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Preface

The work presented in this thesis arose out of a research project entitled “Visualization of
Cumulus Clouds in Virtual Reality.” The project was a collaboration between the Computer
Graphics and CAD/CAM group and the Multi-Scale Physics department at Delft University
of Technology. Project funding was provided by the Netherlands Organisation for Scientific
Research (NWO).

One of the central ideas of the project was using simulation techniques to study fair-
weather cumulus clouds. The research goals of the project were twofold. On the data vi-
sualization side, the aim was to develop visualization tools and techniques for interactively
visualizing the complex simulation data. On the atmospheric research side, the goal was to
advance the basic understanding of cumulus clouds through the use of simulation and ad-
vanced data visualization techniques. Another key idea in the project was that, due to the
complex, 3D, multifield, time-varying nature of the simulation data, more insight could be
gained by visualizing the data in virtual reality (VR) than by visualizing the data in a standard,
desktop environment.

This project has been very enjoyable for me personally to work on, and this thesis brings
the cumulus cloud project to a successful close. On the way toreaching this point, I have
been helped and inspired by a number of people. Without theircontributions, both tangible
and intangible, I would not have reached the end.

First, I’d like to thank the people from RPI that were instrumental in my decision to
pursue a Ph.D. and to do so at Delft University of Technology.Srinivas Akella, Bruce Piper
and Vera Kettnaker all took the time to work with me, challenge me, and encourage me to
take the next step. Thanks to Harry McLoughlin for making themechanics of my Master’s
degree possible, and a special thanks to Buğra Çaşkurlu for pointing me towards TU Delft.

In Delft, I have had the opportunity to work with many great colleagues. I would like
to thank Frits Post for being my daily supervisor. His guidance, insight and affable manner
have played a crucial role in making my time at TU Delft enjoyable and fruitful. I’d also
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like to thank Erik Jansen for being my promotor and for helping me through the final stages
of preparing this thesis. A special thanks to Gerwin de Haan for going through the PhD
process with me and keeping it fun and interesting. Thanks also to Michal Koutek, whose
dedication to VR made much of this work possible. I would liketo thank Harm Jonker
and especially Thijs Heus for working with us and taking the time to explain the basics of
atmospheric physics. Thanks to the rest of the visualization group, in particular Charl, Jorik,
Peter, Lingxiao, Stef, François and René, and thanks to my students Dylan Dussel and Torsten
Stöter for our enjoyable collaboration. Thanks also to my committee members for taking the
time to read and evaluate my work.

I would like to thank my family, and especially my mother and father as well as James
and Beverly for their love and willingness to support me in whatever I chose to do. I’d also
like to thank my friends here in the Netherlands and abroad for giving me a world outside
of work so that my work could continue. Thanks to Peter, Kris,Mike Y., Mike V., and
Carlos for our travels and adventures. Thanks to Fatemeh forour discussions about thesis
writing. Thanks to many Delftians, Rotterdammers and Amsterdammers for navigating the
Netherlands with me. Thanks again to the visualization guysfor our evenings in ’t Klooster.
Thanks in particular to Marzena for inviting me to a wedding.

Finally, I would like to thank the NWO for providing project funding. Withouth this,
there would have been no end to reach.

Eric J. Griffith
Rotterdam, 2010



CHAPTER1

Introduction

This chapter introduces and motivates the topics covered inthis thesis. First, scientific visu-
alization and other visualization related topics are introduced. Next, a high level overview
of cumulus clouds and research into their physical behavioris provided. This is followed
by a discussion of visualization research challenges posedby cumulus cloud data and the ap-
proaches taken in this thesis to address these challenges. The chapter closes with an overview
of the rest of the thesis.

1.1 Scientific Visualization

Visualization, in the sense of the research field, deals withconverting raw data, typically
numbers, into meaningful, visual representations. Some familiar examples are vital signs
monitors or stock market trend graphs. By converting the data to a visual form, we can use
our highly-developed visual system to make sense of the data. See Figure 1.1. This can be
with the goal of gaining insight into the data but also with the goal of communicating our
understanding of the data to others.

Within the research field of visualization there are severalsub-fields that deal with visu-
alizing specific types of data. Scientific visualization focuses on visualizing data from mea-
surements obtained from simulation or experimentation. Inparticular, these measurements
usually reflect physical quantities, such as temperature, and the spatial location where the
measurements were taken is usually physically meaningful.A weather map is an everyday
example of this type of visualization.

Much of current scientific visualization research attemptsto provide insight into complex
data. This data is often time dependent. That is, it represents a series of measurements or

3
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Figure 1.1: Visualization converts data to a visual form, which can be easier to understand.

calculated data in time. The data is frequently multi-field:there are multiple types of mea-
surements in the data. The data is also commonly three-dimensional, representing measure-
ments taken at several points in space. Television weather forecasts often use visualizations
of these types of data. They show the past and expected futuremovement of weather patterns,
which include indicators of temperature, precipitation, and so on. While the visualizations
used on television are often 2D, they are based on, among other things, 3D simulations of the
atmosphere.

