain whatderfal”. With the addition of
the slicing plane, they can also check the behavior of sitimmavariables in and around the
objects. This can be used to confirm hypotheses or develogimesvof inquiry. If the data
processing application is run again to add new quantitaiite, then this will be incorporated
into the VE the next time it is run.
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3.5 Case Study

In this section, we present as a case study the evolutionratsaarch into shallow cumulus
cloud life-cycles. We relate how the actual steps taken @pparted by our method and the
software system we have developed.

3.5.1 Overview

Our research involves the use of a Large-Eddy SimulatiorsjLd the Atmospheric Bound-
ary Layer (ABL) containing shallow cumulus clouds. LES israation method where the
ruling Navier-Stokes equations are solved up to a certaileswhile the influence of smaller
scale (turbulent) motion is approximatied via a statisticadel. This way a field of clouds in

a 6.4kmx 6.4kmx 3.2kmvolume can be resolved in time with a resolution of 2586x 160
gridpoints and a timestep o62vithout the need to resolve eddies smaller than the grid size
(20mdown to the smallest turbulent scalest@flmm)). The simulations are performed with

a parallelized version of the code described by [17]; theifipesimulated case is based on
the Barbados Oceanographic and Meteorological EXperifBDMEX), see|[87].

During the simulation run, every third time step (eves/od simulation time) is written
to disk. Each time step consists of temperature, the amdwmter (both in gaseous and in
liquid phase), buoyancy, and 3 velocity components for eaichpoint in the domain. Each
value is recorded as an unsigned, 16 bit integer yielding siaes of 20 MB per time step per
variable. For one hour of simulation time, this results io@thl2 GB of data per variable.
The average life-cycle of a cloud lasts 30 minutes.

3.5.2 Data Preprocessing and Observation

The first step in the research process was to identify inieageslouds for further study,
which was the focus of our previous work. See [36] and [48]datetailed overview. In
short, the cloud isosurfaces were extracted from the dimtag avith volume information and
their bounding boxes. This information was interactiveisualized in the Cloud Explorer
application. The VR environment enabled the visual idaratfon of 40 interesting clouds
for further study. At first sight, it may be unclear as to why W$Ruseful in this task, but the
utility stems from the rather qualitative criteria definiimgeresting clouds and the ability of
human perception to single them out. See Figure 3.1 for ampbesof the VE in use.

Since our new software is based on the extension and gezadiati of our previous soft-
ware, this phase of the process continues to be supportedt, @mes not differ substantially
from its previous form.

3.5.3 Study and Exploration

The next step after identifying interesting clouds was &tsttudying them. The study and
exploration phase proceeded iteratively, with each newyaisanspiring the next one.
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Figure 3.8: a)Horizontally integrated liquid water vs. height and time.isTplot was generated via a special tool.

Darker areas indicate a higher concentration of liquid wakach point represents the average amount of liquid
water at a given height in the cloud at a particular time st8pAn equivalent plot generated by our new software
and displayed within the VE.

The examination of the individual clouds began by lookingiatple properties, such as
how the base and top of the cloud moved up and down in time. &balts of this were
interesting, but these just served as indicators of intieiggdehavior. They did not yield
information about the cause of the behavior.

To try to understand the cause, we examined the amount dflligater in the clouds
because of its influential role in cloud dynamics. The firstlgsis step here was to plot the
horizontally integrated amount of liquid water as a functad height and time. Surprisingly,
the liquid water seemed to be concentrated in pulses thatwitk time (Figure 3.8).

Continuing the investigation into these pulses, we regktite analysis again, but with
buoyancy instead of liquid water. The same behavior was setrese plots. By then ex-
amining the total water in and around the clouds, we dis@mVer correlation between an
increase in the amount of water underneath the clouds arehtet of the pulses.

At each step of the process, we performed the same analysest gust one cloud, but
several clouds. This enabled us to check whether the oltbsphenomena were generic or
specific to a particular cloud. It turned out that the obsiowa were consistent across the
clouds, suggesting that the pulses are a defining featuteeaouds.

This iterative advancement of ideas is at the core of ourgeeg system. The analytical
data generated at each step is something that our new sefsupports. The height of the
cloud base and cloud top are scalar values, represented byatkimum and minimum extent
of the object in a given time step, and these scalar valuebeaalculated and stored via the
data processing. The horizontal integration of liquid wated buoyancy can be achieved via
the vector calculatinos supported by the data processiigmirér3.8, illustrates the original
liquid water integration plots and the equivalent plotseyated by the data processing as
seen from within the VE. The slicing plane can be used to emarttie behavior of total
water in the cloud base. By looking at the integration ploliguiid water or buoyancy and
using the slicing plane simultaneously, the build up of iibwater preceding the appearance
of the pulses in the clouds can be verified.
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3.6 Conclusions and Future Work

In this paper we have presented an approach geared towapilsghecientists working with
large, time-dependent data sets reach results more swiftyapproach depends on the idea
of “reprocessing” the data, and incorporating new quatitéainformation into a scientific
visualization virtual environment. This introduces a eyoito the data analysis pipeline,
which reduces the amount of time scientists must spendtsejear developing their own
analysis tools.

We have described the expansion and extension of our peegoitware to meet the
objectives of the proposed method. We restructured the ptatzessing to handle a wider
variety of data sets, and we incorporated a small domainfspEmguage of mathematical
expressions to generate quantitative data from the dada kestly, we updated the VE to
incorporate this new quantitative data, among other imgmoents. The inclusion of the
guantitative data is an important point since it allows tbgearch scientists to spend more
time working in the virtual environment, and it helps thent g@re out of the time spent in
the VE.

We presented a case study relating how our research intd tifeucycles progressed,
and we described how our new software supports each steg @irtitess. Out of the five
functional requirements for data analysis software suggelsy Springmeyer et al. in [93]
(allow interactive, quantitative exploration; assist imintaining records of sessions; link
materials from different stages of a study; simplify natiga requirements; and provide
support for culling large data sets), we now support, at slewed, all except assisting with
maintaining records of sessions.

In the future, there are three major directions in which weaulddike to go. First, we
would like to begin making regular use of the software in dieud studies, whereby we
hope to further refine and polish it. Secondly, we would ligecontinue working towards
the goal of making the “reprocessing” step a real-time &aldlito the virtual environment,
where new expressions can be entered at run time with theittsdmmediately visible. Fi-
nally, we would like to further enhance the environment kstuding such things as particle
tracing, object surface properties, more intelligentdadata handling capabilities, and ses-
sion recording capabilities. It is our hope that moving iagh directions will lead to a VE
with visualization and analysis facilities capable of soiping the performance of virtual
experiments, which will allow scientists to develope arat teew hypotheses within the VE.
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cHAPTERS

Fast Normal Vector Compression with Bounded Error

Abstract

We present two methods for lossy compression of normal v@ttoough quantization using
“base” polyhedra. The first revisits subdivision-basedmgization. The second uses fixed-
precision barycentric coordinates. For both, we provide fde)compression algorithms and
a rigorous upper bound on compression error. We discussffidmseof base polyhedra on
the error bound and suggest polyhedra derived from spheodearings. Finally, we present
compression and decompression results, and we compareabods to others from the
literature.

4.1 Introduction

Since Deering [22] introduced geometry compression in 18%&s been a popular research
topic. Much work in the field has focused on mesh simplifiagat@nnectivity compression,
and vertex position compression, but vertex attribute ardhal compression have received
less attention. However, most work dealing with normal coeapion lacks rigorous analysis.
Additionally, many techniques require reasonable amoohtsomputational resources for
decompression, which, when applied to large amounts of cesspd data, quickly becomes
a bottleneck.

We find compression necessary when visualizing time-degr@rithta due to the amount
of data that must be read from disk during interactive vigaéibn. However, little process-
ing time is available for decompression because visuaizatften involves a large amount

51
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Figure 4.1: Ray-traced images of the smoothed Phlegmatic Dragon with) @efi without (right) compressed
normals.

of interactive data processing, e.g. for volume renderingasticle tracing. Furthermore,
decompression techniques requiring contextual knowledgeindesirable since they hinder
GPU-based decompression and operating on subsets of the dat

Most existing normal compression techniques offer onlygetaased analysis of com-
pression error, if an analysis is provided. However, imagiaats introduced by errors in
normal directions are more visible in some areas than gthegsspecular highlights and re-
flections. Thus, image quality assessment is scene, antwéeer, dependent, and it makes
guantitative method comparisons difficult.

Here, we focus on compressing normal vectors, with the gdisunded error and fast
(de)compression. Oliveira and Buxton [71] expanded onxrased normal compression
using subdivided “base” polyhedra and measured the regudtror. We extend and formalize
these ideas, and we provide a method using barycentric icaded when higher precision
is necessary. We provide fast compression and decompmealgiorithms for both methods,
where GPU-based decompression is possible. Furthermerarenable to analytically derive
upper bounds on the error for both methods. Using 16 bits gepcessed normal, we are
able to achieve an upper bound on the angular error of leaXtb#@°, which presents almost
no visual difference when used for rendering (Figure 4.13se&l on our error analysis, we
suggest the use of new base polyhedra derived from sphedeatings([90].

The remainder of this paper is organized as follows. We discalated work in Sec-
tion/4.2. In Section 4.3, we give an overview of our methodsl, we cover the mathematical
underpinnings. We describe and analyze the methods inoBegti. In Section 4.5, we
present the results from our work. We conclude and discuasefwvork in Section 4.6.

4.2 Related Work

A major goal in geometry compression is overcoming transimisbottlenecks. Some work
targets the RAM/GPU bottleneck (e.g. [22, 15]). Other warkifses on network transmis-
sion (e.g.[99, 97, 100]). Peng et al. [74] and Gotsman eB&]} fjive overviews of several

techniques. A recent example from Purnomo et al. [78] gmastall vertex data based on
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an image quality metric. Here we primarily list work speafly describing methods for
guantizing normal vectors.

One alternative to quantization is entropy encoding. [32] [74] list several techniques.
Entropy encoding, however, requires contextual knowledgech makes it less desirable
when independent normal decompression is important, ssGPaJ-based implementations
or working with data subsets. We note, though, that throagéfal quantization, it is possible
to combine quantization with entropy encoding, such as 3251]. Thus, our techniques
could be combined with entropy encoding at the expense afrdpression speed.

Most normal quantization methods exploit the face symn@ftfgce-transitive polyhedra
to generate a “uniform” distribution of points on the unihspe. Deering [22] uses warped
spherical coordinates within the faces of a disdyakis dakdedron. Ahn et al. [3] generate
regularly spaced points on the unit cube. The MPEG-4 Blnanyat for Scenes (BIFS) [2],
also used in QSplat [82], generates non-linearly warpes sepoints on the unit cube.
MPEG-4 3D Mesh Compression (3DMC) [1] uses a method degtiilgeraubin et al. [98]
that uses representative points from the triangles of ase@ly subdivided unit octahedron.
Botsch et al./[9] also subdivide the unit octahedron, buy fhmject the result onto the unit
sphere and use the face normal normals as the represepizitite. Oliveira and Buxton [71]
further expanded on this idea by considering each of theRiasolids as “base” polyhedra.

Several alternatives to the polyhedral methods exist. @peoach is to use fixed pre-
cision spherical coordinates. Isenburg and Snoeyink [sfthet and quantize the smallest
two components of each normal vector. Another possibifitipiquantize normals using the
points generated by the HEALPix methodgi@ki et al. [31]), which divides the unit sphere
into regions of equal area.

One element lacking from these methods, however, is a rigoesror analysis of the
guantization. Deering [22] stated that compression ersbmuld be at most.01 radians
(0.573), to prevent visible artifacts, but he presented no analtgsiverify that his method
satisfied this criterion. Aside from image-based metrios,dnly error analysis we are aware
of since then is from Oliveira and Buxton [71]. They measuiteg errors resulting from
compressing normals from various models using quantizedals derived from subdividing
the Platonic solids. We are able to provide a rigorous uppent on the error resulting from
guantization based on our methods and based on optimaligation. Using these error
bounds, we have experimented with even more base polyhettaye have improved, often
significantly, on the error bounds from methods in the litere Based on our comparisons
with other methods, we found that our subdivision methotiésdnly method currently able
to satisfy Deering’s criterion at 16-bit precision.

4.3 Overview and Underpinnings

We propose two methods for compressing normal vectors giirquantization: a subdivision
method and a barycentric method. Both methods refine coralghgdra with vertices on the
unit sphere by splitting each face into a set of similar gias and projecting the new vertices
onto the unit sphere (Figure 4.2, left). Quantization isdsdal on replacing normal vectors
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Figure 4.2: Left: An icosahedron “refined” by subdividing each face andigcting the new vertices onto the unit
sphere. Right: A dodecahedron and a dodecahedron tridaduig introducing a vertex at the center of each face.

with the “closest” vertex from a refined polyhedron. Any nimiangular polyhedral faces are
first triangulated by introducing a vertex at the face cddtroonnecting each of the face’s
vertices to this new vertex, and projecting the new vertebo dine unit sphere (Figufe 4.2,
right). For the method details, see Sections 4.4.2 and.4.4.3

4.3.1 Definitions and Notation

Here, we consideunit normal vectorsor normals and points on the unit sphere to be inter-
changeable. Boldface will be used to indicate when ppion the unit sphere is being treated
as normal vectop. In general, we will refer to a normal asand the quantization af asn*.

A polyhedron P = (F,V,E), has edgesk = {ey,...,&}, faces,F ={fy,..., f,}, and
vertices,V = {v1,...,Vm}. All vertices lie on the unit sphere, and each fatehas a face
normalny,. F(P) are the faces of polyhedrdh andV (P) are the vertices. Ariangulated
polyhedrorhas only triangular faces.

The shortest distance between two poinisand g, on the unit sphere is the angular
distance between them:

dist(p,q) = arccosp- Q). (4.1)

The errorg, between a normat, and its quantizatiom*, is the angular distance between
them:

€ =dist(n,n*) = arccogn-n*). 4.2)

4.3.2 Normal Quantization

A normal is quantized in two steps. First, given normmgland triangular faceds;, where

n intersects at least onke < F, one suchf € F must be selected. Thik is selected with
the FIND_FACE algorithm (Algorithm 1). This algorithm iterates thugh all faces irF and
chooses the first face that is intersectechbyf, due to numerical precision issues, no such
face is found, therf is chosen as the face whose normal is closest t8econd, the closest
vertex from that face ta is selected using the QUANTIZE algorithm (Algorithm 2). Fhi
algorithm compares the distance franto each of the vertices df in turn and chooses the
closest one tm. This closest vertex is the quantized nornmel, Thus, given a triangulated
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polyhedronp, n is quantized:

n* = QUANTIZE(FIND_FACE(F (P),n),n). (4.3)

Algorithm 1 FIND_FACE(F,n)
F — f1,..., fn {triangular facek, n «—normal vector
d«— —1,best—0
forall fieF do
Va, Vb, V¢ < vertices offj, counterclockwise
a <« (Ve X Vp), b (VaxVc), € (Vp X Va)
if (a-n)>0and(b-n)>0and(c-n)>0then
return fi {nintersectsf;}
else if(nf, -n) > d then
best— i, d < (n¢, -n) {n is close to face normay, }
end if
end for
return  fpest

Algorithm 2 QUANTIZE(f,n)

f « triangular facen «—normal vector

Va, Vb, V¢ < Vvertices off

if (va-n) > (vp-n)and (va-n) > (v¢-n) then
return v, {nis closest tosa}

else if(vp-n) > (vc-n) then
return vp {nis closest tos,}

else
return v {nis closest to/¢}

end if

4.3.3 Error Bound

We will now prove an upper bound on the error for quantizingvaignormal. We will show
that, if Equation 4.3 is used for quantization, then, givamoavex, triangulated polyhedron,
P, and a normalp, and its quantizatiom*:

dist(n,n*) < max({dist(vi,nf;)|vi € fj, fj e F(P)}).

That is, the maximum error between any normal and its quatittiz is at most the maximum
distance between a face’s normal and its vertices. Thusrtioe bound can be analytically
determined by examining each polyhedral face.
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Figure 4.3: Left: Spherical triangle and underlying planar triangleidifle: The face normal of the planar triangle
intersects triangle’s circumcenter and the sphericalgt&s circumcenter. Both triangles share the same circumcir-
cle. Right: The circumcircle defines a spherical cap.

( =D
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< N ‘

Figure 4.4: Left: Front and top view of a vertex from one face lying on tpberical cap defined by another face.
Right: Front and top view a vertex from one face lying outghieespherical cap defined by another face.

First, we observe that every face®fepresents a planar triangle and the spherical triangle
that is its projection onto the unit sphere (Figure 4.3 ldft¥nce, the faces & also represent
a set of spherical triangles covering the unit sphere.

Next, we note that the vertices, v, andv, of triangular facef;, lie on the unit sphere.
These three points define a circle on the unit sphere, whitleisircumcircle off; (Figure 4.3
middle) and its spherical triangle. This circumcircle atldines a spherical cap, which lies
“above” the plane defined b¥; (Figure[4.3 right). The line from the origin through the
circle’s center is normal to the plane in which the circles]igvhich is the plane defined by
fi. Thus, the normal vector df, ny, intersectsf; at its circumcentemy,, also intersects the
center of the spherical cap defined by the circle. Therefogds also the circumcenter for
the spherical triangle and so dist,va) = dist(n;, vp) = dist(ns, v¢).

To proceed, we introduce the following lemma.

Lemma 1. If triangulated polyhedron P is convex, théf € F(P), dist(ny,,vj) < dist(ny;, vk)
with vj € i, W ¢ fi, and \,vj € V(P).

Briefly, the lemma states that, for a convex, triangulatdgihmron, no vertex from one
face may lie on the interior of the spherical cap defined bytlmrdace. See Figure 4.4.

Proof. Given the triangulated polyhedroR, select facef; € F(P). Suppose that there is
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some vertexyy € V(P), with v ¢ f;, that is closer tay, than the vertices of;. Thereforey
lies on the interior of the spherical cap definedfbwnd is “above” the plane defined by
Thus, there must exist a line segment betwaegsgnd some vertex ofi such that some part of
the line segment passes “abovig” SinceP is convex, nothing insid® can be “above’f; so
some part of the line segment must pass through the extdriRrldowever, no line segment
connecting two vertices of a convex polyhedron may pasaugirats exterior. Therefore,
there can be no such vertexif P is convex. O

One result of this lemma is that the spherical trianguladiefined by convex, triangulated
polyhedronP is, in fact, a Delaunay triangulation of the unit sphere sino vertex from one
face lies on the interior of the circumcircle (spherical capanother face (see, for exam-
ple, [29]). Hence, the vertices &f are the “sites” of a spherical Voronoi diagram covering
the unit sphere, and the face normals are the Voronoi vetrtithis leads to an “ideal” error
bound and an error bound specific to our normal compressidhauds.