Visualization research also deals with supporting different aspects of data analysis. Vi-
sualization can be used for browsing through data to get an overview of what’s in the data.
It can be used to automatically, or semi-automatically, findand visualize interesting features
in the data as well as measure their properties. These modes allow users to develop and test
hypotheses about the phenomena recorded in the data. When dealing with simulations, vi-
sualization can also aid in interactively adjusting simulation parameters to understand their
effects or achieve a desired result. Visualization is also an effective means to share any dis-
coveries made during data analysis with others. Analyzing MRI scan results from cancer
patients is an example that involves several of these aspects. Doctors must study the scan re-
sults to determine the nature and seriousness of any tumors in the patients. Their findings are
shared with the patients and, if necessary, are used for planning surgery or other treatment.

1.1.1 Visualization Pipeline

Visualization, scientific or otherwise, employs a common pipeline. See, for example, Haber
and McNabb [41]. This pipeline gradually transforms raw input data into images that users
can see and, ideally, interact with. See Figure 1.2. If done well, the visualization will serve
as a tool for users to develop insight into and understandingof the data.

For scientific visualization, the input to the pipeline is the experimental or simulation
data. In its original form, the data is usually not suitable for visualization. Instead, it must
first be processed. This processing can consist of several things. If the data is noisy, it may
be smoothed. If the data is too large, it may be down sampled orotherwise compressed. If
the data is not in a suitable format, it may be converted. In addition to this type of processing,
more advanced filtering may be applied to the data. This can reduce the amount of data that
needs to be processed by identifying the interesting features and regions in the data. Further
processing may also include preparing the data for use with special purpose data structures
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Figure 1.2: The visualization pipeline.

like kd-trees.

Once the data has been suitably prepared for visualization,it must be mapped to visualiza-
tion data such as geometry and color information. This formsthe basis of what the user will
see. Some common techniques that are used in this process aregenerating isosurfaces using
marching cubes [63] and using color maps to map properties onto a cross section such as a
cutting plane. All or part of this step may be performed off-line, prior to visualization, but for
interactive visualization applications, much of the mapping will be performed dynamically in
response to the user’s actions.

Traditionally, the data mapping step has been distinct fromthe rendering step. However,
with the increasing power and programmability of graphics processing units (GPUs), there
has been a trend to perform both steps at once on the GPU. Examples of this include GPU-
based ray casting for volume rendering, fast line integral convolution for flow visualization,
and, more recently, generating isosurfaces dynamically byexecuting marching cubes on the
GPU. Several of these techniques are detailed by Weiskopf [106].

The rendering step takes the geometry and color informationgenerated from the visual-
ization data and generates the images that the user actuallysees. For rendering techniques
like ray tracing and ray casting, the image will be generatedby directly mapping the data to
color information without using geometry. For other techniques, the color information will
be applied to the geometry during rasterization on the GPU.

It is also important to integrate user interaction into the system. Without interaction, the
visualization result is either a static image or a pre-rendered movie. For some applications,
this may be sufficient, but frequently the user will be interested in viewing the data from
multiple angles or seeing the effects of changing the visualization parameters. The results
of user interaction can feedback into all stages of the pipeline. The user can identify new,
interesting regions of the data to study. He can generate isosurfaces for new isovalues. He
can also simply view the current data from a new angle. An effective visualization platform
should give the user freedom to interact with his data in meaningful ways so that he can gain
insight into his data.

In some cases, it is also possible to take user interaction one step further and interactively
couple it with a simulation that generates the data for visualization. This is known as com-
putational steering and can allow the user to directly influence the simulation results and the
related visualization. See Section 1.1.5 for more about this.
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Figure 1.3: Left: isosurface of a cloud generated using the techniques described in Chapter 2. Right: ellipsoid
particles in a cloud velocity field generated using the particle tracing techniques described in Chapter 5.

1.1.2 Flow Visualization

There are several specialized application areas under the umbrella of scientific visualization,
such as medical visualization [77,81] and flow visualization. Since the dynamics of the atmo-
sphere can be seen as fluid flow, flow visualization is the most relevant research area for this
thesis. Flow visualization deals with both effective ways of visualization flow and techniques
for identifying features of interest in the flow, like shock waves or vortices. Post et al. [76],
Laramee et al. [61], McLoughlin et al. [67], and Laramee et al. [62] provide overviews of
many flow visualization techniques. Mallinson [65] also discusses flow visualization tech-
niques with a focus on how derived data can be used to improve the understanding.