The ideal error bound deals with normals quantized by répdathem with the clos-
est vertices fronP, and the more specific error bound deals with normals guethtising
Equation 4.3. These bounds are equivalent, and we will salttal bound to compare our
methods to others from the literature. We will now use Lermafirst prove the ideal error
bound and then to prove the specific error bound.

Theorem 1. Given a convex, triangulated polyhedron, P, a normaknd the closest vertex,
v e V(P), ton, then:

dist(n,v*) < max({dist(vi,ns,)|vi € fj, fj € F(P)}). (4.4)

Essentially, this theorem states that, if a normal is quedtiby replacing it with the
closest vertex fronP, then the quantization error will be less than the maximustadice
between a triangular face vertex and the normal for that face

Proof. From Lemma 1P defines a spherical Voronoi diagram covering the unit sphenere
V(P) are the sites and the face normalshoéire the Voronoi vertices. Clearly, all Voronoi
cells from a spherical Voronoi diagram are bounded, andydonded Voronoi cells, the far-
thest points on a cell from the cell’s site are Voronoi versiof the cell. The Voronoi vertices
for the cell with vertexy € V(P), as its site are the face normatg, from all faces,f, € F (P),
with v e f. Thus, for any pointp, in that cell, we have: digp,v) < max({dist(ny,,V)|v € fi}).
Since, a given pointy, on the unit sphere, must lie on some Voronoi cell with sontéexe
v*eV(P), asits site, then we know that: distv*) < max({dist(vi,ny,)|vi € fj, f; e F(P)}).

O

We now prove the bound on guantization with Equation 4.3.

Theorem 2. Given a convex, triangulated polyhedron, P, a nornmaland its quantization,
n*, from by Equatioh 4.3, then:

dist(n,n*) < max({dist(vi,nf;)|vi € fj, fj e F(P)}). (4.5)
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Figure 4.5: Acute (left) and obtuse (right) triangles, with the perpenthr bisectors shown and copies of the
circumscribing circle placed at the vertices.

Here, the idea is that quantizing normals by replacing thetin tlie closest vertex from
the triangular face they intersect gives the same error db@snTheorerh 1, where normals
are replaced by the closest vertex frém

Proof. From Lemma 1P defines a spherical Voronoi diagram covering the unit sphrénere
V(P) are the sites and the face normal$aire the Voronoi vertices. We also know that each
face, fi € F(P), hasny, as the center of the circle/spherical cap circumscrilingAs the
circumcentemy, is coincident with the intersection of the perpendiculaebiors of the sides
of the spherical triangle defined Hy. These bisectors define three regions in the spherical
triangle, where all points from each region are closest ®toangle vertex and are at most
the radius of the spherical cap away from the that vertex.Fiped 4.5 for examples of the
planar case. The radius of the spherical cap is preciselglidtance betweeny and any
vertex of f;. Thus, the maximum distance that any point on the unit sptemebe from the
closest vertex of the spherical triangle that containssithe distance between the normal
of that face and any of its vertices. Sineds triangulated and convex and all normals are
guantized using Equation 4.3, the inequality in Thedremlgdso O

4.3.4 Quantization Optimality

Here, we will prove that, given a convex, triangulated pelgton,P, Equation 4.3 will opti-
mally quantize normal vecton, if P has only acute triangles. By optimal quantization, we
mean that* will be the closest vertex frorR to n.

Theorem 3. Given convex, triangulated polyhedron P, with all facestadtiangles, normal,
n, and its quantizationy*, from by Equation 4.3, then:

dist(n,n*) = min({dist(n,v;)|vi € V(P)}). (4.6)

Proof. From Lemma 1P defines a spherical Voronoi diagram covering the unit sphénere
V(P) are the sites and the face normal$aire the Voronoi vertices. We also know that, since
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\

Figure 4.6: Left: Spherical triangles defined by an icosahedron. Ridtite same spherical triangles with the
spherical Voronoi diagram illustrated.

the faces oP are acute triangles, the circumcenters of the faces lieimwitie faces them-
selves. Therefore, the circumcenters of the sphericaighes also lie within the spherical
triangles. Thus, each spherical triangle contains onendareertex, and the Voronoi edges
perpendicularly bisect the sides of the spherical triam@fégure 4.6). Each spherical trian-
gle lies in three Voronoi cells, the Voronoi sites of whicle #éne spherical triangle’s vertices.
Therefore, no point in spherical triangl&ABC, is closer to a vertex from another spherical
triangle than it is to one of the vertices 6fABC. Thus, quantizingy using Equation 4.3 will
result in the smallest possible distance betwaeandn. O

One property of this theorem is that Equation| 4.3 is rel&tivebust to numerical error.
The Voronoi cell for each vertex occupies a portion of allesjdal triangles containing that
vertex. Thus, even if a normal is near the edge of a spherieaigie and Algorithm 1 se-
lects the incorrect face, Algorithm 2 will likely select tieerrect vertex. The cases where
Algorithm|2 could select the incorrect polyhedron vertex #rose when the normal is near
a Voronoi edge. Since Voronoi edges are equidistant frononairsites, i.e. the polyhedron
vertices, then, in those situations, selecting the wromtexéas little effect on the quantiza-
tion error.

It is important to note that this theorem does not hold forvesntriangulated polyhedra
containing obtuse triangles. In such polyhedra, somegdhewill contain multiple Voronoi
vertices, and, therefore, some regions of those trianglés® closer to a vertices from
adjacent triangles. However, from Theoreéms 1 ahd 2, we kinay tvhile some normals
may be non-optimally quantized in such polyhedra, the ujyoeind on the error remains
the same. In order to preserve the optimality of the quatmizathough, we should use
polyhedra containing only acute triangles.

As an aside, existing subdivision methods [71, 9, 1] ardivelly susceptible to error. In
these methods, a normal is quantized by replacing it withpaesentative point from the
face it intersects. However, there is no guarantee thatraalas closer to the representative
point from that face than it is to those of neighboring fadeading to possible non-optimal
guantizations. This exacerbates potential errors fromrhect face selection.
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Figure 4.7: Octahedron refined using the subdivision method (left) ard#rycentric method (right).

4.3.5 Euler Characteristic
The Euler Characteristic for a polyhedron is defined as:
X=V—-E+F

whereX is the Euler Characteristic aM] E andF are respectively the numbers of vertices,
edges, and faces of the polyhedroh= 2 for the simply connected polyhedra we work with,
and, since we only work with triangulated polyhedra, we higuseful relation:

F

V=—4+2 4.7
-+ (4.7

4.4 Normal Compression

In this section, we provide the details over our two propasetnal compression methods:
the subdivision method and the barycentric method. See€#@.

4.4.1 Bit precision and efficiency

Bit precisionis the number of bits used to represent a compressed nomrlr Bpproaches,
all compressed normals from a given set are representedheittame bit precision.

For a given bit precisiorh, there are 2unique bit strings. Ideally, this would also mean
quantization methods would generafeudique normals. However, this is often not the case.
In general, for a given bit precision and quantization sabhempolyhedron generating more
unique normals will have a lower error bound than one geimgréwer unique normals (Ta-
ble 4.1). Therefore, it is desirable to seek out combinatiggnerating more unique normals.

4.4.2 Subdivision Method

The subdivision method generates a set of quantized nobwyakscursively subdividing the
faces of a triangulated polyhedron. At each subdivisioellewach polyhedral face is sub-
divided by introducing new vertices at the midpoints of faclges and projecting the new
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Figure 4.8: Triangular face (left) subdivided by introducing vertie@®dge midpoints (middle), which are projected
onto the unit sphere (right).

0101000

Figure 4.9: A normal quantized by recursively finding the face it intetseand then selecting the closest vertex
from the final face. The quantized normal is a normal table index

vertices onto the unit sphere. See Figuré 4.8. For a triategiipolyhedronby, polyhedra,
Pi, ..., Py, represent different levels of subdivision.

Before a set of normals can be compressed, the base polyh€dras first refined to
a certain subdivision leveR, and every vertex fronf; is assigned a unique 1D number.
This defines the normal table. Once the table is constructeials are quantized using
Algorithm[3. See Figure 4.9. If the base polyhedréy, and all refined polyhedrorf,
are convex, then the guarantee from Thedrem 3 will hold, hadbmpression process will
always find the closest polyhedron vertex for each normal.

Given a base polyhedroR,, and a level of subdivisiors, the number of unique quantized
normals generated by the subdivision methofV/ig)|. SincePs has(4°)|F (Py)| faces, we
can use Equation 4.7 to compute this:

S
V(Rs)| = w +2. (4.8)
However, the normal table can contain at mdsegtries at bit precisior). Therefore, we
must calculate the maximum subdivision levél,for Py such that]V (P,)| < 2° using the
following equation derived from Equation 4.8:

¢ = [log,(2°"* — 4) —loga|F (Po)|] (4.9)

Given M normal vectors and base polyhedr@prefined to subdivision level, decom-
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Algorithm 3 COMPRESSSUBDIVISION(P, n, ¢)

P — triangulated polyhedrofivertices have unique 1P
n «<—normal vector
¢ «— maximum level of subdivision
f — FIND_FACE(F (P),n)
fori=1.../do
fa, fo, fc, fq < subdivided faces of
f «— FIND_FACE({ fa, fp, fc, fa},n)
end for
v — QUANTIZE(f,n)
return v.id

pression and compression complexities are as follows. mpoession only requires a normal
table look-up, and thus 8(M). The normal table can be constructedif(4)|F (Py)|) time.
For large values dl and small values of and|F (Po)], this time is negligible. Compression
of the normals take®(M(|F (Ry)| + 4¢)) time.

The subdivision method offers two chief advantages. Fistompression is trivial, and
thus incurs almost no computational overhead. Second,caittful polyhedron selection, it
is able generate almost the maximum number of unique noymvaish generally results in
a lower error bound. The normal table must be kept in memanygeer, which is costly for
sufficiently large normal tables. Given that normal tablkex bit precisions are likely to be
multiples of 8 bits, then tables with indices above 16-béqision begin to be impractical.

4.4.3 Barycentric Method

The barycentric method is based on refining faces of a basetilated polyhedron by com-
puting fixed-precision barycentric coordinates. This didd the face into a set of similar
triangles, and the newly introduced vertices are then ptejeonto the unit sphere. See Fig-
urel 4.10. Unlike the subdivision method, the barycentrithoe is not recursive, and it does
not generate any intermediate polyhedra between the bageepoon, P, and the refined
polyhedronp;. In fact, P is never explicitly generated. Instead, faces fignare computed
as necessary.

The compressed normals are represented as bit stringstiogsif three integers (Fig-
urel 4.11). The first identifies the face from the base polytiedwvhich the quantized normal
intersects. The next two integers representutandv barycentric coordinates. Since the
barycentric coordinates, v andw sum to 1, there is no need to explicitly store The
compression algorithm is presented in Algorithm 4. If bdth base polyhedrot®, and the
refined polyhedron, are convex, then the guarantee from Thearem 3 will hold, thed
compression process will always find the closest polyhedestex for each normal vector.

The bit precision for the barycentric method is divided esw the face identifier and
the (equal precision) integerandv coordinates. A base polyhedrdn, with |F(P)| faces,
requires a minimum bit precision of et (P)| + 2. If uandv are eackc bits long, then the
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Algorithm 4 COMPRESSBARYCENTRIC(, n, p)

P — triangulated polyhedrofifaces have unique Ip
n —normal vector

p < barycentric coordinate bit precision

f «— FIND_FACE(F (P),n)

Va, Vb, V¢ < Vertices off

fi — intersection point betweemand f

d—2P—-1

u, v, W < barycentric coordinates ofifi f

if d—(luxd]+ |vxd|+ |wxd]) =2then
U — 100 vy o el gy o Led]
+d +d +d
vy L wy o Tl
|uxd]

uZ<_ vvz(_[vzid—‘!WZH%

else ifd — (|uxd| + [v+d|+ [wxd|) = 1 then

uxd vid wid
Ux‘—LZJ1VX<—LZJyWX<—[;]

Luédkvw— %Wy‘— %
e 8 vy v, 28
else
return f.id, uxd,vxd
end if
X — UxVa + VyVp -+ Wy V¢
Y — UyVa + WV +WyVe
Z < UVa + VaVp + WoVe
n* «— QUANTIZE({ﬁ,ﬁ,é},n)
if n* = x then
return f.id, uxxd, vy xd
else if i =y then
return f.id, uy+d, vy *d
else
return f.id, u,xd, v,*d
end if

Uy —

Uy —
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Figure 4.10: Triangular face (left) refined by introducing vertices atyantric coordinates of fixed-precision
(middle), which are projected onto the unit sphere (right).
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Figure 4.11: A normal quantized by finding the face it intersects and compguliarycentric coordinates. The
quantized normal is a face index and two fixed-precision doatds.

number of unique vertices iR can be computed with this equation:

(2—1)?|F(P)|
2

GivenM normal vectors and a base polyhedRyrdecompression and compression com-
plexities are as follows. Decompression requires a fade-lgm computing a weighted sum
of the vertices and normalizing the result. This requirasstant time, and thus decompres-
sion isO(M). Compression of the normals take$M|F (Fy)|) time since the face from the
base polyhedron containing the normal must be found befi@arycentric coordinates can
be computed.

The primary advantage of the barycentric method is its fasbthpression algorithm,
which does not require a large normal table. In comparisah thie subdivision method, the
barycentric method has two disadvantages. For an equiviaieprecision, the barycentric
method will generate fewer unique normals. This is not aiB@ant disadvantage though,
since, for higher bit precisions, it is impractical to keepaamal table in memory. Secondly,
the distribution of quantized normals generated by the dentyic method tends to distort
more in the center of the base polyhedron faces, whereasibgivision method produces
more homogeneous distributions. For smaller base polgmetiices, this tends to mean
that the subdivision method generates more even distimitivhich usually result in lower
maximum errors. See Figure 4.7.

V(R)| = +2 (4.10)
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4.4.4 Base Polyhedron Selection

Up to this point, we have not discussed the selection of a palybedron for these methods,
but this selection has a significant impact on the error boMitlile we are able to analyt-
ically determine the upper bound on the error for a given Ipetiron, different base poly-
hedra will result in different refined polyhedra, which whilave different upper bounds on
the quantization error. We examined a variety of base palsdht determine which offered
the lowest upper bound. We looked at the Platonic solidg] bgeDliveira and Buxton [71],
Archimedean solids, Catalan solids, and polyhedra gesebtat computing the convex hulls
of spherical coverings from Sloane et al. [90]. To compute ¢bnvex hulls, we used the
QHull software [7]. For all the polyhedra we considered, vigigulated any non-triangular
faces (Figure 4.2 right), and we projected all vertices d¢inéounit sphere.

We defined five criteria for a polyhedron to be consideredablétfor use with our meth-
ods.

1. The polyhedron must be convex.

2. The faces of the polyhedron must all be acute triangles.
3. The polyhedron must have 256 or fewer faces.

4. The polyhedron must remain convex when refined.

5. Faces of refined polyhedra must also be acute triangles.

In our experience, the fourth and fifth criteria are met if #mgles of the spherical triangles
defined by the base polyhedron faces are all less than or eg8&l. We have been able to
verify this numerically, but we have not yet been able to me\a formal proof.

From our set of polyhedra, these criteria ruled out sevdrtieCatalan solids and, no-
tably, the tetrahedron, which fails to satisfy criterion\e then tested the remaining poly-
hedra to see which yielded the lowest maximum compression at different bit precisions
for both methods. Results from the polyhedra in Figure 4ré2raTable 4.1. We found that
carefully chosen spherical coverings from Sloane et aldyadower maximum error in than
the Platonic, Archimedean, or Catalan solids in each ofdbe ¢ases.

Furthermore, we found that the better spherical coveringgte barycentric method
performed at least as well as some of the poorer polyhedna fine subdivision method for
equivalent bit precisions. The best spherical coveringftbe barycentric method with 24-
bit precision reduces the maximum error by an order of magdritover the best spherical
covering for the subdivision method at 16-bit precision.

45 Results

In this section, we present results related to our compyessid decompression algorithms.
First, we present details about the performance of our cesswn and decompression meth-
ods. Secondly, we compare our method to various methodstfrediterature.
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Subdivision Method
12-Bit Precision 16-Bit Precision

Polyhedron | F Y, IN| Emax IN| Emax
Cubg 24 14 3,074 254° 49,154 0636°
Octahedron 8 6 1,026 505° 16,386 127
Dodecahedrcoh 60 32 1,922 299 30,722 0747
Icosahedron 20 12 | 2,562 273 40,962 0684

Disdyakis Triacontahedron 120 62 | 3,842 2.3® 61,442 0.595
Rhombicuboctahedrén 80 42 | 2,562 324° 40,962 0811°

Spherical Covering 1 30 17 | 3,842 224 61,442 0561°
Spherical Covering 2 126 65 | 4,034 218 64,514 0546
Spherical Covering 3 64 34 | 2,050 294° 32,770 0735
Spherical Covering 4 256 130| 2,050 293 32,770 0733

Barycentric Method
16-Bit Precision 24-Bit Precision

Polyhedron F \Y IN| Emax IN| Emax

Cubg 24 14 | 11,534 135° 3,133,454 @®M82r
Octahedron 8 6 15,878 129 4,186,118 @792
Dodecahedrcon 60 32 | 28,832 0773 | 7,833,632 (D469
Icosahedron 20 12 | 9,612 141° | 2,611,212 @857

Disdyakis Triacontahedron 120 62 | 13,502 129° | 3,901,502 @761
Rhombicuboctahedrén 80 42 | 9,002 173 | 2,601,002 @0&

Spherical Covering 1 30 17 | 14,417 116° | 3,916,817 @703
Spherical Covering 2 126 65 | 14,177 110° | 4,096,577 @649
Spherical Covering 3 64 34 | 30,754 0759 | 8,355,874 (D461
Spherical Covering 4 256 130| 28,802 0764 | 8,323,202 (D450

Table 4.1: Base polyhedra (Figufre 4.12) with face (F) and and vertexc@ints. Unique normals$iN|, and error
upper boundgmax, are listed for each at 12 and 16-bit precisions (subdimigiethod) and at 16 and 24-bit precisions
(barycentric method). Polyhedra marked with an asterisk wé&rgulated for use with our methods. The best
polyhedra in each column are bolded.
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AL
DO

Figure 4.12: Ten (triangulated) base polyhedra. Top row, from left tditigCube, Octahedron, Dodecahedron,
Icosahedron, Disdyakis Triacontahedron. Bottom row, ftefnto right: Rhombicuboctahedron, Spherical Cover-
ings 1 through 4.