Feature detection is used to find the interesting features inthe data. If the data is time
dependent, then feature detection is performed on each timestep in the data. To identify
correspondences in time between the features, feature tracking is used [76]. Once this process
is complete, individual features can be followed through time in the data set.

In flow visualization, these features are typically visualized using isosurfaces or glyphs.
Isosurfaces are used when the features are clearly defined inthe data and their shape gives
insight into their behavior. See Figure 1.3, left. Glyphs, such as ellipsoids, are used for more
abstract features or to convey additional information. These techniques can also be combined
using techniques like line integral convolution [108], to display information on the feature
isosurfaces.

To directly visualize flow, two commonly used techniques arecutting planes and particle
tracing. Other techniques that can be used (see [44]) include arrow plots or volume visu-
alization of the vector field, isosurfaces of vector field components or derived values, and
texture-based approaches such as line-integral convolution. Cutting planes, also called slic-
ing planes, are used to visualize a particular scalar or vector quantity in the flow. The plane
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is placed in the data and is colored or decorated with glyphs according to the flow properties
along the plane. Particle tracing gives deeper insight intothe nature of the flow by tracking
massless, virtual particles through the flow. The particlescan be visualized in a variety of
ways to show their movement through the flow or to emphasize certain flow characteristics,
such as vorticity or velocity in a particular direction. SeeFigure 1.3, right. They can also be
combined together to form flow curves, such as pathlines, streamlines and streaklines [75],
which can highlight flow patterns in time or space.

1.1.3 3D, Multivariate, Time-Dependent Visualization

Much scientific data is three dimensional, multivariate andtime dependent, representing the
state of some 3D object or volume at different points in time.Effectively visualizing such
data presents challenges throughout the visualization pipeline due to the size and complexity
of the data. Visualization research dealing with this kind of data often focuses on techniques
to overcome these challenges. Bürger and Hauser [14] discuss a wide variety of visualization
approaches used for complex data.

The size of the data itself is challenging to deal with where adata set of several gigabytes
can be considered a small data set. The raw data is often unsuitable for efficient processing
and must be first converted or reordered on disk in a more optimal way. Efficient processing
can also be facilitated by storing the data on media with highbandwidth and low access times
such as disk arrays or solid-state memory. This size of the data sets also means that they
often greatly exceed the memory capacity of the computers used to visualize them, which is
a further complication.

Aside from problems of data size, there are problems of data complexity. The interesting
features in the data tend to be complex and dynamic. This can make it difficult to find and
track the features in the data. The 3D, dynamic features can also be awkward for the user to
interact with inside of a visualization application. Additionally, the wealth of information in
the data can leave scientists at a loss as to where to start. They can extract features, calculate
feature attributes, derive new data from the raw data, perform combinations of these and
many more tasks. In addition, they may have to examine multiple variables in the data to
make sense of it, each of which may lend itself best to different visualization methods.

Another difficulty arising from such data sets is time related. The simulations or experi-
ments required to generate the data must be set up and executed. The resulting data must be
processed to prepare it for visualization. In general, neither of these steps can be performed
interactively. That is, if the scientists studying the datawish to alter the parameters that gen-
erated the data or change the data that is visualized, they must re-initiate the required steps
and wait for them to complete.

An effective, interactive visualization system for 3D, multivariate, time-dependent data
should address these challenges. To deal with data size, thedata should be processed and
filtered such that the minimum necessary amount of data is loaded for visualization, and the
system memory should be creatively used and filled during visualization to maintain inter-
activity. To address the complexity, the system should present data features with sufficient
contextual and derived information such that scientists can develop an understanding of the
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data. Scientists should also be able to use appropriate visualization techniques for visualizing
the different variables in the data. The system should also be extensible so that scientists can
introduce new data into the visualization based on insight they have gained into the data. The
system must also provide users an intuitive interface so that they can easily interact with the
data, and the system must provide adequate exploration tools for the data to be studied. Lastly,
the system should attempt to optimize the way researchers spend time. It should shorten the
time required to adjust parameters both for generating the raw data and for generating the
data for visualization.

1.1.4 Visualization in Virtual Reality

Virtual reality (VR) is a generic term that is applied to the experience that some computer
systems can create where users have the impression that computer-generated objects and
environments are “real”. The more real these virtual objects and environments feel to the
users, the more “immersive” the VR system is said to be. The “realness” of objects includes
both their appearance as well as how they respond to user actions. VR systems can consist
of a variety of components and use several technologies, butrequired features are presenting
the user with a 3D, virtual environment and allowing the userto directly interact with the
environment. One important caveat to virtual reality is that VR systems must be “interactive”
in order to maintain the feeling of immersion. This implies two things. First, the user should
be able to touch, manipulate, activate, and otherwise interact with objects in the world in
a “natural” way. Second, the VR system must update the user’sview on the world at least
10 and ideally 30 or more times per second to provide sufficient feedback about the user’s
interactions with the virtual world.

Most VR systems show users 3D environments in stereo, i.e. a different view of the
environment is presented to each of the user’s eyes so that objects have a feeling of depth.
There are two common approaches to this: head-mounted displays (HMDs) and projection-
based systems. HMDs are special goggles with two small built-in screens for the left and
right eyes. Projection-based systems use projectors to project two different images onto a
real surface, e.g. a screen on a wall. The two images are showneither using two projectors
with special filters in front of them (passive stereo) or by using one or two projectors to
rapidly alternate each of the two images (active stereo). For both systems, users must wear
special glasses to ensure that each eye sees a different image.

VR systems typically enable users to directly interact withthe virtual environment by
tracking their physical movements. The tracking is usuallydone by tracking the 3D location
and orientation of the user’s head and various interaction tools like styli and wands. Tracking
the user’s head allows the VR system to render the 3D world from the user’s viewpoint, which
both gives the user the correct perspective on the world and lets the user move his head around
to view the world from different vantage points. Tracking interaction tools allows the user to
point at, select, and otherwise interact with the objects hesees in the virtual world.

Several factors make virtual reality attractive for visualizing 3D data. By providing users
with a stereo view of the 3D simulation or measurement data domain, and particularly time-
varying 3D data, it’s easier for them to understand where features of interest are in space and
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where they are in relation to each other. The direct interaction that VR provides also simpli-
fies interacting with the data. Tasks like getting a different view of the data can be reduced
to moving one’s head. Features in the data can be selected by,e.g. pointing at them with a
stylus. Once selected, a user can intuitively move and rotate objects by moving and rotating
his hand. Since VR applications must be interactive, this can also ease the visualization pro-
cess by providing users interactive feedback in response totheir actions. The immersion and
“wow” effect that VR provides are also an aid, particularly for novice users, in understanding
3D data. Van Dam et al. [20] and Koutek [58] discuss several uses of VR in scientific visual-
ization. Bryson [12] also gives a good, if dated, introduction to scientific visualization in VR
and its related challenges.

1.1.5 Simulation and Visualization

In many applications, numerical simulation and visualization are closely intertwined. Nu-
merical simulation involves running specialized computerprograms that solve mathematical
equations describing the behavior of real-world phenomena, such as fluid flows. Simulating
the real-world phenomena allows scientists to explore their behavior under a variety of con-
ditions simply by changing simulation parameters. The results of simulations, however, are
often difficult to interpret without specialized tools. Visualization is one of the tools scientists
often turn to in order to help them understand their simulation results.

The role of visualization is not limited to analyzing the results produced by a simulation
run, though. Visualization can also provide valuable insight in constructing the simulation
software itself. A visual inspection of the simulation in progress can reveal bugs in the math-
ematical model or software implementation that are more difficult to identify using traditional
debugging tools. Similarly, when adjusting the simulationparameters to simulate new case
studies, visualization can be used to verify that the simulation is behaving correctly.

For numerical simulations that are sufficiently fast, scientists can use visualization to
help adjust and control the simulation. This is called computational steering [54]. That
is, by coupling the simulation with an interactive visualization, scientists can dynamically
adjust the parameters of a running simulation. This can allow scientists to rapidly explore
the effects of different parameters and also to guide the simulation towards a desired state.
Koutek [58] describes an example from molecular dynamics simulations where scientists can
exert forces on protein molecules to guide their folding. Wright et al. [109] provide a general
overview of computational steering and Mulder et al. [69] discuss the components of various
computational steering environments.

For some simulation research, a combination of simulation and visualization techniques is
useful. For the initial work of determining useful simulation parameters for a new case study,
it’s useful to have a very fast simulation that is coupled with an interactive visualization. If the
effects of interactive parameter changes are readily apparent when visualizing the simulation,
then introducing computational steering capabilities canfurther help in identifying interesting
parameters.

Once suitable simulation parameters have been identified, scientists usually wish to run
much longer, much higher resolution simulations than the initial experimental simulation
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runs. At this stage, it is less interesting to directly monitor the simulation progress so the
simulations can be run off-line with the data stored for later analysis. Once the simulations
are complete, it is still useful to visualize the final results of the simulation. This is especially
true since a wider variety of visualization techniques, particularly related to feature tracking,
can be employed when the data from the entire simulation run is available. Having the full
data set available also makes it easier to browse both forward and backward through time, in
time-dependent data sets, which is more difficult when running the simulation interactively.

1.1.6 Open Problems

There are many open problems in the field of scientific visualization that are the subjects
of ongoing research. One of the better known discussions of these problems is provided by
Chris Johnson et al. [53]. These problems are posed, in largepart, by the increasing size
and complexity of the measurement and simulation data that scientists wish to visualize.
There are also challenges stemming from making efficient useof the technology available
for visualizing the data. Another group of problems relatesto effectively enabling domain
scientists to visualize their data.