45.1 Performance

We tested the performance of our methods on six well-knowdetso For models lacking
normals, normals were generated using the PLY tools pravigethe Stanford 3D Scan-
ning Repository. Degenerate normals were ignored. We recorded the runiniregfor both
compression and decompression for the subdivision anaéaiifc models using a 3.0 GHz
Pentium 4 machine. In our timings, we only timed the perfarogaof compression and de-
compression on data resident in main memory, and we did ohtde the time necessary to
load the required data from disk. For each method, we redobd¢h the maximum error
found between a normal vector and the compressed normalgiguiantization and the aver-
age of all the errors. For the subdivision method, we useeSgai Covering 1 (Figure 4.12,
Table' 4.1) as the base polyhedron, and, for the barycentathad, we used Spherical Cov-
ering 3. We chose these coverings over 2 and 4 for performaasons. The error bounds
are only slightly higher, and, since the compression tinsestfese schemes are linear in the
number of faces in the base polyhedron, the compressiors taree lower with these base
polyhedra.

Table 4.2 lists the performance of our subdivision and bemyric methods on six well-
known models. In all cases, the maximum recorded error meedabelow the analytically
derived error upper bound, and the average recorded ermislightly more than half of
the maximum error. The compression and decompression fonélse barycentric method
follow a clear linear trend that increases with the numberasmal vectors. The compression
times for the subdivision method shows a non-linear trereltduthe overhead of explicitly
constructing the refined polyhedron from the base polyhedfor larger numbers of normal
vectors, though, the subdivision method proves to be faséerthe barycentric method.

The memory requirements for compression and decompreageamot listed in the table,

Lhttp://graphics.stanford.edu/data/3Dscanrep/
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16-Bit Precision Subdivision
Spherical Covering 1

Model | Normals tecom tdec max(€) meare)
Stanford Bunny 35,947 | 0.798 0.000 0.548 0.312
Armadillo 172,974 160s 0.001% 0557 0.312
Happy Buddha 543,652 | 343s 0s.0036 0556 0.312
Phlegmatic Dragon 703,018 3.53s 0.0046 0554 0.310°
David (2mm) 6,924,951| 303s 004> 0.560 0.31r°
Lucy 14,027,872| 60.8s 0.086s 0.556 0.31r°

24-Bit Precision Barycentric
Spherical Covering 3

Model | Normals | teom tdec maxe) mearne)
Stanford Bunny 35,947 | 0.180s 0.008 0.0458 0.0267
Armadillo 172,974| 0.92s 0.04> 0.0458 0.0266
Happy Buddha 543,652| 2.80s 0.131s 0.0459 0.0267
Phlegmatic Dragon 703,018| 356s 0.16% 0.0448 0.0267
David (2nm) 6,924,951 34.0s 164s 0.0460 0.0267
Lucy 14,027,872 70.0s 336s 0.0460 0.0267

Table 4.2: Compressiort;om, and decompressiofyec, times for the normals from various known models. Average,
meari¢), and maximum, mag€), error recorded during compression are listed. Normals wemgeessed in both
methods using polyhedra derived from spherical coveringe &ectioh 4.4/4). In all cases, njaxremained below
&max (Table 4.1).
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Figure 4.13: Ten sets of quantized normals generated at 10 bits of praci§iop row, from left to right (corre-
sponding with Table 4.3): our method, BIFS, HEALPix, Cubeh&jical Coordinates. Bottom row, from left to
right: Deering, Octahedron, 3DMC, PNORMS, and Projection.

but they are quite low. For compression with the subdivisisethod, the normal table of
about 65,536 12-byte normals must be generated and keptritorge This table is at most
768 kilobytes. For decompression with the subdivision roétlthis table must also be keptin
memory. However, all compressed normals share the sameahtaihe so only one copy of
this table need be kept in memory. Note, though, that memseyfar the subdivision method
grows exponentially with the bit precision of the quantizemals so 16-bits is a practical
upper limit on the index bit precision. For the barycentriethod, the base polyhedron must
be kept in memory, which means that each vertex must be sésreetll as a list of faces,
which index into the vertices. For Spherical Covering 3s thitotals 600 bytes for 34 unique
12 byte vertices and 64 faces consisting of three one byteasad

4.5.2 Method Comparison

Due to the lack of error analysis from existing methods, dif§cult to compare our method
to those from the literature and other spherical point itiistions. Here, we attempt a com-
parison of our method with those of Oliveria and Buxton [[RNORMS), the MPEG-4 3D
Mesh Coding [1, 98] (3DMC), Botsch et al. [9] (Octahedronkgdbing [22] (Deering), the
MPEG-4 Blnary Format for Scenes [2,82] (BIFS), Isenburg &ndeyink [51] (Projection),
and Ahn et al. [3] (Cube). We also include a comparison withbint distributions gen-
erated by fixed precision spherical coordinates and by thallPi method [31]. For the
PNORMS method, we used an icosahedron as a base polyhedhrfpaour method, we
used the subdivision method on Spherical Covering 1 (Figut2, Table 4.1). Figure 4.13
illustrates the spherical point distribution generatectagh method at 10-bit precision.

In our test, we used each method to generate the set of all@mjgantized normals
at 16-bit precision. Using QHull [7], we then converted th@nt set into a triangulated,
convex polyhedron. Taking advantage of Theorem 1, we aeetahlise this polyhedron to
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Method Unique Normals  &max
Our Subdivision Method 61,442 0.561°
BIFS [2] 64, 896 0.612
HEALPix [31] 49,154 0.682
Cube [3] 64,896 0.779
Spherical Coordinates 65,026 0.787
Deering [22] 24,578 1.26°
Octahedron [9] 32,768 1.26°
3DMC [1] 32,258 127
PNORMS[71] 27,200 1.36°
Projection [51] 41,712 1.38

Table 4.3: Number of unique normals generated &rgx for each method (Figufe 4.13) at 16-bit precision.

analytically determine an upper bound on the error for gaangt normals based on that set
of points. Note that this error bound assumes that the actwaial quantization process will
not exceed the error bound from optimal quantization. Theaerror upper bound is likely
to be higher since the methods offer no such guarantees.

Table| 4.3 contains the results of our comparisons. In g&nii@ methods that had a
low error bound generated near the maximum number of uniquaals and produced rel-
atively “uniform” distributions on the unit sphere. The @rtbounds from our subdivision
method were consistently lower than those of the other naistii®ables 4.1 and 4.2). Inter-
estingly, the method proposed by Deering, the Octahedrdhadethe 3DMC method and
even the PNORMS method all have a higher error bound thaug figed precision spherical
coordinates. Our barycentric method also has a lower bduend fixed precision spherical
coordinates, but its error bound is higher than that of BIR& lAEALPix.

4.6 Conclusions and Future Work

We presented two methods for lossy normal vector compnessiough quantization based
on refining base polyhedra. The first revises the existinglisidion methods, using a table
of normals comprised of the refined polyhedra vertices. Huo®isd method quantizes nor-
mals by computing fixed-precision barycentric coordinatiékin base polyhedron faces. We
provided fast compression and decompression algorithithslevii memory requirements for
both methods, and we tested their performance on variousrknmodels.

We used the property that our quantized normals are vertitesfined polyhedra to
introduce three results. First, we showed an analyticabujppund on error for a normal
vector optimally quantized using a convex, triangulatelgtpedron. Second, we showed that
this error bound also holds for quantization using our mashorhird, we showed that, if
all the faces of the base polyhedron and refined polyhedraaare, then our methods will
optimally quantize normals.

We performed several comparisons with the error bounds weedke First, we analyzed
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our methods using several base polyhedra. We found thaplogeedra derived from spher-
ical coverings from Sloane et al. [90] gave the lowest eraurin. We also found that the
subdivision method gives a lower error bound than the bautyicemethod at the same bit
precision. Thus, when a normal table can reasonably be kepieimory, the subdivision

method is preferable. Next, we were able to compute the apper bound, assuming opti-
mal quantization, for a variety of methods from the literatat 16 bit precision. We showed
that our subdivision method had the lowest error bound odh@fmethods we tested, and
that several existing methods had higher error bounds tkang dixed precision spherical

coordinates. Further, our subdivision method was the ordthod, at 16-bit precision, to

satisfy Deering’s criterion that the error be at mo§tiOradians [22].

In the future, there are a variety of objectives we would tixeneet. We would like to
refine the compression process so that base polyhedra withfames can be used. We plan
to implement GPU versions of the decompression algorithviis.also plan to extend this
work for use on arbitrary vectors. Lastly, we would like toddde to further formalize the
error bounds so that we analyze base polyhedra more quickly.
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CHAPTERD

Interactive Particle Tracing for Visualizing Large,
Time-Varying Flow Fields

Abstract

Particle tracing is a classical method of flow field visudii@a. For interactive exploration,
particles must be advected and displayed in real-time. lidcag’rocessor Unit (GPU) based
techniques can advect hundreds of thousands or millionamicfes in real-time. We have
investigated such GPU-based techniques for interactipéoeation of large, time-varying
flow fields. Our approach can be roughly divided into threegaties: data preprocessing,
visualization and interaction. The preprocessing inv®ldata compression, region of inter-
est computation and preparation of multi-resolution d&ta. flow visualization, we use use
the GPU for both data decompression and particle advedtiane than 1,000,000 particles
can be visualized at interactive frame rates and data rifessupport the standard particle
visualization techniques of pathlines, streamlines arahktines. We also represent particles
as flow-oriented ellipsoids, which can additionally be nmibewer their traversed pathlines
to explore their behavior in time. Dynamic features in theadae explored by interactively
seeding and tracking particles through time in both a stahdisplay screen and a stereo-
scopic virtual environment. Further, we have validatedparticle system by comparing its
particle trajectories with those generated by a Large-&idhulation.

73
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Figure 5.1: Over 1,000,000 particles in a cumulus cloud being advectadime-varying velocity field at interactive
frame rates.
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5.1 Introduction

Computational Fluid Dynamics (CFD) techniques such ase-&ddy Simulation (LES) or

Direct Numerical Simulation (DNS) can produce very largeetvarying, multi-field data

sets. Exploration and analysis of these data sets is diffitué to their size, complexity
and time-varying nature. Various techniques have beenaje»@ over the years to explore
different aspects of the data. One popular technique faygtg the fluid flow characteristics,
particle tracing, has recently been extended to handle-vangng flow data interactively

with the help of the Graphics Processing Unit (GPU) ( [83%][&nd [13] , Figuré 5.1).

One of the main challenges to extending particle tracingne4varying data has been the
sheer size of the data. Interactive exploration requiradiftg data time steps at interactive
rates in addition to interactive frame rates for the pagttchcing algorithm. To ensure inter-
active frame rates, particle tracing algorithms are exaton the GPU. In order to maintain
an interactive data rate, new data must be continuouslgfeened from a source, such as disk
or a network computer, to the CPU and ultimately to the GPUhRW these transfers rep-
resent potential bottlenecks, and, to overcome them, édiaction and filtering techniques
must be applied.

We present a system that supports interactive exploratidarge, time-varying flow
fields. With the help of the GPU, we are able to advect more 100,000 particles at
interactive frame rates and data rates, see Figure 5.1. yBtens is targeted at our primary
source of data: LES data on a staggered, Cartesian grid aldtively compact features.
The system includes both a preprocessing phase and anciiterparticle tracing engine.
The preprocessing step downsamples and quantizes the flde/fiie each time step, and it
identifies, extracts, and quantizes full resolution regioftinterest (ROIs) around features in
the data. The preprocessed data is loaded from disk andngtcetn the GPU, where it is
used by the particle tracing engine. The engine supportsetyaf data formats, integration
schemes and visual representations of the particles. Titielpdracing engine has been in-
tegrated into both a stand-alone desktop application atdnal-salone Virtual Reality (VR)
application, and it has been integrated into our existirau@IExplorer application [36]. Fur-
ther, we have validated our particle system by comparinpgatsicle trajectories with those
generated by the Large-eddy Simulation system.

In addition to the standard features, we have added newifunadity to our particle trac-
ing engine to aid in the interactive exploration of timeywag data. The input data has been
guantized to help overcome transmission bottlenecks, mdngine decompresses it on the
GPU to generate the actual flow fields used for particle adweciSince we are primarily
interested in how the particles move in and around featur@sterest in the data, we use
downsampled data for particle advection in the full domaind, when an interesting fea-
ture has been identified, the engine performs multi-resmiytarticle advection, using full
resolution data for particles around the feature. To givéearer idea of the instantaneous
flow characteristics, we generate ellipsoid glyph repriegems for the particles on the GPU.
Further, without storing extra information, we are ablenteractively move the ellipsoids
along their pathlines to more closely study their behavidime.

The remainder of this paper is organized as follows. We firsvide an overview of
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related work in Sectioh 5.2. In Section 5.3, we provide adopm view of our system,
after which we discuss the type of data we are using and howregape it for interactive
exploration in Section 5.4. Then we describe our GPU-basetitfe system in Sectidn 5.5.
This includes the GPU-based data decompression and patlebction as well as the GPU-
based visualization tools. Section 5.6 focuses on thedotien using a virtual environment
for exploration of the LES data. We show our results in Secli and end our paper with
conclusions and suggestions for future work in Sedtion 5.8.

5.2 Related Work

Particle tracing in time-varying data has long been a pogalzc for visualization research.
Lane [60] introduced one early approach. However, thetghii interactively advect and
view large numbers of particles in time-varying data hashaan possible until recently.

In the last few years, the very high bandwidth, processinggo@nd parallel architecture
of the GPU have been exploited to be used for other purposesjtist graphics render-
ing [73]. The suitability of the GPU for processing largealat parallel makes it a good
candidate for algorithms such as patrticle advection.

Particle advection algorithms that exploit the procesgioger of the GPU are described
in [56], [59], and [57]. These initial algorithms worked gnith a stationary flow field (i.e.
non-time-varying). While interesting, performing the [pea advection on the GPU is only
one aspect of dealing with time-varying data. These metlaksthe necessary framework
to deal with such data.

More recently, these GPU particle tracing techniques haen lextended to work with
time-varying data by Schirski et al. [83] and [84] andrBer et al. [13]. Neither of these so-
lutions addresses the problem of dealing with large tinrgiag data in its entirety, though.
Schirski et al. use a high performance computing (HPC) keamkio generate a series of
velocity fields on a Cartesian grid based on a region-ofréstefor GPU-based visualiza-
tion. However, their approach restricts particle advectmthe region-of-interest and it lacks
out-of-core support, requiring all velocity fields to fit irAR1 on the computers used for vi-
sualization. The work by Brger et al. represents a truly out-of-core approach thaksvon
standard desktop computers, but their approach does ndbipy data filtering or reduc-
tion techniques. According to their hardware specificatjontakes 3.5 seconds to load the
velocity field for each time step from their example data €etr approach, on the other hand,
is both out-of-core and incorporates data handling to hefuee interactive performance.

Other work similar to our ellipsoid glyphs also exists. M&tawfis and Grant [66] gen-
erate motion-blurred, semi-transpartent elliptical spaan Wijk [108] introduced particles
used to approximate stream surfaces, but these parti@dimarThe most similar technique
to our approach is using glyph atlases for representingdus8D shapes as in [59] and [57].
Unlike these techniques, we make use of the GPU to accurdtaly the ellipsoids as 3D
objects from any viewing direction.
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STORAGE GPU FLOW FIELD GPU PARTICLE GPU PARTICLE
> bEcomPRESSION ™| ADVECTION »| \ISUALIZATION

Figure 5.2: The different stages of the GPU-based patrticle tracinglipipeFirst, the compressed velocity field for
the current time step is transferred from a storage devideet6&PU where it is decompressed on the fly. Next, the
decompressed velocity field is used as input for the GPU-baaeitle advection. Finally, the updated particles are
drawn to screen in an interactive application.

Figure 5.3: Our particle tracing engine in three applications. Leftr @esktop particle tracing application. Center:
Our stand alone VR particle tracing application. Right: @loudExplorer application running on the Virtual
Workbench.

5.3 System Overview

Our particle tracing system works with time-varying, vétgdields. We concentrate on data
where the features of interest are defined by one of the seal@bles in the data. This is
in contrast to many fluid flow applications, where the feagware defined by patterns in the
flow field itself, such as vortices and shock waves [76]. We therefore, interested in how
the features and the flow field interact with and influence edlchr. The dynamic nature of
both the fluid flow and the features makes this a challenge.

Figure 5.2 represents our approach to supporting inteeagtrticle tracing for time-
varying flow fields. In order to maintain interactive framée we rely on the GPU for
particle advection. In order to maintain interactive dati@s, there are two major bottlenecks
we must overcome. The first is transferring data from diskh® @PU, and the second is
transferring the data from the CPU to the GPU. Our strateggidaling with this is to reduce
the size of the data to load from disk through subsamplirgjoreof-interest extraction, and
data compression. Through our use of vector quantizatioedmpression, we are able to
decompress the velocity fields directly on the GPU, whiclps&lith the second bottleneck.
To enable interaction with the data, we have integrated #nggbe tracing engine into three
applications (Figure 5/3).
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5.4 Data Handling

We primarily work with data generated by Large-eddy Simata of cumulus clouds. The
features we typically work with are the clouds in the data wéich are generally compact,
i.e. are bounded by a box with volume less trglgm of the domain in size. The data output
by the simulations is arranged in a “staggered” grid, or A& C grid [5]. We work directly
with the staggered grid as converting to a standard Cantgsid would result in smoothing
and information loss. We have tested the system on data #étsesolutions of 64x64x40,
64x64x80, 128x128x80 and 256x256x220 and between 600 anel ttmen 3000 time steps.
Each time step generally consists of 1 to 3 scalar varialsldslavector variable. The vector
variable represents the velocity. Each scalar and eachnaamponent are 16-bit short inte-
gers. The total size of the velocity field for one time stephase resolutions is, respectively,
0.94 MB, 1.9 MB, 7.5 MB, and 82.5 MB.

5.4.1 Data Preprocessing

In order to interactively load and stream new data time steair particle tracing engine,
we must ensure that the amount of data to be loaded for eaehstiep remains reasonably
small. For example, if the hard disk can read 30 megabytesqmemd, then each time step
should not have more than 3 megabytes of data to ensure aalatafrl0 time steps per
second. In order to ensure that the data size per time stegingrsmall, we first preprocess
the raw simulation output.