Currently, scientific data is often 3D, multifield and time-varying. Each of these types
of data poses unique challenges, and, taken together, the challenges are only more compli-
cated. Visualizing 3D data on a normal computer monitor can lead to difficulties in correctly
perceiving the depth of features in the data and their spatial relation to each other. Features
closer to the viewer can obscure or completely occlude features that are farther away from
the viewer. With multifield data, it is difficult to provide a meaningful visual representa-
tion of two or three data points at a given spatial location. Furthermore, different fields in
the data may be best suited to differing visualization techniques, which requires combining
the disparate techniques together into a unified visualization. It’s also difficult to visualize
the spatial correlation between the different fields in the data. With time-varying data, it is
challenging to give users accurate insight into how features in the data evolve and change
over time. Another difficulty is helping users correlate theinstantaneous 2D or 3D state with
the larger picture in time. Time-varying data also brings the added complexity of tracking
features detected in the data in time.

Making efficient use of technology in combination with visualization is another area of
visualization research. On one side, there are a wide variety of input and output devices for
use with visualization. Some commonly used output devices include standard computer mon-
itors, stereoscopic displays, speakers, and speaker arrays for 3D audio. Some commonly used
input devices include mice, keyboards, haptic devices, and3D tracked devices like wands or
styli. When attempting to put together an effective visualization environment, decisions must
be made about which components to incorporate into the system. Factors like cost versus
added benefit must be weighed carefully. Furthermore, once the devices are incorporated
into a system, they must be combined into a user-friendly interface that allows users to focus
on visualization tasks. On the other side, there is a wide variety of computational technol-
ogy available for driving the visualization. These aspectsinclude GPUs, computing clusters,
disk arrays, and so on. Visualization software may be designed to seamlessly take advan-
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tage of additional computing facilities that are availableor be designed to make optimal use
of one particular type of facility. Both approaches requiresignificant effort and a thorough
understanding of the hardware involved.

The third, broad category of research challenges is enabling domain scientists to visualize
their data. One of the most basic challenges in this area is learning how to effectively coop-
erate with domain scientists to develop techniques that areuseful to them. When developing
new visualization techniques for domain scientists, it’s also important to bear in mind that
they are not visualization experts. Therefore, it’s important to present them with intuitive
user interfaces that make it easy for them to adopt the new techniques. Another challenge
is increasing both the quantity and the quality of the time that the domain scientists spend
using visualization tools. When visualizing their data, scientists should have the freedom to
explore the data, develop hypotheses and test these hypotheses with minimal effort.

1.2 Cumulus Clouds

One of the goals of atmospheric research is to make predictions about what the weather
and the climate will be like in the future. These predictionsare often based on computer-
driven simulations of the atmosphere, which make use of mathematical models of different
atmospheric phenomena and their effect on the weather and climate. Climate simulations
often build on weather simulations by using information learned from the weather simulations
to model the long term effects of the weather. Perhaps surprisingly, the effect of clouds, such
as cumulus clouds, on an evolving climate is one of the biggest unknowns in the models
(Bony et al. [8], Heus [47]). Therefore, to improve climate prediction, it is important to better
understand clouds. For clarity, the cumulus clouds discussed here are fair-weather cumulus
clouds, such as those seen in Figure 1.4.

The traditional view of cumulus clouds is that they are the visible top of a column of
rising, warm, moist air. As the air rises, it begins to cool, and, at a certain height, the moisture
in the air condenses to form the cloud. As long as the thermal,the column of warm air, exists,
the cloud also continues to exist. Once the thermal dies out,the cloud also dies out. This
evolution of a cloud from its inception to when it dies out is referred to as the cloud life cycle.
See Figure 1.5.

While the atmosphere underneath the fair-weather cumulus clouds, the sub-cloud layer,
is turbulent, the atmosphere is fairly calm where the cloudsthemselves form. The traditional
view holds that, in this calmer region, the clouds representa forceful, upward protrusion of
air from below. In response to this upward force, the atmosphere between the clouds then
settles downward toward the more turbulent, sub-cloud layer. See Figure 1.6.

1.2.1 Research Topics of Interest

There are still fundamental questions about the behavior ofcumulus clouds without definitive
answers. Attempting to answer two such questions has been a motivating factor in much of
the work related to the project. The first question is: what are the defining characteristics of
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Figure 1.4: Fair-weather cumulus clouds in Delft.

Figure 1.5: Traditional view of the cumulus cloud life cycle.

Figure 1.6: Traditional view of the subsiding air around cumulus clouds.
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Figure 1.7: Large-Eddy Simulation resolves large-scale turbulence (solid eddies) but models small scale effects
(dashed eddies).

cumulus clouds in the life-cycle stages depicted in Figure 1.5? The second question is: how
does a cumulus cloud interact with and influence the dry air around it? Or, alternatively, how
does the dry air around a cumulus cloud compensate for the upward force from the buoyant
cloudy air?

Collecting the necessary data to answer these questions canbe done through either ob-
serving real cumulus clouds or through simulating cumulus clouds. While observation is a
popular approach, simulation offers many advantages when performing large-scale studies of
many clouds. Simulations are less expensive, more easily repeatable, and they provide sig-
nificantly more data about the clouds and their environment.Furthermore, observation data
often requires processing before it can be analyzed while simulation data can be analyzed
directly. For simulation, though, observation is necessary for validation, setting simulation
parameters and so on.

The work presented in this thesis has been used by atmospheric scientists to help answer
these questions. Their findings have departed from the traditional views presented in pre-
ceding section. Where appropriate, results from their research are highlighted in this thesis
together with descriptions of how the work presented here played a role in the research. See,
for example, Section 2.5.2, Section 3.5, and Section 6.5.

1.2.2 Large-Eddy Simulation

Atmospheric scientists use a variety of simulation techniques to study cloud dynamics. The
technique most relevant to the work presented in this thesisis Large-Eddy Simulation (LES).
LES is so named because it directly simulates only large-scale turbulence and eddies. The ef-
fects of smaller scale eddies are calculated using a computationally cheaper statistical model.
See Figure 1.7.

For studying clouds, LES is used to simulate the large-scaledynamics of a small portion
of the atmosphere under certain conditions. These dynamicsinclude the wind, the temper-
ature, water evaporation and water condensation. By accurately simulating these dynamics,
clouds will form in the simulation, which can then be analyzed.
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The challenge associated with LES is that it produces very large amounts of data. A small
to medium-sized simulation run can simulate a 6.4×6.4×3.2km portion of the atmosphere
over the course of several hours. It does this by dividing thespace into 128×128×80 dis-
crete cells and generating and saving snapshots, 6 seconds apart, of quantities like the average
temperature, wind speed, and humidity in each discrete cell. Depending on the size and du-
ration of the simulation, this can add up to anywhere from 10 gigabytes to several hundred
gigabytes or more of data. The process of identifying, analyzing and understanding the inter-
esting phenomena in the data is difficult without an appropriate set of tools. Developing such
a set of tools is the focus of this thesis.

1.3 Visualizing Cumulus Clouds in Virtual Reality

In order to visualize cumulus clouds, many of the open problems in scientific visualization
must be addressed. The cumulus cloud data is very large, 3D, time-varying, multifield data.
Typical data sets have 6 variables, hundreds of time steps and per-variable time-step sizes of
2 to 20 megabytes. The data variables consist of both scalar and vector quantities.

Visualizing this data has challenges at each stage of the visualization pipeline. The data
processing must be able to detect and track features in the data. It must also support extracting
new data based on insight gained from visualization. When mapping the features to geometry,
care must be taken to overcome bottlenecks between storage and main memory and between
main memory and the GPU. When visualizing the data, the additional processing power GPU
must be effectively used to provide rich and interactive visualizations. These visualizations
must also make the relationship between multiple variables, such as liquid water and air
velocity, clear. Where appropriate, VR should also be used toenhance insight into the data
and ease interaction with the data.

Perhaps the most difficult challenge with visualizing cumulus clouds is embedding new
techniques into the atmospheric science workflow. Close collaboration with atmospheric
scientists is required for developing useful visualization tools. Furthermore, the visualization
tools must be presented to the scientists in such a way as to minimize the adoption threshold.
The tools must be easy to use, and the software environment they run in must also be easily
accessible and easy to use. When looking toward the future, the challenge of combining the
simulation and visualization together into one interactive application must also be addressed.

1.3.1 System Requirements

Answering scientific questions about cumulus clouds using data from Large-Eddy Simula-
tions requires a system with certain components in place. These required components allow
scientists to interpret the raw simulation data at a higher level. That is, they can study the
clouds, their properties, and their interaction with the atmosphere rather than working with
the vast arrays of numbers that the raw data consists of.

The first major required component is a virtual environment where scientists can see the
clouds in the data. Within the cloud viewing environment, scientists must be able to browse



1.3. VISUALIZING CUMULUS CLOUDS IN VIRTUAL REALITY 15

through time in the simulation data and focus their attention on interesting clouds. Browsing
through time is a logical extension of being able to see the clouds. This allows scientists to
visually perceive patterns in the clouds as they evolve overtime. It also allows them to relate
their observational experiences of clouds with the behavior of the simulated clouds. Being
able to focus on interesting clouds is important for developing a detailed understanding of
individual cloud behavior. The focusing should entail excluding uninteresting clouds from
view as well as providing additional information about the interesting clouds.