The first step in the preprocessing is to perform featurekingdo locate all the features
in the data. In the data we typically use, this involves a 4bBnexted component labeling
algorithm [36]. Once all the features are found, sub-volsiramund each feature in each
time step for each variable are defined by inflating the fegguounding box for that time
step. These sub-volumes are the possible regions-oeBitéROIS) in the data.

The second step in the preprocessing is to extract the R@Qlsraate subsampled versions
of the velocity fields. We subsample by reducing the grid disiens in each direction by a
power of two and averaging the values from the full resotutiells contained in each low
resolution cell. We use the subsampled volumes to perfossdecurate particle tracing in
the entire domain, and we use the ROIs to perform particténgan and around the features
at the data’s full resolution. By combining these two applas, we are able to ensure that
the input data size remains small, which allows us to mairdaiinteractive data rate during
particle tracing, while providing sufficient detail in anband features of interest.

The last step of the preprocessing is to generate the inpotitsefields. Our particle
engine works with three input data formats: 16-bit integetpat created from the subsam-
pling and ROI extraction, 16-bit half-float data, and consgexl data. The 16-bit integer is
converted from signed to unsigned data for use on the GPU din@82,768 to it. This data
is not interleaved since the individual components can lee frer other parts of the visual-
ization pipeline such as slicing planes. The half-float éataterleaved and can be treated as
an RGB image. The half-float data only has 10 bits in the msatilut this is sufficient for
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most of the data we work with. The compressed data uses 3bbipresent each velocity
vector.

Our data compression involves separately quantizing tigtteand direction of each vec-
tor in the velocity field. This results in two new scalar fietifsL6-bit unsigned integers. We
interleave these two fields together to represent eachwkegtone 32-bit unsigned integer.
We use our earlier unit vector quantization algorithm [38fjiantize the vector directions
with 16-bit precision. This method guarantees that the Emgyuantization error will not
exceed (b61°. We quantize the length of the vectors based on the rangesbatthe min-
imum and maximum vector length for the data set. With this passion scheme, we are
able to achieve a compression ratio of 3:2 for our raw datarde data consisting of three
32-bit components, the compression ratio would be 3:1. Whitecompression ratio is rel-
atively small, it enables an entire vector to fit into one dtan, 8-bit RGBA pixel, which is
convenient for use on the GPU.

5.4.2 Data Transfer

Transferring uncompressed velocity fields to the GPU is dmnstoring the velocity field
for the current time step into one or more 3D textures. Fooomressed data, the separate
16-bit unsigned integer velocity components are storetirieet separate 3D alpha textures.
For the half-float data, each the x, y and z velocity companard stored in the red, green
and blue color components, respectively of a 3D texture.

For our compressed velocity fields, we initially transfeDat@xture containing a 256x256
look-up table to GPU memory. This look-up table holds up t®86 unit vectors, which can
be accessed using two 8-bit texture coordinates [33]. Theswrs are used as the set of
quantized unit velocity vectors. For each time step, boghahantized lengths and direction
indices of the instantaneous velocity field are transfetoetthe GPU using one interleaved
RGBA 3D texture. The vector lengths are stored in the red aadrgcomponents and the
vector direction look-up coordinates are stored using the &nd alpha components.

While data must initially be loaded from disk, we maintain aleaof recently loaded time
steps. If the data set is sufficiently small, then the entia det will be cached in memory
after one pass through all time steps. Once cached, the elatars be very rapidly sent to
the GPU. If the entire data set does not fit into memory, therctiche functions as a “time
window”. Performing advection within this window also béitefrom the rapid transfer of
data to the GPU.

5.5 GPU-based Visualization

We use the GPU for both the particle advection and the vizatidin of the particles and their
trajectories. In addition we use a GPU-based decompresdgmmithm to decompress the
flow data prior to or during our particle advection routine.Higure 5.2, the different stages
of the particle advection pipeline are shown.
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5.5.1 GPU-based Data Decompression

Our compressed data helps to reduce transfer latency, aad lie rapidly decompressed on
the GPU. Decompression can be performed on the fly by decasipggvectors on demand
for particle advection, or it can be performed at once for atire velocity field with off-
screen rendering. If the off-screen rendering option isiutieen the 3D texture generated
by the rendering is used as the velocity field for particleemtion. The choice as to which
option to use depends on the size of the velocity field, thebaurof particles, and the number
of texture lookups per particle per velocity field required particle advection.

In the off-screen rendering, each slice of the velocity fisldlecompressed separately
in a rendering pass. Each rendering pass renders a reciargigew port constructed to
match the size of one slice of the velocity field texture. Témables a fragment program
to execute the decompression algorithm. For each slicé, texel in the texture generated
during rendering represents one vector in the velocity field

The decompression algorithm takes two textures as inputitarieaved texture of quan-
tized vector lengths and quantized vector directions, a266x256 vector direction look-up
texture. The blue and alpha components in the interleavddrieeare used to look up the
direction of each vector in the velocity field. The directiectors are then scaled according
to the length given by the red and green components in theeatesd texture.

5.5.2 GPU-based Particle Advection

We have implemented a GPU algorithm for updating the parfidsitions in relation to the
(decompressed) velocity field. Initially, the particle piass are stored in the color compo-
nents of a texture. The x, y and z positions for each partigdestored in the separate RGB
color components. The alpha component is used for storireparate scalar value such as
a color or particle life time value (which, in the case of atjgde emitting seed point, indi-
cates whether the particle is alive and should be visibléhatrit has died and should not be
drawn), similar to the particle system described in [56]0Taf these textures containing the
particle positions are used alternately for input and aupthe off-screen particle advection
pass.

The velocity fields necessary for advection are stored darex on the GPU. OpenGL
treats texel values as being centered in the middle of thee@ttat the texel represents.
For particle advection with Cartesian grids, velocitiepaints in space can be found by a
straightforward texture lookup. For staggered grids, eatbcity component must be looked
up independently by shifting the original point positionedmalf-cell length in the negative
component direction. For example, if the width of a celtjjs then to find the x component
of the velocity field at poinp = (Xp, Yp, Zp), the texture value &ix, — %,yp,zp) must be re-
trieved. For the 16-bit integer and 16-bit half-float datanfats, the texture lookup can make
use of hardware supported trilinear interpolation. Howei¥¢he compressed velocity fields
are being decompressed on the fly during particle advedisaftware trilinear interpolation
must be used.

During particle advection, a position update for each pkris calculated. We have im-
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Figure 5.4: Creating a point sprite ellipsoid texture, from left to rigithe point sprite is drawn as a square, which
is then rounded. Lighting is added to create the appeardracecal 3D sphere. Finally, the sphere is stretched and
oriented with respect to the velocity field.

plemented three possible integration schemes: Eulerratieg, second-order Runge-Kutta
(RK2) integration and fourth-order Runge-Kutta integrat{RK4). Furthermore, we can
match the integration time step size to the data time stepaizve can interpolate between
data time steps for smaller integration time steps. Whergueny integration scheme other
than Euler integration without time interpolation, two adime steps must be resident in
GPU memory.

If multi-resolution mode is enabled, then velocity fields iee ROI must also be resident
in GPU memory. Care must be taken when more than one timessteguired for integration
as the location and presence of the ROI is time-dependeatpdirticle lies within a region
of interest in one velocity field, then it is advected with @I velocity field. Otherwise, it
is advected with the general velocity field. It should be ddtet this will lead to velocity
discontinuities as particles enter or leave the ROI, buiyasre primarily interested in their
behavior within the ROI itself, this is unimportant to us.

The particle position update calculated during advectiostored in an intermediate ve-
locity texture, which can then be used during visualizatibinis velocity texture is then used
to write updated particle positions in the output texturée Tipdated particle positions are
fetched from the texture in the vertex shader and used forligng the particles and their
trajectories.

5.5.3 GPU-based Visualization Tools

In order to explore the time-varying flow using particles, ieve added several GPU-based
visualization tools. With these we are able to change thercatd shape of the particles,
visualize their trajectories and provide real-time intti@an. We visualize particles in our
system as separate solid objects, using flow curves, or ativatidblended point sprites, to
give the impression of a substance (smoke or liquid).

In order to make the solid particles look more realistic, \neate a sphere shaped point
sprite for each of the particles on the fly using a shader progrAdding both diffuse and
specular lighting creates the impression of a real 3D olfféigure 5.4). This can all be done
on the GPU in a fragment shader by having OpenGL apply textooedinates to the point
sprite. To enhance the sense of depth and to maintain tiseitithat the point is a 3D object,
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Figure 5.5: A comparison between the spherical point sprites (left) &edselocity-based view-oriented ellipsoids

(right). Both shapes only require one vertex. The ellipsajie a better impression of the instantaneous flow
characteristics.

the point size of the particle is adjusted with respect tdigsance from the viewpoint.

Although the moving solid spheres can give a good representaf the underlying flow,
viewing the animated particles from different angles cadéeeptive. Likewise, if the parti-
cle advection is halted, the spheres do not give any infaomatoout the local flow direction.
As an alternative, glyphs can be used to improve percepfithovodirection. We have chosen
to use ellipsoid shaped glyphs to illustrate the flow di@t{Figure 5.5).

Unlike using a glyph atlas as in [59] and [57], our glyphs agaeyated on the fly and are
adjusted to the current viewing angle. The ellipsoid shapedated for each particle individ-
ually using a shader program (Figlre]5.4). The viewing dioecvector is sent to the shader
program to construct a viewing plane. Next, to compensat¢ghi®viewing orientation, the
velocity vector is fetched from the flow data and projectetbdhe viewing plane, resulting
in the length, width and angle of the ellipsoid. In the samg amthe impostor spheres, dif-
fuse and specular lighting are added to enhance the realitm ellipsoid shape. The result
is a view-oriented ellipsoid glyph that indicates veloddiyection and magnitude at the cost
of only one vertex.

Our system is capable of rendering all of the standard flowesirstreamlines (Figure 5.6
left), streaklines (Figure 5.6 center), timelines (Fighii@ right) and pathlines (Figure 5.7). It
can also render illuminated streaklines like those in [1Thjs is done by saving the particle
positions over a number of time steps in a large texture andexding the corresponding par-
ticles with line segments, described in [13]. In additiore kave implemented functionality
to move the particles along their paths, showing their pmshistory over time.

The ellipsoid shaped particles-on-pathline give goodyimisdbn the movement and change
of velocity of the particle over time in a certain region (fig 5.7). Fast browsing of the
particles over their pathline is possible since all the fimss$ of the particles over the defined
time interval are already stored in the graphics memory. &eninine the ellipsoid shape
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Figure 5.6: Left: llluminated streamlines depict the underlying flow iregion in space at a certain position in time.
Center: Streaklines simulate the injection of dye into thevflRight: Timelines represent sets of points released at
fixed points in time.

of each of the particles, we need the particle’s velocityhat time step. Since the we do
not have the velocity field data of all the time steps avadiable determine the velocity by
calculating the positional difference between two subsatparticles.

5.6 Interaction

In this section we describe the type of tools we have chosenteraction with the advected
particles within the domain of the time-varying flow field.

5.6.1 Particle Emitter

In order to explore the domain interactively, the abilityrébease particles at arbitrary posi-
tions is desirable. Our particle emitter is a box that can beed around the domain in all
three dimensions while emitting a large number of partiakethe time-varying flow field.
We assign each particle a time to live value so that it willafter a certain period of time and
be reincarnated at the emitter. Thus, the particle emitterfanction as an infinite source of
particles. For our research, it is important to be able toertbe particle emitter within the
domain because of the dynamic nature of the features in o8rddfa. Moving the emitter
allows us to search for and follow these features and obsewethe particles behave in and
around the features.

We have also added save and restore functionality to allewepetition of certain ob-
servations. When exploring this kind of simulated data, iyyrha desirable to observe the
behaviour of the particles over a certain time intervaltstgrat a certain position and then
repeating this experiment with identical or slightly sédtinitial particle positions. If the
starting point in space and time is exactly identical, tHenpgarticle advection will proceed
exactly as before.

Researchers can perform experiments by placing the eratittecertain place in time and
space and observing the emitted particles. The shape ofitttielp emitter can be adjusted
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Figure 5.7: Ellipsoid particles shown on their pathlines. When browdimgugh time, the ellipsoids move along
the pathline, and their shapes depict the magnitude andidimesf the underlying flow. The feature geometry also
changes to reflect the visible particle time step.
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Figure 5.8: Plane of particles indicating the vertical flow over a widegion.

to suit different kinds of experiments. The emitter shapd e distribution of particles
(random or regular) can be set. A small but very dense box wicpes can be used for a
smaller region-of-interest, while, in the case of a largéi R large plane of particles can be
used in order to maintain high particle density (compared karger box with low density).
For example, the dense plane of particles can be positiohadcartain height where the
movement of the particles in the plane indicates the véifiica over a larger lateral region
(Figure 5.8).

5.6.2 Multi-Resolution Data for Regions-of-Interest

While exploring the data, selecting features enables mesidution mode. In this mode, a
full-resolution velocity field is used for particle adveariinside an inflated bounding box
that encloses the selected feature during each time stépcadimbination allows researchers
to observe the general trend of the flow in the whole domairnlevetill being able to see the
details of the flow where it is interesting: in and around thetdires in the data (Figure 5.9).

5.6.3 VR and Interaction

Using the particle engine in VR offers two advantages: inmpdodepth perception and im-
proved interaction. With the stereoscopic view, it is muelsier to determine where the
particles are in 3D than in a standard desktop environmesindthe Virtual Workbench,
the particle emitter can be attached to a VR interaction$aoh as a stylus. The stylus and
the stereoscopic view of the Virtual Workbench provide amaway to position the parti-
cle emitter while exploring the time-varying flow field. Likése, it is possible to move the
seeding point of the stream- and streaklines inside the otoduaing advection.

In addition to the stereoscopic view, depth fogging is adddtle particles to enhance the
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Figure 5.9: In multiresolution mode, particles inside the ROI are adwdtg a higher resolution velocity field.
Outside the region particles are advected using a lowelutiso velocity field.

sense of depth. The depth fogging is implemented by adgistieintensity of the color with
respect to the viewing distance. To avoid the sudden vamistfithe particles after they have
exceeded their life time parameter, they slowly fade outlending in with the background
or having their transparency increased.

Our particle system has been implemented in a stand-al@ieéagpeapplication allowing
the user to explore the data while sitting at his desk (Figugeleft). In addition, we have
integrated the particle tracing into a standalone VR appbo supporting stereo vision and
electro-magnetically tracked interaction tools (Figui@&enter). Finally, our particle engine
has been integrated into our CloudExplorer applicatioff@8ombine the particle visualiza-
tion with dynamic geometric isosurfaces (Figure 5.3 righie do not currently account for
off-axis stereo when rendering point sprites as sphere8lipsads, but, in our experience,
the effects are not very noticeable in normal use.

5.7 Results

5.7.1 System Performance

Interactive particle tracing using time-varying velodigids requires interactive frame rates
as well as interactive data rates. By data rate, we meantinatravhich new data time steps
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Euler RK2 RK4
DataType | CG SG| CG SG|CG SG
Short 106 106| 37 37| 16 16
Half 190 104| 73 28| 34 12
Compressed 67 27 | 19 63|79 1.8

Table 5.1: This table lists the performance of our advection integraohemes in millions of integrations per
second. The tests were performed with 1024x1024 particlssaggered (SG) and Cartesian (CG) grids for each of
three data formats: the original signed short integer ddtartp the half-float data (Half), and the compressed data
(Compressed).

are used for particle advection. Our GPU-based particlectthn algorithm provides an in-
teractive frame rate for a very large number of particles, inorder to have interactive data
rates, the data needed for each time step should be as smalfisible. Our data preprocess-
ing combined with GPU-based data decompression helps keagata rate interactive.

We have measured the performance of our standalone apmlicaith the integrated
particle tracing in terms of both frame rate and data rateeuadvariety of conditions. We
have performed the different tests on a desktop PC with @i Rentium Core 2 Duo 2.2
GHz processor, 2 GB of RAM and an NVIDIA GeForce 8800 GTX giiaplcard.

To test the performance of advection algorithms, we addet@48,576 particles using
all three data types and both types of grid. Table 5.1 ligsgdsults in terms of millions of
integrations per second. Advection using half-float dat&artesian grids performs the best.
Advection using staggered grids is slower than advectioGanmesian grids for the half-float
and compressed data because it requires extra texturedeokar the short integer data, the
velocity components are stored in separate textures souttnder of texture lookups is the
same regardless of the grid type.

To test the performance of the system as a whole, we testdththe rate under several
conditions. For these tests we used a data set of 3,000 téps, sihich we downsampled
to 64x64x40 per time step. Using each data type and grid typeneasured the frame rate
for particle rendering and advection alone. We first teskedpterformance using 600 out
of the 3,000 time steps, which we cached in memory. This gareglea of the “in-core”
performance. We also tested the performance on advectitiglea in the full 3,000 time
steps both syncing the integration time step with the date 8tep and having 6 integration
time steps per data time step. This gives an idea of the “Batx@” performance.

Table 5.2 lists the results from the tests when advecting3&bparticles. All variations
performed well when the data resided in main memory. Howewvben the data must be
streamed in from disk to the GPU, the advantage of using tfelemcompressed data can
be seen. We have also performed these tests with 1,048,5i@gs For the short integer
data and the half-float data, the results remained the santbdostreaming performance.
For the compressed data, the cost of decompressing the essardata becomes dominant.
This can be alleviated by decompressing the entire veldiely at once. The short integer
data performs worse than the half-float data largely bectheséata is stored in 3 files on
disk instead of 1 file.
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Data Type | Grid Type | No Time | Cached Datg 1s Integration| 6s Integration
Short CG 691 fps 477 fps 241 fps 29 fps
Short SG 668 fps 471 fps 233 fps 28 fps
Half CG 817 fps 404 fps 240 fps 56 fps
Half SG 664 fps 409 fps 226 fps 56 fps
Compressed CG 617 fps 516 fps 275 fps 84 fps
Compressed SG 294 fps 276 fps 173 fps 83 fps

Table 5.2: This table lists the results of our performance evaluatiog. tested each of the three data formats:
short integer data (Short), half-float data (Half) and coraped data (Compressed). We tested each format on both
Cartesian (CG) and staggered (SG) grids. For each data ahdanbination, we tested the performance of the
advection alone (No Time), advecting data in 600 cached tiepsgCached Data), advecting particles in 3000 time
steps using an integration step size of 1 second (1s Iniegyaand advecting particles in 3000 time steps using
an integration step size of 6 seconds (6s Integration). Hite was downsampled to 64x64x40 and each data time
step is 6 seconds apart. The particles were advected withr Etégration. Results are given in frames per second.
Except for the compressed data, the results were similar ®i81576 particles.

We have also tested the effects of regions-of-interest ersyistem performance. The
impact is dependent on the size of the ROI. Most of the ROIslindata are small, i.e. less
than;l1 the size of the downsampled grid, so their effect is smallth&sROI size approaches
the size of the subsampled domain, then the performancesadas by approximately 50%.

The effect of the various particle visualization optionsparformance is also relatively
small in comparison to the base cost of rendering the pastictThe more complex options,
such as ellipsoids, have a somewhat higher impact, but dtisery significant.

5.7.2 System Validation

Validating the particle advection is important for seveedsons. We must ensure that our
algorithm is correctly implemented, and we must be able toatestrate this to users of the
system so that they can trust the visualization. Furthegrgince we make use of quantized
data, we must ensure that the errors introduced in the qadioth are not too significant.
The results of the validation can also be used to improve idealization by, for example,
coloring or discarding particles that have likely devialbeyond a certain threshold.

To measure the accuracy of the GPU-based particle adveet®nompare the positions
of particles advected with our GPU patrticle advection wilntigles advected in an LES. For
our validation tests, we use particles advected by a LESeagtiound truth”. The LES was
performed on a grid size of 128x128x80 using time steps ofcéreds. The particles were
integrated using Euler integration with an integratiorpstize of 6 seconds. For each time
step, the LES wrote the velocity field and particle positibtmslisk. Inside the LES, this
data is represented using 64-bit double precision floatoigtmumbers. The output data is
converted to 16 bit signed integers.

In our tests, we use velocity fields generated by the LES for@RU advection. We
seed particles in our GPU implementation at the same gjddaations as the particles in the
LES. We then advect the particles on the GPU using both EnlémRK4 integration using
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Configuration 6s 60s 600s 1800

D
Short Data, 64x64x40, Euler, 6s step 1.05m 7.06m 52.1m 163m
Short Data, 64x64x40, Euler, 1s step 1.05m 7.03m 51.6m 162m
Short Data, 64x64x40, RK4, 6s step 1.06m 7.10m 52.2m 163m
Short Data, 64x64x40, RK4, 1s step 1.05m 7.03m 51.6m 162m
Short Data, 128x128x80, Euler, 6s step 0.49m 1.38m 16.3m 74.3m
Short Data, 128x128x80, Euler, 1s step 0.47m 0.94m 11.8m 55.6m
Short Data, 128x128x80, RK4, 6s step 0.50m 1.53m 17.8m 80.1m
Short Data, 128x128x80, RK4, 1s step 0.48m 1.01lm 12.4m 58.8m
Compressed Data, 64x64x40, Euler, 6s step 1.06m 7.15m 53.2m 167m
Compressed Data, 64x64x40, Euler, 1s step 1.06m 7.12m 52.7m  165m
Compressed Data, 64x64x40, RK4, 6s step 1.06m 7.18m 53.3m 167m
Compressed Data, 64x64x40, RK4, 1s steg 1.06m 7.12m 52.7m 165m
Compressed Data, 128x128x80, Euler, 6s st€p49m 1.51m 17.3m 74.7m
Compressed Data, 128x128x80, Euler, 1s st€p48m 1.10m 14.0m 62.1m
Compressed Data, 128x128x80, RK4, 6s step.50m 1.66m 18.9m 81.5m
Compressed Data, 128x128x80, RK4, 1s stef.48m 1.16m 14.5m 65.2m

Table 5.3: This table lists the results of our system validation te$t& compare the distances between particles
advected within the LES itself at a resolution of 128x128=8@ particles advected with our GPU algorithm. The

data time steps are 6 seconds apart. The distances are givetars, and the size of our test domain in meters is
6400x6400x3200. The average particle velocity during @ tBne steps (1800 seconds) is 2.1 m/s. We give the
results averaged over 1,310,720 particles after 6s, 60s, &@d 1800s.

integration steps of both 6 seconds and 1 second. We theagavthe distance between the
particle positions for the two systems after a certain nunolbéime steps. We compare the
accuracy of the particle trajectories for two differentalesions: the original 128x128x80
resolution and a subsampled 64x64x40 resolution. We alspace for both the compressed
and short integer flow fields.

The results from our tests are in Table 5.3. The errors aedli® meters, and, for the
128x128x80 and 64x64x40 resolutions, one grid cell is 5@4B0meters and 100x100x80
meters respectively. The average particle velocity forltBS particles was 2.1 m/s. The
positions of the LES patrticles were rounded to the nearestnmbefore the comparison. The
error for particles advected with the subsampled grid ifdiighan that of the full resolution
grid, which is to be expected. After 300 time steps (1800 sdspthe particles remain, on
average, within 2 and 4 grid cells of the LES particles in t28x1128x80 and 64x64x40
resolution data, respectively. After 100 time steps, thiglas are, respectively, less than 1
and around 1 grid cell away from the LES particles. This isantgnt since the features we
typically study have a lifetime of approximately 300 times, and we are most interested
in the behavior of particles during shorter time spans. Filoaresults, we can also see that
it can be advantageous to use smaller integration time $gpsot especially so. This is
likely due to the error introduced by interpolating in spaoeninating the error introduced
by interpolating in time. Also of note is that our compresdath maintains nearly the same
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Configuration Time 50m 100m 150m 200m

Short Data, 64x64x40, Euler 6s | 100.0% 100.0% 100.0% 100.0%
Short Data, 64x64x40, Euler 60s | 99.65% 99.98% 100.0% 100.0%
Short Data, 64x64x40, Euler 600s | 66.77% 89.51% 95.42% 97.35%
Short Data, 64x64x40, Euler 1800s| 36.45% 54.90% 66.53% 75.30%
Short Data, 128x128x80, Euler 6s 100.0% 100.0% 100.0% 100.0%
Short Data, 128x128x80, Euler 60s | 99.82% 99.98% 100.0% 100.0%
Short Data, 128x128x80, Euler 600s | 97.18% 98.51% 98.89% 99.10%
Short Data, 128x128x80, Euler 1800s| 70.42% 83.30% 89.37% 92.63%
Compressed Data, 64x64x40, Euler] 6s | 100.0% 100.0% 100.0% 100.0%
Compressed Data, 64x64x40, Euler] 60s | 99.65% 99.98% 100.0% 100.0%
Compressed Data, 64x64x40, Euler] 600s | 66.86% 89.59% 95.46% 97.37%
Compressed Data, 64x64x40, Euler| 1800s| 36.13% 53.85% 66.56% 75.33%
Compressed Data, 128x128x80, Euler 6s 100.0% 100.0% 100.0% 100.0%
Compressed Data, 128x128x80, Euler60s | 99.82% 99.98% 100.0% 100.0%
Compressed Data, 128x128x80, Eule600s | 97.39% 98.57% 98.92% 99.11%
Compressed Data, 128x128x80, Eulet800s| 73.25% 84.98% 90.39% 93.27%

Table 5.4: This table lists the percentage of particles with errors tean 50m, 100m, 150m and 200m after 6s, 60s,
600s and 1800s. All configurations use Euler integrationaatiithe step of 6s. The original simulation grid cells are
50x50x40 meters.

accuracy as the short integer data.

Table| 5.4 gives a more detailed analysis of the errors for fmnfigurations. In each
of these configurations, Euler integration with a time st¢@owas used. These results
again show that the compressed data maintains nearly theaetaracy as the short integer
data. This table also highlights the effects of using a suipdad velocity field for advection:
after approximately 10 time steps, the accuracy beginslt@flamarkedly. However, in
all cases, the majority of the particles, remain within gbésimulation grid cells of the
LES particles, with the particles advected using the fudbiation data remaining even closer
than those advected using lower resolution data. Thes#gegue us confidence that the
GPU-advected particles are sufficiently accurate to gisgght into the flow behavior around
features of interest in the data during visualization.

5.8 Conclusions and Future Work

In this paper we have presented an approach for interagtiglalizing large, time-varying

flow fields. Our approach involves data preprocessing, tiem-GPU-based flow field de-
compression, GPU-based particle advection and particigalization. We have integrated
our particle advection engine into three interactive aggions: our CloudExplorer applica-
tion, a standalone VR application, and a desktop applicatio
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In our data preprocessing, we find and extract regionstefést around features in the
data, create subsampled versions of the velocity fieldscanpress the subsampled fields
and ROIs through quantization. The reduced size of the cesspd velocity fields allow for
a faster data transfer from disk to the GPU, which enables ag¢am the data at interactive
rates.

Our GPU-based particle advection pipeline supports rémglend advecting more than
1,000,000 particles at interactive frame rates. Our pigediupports GPU-based decompres-
sion of the quantized data, and it can use both a ROl and armsplEa velocity field simul-
taneously for multi-resolution particle advection.

Our different visualization tools support the explorati@ntime-varying flow fields in
a virtual environment. These tools include the standard flawes and our additions of
ellipsoidal particles and the ability to move the partiode®r the traversed paths. The tools
are available in both a standard desktop environment angteveo VR environments.

In the future, we would like to make several improvements. Waelld like to better in-
tegrate the particle visualization into the research medhrough, for example, providing
support for recording quantitative information about tlagticles. We would also like to fur-
ther improve the accuracy of the advection itself. One ilgtyifor this is incorporating the
statistical subgrid model used in the LES for modeling sigbggale turbulence. Additionally,
we would like to further improve the application performan©ne way to accomplish this
is through optimization of our GPU implementation. We coalsb improve the data trans-
fer rate by further compressing the data for storage on digkpeerforming an intermediate
decompression step on the CPU.
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CHAPTERO

Cloud Explorer

Cloud Explorer is a cloud visualization system designed/ifsualizing cumulus clouds sim-
ulated in Large-Eddy Simulations. Chapters 2 and 3 despdiniions of the system. Cloud
Explorer also incorporates the particle tracing systencriesd in Chapter’s and makes use
of the quantization techniques presented in Chapter 4. dhpter completes the picture
by giving a high level overview of the complete system, pntisg some components not
described elsewhere, and discussing how Cloud Explorepuit® use by atmospheric sci-
entists.

6.1 System Overview

Cloud Explorer has many components. The visualizatiorfitsepart of a larger frame-
work for working with Large-Eddy Simulation data. Figurel&hows the various system
components. The two main components are data processindaaad/isualization. Data
processing transforms the raw simulation data into a datagbsuitable for visualization.
Data visualization encompasses both a visualization emrient and a set of visualization
tools available within that environment. Within each ofsae&€omponents there are a number
of subcomponents.

6.1.1 Data Processing

One aspect of the data processing is feature processing.ifMalves detecting and track-
ing the clouds in the simulation data. Once the clouds haee entified, isosurfaces are

93
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Cloud Explorer System
Data Processing Data Visualization
Feature Processing Visualization
Data Analysis Interaction
Data Preparation System Control

Figure 6.1: Overview of the components of the Cloud Explorer visualmagystem.

extracted. Next, the isosurfaces are smoothed, and theadgoim compressed using quan-
tization. Additionally, during feature processing, aaifggned bounding boxes are computed
around each cloud in each time step for later use as regiciméenest.

Another aspect of the data processing is preparing the datasé with particle tracing
and slicing planes. Cloud Explorer works with downsamplathdn the full domain and full
resolution data around clouds of interest. The data protggenerates the downsampled
data, and it also extracts the full resolution regionsréiest around clouds for variables
that the user specifies. When preparing data for particlinyathe user can also choose to
compress the vector fields using quantization, which cae petter performance when the
data is read from disk.

The third aspect of data processing is generating deriveadatad computing statistical
plots. As described in Chapter 3, the user can supply expresthat are evaluated to derive
scalar or vector quantities from the data. These are comdmute per-feature basis using the
regions-of-interest around the clouds. The results of tmputations are stored for use in
the plot windows in Cloud Explorer. Users can run the datagssing multiple times with
different expressions to compute new statistical datagerin Cloud Explorer.

6.1.2 Visualization

Cloud Explorer supports several types of visualizatione @hta can be explored in time by
browsing through the data time steps. The scalar simulatidables can be visualized using
isosurfaces (the clouds) and slicing planes. The vectdalias can be visualized using
particle tracing. Contextual information about the cloiglpresented with statistical plots
and “decorations” on the visualization.

The user can interact with the data both in space and timengUsstylus, the user can
select and manipulate the clouds, and he can interact wattvahious widgets in the user
interface. Using a plexiglass panel, the user can probedte dbmain directly. With the



6.2. USER INTERFACE AND INTERACTION 95

time control window, the user can control the direction apelesl of playback through time,
and he can also browse freely through the data time steps.
Cloud Explorer gives the user a wide variety of visualizatiptions. The user can:

e enable or disable particle tracing,

e enable or disable the slicing plane,

e choose which variables to visualize using the slicing plane
e select and edit a color map to use for the slicing plane,

¢ hide and show different sets of clouds in the data domain,
e zoom in and out on clouds of interest,

e change the colors of the clouds,

e choose the which plots to display in each plot,

¢ highlight different time steps or altitudes in the plot wins,
e scale the plots in the plot windows,

e choose color maps for vector plots, and

e choose the interaction technique he would like to use in tive@ment.

6.2 User Interface and Interaction

In Cloud Explorer, user interface tasks are divided betwetmacting with the data, gaining
additional information about the data, and system coriskg. Data interaction tasks include
selecting and manipulating clouds of interest, positigrire particle emitter, probing the data
with a slicing plane, and manipulating the data domain. rimftion gathering tasks involve
showing additional information in the visualization to teetunderstand cloud properties in
time or space. System control tasks include controllingetstep playback and enabling
and disabling different visualization modes. Cloud Exptoemploys a hybrid interface to
support interaction and system control, and it adds “de@orsl to objects in the VE to
provide additional contextual information.

6.2.1 Hybrid Interface

Cloud Explorer's user interface integrates 3D interactiechniques with more traditional
2D interface elements into the virtual environment. Theutrgievices in the VE are a stylus
and a tracked, plexiglass panel. Users select objects iertvieonment with the stylus using
either ray casting or IntenSelect, a time-dependent, based selection technique that makes
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Figure 6.2: An overview of the Cloud Explorer user interface.

selecting smaller objects such as Ul widgets easier [39hipdation is done by fixing the
distance and orientation of an object relative to the stythen the user selects it with the
stylus button and then keeping this relationship constaitti@user moves the stylus.

The user interface is set up with the clouds in the middle ef\fk with informational
and system control widgets layed out around them. Systeitnatevidgets are placed in 2D
windows, which behave similar to their traditional couptats. There are also 2D windows,
which show statistical plots for the clouds the user hasssie Additional information about
widgets in the user interface is provided to the user witlitijga See Figure 6.2.

The combination of windows, tooltips, and IntenSelect jtes for a flexible and com-
pact hybrid interface. By using tooltips, labels on widgetg¢he Ul can be shortened or
replaced with icons, which, in turn, allows the widgets tosbsaller. Using IntenSelect for
selection and manipulation makes it easier for users todotavith small widgets or with
widgets that are farther away. Using 2D windows allows fayidal groupings of related
widgets, which the user can move, show and hide as necesdarydaan et al. [37] pro-
vides a more detailed discussion, but, using these tecksigllows for more options to be
comfortably presented to the user and for more space in théo\lie reserved for the 3D
visualization.

6.2.2 Contextual Information

In Cloud Explorer’s virtual environment, it's importantrfthe atmospheric scientists to un-
derstand the relations between the different aspects ofiiualization. In particular, the
relations between time, space, and the current 3D view gperiiaint to understand. Cloud
Explorer uses two techniques to help make these relatipssiear: linked interaction wid-
gets and visual feedback in the form of “decorations”.
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The linked interaction widgets are sets of widgets that jpi@the same functionality in
different locations. For controlling time, there is a windwith a video player control for
moving forward and backwards through time, but, in eachissizdl plot window, there is
also a slider that the user can use to browse through timela8iynthere is a widget on the
domain box to measure altitude that is also duplicated opltitevindows. This duplication
lets the user adjust visualization parameters withoutrigat® shift focus away from the
current cloud or plot window.

The decorations are additions that provide visual cuestabsualization parameters. In
the domain box, a white band is drawn around the clouds attitunde specified by the user.
On the plot windows, a vertical green line indicates the entrtime step, and a horizontal
gray line corresponds with the altitude the user has spdciféee Figuré 6.3, top. These
decorations also come in the form of small pop-up windowsr é@mple, when setting
the initial altitude of a plane of particles, a window apgesinowing the altitude in meters
(Figurel 6.3, right). The third example (Figure 6.3, centgws only contour lines for the
clouds above the slicing plane. This reveals the scalargailuside the clouds while still
giving the user an idea of where the cloud itself is.

6.3 Data Handling

Several techniques for visualizing data that does not fit main memory are described in
the literature. Silva et al. [88] discuss several includgepmetry simplification, specula-
tive prefetching of data, replacing geometry with impostend different forms of culling.

Other techniques include using clever data structuresy@ Wwindows (see e.g. Vrolijk and
Post [102]). The common factor among many of these apprgasthat they seek to over-
come data transfer bottlenecks by reducing the amount aefris¢ded in memory for inter-
active visualization.

In fact, one of the main challenges when dealing with largeetdependent data like
the LES data is efficiently transferring data from disk to @eU. There are two important
bottlenecks in the transfer process. The first bottlenedisistransfer speed, which imposes
strict limits on the amount of data that can be moved from tlisknain memory in a given
amount of time. The transfer speed between main memory an@BU is the second bot-
tleneck. When the visualization data fits into main memorgntthe second bottleneck is
usually the limiting factor on performance. For out-of-emisualization, then disk transfer
speed is the most important bottleneck. When the data isftnaned in main memory, e.g.
decompressed, then the CPU can also become a performatieadck.

6.3.1 Data Cache

In Cloud Explorer, one method employed to mitigate the ¢$fed the disk transfer speed
bottleneck is the use of a data cache. The cache is a largeeseginmain memory that
Cloud Explorer manages. As data is loaded from disk, it isestin the cache. When Cloud
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Figure 6.3: Portions of the Cloud Explorer user interface. Top: Dispigyadditional contextual information relates
the selected cloud to plots of its behavior over time, theendrtime step with thex axes of the plots, and the
highlighted altitude on the cloud with theaxes of the plots. Center: Drawing the cloud using conta@slishows
the scalar values on the slicing plane inside of the cloudtdBa The tooltip displays the altitude of the initial plane

of particles.