In addition to the viewing environment, scientists need a set of visualization tools to study
the clouds with. These tools should also be specific to the research questions the scientists
wish to investigate. In order to study cloud life cycles, scientists need to be able to see and
understand the cloud behavior in time. The clouds can be visualized with isosurfaces or direct
volume rendering. Their behavior in time can be directly observed by playing through the
data in time and also by supplementing the “realistic” 3D cloud view with statistical plots
of cloud properties over time. In order to study the motion ofair along cloud boundaries,
the scientists need to be able to visualize air movement and clouds simultaneously. The air
movement can be visualized using particle tracing and it canbe related to the clouds by
including transparent or wireframe cloud isosurfaces.

From the practical side, the scientists also need a (graphical) user interface for interac-
tively controlling the visualization. For interaction, the scientists should be able to use the
available input devices. These are the mouse and keyboard for desktop versions of the visual-
ization and direct interaction tools like a stylus for the virtual reality environment. With these
devices, he should be able to select, rotate, and zoom in and out on clouds of interest. He
should also be able to play through time. The visualization options can be controlled from
within the visualization environment by incorporating various buttons and menus.

There are many factors involved in developing a system to meet these requirements. New
and existing visualization techniques must be developed and adapted to deal with the com-
plex nature of the data. Atmospheric scientists must be consulted to refine the visualization
techniques for atmospheric data. The set of visualization techniques must be integrated with
each other and be made usable for the scientists. The combination of these factors makes it
an interesting challenge for a visualization researcher toaddress.

1.3.2 Existing Visualization Systems

There are many existing visualization systems. The existing systems broadly fall into two
categories: general purpose and special purpose. The general purpose systems take a Swiss
army knife approach to visualization, where the tools they offer can be applied to a myriad of
problems. Special purpose systems are by definition more limited in their application areas,
but they provide superior tools for their area of specialization.

General purpose systems incorporate a wide variety of visualization and data processing
algorithms in the form of components, which are combined together to suit the user’s needs.
In these systems, the burden is often on the user to combine the components together to
create a visualization pipeline for the data he wishes to visualize. Most of these systems
present users with the algorithms as building blocks with input and output ports. These ports
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are connected together in a network or tree structure to pipethe raw data through various
processing steps and ultimately generate a visualization from it. Well known examples of
this type of system include OpenDX [64] and AVS [101]. ParaView [4,45], which builds on
top of the Visualization Toolkit [86] and Amira [94] are morerecent examples of this type of
system.

Special purpose systems focus more on specific types of data or applications. This re-
striction allows them to exploit additional knowledge about the data that will be visualized
in order to offer improvements over general purpose systems. These improvements can take
the form of, among others, simpler user interfaces, better processing and visualization perfor-
mance, and better visualization quality. One such system relevant to this thesis is Vis5D [49].
Vis5D was not wholly specialized, but it was primarily used for visualizing data from numeri-
cal weather simulations. Ziegeler et al. present a more directly relevant system for visualizing
meteorological data in VR: MetVR [110]. Haase et al. describe VISUAL and other systems
used by the German Meteorological Office for visualizing meteorological data [40].

While there are many existing general-purpose visualization systems, none are particu-
larly well-suited to visualizing the type of cumulus cloud data discussed in this thesis. Sys-
tems like OpenDX and AVS tend to suffer from being jacks of allvisualization tools but
masters of none. To create effective visualizations, usersmust navigate a complex user inter-
face to construct a complex network or tree of visualizationcomponents. Once the pipeline
is in place, the visualization tends to be static or difficultto dynamically control and often
suffers from poor performance. The support for time-varying data in these systems is also
generally poor. These types systems can usually be extendedby developing and incorporating
new modules, but it is difficult to overcome their performance limitations.

There are also no suitable special purpose systems available. Vis5D could have developed
into a reasonable candidate, but it has a number of limitations. Development work stopped
on it several years ago, which means it is not taking advantage of the possibilities offered by
modern GPUs. Its user interface is very complex, making it difficult to use. Vis5D along with
MetVR and VISUAL focus more on numerical weather data, whichdeals with phenomena
on a scale of tens or hundreds of kilometers whereas the clouds discussed here are on a
scale of tens to hundreds of meters. This difference of scaleand focus led to incorporating
visualization tools, such as displaying weather data over cartographic maps, which are not
relevant for cloud research. VISUAL and MetVR also focus on more complicated data input
formats such as curvilinear grids or unstructured grids. Data in these formats requires extra
care that is not necessary for the cumulus cloud data presented here.