6.3. DATA HANDLING 99

Explorer needs data for visualization, it first tries to imte the data from the cache. If the
data is not in the cache, then the data is loaded from disk.

The main memory segment used by the cache is divided into af petges. Each page
is sufficiently large to hold the largest single piece of @l&ation data, which for example
might be an isosurface or a region of interest in a scalar.fidltienever data is read from
a cache page, it is marked as the most recently used cachapdgeoved to the front of a
linked list of cache pages. When data is loaded from disk, €CExplorer attempts to store
the data on the most recently used cache page. If there iidisot space in the page, then
one of two things happens. If the cache is not yet full, a neshegage is used. If the cache
is full, the least recently used page is emptied, and theigatared in it.

When using the data cache, loading data from disk remainsvediaslow, but retrieving
data that is already in the cache is comparatively very f&8ten visualizing a data set that
can fit entirely into main memory, the entire data set will behie cache after the user has
browsed through the data once. Any further exploration thiéih be much more interactive.
When visualizing a data set that does not fit entirely into nmagmory, the data cache acts
as a sort of time window. If the user browses forward througtetand sees something
interesting in the data, the recent data time steps will Hencache allowing him to more
quickly browse back and forth to study it further.

6.3.2 Data Compression

Another method that Cloud Explorer employs to overcomesfierbottlenecks is data com-
pression. In particular, Cloud Explorer quantizes vectldfdata and isosurface geometry
data during preprocessing.

Isosurface coordinate positions are quantized using ttBdat integers. With the vector
quantization algorithm described in Chaptér 4, the surfawrenal vectors are quantized us-
ing one 16-bhit integer. The isosurfaces themselves arelse/édexed triangle strips. The
list of triangle strip lengths and the list of triangle striprtex/normal indices are quantized
using the smallest unsigned integer type allowed givepees/ely, the length of the longest
triangle strip and the number of vertices/normals. Thigeagh compresses the vertex/nor-
mal information to% its size when represented with six 32-bit floating point nensb It
compresses the length and index information by 25% or 50%.

The vector field data is also quantized using the algorithr@hiapter 4. However, in
addition to the 16-bit integer quantization of the vectaediion, the length of each vector
is also quantized using a 16-bit integer. Thus a vector carepeesented by two 16-bits
integers instead of three 16-bit or 32-bit numbers. Whileghantization introduces error,
comparisons of particle paths traced using the originaloretata and the quantized vector
data do not differ very much (See Section 5.7.2).

When Cloud Explorer loads quantized data, the data is staréglia the data cache. The
data is then sent “as is” to the GPU for rendering or particeibhg. The quantized vectors
are decompressed on the GPU by using a texture look up tewettie vector direction. The
guantized vertex positions are “decompressed” by multiglthem by a constant scaling
factor.
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6.4 Virtual Reality and Desktop Visualization

Cloud Explorer runs on a variety of Virtual Reality (VR) sgsts: a responsive workbench
(described by Koutek [58]), a PDRIVE system (described byH2ean et al.|[38]) and a
powerwall system. Figure 6.4 shows the workbench and a PERB6th the workbench
and PDRIVE provide users with a stylus and a plexiglass padifectly interacting with the
data. The powerwall, intended primarily for presentatjafters a stereo view of the data,
but provides no direct interaction. Cloud Explorer alsosron standard desktop computers,
which also provide no direct interaction with the data. éast, on these systems, interaction
is done with the mouse and keyboard.

Support for mouse and keyboard interaction is provideduinca set of keyboard short-
cuts, which let the user choose between using the mouse tiputate the view point and the
world. When manipulating the world, the mouse cursor casigsible ray into the scene
perpendicular to the screen, which allows the user to inteméth objects, such as buttons
and isosurfaces, under the mouse cursor. This makes comihtasks such as clicking on
buttons, dragging sliders, and moving objects in the scpteme simple and intuitive, while
still also allowing more general 3D interaction.

While Cloud Explorer was initially intended to be a purely Viguwalization environ-
ment, the utility of having it be a dual VR and desktop viseatiion environment became
increasingly clear. When visualizing the data, the addedeviiat VR provides lies mainly
in increased spatial perception of the data and simplifiteraction with the data. These
advantages are beneficial, but they require using a VR syskemthe atmospheric scien-
tists, this requires planning ahead and going to the VR ktboy with suitably prepared
data. This added inconvenience makes it less likely that Wik use the VR software for
casual exploration and experimentation. Letting Cloudl&rgy also work on the desktop
gave the researchers more freedom to use it at their comamidt also aided in the devel-
opment process and made it easier to control the applicafitle giving demonstrations on
the powerwall.

In practice, each system was found to have its own advantdgesworkbench offered
the most immersive experience and could be comfortably bgedo to three people simul-
taneously with one person controlling the visualizatiod #re others observing. The power-
wall proved most effective at giving stereo presentationarger groups (six to eight people).
It was also surprisingly effective for particle tracing wédization due to several factors: the
particles greatly benefited from stereo visualization Kiagboard gave easy control over the
wide variety of visualization options, and the users didheote to interact overly much with
the data. The standard desktop environment was most ofeehdusing development due to
it being both readily available and not requiring the usextfaedevices (trackers, projectors,
stereo glasses, etc.). The PDRIVE offered the best traideetfreen the workbench and the
desktop environment: a mouse, keyboard, and developnremintd were within easy reach
while still offering a full virtual environment with trackeinput devices.
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Figure 6.4: Top: lllustration of Cloud Explorer running on the respaesivorkbench. Bottom: A user at a PDRIVE.
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6.5 Collaboration with Atmospheric Scientists

Cloud Explorer was developed in close collaboration with@pheric scientists. It served
as a test-bed environment for the visualization tools exe#dr analyzing the Large-Eddy
Simulation data generated by the scientists. The visualizaools were then used to help
answer important questions about cumulus cloud dynamics.

6.5.1 Developing Cloud Explorer

The atmospheric scientists played an integral role in dpiey Cloud Explorer. Perhaps
most importantly of all, they supplied the data to be viszedi The difficulties they had in
processing and visualizing the large, complex, and tinrgirg data motivated automating
the processing and providing interactive visualizatiohisTed to the development of the data
processing and data handling portions of Cloud Exploreraddition to providing the data
and its challenges, they also provided direction for deyiely visualization tools in order to
study specific aspects of cloud behavior.

In the early stages of their research, they were focusindauddife cycle studies. These
studies required the feature detection and feature trggkantions of the data processing.
When studying individual clouds, they would use their owrtwafe packages to make sev-
eral statistical plots of different cloud properties overd. It became clear that it would be
helpful for them to be able to compute and visualize thesegygf plots using Cloud Ex-
plorer. This led to the idea of data reprocessing and incatpw the 2D plots into the 3D
environment.

In the later stages, they focused more on studying the ttieraof the clouds with the
environment around them. They built particle tracing ifteit Large-Eddy Simulation to be
able to quantify, statistically, how the air in and arounel ttouds moved around. However, it
was difficult for them to visualize the particle motion, whiled to creating the GPU particle
tracing engine. The dynamic nature of the clouds also le@versl of the particle tracing
extensions such as ellipsoid particles and viewing pagioh their pathlines.

6.5.2 Using Cloud Explorer

Throughout its development, Cloud Explorer was used by thespheric scientists for re-
search purposes. It played an important role in helping $wanthe cloud research questions
posed in Section 1.2.1: what are the defining charactesisficumulus clouds during the dif-
ferent life cycle stages and how does a cumulus cloud infliend interact with the dry air
around it. For both of these questions, Cloud Explorer wsftleboth in the research pro-
cess and also in sharing the results with others.

On the research side, Cloud Explorer played a key role irtifyémg interesting cumulus
clouds to study, as described in Chapter 2. The dynamic;diependent nature of the clouds
made an automated selection process for identifying istiexg clouds difficult. Clouds of-
ten break into multiple pieces or collide with each other. tBacking clouds through time
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and presenting visually to the atmospheric scientisty, toeld readily pick the clouds they
wanted to study.

During the life cycle research, the scientists createdrabgtatistical plots of the inter-
esting clouds to identify and study the different life cystages. What they found was that
the clouds did not follow the traditional life cycle of birtmaturity and dying out. Instead,
the clouds pulsate as they are fueled by pulses at reguarais of warm, moist air. This
behavior was also clearly visible in some of the statistidais. By incorporating these plots,
which could be generated through “reprocessing” the dataeacribed in Chapter 3, other
scientists could readily understand the pulsating belnavio

In the next phase of the research, studying the interacfietoads with their surround-
ings, the particle tracing described in Chapter 5 playedwpoitant role. Through the use
of particle tracing, the scientists were able to verify thisience of the so-called descending
shell: a thin layer of downward moving air around a cloud t@mhpensates for the upward
air movement in the cloud itself. They were also able to yetfifat the descending shell
was caused by air on the sides of clouds subsiding due toghil livater there evaporat-
ing. While the “hard” evidence was provided by statisticahlgais of dispersion shown by
massive numbers of particles advected in the large-eddylaiion itself, the insight into the
descending shell was gained by visually watching the gagtio and around the clouds. This
insight guided the statistical analysis. The particleitrg@lso helped others quickly see the
descending shell.

6.5.3 Lessons Learned

Collaboration between atmospheric scientists and vizat@din experts has proven fruitful
for both parties. The atmospheric scientists were a sourdeteresting and challenging
visualization data as well as research directions to folldlwey were then able to benefit
from using the visualization techniques described in thésis to help advance their research.
The atmospheric research results obtained with the helpsaélization can also be seen as
a validation of the visualization research. It's importahbugh, to emphasize the nature of
such a collaboration and the risks, from a visualizatioeaesh perspective, involved with it.

The collaboration described here was primarily two indejgen lines of research where
regular contact, on a monthly basis, was maintained betwiselization and atmospheric
researchers. The atmospheric scientists made use of tredizétion software at certain key
times during their research. The lack of regular use of tkealization software can be at-
tributed to several factors: the visualization researantetl after the atmospheric research,
the visualization was often prototype quality requiringoext guidance to use, the VR soft-
ware could only be run in the VR laboratory, and the visugilimasoftware was only a small
part of the larger atmospheric research process. Even lthinggvisualizations were infre-
qguently used, they were still very valuable to the atmosplseientists due to the insight they
could gain with them.

While more frequent usage is in some ways desirable, it alsarfeny risks. Visual-
ization research often sits quite close to applicationsaesh. Investing the time to develop
visualization tools that are sufficiently polished, flegipnd easy to use that they become
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embedded in the domain scientists’ work flow can easily ctessometimes fuzzy boundary
between applications research and general software exrgige Also, working towards the
goal of providing such tools often leads to focusing on tdbit are interesting to the do-
main scientists but are not interesting for visualizatiesearch. It's necessary thus to strike
a balance between value for domain scientists and valuadoahzation research when col-
laboratively developing new visualization tools.
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Interactive Simulation and Visualization of
Atmospheric Large-Eddy Simulations

Abstract

In this chapter, GALES is presented. GALES is a physicatlyrect, GPU-accelerated, At-
mospheric Large-Eddy Simulation. GALES is a mixed-prexidiES implementation using
NVIDIA's CUDA to parallelize and accelerate computationilghalso providing interactive
visualization. GALES, with visualization, outperforms existing LES implementation run-
ning on 32 processor cores of a supercomputer. We demangtingsical correctness by
comparing GALES's results to those of other LES impleménitat The ability to run inter-
active, scientific simulations on a desktop computer offexs possibilities for atmospheric
researchers.

7.1 Introduction

Cloud dynamics is an important research topic in atmospipéntsics. One way to investigate
these dynamics is to simulate the turbulent atmospheriadeny layer using Large-Eddy
Simulation (LES). LES resolves the dynamic effects of lasgale eddies and uses a statistical
model for the dynamics at smaller scales. It can be used alethieed domain size and grid
resolution at reasonable computational cost. Typical§&k are run off-line as batch jobs on
supercomputers and generate very large, time-dependensets. This makes it difficult to
get timely, interactive feedback about running simulagiof®aining insight into simulation
results requires extensive post processing and visuializaf the simulation data.

105
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Figure 7.1: GALES's interactive visualization.
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To address these issues, we developed GALES: a physiaailgat, GPU-accelerated,
Atmospheric, Large-Eddy Simulation that integrates mtéve visualization (Figure 7.1).
GALES is based on the Dutch Atmospheric Large-Eddy Simuta(DALES) [17,47] and
is one of the first GPU-accelerated scientific LES implentéria. By using NVIDIAS
CUDA [70] to parallelize and accelerate computation andiporating mixed precision,
GALES can outperform DALES running on 32 cores of a superagsmp We have also
verified that GALES and several existing LES implementatiproduce quantitatively com-
parable results. The ability to run interactive, scientfimulations on a desktop computer
offers new possibilities for atmospheric researchers.

The remainder of this paper is structured as follows. IniSect.2, we discuss related
work and background information on LES, cloud simulatiod @JUDA. Sections 7.3 and 7.4
describe, respectively, the technical details of GALES imimplementation. Sectidn 7.5
discusses GALES's interactive visualization. In Sedtidh We present performance results
for GALES and compare it with other LES implementations. \Wadude in Section 7!7.

7.2 Background and Related Work

A detailed survey of compuational fluid dynamics (CFD) andGhsualization techniques
is outside the scope of this paper. It is important to notyg, that most computer graphics
CFD research has placed more importance on performanceppedr@ance than physically-
correct simulation. See, for example, Stam [95] and Fed&am and Jensen [26]. In this
paper, by contrast, we are interested in accurate simalafin interactive performance that
can be used in atmospheric research.

7.2.1 CFD for Cloud-Dynamics Studies

Most CFD simulations aim to efficiently solve the Navier{&e equations up to a desired
level of detail. In turbulent fluid flow, the behavior of smadales, down to the Kolmogorov
scale, are important for the flow, but these small scales atealways interesting to re-
searchers.

In atmospheric research, three common approaches to gahlénNavier-Stokes equa-
tions are Direct Numerical Simulation (DNS), Large-Eddyn8lation (LES) and Reynolds-
Averaged Navier-Stokes (RANS). DNS explicitly resolvelstatbulent structures, down to
the Kolmogorov scale. RANS, on the other hand, models theeamtrbulent structure of the
flow. LES explicitly resolves the largest turbulent struetibut models smaller (typically
below 10m) scales.

Due to the size and turbulent nature of clouds, LES is the reoisable of the three
techniques for high resolution modeling of cloud dynamldsS has been used in modeling
of the cloudy atmospheric boundary layer since [92] and eehlextensively validated by
comparisons with measurement campaigns (see, e.g., [37,11
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7.2.2 Cloud Simulation

In computer graphics, research focusing on cloud simuidanost closely related to our
work. Due to the computational complexity of cloud-resotyICFD simulations, most early
approaches were either not real time (e.g. Kajiya and voaéte55]) or used crude approx-
imations of the physics to generate a realistic appearange Dobashi et al. [25]).

As computational power has increased, cloud simulations facused more on physi-
cal correctness. Overby, Melek and Keyser [72] and Harrad.443] developed more so-
phisticated cloud simulations that solved the Navier-8soiquations using techniques from
Fedkiw, Stam and Jensen [26]. These simulations, howewgployed some simplifying
assumptions and were not yet truly interactive. GALES, enatiner hand, offers truly inter-
active performance while being based on the fundamentaltiems of cloud physics.

7.2.3 CUDA Overview

We chose NVIDIA's CUDA [70] for GALES's implementation. CUDsupports the stream
programming model, wherieernelsoperate on elements froetreamsof data. CUDA pro-
vides extensions to C and C++ allowing kernels to be writtert are executed on the GPU.
When a typical kernel executes, a separate GPU thread opemrateach output element in
a stream. These threads are organized into groups of 32thoedledwarps Blocksare
comprised of one or more warps, and synchronization canrdmtween threads in a block.
Blocks are organized intgrids. The hierarchy of grids and blocks is used by threads to
determine the stream data elements to process.

7.3 Large-Eddy Simulation Details

GALES is closely related to DALES and is similar to other agpioeric LESs. As such, we
briefly present the simulation details here and refer théaethe literature on DALES [17,47]
and to Moeng [68] for a more in depth explanation.

GALES resolves flow motion using the Boussinesq approxionaaind after applying the
LES filter. The equations of motion that are resolved in GALESIng Einstein’s notation,
are:
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where the tildes denote the filtered mean variables, avdrager a grid cell.U is velocity,

g is the gravitational constant, arddis the size of a grid cell. The thermodynamical state
of the system is defined by the scalar values: liquid watezmi@l temperaturé,, the total
liquid water contenty, and the pressurp. 6 is the virtual potential temperaturéy is the
reference state potential temperature @rid the earth’s angular velocity. Viscous transport
terms are neglectedF represents large scale forcings. The large-scale sounges tior
scalar¢ are given byS;. The subfilter-scale (SFS), or residual, scalar fluxes aneted
by Ry.¢ = uj¢ —0;j4, i.e. the contribution to the resolved motion from all ssatelow the
LES filter width. The sub-filter scale momentum fluxes are ¢iethdy tensor;;. These are
the small-scale turbulent fluctuations that need to be neaddfollowing DALES, they are
modeled using one-and-a-half order closure [21]. The fertikinetic energy of the SFS
turbulence is included in the modified pressure:

n—i(N— )+ge
_PO P—Po 3>

which is determined by solving a Poisson equation:
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7.3.1 Grid and Numerical Schemes

The simulation is discretized on a staggered grid, whersitteeof a grid cell iAx, Ay, Az)
andAx = Ay. The pressure, SFS kinetic energy, and the scalars are diefireell centers.
Velocity components are centered at corresponding cedkfac

For time integration, we use a third-order Runge-Kutta sehésee [107]). For advection,
we use a second-order central differencing scheme.

7.3.2 Condensation

The condensation scheme is used to calculate the liquid watéentg, from pressure, tem-
perature and total water content. In the model, we assunithér is no liquid water present
in an unsaturated grid cell, while all moisture above saiomavalueqg; is liquid water:

q = G —0s if G > 0Os
R otherwise

To calculategs = gs(T, p), whereT is temperature, an implicit equation needs to be solved,
which is done following [92].
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7.3.3 Boundary Conditions

The computational domain has periodic boundary conditionise horizontal directions. At
the top of the domain, we take:

0u_0v_ . 98 05
E_FZ_W_O' 57 92 constant

Horizontal fluctuations at the top of the domain (for instugcavity waves) are damped out
by a sponge layer through an additional forcing/source term

1 -

Fsp: *TT ((p(Z) - (0) ;

with ¢ the slab average value of quantify and 1, a relaxation time scale that goes from
Tp = 360s at the top of the domain to infinity at the bottom of thenggolayer.

At the surface, velocities are equal to zero, and eitheasarfalues or their subfilter-scale
fluxes for andg are prescribed. Monin-Obukhov similarity theory is useddtculate the
remainder of the surface conditions, see for example [28].

7.4 Implementation Details

The basic structure of GALES is a loop that computes a sefiegdates to the velocity field
and scalars in the LES and uses these updates to performaimbegn time. The basic steps
performed in the loop are:

1. Compute updates from advection.

2. Compute updates from SFS terms.

3. Apply Coriolis and gravitational forces.
4. Apply large-scale forcings.

5. Compute pressure.

6. Create a divergence free velocity field.
7. Perform time integration.

8. Enforce boundary conditions.

9. Update the thermodynamic state.

10. Update the LES visualization.
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Figure 7.2: CUDA block and thread structure for a) regular kernels aneedjiction kernels.

We have chosen to implement these computations using CUb#elebecause imple-
menting these steps on regular grids is well suited to tleastrprogramming model. With
some exceptions, for each grid cell, these updates can beutedhindependently and require
only information from spatially local cells. Once a framewdor working with the simula-
tion domain has been established, implementing kernelsrtgpate most of these updates is
straightforward. We will now briefly discuss our framework these kernels and highlight
portions of the implementation that required special @tben We will also discuss the use
of mixed precision in the simulation.

7.4.1 Kernel Structure and Memory Layout

The simulation grid is arranged in memory using the standamthjor order. In order to
achieve the best performance, it is important that warpsWDA& threads read contiguous
portions of data from rows in the simulation grid. Therefdoe most kernels, we structure
our CUDA thread blocks so that each block processes onesentir in the 3D domain at a
time. See Figure 7.2a.

In GALES, two primary types of kernels have been defined: leedeernels and reduction
kernels. Regular kernels compute new values for each glidncthe domain. Reduction
kernels compute a mean, minimum or maximum value for anehtrizontal slab in the
domain. For regular kernels, with a simulation grid size&Xof Y x Z, we execute a CUDA
grid of Y x Z blocks, where each thread computes values for one cell aidodack computes
values for one row in the domain (Figure 7.2a). For reduckiemels, we execute a CUDA
grid of Z blocks, where each block processes an entire horizontal Ekch thread in a block
first reduces a column in the slab to a single value, resuitirane row of values, which is
stored in shared memory. See Figure 7.2b. A standard paimeduction is then applied to
this row of values to reduce it to a single, final value.

There are two additional memory access patterns of note ihESA First, whenever
threads for a kernel must access data from other cells in athenentire row is loaded into
shared memory for a block. In this way the memory access iesoad while providing
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random access to the row’s data for that thread block. Ségowtienever threads must
access a constant value per horizontal slab, e.g. the a/&zagperature, this value is read
from constantmemory.

7.4.2 Poisson Solver

The Poisson solver is a key part of GALES and it is used to caenypessure, which in turn is
used to project a divergence free velocity field. Since ounala is periodic in the horizontal
directions, we can use the Fast Fourier Transform (FFT) keesihe Poisson equation in
these directions. In the vertical direction, we solve altagonal matrix system using the
well-known Thomas algorithm.

For the FFT portion of our Poisson solver, we opted to implenae GPU version of
the power-of-two real-to-real transform from FFTPACK [96]Ve chose to do this rather
than using the CUDA FFT library, CUFFT, for two reasons. FiBBALES makes use of
FFTPACK so we could more closely match its LES implementati8econdly, CUFFT is
not optimized for the type of FFTs that GALES needs to perfastich is many, small 2D
FFTs.

Our GPU version performs a batch of 2D FFTs simultaneoustg for each horizontal
slab in the domain). Each 2D FFT is performed as a 1D FFT fistgathe rows and then
along the columns or vice versa. For each 1D FFT pass, wengrépadata by transposing
each slab appropriately with an optimized transpose kesoe¢hat the 3D domain can be
seen as &Y xZ) x X 2D matrix, where each column will be transformed. We thercete
CUDA blocks such that each block performs the 1D FFT on a gofgplumns in the matrix
simultaneously. This ensures that reads and writes dunm§ET will be coalesced.

7.4.3 Mixed Precision

GALES can perform its computations in a variety of precigioodes, from fully single pre-
cision to fully double precision, but it is primarily intead to be used in mixed-precision
mode. Mixed-precision offers a good balance between speggiecision by allowing the
simulation to take larger time steps without sacrificing mperformance.

In mixed precision mode, all computations in GALES are panfed in single precision
with the following exceptions. The Poisson solver uses toplecision because we found it
to be the most numerically sensitive step in GALES. We usédkioprecision in our statistics
routines since they sum large numbers of small values. Atteofew CPU calculations are
done in double precision.

Newer CUDA-enabled NVIDIA GPUs support double precisiotivedy. On these GPUs,
GALES uses this for its double precision calculations. QGleolCUDA-enabled GPUs, how-
ever, there is only support for single precision. To allowHigher precision on these GPUs,
we implemented emulated double precision using a doublglesidata type, based on DS-
FUN9O [6] and the float-float multiplication operator from BGaaca and Defour [18]. This
data type achieves approximately 46 bits of precision imthetissa.
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Figure 7.3: Plots from the GALES visualization. Left: A time history ofngent cloud cover. Right: An instanta-
neous profile oftiandv wind speed components at different heights in the domain.

7.4.4 CPU Computation

With two exceptions, simulation computation is performedesively on the GPU in GALES.

The first exception is some one-off computation during afitation. The second exception
is computation performed during the simulation that is Heasatirely on quantities that are

constant within a single horizontal slab in the domain. Ehesmputations are: computing
some input parameters for the surface routine kernels amggting the pressure and Exner
values for each horizontal slab in the domain.

7.5 Interactive Visualization

GALES can provide interactive visualization of running slations with little impact on
performance. The visualizations include both a volumealigation of the clouds in the
simulation and various statistical plots. These providewarview of the current simulation
state and an overview of some trends during the simulationThis interactive insight into
the simulation state and behavior is a marked contrast wkhES, where visualizing the
results of simulation runs requires storing and extensivegssing of very large data sets.

The primary visualization is the volume visualization obwtls in the simulation. This
is implemented using simple volume ray-casting, which jles reasonable results. See
Figures 7.1 and 7.4. This is coupled with simple interac8orthat the user can navigate
through the simulation volume to get a better sense of thigaspealation between the clouds
in the simulation.

We also incorporate two types of statistical plots into GALHhe plots can be seen in
context in Figuré 7.1. One type of plot is a time history plehich shows the progression
of a single scalar value, such as percent cloud cover (FigGtdeft), over time. These plots
provide a high-level overview of the simulation behavioattted to the current state. The
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‘ 64X64X80‘ 128X128X80‘ 256x256x80
DALES-SINGLE 6240s 24908s 101910s

DALES-MPI 116s 438s 2092s
GALES-NOVIS 72s 195s 761s
GALES-VIS 104s 225s 791s

Table 7.1: This table lists run times in seconds for DALES and GALES ifedént configuations.

other type of plot is a profile plot, which shows scalar va)segh as wind speed components
(Figure 7.3, right), averaged over each horizontal slathéhndomain. These provide more
guantitative insight into the current state of the simolatand their change over time can
highlight interesting trends in the data.

In principle, all parameters of the LES can be made acceskibinteractive steering of
the simulation. If a truly interactive simulation is avdila, this can have significant impact
on atmospheric research practice. At this time, thougheffext on the workflow of the
atmospheric scientists is hard to assess, and design oé atearing interface for GALES
would require a large collaborative effort between atmesighscientists and interaction/vi-
sualization researchers.

7.6 Results

GALES can simulate many of the same cases that DALES can aieauFigure 7.4 shows
two of these. The bottom case is the BOMEX case, which is diggdiin Section 7.6.2

7.6.1 Performance

We tested the relative performance of GALES, both with anthevit visualization, and
DALES. In our tests, we used the same input for each simulasitbering only the grid size
between tests. We tested each simulation on grids af®4x 80 cells (32 x 3.2 x 3.2km?),
128x 128x 80 cells (64 x 6.4 x 3.2km?) and 256x 256x 80 cells (128 x 12.8 x 3.2km?).
In each test, we simulated 6 hours of real time with time ste#p$0s. We ran DALES
(DALES-MPI) on one supercomputer node with 18 &Hz dual-core processors, for a total
of 32 cores. We ran GALES, with (GALES-VIS) and without (GABENOVIS) visualiza-
tion. In both cases, we ran GALES in mixed-precision modagisiative single and double
precision on a 28 GHz Pentium quad-core PC with an NVIDIA GTX 280-based GP&t. F
comparison purposes, we also ran DALES on one core of the BEMBALES-SINGLE).
The results of our tests are shown in Table] 7.1. The CPU tim@ALES increases
approximately linearly with the size of the simulation gri@ALES also demonstrates this
behavior when moving from the 128128x 80 grid to the 256« 256 80 grid. However,
the slower times at the lowest resolution indicate that GBIrakes less effective use of the
GPU'’s processing power at that resolution. The roughly onglifference of 30s between
GALES-NOVIS and GALES-VIS is due to the fact that we did noacbe the user’s view
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Figure 7.4: Two of the cases GALES can simulate.
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64x64x80| 128x128x80| 256x256x80
FLT-FLT* 189s 538s 2055s
FLT-DBL 72s 195s 761s
DBL-DBL 147s 451s -
FLT-DBS 74s 204s 805s
DBS-DBS 237s 651s -

Table 7.2: This table lists run times in seconds for GALES using variaesision modes. FLT-FLT was run with a
time step of 3s for stability reasons. The other configuratisare run with a time step of 10s.

of the simulation during execution. Thus, we only needecetaler one image per simula-
tion time step, and we used the same number of ray-castiragides regardless of the grid
resolution.

We also tested the performance of the different precisiodeadmplemented in GALES.
These tests used the same grids as we did in the previousaedta/e ran these tests on the
same PC. We tested GALES using single precision (FLT-FLT}ethsingle and native dou-
ble precision (FLT-DBL), native double precision (DBL-DBLmixed single and emulated
double precision (FLT-DBS), and emulated double preci§iaBS-DBS). The FLT-DBL re-
sults are precisely those from the previous test. The epuildouble precision used our
implementation of the double-single data type. We were lenttbrun the DBL-DBL and
DBS-DBS tests for the 256 256 80 grids as they required more than the available 1 GB
of memory on our GPU. Also, for the FLT-FLT tests, we used atstep of 3s since that was
the largest stable time step.

Table[ 7.2 lists the results of our tests. In per time step, deiSt-DBL and FLT-DBS
were only about 20% to 30% slower than FLT-FLT. This slightaléy is more than made up
for by being able to take larger time steps. Surprisinglg, glerformance for both FLT-DBS
and FLT-DBL was roughly equal. This is likely due to the liedtuse of (emulated) double
precision in mixed precision mode and the performancerdiffee between single and double
precision arithmetic on the GPU. Further, all tests folldwlee same pattern of a roughly 3x
increase in execution time between664 x 80 and 128« 128x 80 grids.

Itis important to note that grid sizes of 6464 x 80 and 128« 128x 80 are representative
grid sizes. While there is a trend towards higher resolutigdisgfor some problems, these
sizes are frequently used in a variety of experiments, sa¢hase in the following section.

7.6.2 BOMEX Comparison

This section compares results from GALES with an LES intemgarison study by Siebesma
etal. [87]. In this study, Siebesma et al. compared 10 diffeLES implementations that
simulated the BOMEX (the Barbados Oceanographic and Mefgical Experiment [50])
case study. We chose this study since BOMEX is widely studiatirelatively straightfor-
ward. Also, GALES has all of the functionality necessaryitoudate BOMEX, and we have
results from DALES for BOMEX. This case can be seen in thedmotf Figure 7.4.
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Figure 7.5: Comparisons of our results and DALES with those from the LE®&raomparison study by
Siebesma et al. [87].
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We simulated the BOMEX conditions in a46x 6.4 x 3.0km® domain during a 6 hour
time span using a simulation grid of resolution:664 x 75 and a time step of 10s, as in the
intercomparison study. We repeated the test case for GAhHERei FLT-DBL, DBL-DBL,
FLT-DBS and DBS-DBS precision modes described in the prs/gection. We also ran the
test case using DALES.

Figurel 7.5 shows some of our results superimposed over thitse€rom the original
study. Figuré 7.5a shows the average mass flux (verticatitgldoy height for positively
buoyant, cloudy grid cells. Figure 7.5b shows the averageuaof liquid water by height.
Figurel 7.5¢ shows the average total water specific humiditigdight for the whole domain
(Domain), cloudy grid cells (Cloud) and positively buoyacibudy grid cells (Core). Fig-
ure/7.5d shows the evolution in time of cloud cover (percémneatical columns in the grid
containing liquid water) during the course of the simulati®@he liquid water profile and the
total water specific humidity domain profile were averagedrdhe last hour of the simu-
lation. The mass flux profile and the other two total water gjpeloumidity profiles were
averaged over the last three hours of the simulation.

A complete listing of our results compared to those of thdts beyond the scope of this
paper. However, as in Figure 7.5, our results were genenathin one standard deviation
of the intercomparison mean, and the results from GALES wakvays in good agreement
with the results from DALES. Given that minor deviations asgected in turbulent flow
and that the results from GALES always agreed well with tiseilts from DALES, we have
confidence that GALES is physically correct.

One important additional result of this comparison is adatibn of our mixed precision
implementation. Given how well the results from all presismodes agree with each other,
DALES and the other LES simulations, we can conclude thatisarof mixed precision does
not significantly alter the simulation results.

7.7 Conclusions and Future Work

In this paper, we presented GALES, our physically-corr&®U-accelerated, Atmospheric
Large-Eddy Simulation. Based on the existing DALES, GALES mixed-precision, CUDA
LES implementation. GALES also includes interactive vieadion capabilities, which give
immediate insight into running simulations.

In our experiments, we showed that GALES outperforms DAL&S$ ng on 32 proces-
sor cores on a supercomputer while still providing intévactisualization. This translated
into a roughly 50x speedup over DALES running on a single @ssor core on the same
standard, desktop computer.

We demonstrated GALES's physical-correctness by sinmgdtie well-known BOMEX
case study. We compared our results to those of DALES andQhséniulations in the case
study. Our results agreed well with those from the literatamd agreed very well with the
results from DALES.

GALES offers many new possibilities for atmospheric sdgsat By being physically
accurate, GALES can be employed as a research tool. It caedakfar its raw simulation
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power to run many simulations to explore the simulation peater space. However, it can
also be used as a high-performance, interactive tool. thgdntive visualization, among other
things, reduces the need to store large amounts of data angdace the time required to
set up new case studies.

Beyond some of these possibilities, there are many optmrexjpanding the simulation’s
visualization capabilities. Additions such as partickeetng, improved cloud rendering, and
an improved user-interface are all planned for the futurBALES’s interactive performance
also opens the door to computationally steering the sinaulatvhich is another interesting
avenue to explore.
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CHAPTERS

Conclusions

This chapter discusses the results of the research prddarites thesis as a whole and how
it fits into the larger context of visualization researcheThapter closes with a look at where
to go with the research in the future and some unansweredigpgsaised during the work
presented here.

8.1 Thesis Summary

This thesis presented a variety of techniques for visualifarge, multivariate, time-varying,
3D data. The data was generated by Large-Eddy Simulatidiag-efeather cumulus clouds.
This thesis also introduced a new, GPU-based LES implertient® interactively simulate
the cumulus clouds.

Chapter 2 focused on feature tracking. It introduced anmated method for detecting
and tracking cumulus clouds in the LES data. The cumulusdslavere then visualized in
the initial implementation of Cloud Explorer, which let thémospheric scientists visually
identify interesting clouds. By selecting approximately @ouds, they were able to use
statistical techniques to study the cloud life cycles.

Chapter 3 focused on data reprocessing. The data procqspieline was updated to
support generating new, derived data based on mathematipatssions supplied by the
atmospheric scientists. This data was calculated on agaéwe basis and then included in
Cloud Explorer in the form of statistical plots associatdthvgelected clouds. The Cloud
Explorer user interface was also extended to support thiegg, pvhich introduced more
guantitative information into the virtual environment.

121
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Chapter 4 presented a technique for compressing normalrgacsing quantization. The
technique presented has two advantages: decompressioraisa of a table look up and the
angular error introduced by quantization is bounded. Usiiiggtechnique, normal vectors for
cloud isosurfaces can be compressed, reducing their sidislorBy extending this technique
to arbitrary vectors by also quantizing the vector lendth Mector field data from the LES can
also be compressed. Using the compressed data helps t@methe bottlenecks between
disk and main memory and between main memory and the GPU.

Chapter 5 introduced a GPU-based particle tracing systatrcéin advect over a million
particles at interactive frame rates. The particle trasimgks with both quantized vector
fields and uncompressed vector fields, and supports stapdatidle tracing, the standard
flow curves, rendering flow oriented ellipsoids, and drawpagticles on their pathlines. The
particle tracing engine was integrated into Cloud Explaaemvell as standalone desktop and
VR particle tracing applications.

Chapter 6 gave an overview of the final Cloud Explorer syst@oud Explorer's user
interface makes use of IntenSelect together with a hybtatface for interaction and it pro-
vides the user with various forms of contextual informati@loud Explorer employs data
compression through quantization, both of vector inforamats well as geometry vertices,
to improve performance. Cloud Explorer maintains a cachtbefmost recently used visual-
ization data in memory to support rapidly browsing back athfthrough recent time steps.
Cloud Explorer’s visualization environment can be run iragety of virtual reality environ-
ments, and it can also run as a standard, desktop applicgtiog the same user interface.

Chapter 6 also discussed how Cloud Explorer was used by rhespheric scientists for
their research. Using Cloud Explorer, atmospheric s@entian process and interactively vi-
sualize LES data both in virtual reality and on a desktop asewp In this project, Cloud Ex-
plorer was used to help answer the two atmospheric reseaeshigns posed in Section 1.2.1:
what are the defining characteristics of cumulus cloudsfirdnt stages of their life cycles
and how do cumulus clouds interact with and influence the tirgraund them. By statisti-
cally analyzing several clouds selected using Cloud Expldhey found that the traditional
cloud life cycle did not apply, and that, instead, the clowdse driven by a series of pulses of
warm, moist air. By studying the motions of particles botiCioud Explorer and on a larger
scale in the LES, they concluded that cumulus clouds gemaratescending shell” of cooler
air around them through lateral mixing, that compensatethtoupward buoyant force of the
cloudy air. In short, the collaboration with atmospheriestists yielded fruitful research re-
sults for both atmospheric science and visualization evengh the visualization techniques
presented here were not completely embedded in the atmisphience workflow.

Chapter 7 presented a new GPU-based LES, GALES, that cantaragtively on a desk-
top computer while visualizing the running simulation. 8 a departure from traditional
way of running an LES on a remote supercomputer, and it reptesn initial step towards a
new mode of atmospheric simulation.
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8.2 Visualization Challenges

In 2004, the year when this work started, Chris Johnsson [S#d 15 challenges for scien-
tific visualization. These challenges identified importaagearch areas both to improve the
science of visualization and to provide insight into compded varied scientific data. Of
the 15 challenges Johnson names, many are relevant hereesedddressed by the work
presented in this thesis.

e Think about the science.In other words, visualization cannot exist in a vacuum. The
data being visualized originates from some domain, anditt¥d to collaborate with
scientists from that domain when developing visualizatechniques to study data
from the domain.

Here, one of the important goals was to answer specific gquestibout cumulus

clouds, which are complex, turbulent structures. Ansvgetirese questions required
specially tailored visualization technigues, and workitasely with atmospheric sci-

entists helped provide guidance in choosing suitable limatén techniques to de-

velop. The feature tracking, data reprocessing, partialgng in Cloud Explorer and

GALES itself were all motivated by the atmospheric scigati$heir expert knowledge

of the domain was also invaluable in validating these tegines.

o Efficiently using novel hardware architectures. Providing efficient processing and
interactive visualization of large, multivariate, timarying, 3D data like the cumulus
cloud data is computationally demanding. Making the enii@cess interactive by
integrating the simulation into the visualization is eveorencomputationally demand-
ing. Taking advantage of specialized hardware is currahiyonly way to make this
feasible.

The graphics processing unit (GPU) has been crucial to métiyeatechniques pre-
sented here. The particle tracing presented in Chapter fgelnapentirely on the GPU,
which made it possible to interactively advect over oneiomllparticles. The GPU
also plays an important role in decompressing quantizealalad “decorating” the 3D
clouds with contextual information. The increasing cafighbof GPUs for general
purpose computing made the development of GALES possible.

e Human-computer interaction. Visualization tools must take ease-of-use into account
or else they will be relegated to the status of demonstrat@aly usable by experts.
When visualizing complex data like cumulus clouds, whereuber needs access to
many visualization tools and options, keeping the visadilin environment usable
quickly becomes very challenging.

In Cloud Explorer, a number of steps were taken to addredslingassues. For one,
Cloud Explorer is a virtual reality (VR) application. As $yat supports direct interac-
tion with the 3D data. For system control tasks, Cloud Exgaises a set of familiar,
2D widgets such as windows, buttons and sliders. Cloud E&plalso functions as
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a desktop application, where these 2D widgets behave astexbeln the VR envi-
ronment, the IntenSelect [37] technique is used to simglifection and manipulation
tasks for the user.

Global/local visualization. Visualizing a feature of interest in isolation is less usefu
than visualizing it within some larger context. With cumsiiclouds, providing addi-
tional spatial and temporal cues helps the user relatersaini the data to their spatial
surroundings and their behavior over time.

In Cloud Explorer, this contextual information takes sevdéorms. The 3D data do-
main is shown both as a world-in-miniature and as a largetacoer for the 3D visu-

alization. This provides a frame of reference for the clgtids particles from particle
tracing, and the slicing plane. Within the data domain, tbeds provide a reference
frame for the features seen on the slicing plane and patses in particle behavior.
Statistical plots in 2D windows around the 3D domain showdlbehavior over time.

Some of these plots also show behavior over time at diffeatiitttdes. Decorations
on these plots highlight both the current time step and atu@ét. The altitude corre-
sponds with a white band drawn around the cumulus cloudsséT@iéferent pieces of
information can all help the user gain a better understandinhe data.

GALES also shows the simulation domain as a 3D box, and amdslin the simula-
tion are visualized within the box. Information about thereat state of the simulation
is displayed with profile plots, which display the mean valoé simulation variables
at different altitudes in the domain. Information about History of the simulation
is shown with plots that show the mean value of simulationiatdes over the whole
domain at different points in time.

Integrated problem-solving environments.Understanding complex data through vi-
sualization is often an iterative process where sciergisteerate new data to visualize
based on observations they made during previous visualizaessions. Providing
scientists with an environment where they can experimetit thie data in addition to
just visualizing the data can assist with this process. Tha is that, by using such
an environment, scientists can spend less time performistpm data processing or
running additional simulations, which can reduce the tiswpiired for each step in the
iterative process.

The data reprocessing presented in Chapter 3 is meant to e nghis direction.
Cloud Explorer’s data processing pipeline was extendedippart calculating new
derived data from the simulation data. The derived data kan be included in the
visualization. This introduces quantifiable data into tleiglization, providing a more
rich visualization environment. It also allows the scist#tito use Cloud Explorer to
generate the same kinds of statistical information abauttbuds in the data that they
would normally generate using their own custom tools. Irdaggg the functionality
into Cloud Explorer lets the scientists spend more timealizing the cumulus clouds
and less time developing custom tools.
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o Multifield visualization. The cumulus cloud data studied here consists of much more
than just clouds. Each time step consists of a 3D grid witlosimore variables for each
grid cell. Three of these variables comprise the velocitig fiehich is the wind speed
and direction. One of the variables is liquid water, whiclaidirect cloud indicator.
Additional variables include temperature and humidity. pfoperly understand the
cloud behavior, it's necessary to visualize many of thesg@bkes in combination, but
care must be taken to choose appropriate visualizatiortbéadifferent variables.

Here, a variety of techniques for visualizing the varialblese presented. The cumulus
clouds are visualized as isosurfaces in Cloud Explorer. ALES, the clouds are
visualized using direct volume rendering. Both techniqgige a meaningful physical
representation to the liquid water variable. In both GALES &loud Explorer, scalar
guantities, either simulation variables or derived valaes visualized using statistical
plots. These plots give insight into the mean temporal anslfatial behavior of the
variables. Cloud Explorer provides a slicing plane for wiszing individual scalar
guantities. Cloud Explorer also provides particle tradiogdirectly visualizing the
velocity field. Both the slicing plane and the particle trarican be used together
with the isosurface visualization to understand the retestiip between the clouds and
their environment. When used together, the clouds are draveomtour lines so that
the particles or slicing plane inside the clouds remainblesi By using each of these
techniques and combining them as necessary, the user caloplesmore complete
understanding of the simulation data.

e Feature detection.In order to study features in a data set, they must first bectiete
Thus, the first step in studying cumulus clouds in data geeerfnom a Large-Eddy
Simulation is to detect the clouds in the data and track theough time. Detecting
and tracking clouds offers an interesting challenge: iiiarty trivial to programmati-
cally identify individual clouds, but it is very difficult tautomatically determine which
clouds are interesting for study. In Cloud Explorer, therisérought into the loop to
resolve this dilemma. By observing the tracked clouds awvee tthe user can readily
select clouds to study further.

e Time-dependent visualization.Cumulus clouds are not static; they evolve over time.
As such, it is insufficient to study only static snapshotshef tlouds. They must be
studied in both space and time to understand how they deagldfhow they interact
with their environment. To do this effectively requires audlization environment that
allows the user to interactively and intuitively navigateaugh both time and space.
The environment must also incorporate global/local vigasibn techniques to help the
user relate the instantaneous 3D state of a feature he oeekendth its full behavior
in time.

Here a number of approaches have been taken to help the wssstand how the data
changes in time. The Cloud Explorer visualization envirentrallows the user to play
forwards and backwards in time through simulation data.hBoibud Explorer and
GALES use statistical plots to provide insight into behawweer time. With particle
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tracing, particles can be rendered as flow-aligned ellgssts provide more informa-
tion when the advection is paused. Also, particles can baerea on their pathlines to
connect their current position with their past (and futyre3itions.

8.3 Future Directions

The work presented in this thesis suggests three broad farefagure research efforts: im-
proving Cloud Explorer, improving GALES, and improving leddoration with domain sci-
entists.

There are several opportunities for extending and imp@W@ioud Explorer. New vi-
sualization techniques can be added such as coloring the @dosurfaces with properties
from the data or visualizing the data with volume renderifige idea of reprocessing can be
extended by incorporating a data calculator into the vigatbn environment, which would
better support experimentation with the data. Calculadiexived data for visualization using
the GPU may also be interesting to consider. The performeaée increased by making
better use of multi-resolution data and multi-threaded d@ading. Another avenue to ex-
plore is updating Cloud Explorer to support other types ofididata, such as stratocumulus
clouds, where studying individual features is less intémgghan studying the general behav-
ior of the cloud layer, and deep convection, where the sitimrayrids cover a much higher
vertical domain and often have layers of different thiclgess One additional question to
consider is whether realistic cloud rendering can help apheric scientists related features
from simulated clouds to those observed in nature.

The fast pace at which GPU technology is progressing opensldor for many new
research directions. At the time of this writing, GPUs arelengoing major architectural
changes to make them more amenable to general purpose éogwhile continuing to in-
crease in computational power. The first step will be to updaALES to make the most
of these next generation GPUs, which should allow it to rugdasimulations with better
visualizations interactively. Another important stepake is to have GALES run on multiple
GPUs simultaneously. Extending GALES to make it more of greernental platform would
also be very interesting. One important option for this isryoto computationally steer the
simulations to, which can, for example, let scientists em#hat certain events take place dur-
ing a simulation. Also here adding a data calculator to tivrenment to let scientists derive
arbitrary contextual data to visualize is another optiorfusher research area to explore is
that of performing parameter studies by running multipfaidations simultaneously. This
also brings the challenging comparative visualizatiorbfgm of how to visualize multiple
running simulations and understand their similarities différences.

Developing a better understanding of how visualizationsisduby the domain scientists
and how visualization can be better integrated into theirkflmws is important as the field
of scientific visualization matures. Learning more abouatthe domain scientists wish to
discover will help visualization scientists develop a cgihe set of visualization techniques
that are more tailored to the domain scientists’ needs. y8tgchow they use visualization
tools can provide insight into how to make visualization exogadily accessible to domain
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scientists. Lowering the adoption threshold visualizatiools can help domain scientists
spend more and higher quality time using visualizationgo®his, in turn, can help advance
visualization towards one of the ultimate goals: develggitomplete system for performing
virtual experiments.

8.4 On Visualization in Virtual Reality

When taking a step back from these specifics of the visuatizaé¢ichniques presented in this
thesis, there are two important unanswered questionsairatdome up along the way. When
is virtual reality necessary for visualization and whatlkesf immersion is necessary? In the
author’s anecdotal experience, interacting with 3D datassier with the direct interaction
afforded by VR. However, scientists often work at their ovasktop computer, and it's un-
clear at what point this ease of interaction is significamiugyh to warrant them leaving their
computer and going to a VR system, possibly far away and plysstquiring an appoint-
ment, to visualize their data. Similarly, in the author'pesience, viewing data in stereo can
be a great help in certain cases, such as particle tracindt'vunclear when the benefits
justify the cost and effort. Immersion level is another éa¢hat complicates these questions.
Systems with higher immersion are generally more experaideess accessible to domain
scientists. Does higher immersion level improve insiglned from visualization, and, if so,
when does it justify the cost and effort?

VR clearly has a role to play in scientific visualization, ahldas been successfully em-
ployed in industries like the automotive industry and tHeaod gas industry. However, VR
scientists have thus far shied away from answering the§eulifquestions. Moving for-
ward, though, it is critical to answer them in order to chattie role and quantify the value of
VR in visualization. This will give VR visualization scidsts a better sense of purpose and
direction to help guide their research effort, which is entty lacking.
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Summary

Visualizing Cumulus Clouds in Virtual Reality

This thesis focuses on interactively visualizing, andnudtiely simulating, cumulus clouds
both in virtual reality (VR) and with a standard desktop conep. The cumulus clouds in
guestion are found in data sets generated by Large-Eddyl&ions (LES), which are used
to simulate a small section of the atmosphere over a perigéaral hours. These data sets
are large, 3D, multi-variate, and time-varying, which pseeeral difficult visualization chal-
lenges. In order to overcome these challenges and gaiminstg such complex data, several
techniques are developed and employed together. At a high ke research presented in
this thesis can be divided into four categories: analyzimdj\dasualizing interesting features
in the data, giving the user sulfficient control over the viigadéion, keeping the visualization
interactive, and interactively simulating the cumulusuds.

The first step to understanding the data was to find and tractettures, i.e. the clouds,
in the data. Through the use of a connected component lgtahjorithm, individual clouds
in the data could be identified. These clouds were then vidilin a VR visualization
environment, which allowed atmospheric scientists toaligudentify interesting clouds for
further study.

The next step along the way was to improve the visualizatigpegence. One aspect of
this was to develop data “reprocessing”. This allowed tingogpheric scientists to generate
derived data from the raw simulation data for inclusion ie thsualization environment.
Another aspect of this was to improve the user interface withore intuitive interaction
technique and through the use of familiar 2D widgets.

The next challenge to address was the data access bottlénecker to move more data
from disk to main memory and from main memory to the GPU, ajle#gstor compression
method based on quantization is developed. By analyzingbandding the angular error
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introduced by quantization, unit vectors can be quantiz#agl6 bits with less than 0.4 de-
grees of angular error. This can reduce the size of mesh gggmed, when also quantizing
vector length, can be used to compress vector fields.

In order to help understand the relationship between th&dsland the air around them,
interactive particle tracing was the next research aremddbe power of the GPU, millions
of particles could be advected interactively. These pagicould be visualized as particles
in different visual styles or as flow curves such as streamslor streak-lines. By combining
vector-field compression with a multi-resolution advectswheme, users could interactively
seed and advect particles around selected clouds of itedréssough time.

Most of the techniques developed in this thesis have beegriatied into Cloud Explorer,
which is an experimental VR visualization platform for irgetively visualizing and study-
ing the cumulus cloud data. Several techniques have alsoibtagrated into stand-alone
applications.

The final research area addressed in this thesis was irterairhulation of the cumulus
clouds. GALES, a GPU-based, atmospheric, Large-Eddy Sitoual, was the result of this
effort. GALES runs 16x faster than the Dutch AtmosphericgeaEddy Simulation, which
is a Fortran-based LES, while maintaining comparable nigaleaccuracy. This speedup
enables GALES to interactively run and visualize simulaidhat fit into GPU memory.
This opens new and exciting possibilities for future conagiohal steering research.

Eric J. Griffith



Samenvatting

Het Visualiseren van Stapelwolken in Virtual Reality

Dit proefschrift richt zich op het interactief visualisaren uiteindelijk simuleren van stapel-
wolken zowel in virtual reality (VR) als met een standaardkdep computer. Deze stapel-
wolken bevinden zich in data sets die gegenereerd zijn daayd-Eddy Simulaties (LES),
waarmee kleine stukjes van de atmosfeer voor een periodeeandere uren gesimuleerd
kunnen worden. Deze data sets zijn zeer groot, 3D, mulita@rien tijdsvaérend, en ze
stellen meerdere moeilijke visualisatie uitdagingen. Gameduitdagingen te overwinnen en
inzicht in de data te krijgen, zijn verschillende techniekatworpen en in combinatie met el-
kaar toegepast. Op een hoog niveau kan het onderzoek besclmalit proefschrift worden
onderverdeeld worden in vier categd@nme het analyseren en visualiseren van interessante
verschijnselen in de data, de gebruiker voldoende congeleen over de visualisatie, de
visualisatie interactief houden, en het interactief semeth van de stapelwolken zelf.

De eerste stap naar het begrijpen van de data was om de yesstdn, d.w.z. de stapel-
wolken, terug te vinden in de data en deze vervolgens te kunolgen. Door het gebruik
van een algoritme voor het labelen van samenhangende cemigorkonden de individuele
wolken gddentificeerd worden. Daarna werden deze wolken geviggtisin een VR visu-
alisatie omgeving, waarmee atmosferische onderzoeksugeil interessante wolken konden
uitkiezen om verder te bestuderen.

De volgende stap was het verbeteren van de visuele erv&ermgonderdeel hiervan was
het ontwikkelen van een data “herbewerking” waarmee atemnizshe onderzoekers afgeleide
data konden genereren op basis van de originele simuldtiezdar gebruik in de visualisatie
omgeving. Een tweede onderdeel was het verbeteren van delgbinterface met een meer
intuitieve interactie techniek en het gebruik van bekende 2[yet&l

De volgende uitdaging om aan te pakken was het knelpunt yatg tot de data. Om
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data sneller te verplaatsen van de schijf naar geheugenregeleugen naar de GPU is
een niet-exact omkeerbare vector compressie methodekieteliop basis van vectorkwan-
tisastie. Door het analyseren en begrenzen van de hoeldmitafluceerd door kwantisatie,
kunnen eenheidsvectoren gekwantiseerd worden met 16mitsreder dan 0.4 graden van
hoekfout. Dit kan de grootte van de mesh geometrie verkteareals de vector lengte ook
gekwantiseerd wordt, de grootte van vector velden ook congsen.

Om de relatie tussen de wolken en de lucht eromheen te bexgrijerd interactief parti-
cle tracing het volgende onderzoeksonderwerp. Met gelvankde GPU konden miljoenen
deeltjes interactief geadvecteerd worden. Deze deeltjprdn zowel als deeltjes met ver-
schillende visuele stijlen en als stromingskrommen zdat®mlijnen of streaklijnen worden
weergegeven. Met de combinatie van vector veld compressezer multi-resolutie advec-
tie schema kunnen gebruikers interactief deeltjes zaaidaten advecteren in de tijd door
wolken.

De meeste van de technieken ontwikkeld in dit proefschiiiftgeintegreerd in Cloud Ex-
plorer. Cloud Explorer is een experimenteel VR visualesptatform voor het visualiseren en
bestuderen van stapelwolk data. Meerdere techniekenaijinoafzonderlijke toepassingen
gentegreerd.

Het laatste onderzoeksonderwerp dat in dit proefschifitaorde komt is het interactief
simuleren van stapelwolken. GALES, een GPU-gebaseerdeségnsche Large-Eddy Simu-
latie was het resultaat van deze inspanningen. GALES dt@zisneller dan de Nederlandse
Atmosferische Large-Eddy Simulatie (DALES), dat een Fortgebaseerde LES is. Deze
toename in snelheid laat GALES simulaties die binnen het @Btugen passen interac-
tief draaien en visualiseren. Dit biedt nieuwe mogelijkéredoor toekomstig computational
steering onderzoek.

Eric J. Griffith
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