1.3.3 Cloud Explorer and GALES

In this thesis, two specialized approaches have been taken with visualizing cumulus cloud
data. These approaches have culminated in the creation of two experimental visualization
systems: Cloud Explorer and GALES. Figure 1.8 provides a high level comparison of these
systems. These have served as platforms for developing visualization techniques to deal with
complex, atmospheric data. They have also been targeted at meeting visualization needs
of atmospheric scientists by providing interactive visualization and exploration environments
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Figure 1.8: Left: Cloud Explorer forms part of the traditional, simulation-processing-visualization pipeline. Right:
GALES is the fusion of simulation and visualization.

with sufficient visualization tools and interaction methods to help the scientists understand the
data. The developments of this thesis have not been limited to Cloud Explorer and GALES,
however. A number of the visualization techniques discussed in this thesis have been also
incorporated into stand-alone experimental tools, such asa particle tracing environment, to
demonstrate their wider applicability.

Cloud Explorer, Figure 1.8, left, fills the traditional roleof a VR visualization system. It
consists of two separate components: data processing and visualization. The data processing
is an off-line process that prepares the raw simulation datafor visualization. The processing
can take place on the supercomputers that ran the original simulation or on a local computer.
The visualization environment offers a variety of visualization tools mentioned in this chap-
ter: slicing planes, particle tracing, isosurfaces, and supplementary statistical plots. It also
allows the user to browse through time, select interesting clouds and switch between different
visualization modes. This environment itself can run as either a virtual reality application or
as a stand-alone, desktop application.

GALES, Figure 1.8, right, is an integrated, interactive simulation and visualization en-
vironment. It runs the atmospheric Large-Eddy simulation that generates the cloud data on
the GPU of the visualization computer. The simulation is sufficiently fast that it can be in-
teractively visualized while running. GALES also providesscientists with some statistical
plots that give information about running simulations. This eliminates the lengthy simulation
and processing steps in the Cloud Explorer pipeline, which allows scientists to get immediate
feedback about their simulations.

With the recent advances in GPU computing power, interactive simulation approaches
like GALES are feasible, but GALES is not a replacement for Cloud Explorer. Cloud Ex-
plorer can process data for large spatial domains. It can also do advanced data processing
and feature tracking as it has access to all time steps of a simulation. GALES, in contrast, is
limited to smaller spatial domains and can only move forwardin time through the simulation.

Cloud Explorer and GALES can be best used in combination witheach other. GALES
is more suited to the initial, experimental stages of cloud research when scientists are ex-
perimenting with new mathematical models, simulation parameters and case studies. These
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can be quickly tested in GALES’s interactive environment. Once they have been finalized,
longer, higher-resolution simulations can be run off-lineon supercomputers. Cloud Explorer
can then be used to study the final data in more detail.

1.3.4 Research Contributions

The research contributions in this system touch on a number of areas. From a high level per-
spective, this thesis presents a complete system, including processing and visualization, for
cloud visualization that has been motivated by the visualization needs of atmospheric scien-
tists. The system has been a means to develop, integrate, andexperiment with several visual-
ization techniques and interfaces. Many of its components are novel, represent improvements
over what is available in the literature or have been specially targeted at atmospheric research.
These include feature detection and tracking for semi-automatic cloud selection, data process-
ing and reprocessing for generating visualization data, interactive, GPU-accelerated particle
tracing for air motion analysis, and a VR visualization environment visualizing the data in.
Enhancements to the data handling include region-of-interest extraction for feature-specific
data processing and multi-resolution particle tracing. They also include bounded-error vector
field compression to help overcome bottlenecks in moving data from storage to the GPU.
Enhancements to the visualization environment include integrating the particle tracing and
incorporating 2D statistical graphs providing contextualinformation. The UI of the visual-
ization environment has also been designed for ease of use and for working both as a VR
application and a desktop application. This thesis also presents the first GPU-accelerated
atmospheric LES, GALES, which provides direct visualization of running simulations.

1.4 Thesis Structure

The structure of this thesis parallels the logical progression of the research presented. In
Chapter 2, the groundwork for Cloud Explorer is laid. Detecting and tracking the clouds in
the data is discussed and the initial visualization environment for viewing the clouds is pre-
sented. Chapter 3 builds on Chapter 2. The processing stage is extended to support generating
derived data from the simulation data. The visualization environment is updated to support
displaying the derived data. The UI is improved and slicing planes are also introduced into
the environment. Chapter 4 addresses one of the major bottlenecks in the visualization sys-
tem: getting data from disk to the video card. Vector compression is explored as an option
for reducing the size of isosurface geometry and velocity field data on disk so that it can be
more efficiently sent to the GPU. In Chapter 5, GPU-based particle tracing is discussed. The
particle tracing is incorporated into Cloud Explorer and other stand-alone visualization ap-
plications as a means to interactively visualize the flow in and around the clouds. Chapter 6
presents the final overview of the Cloud Explorer system and how it was used to answer cu-
mulus cloud research questions. Chapter 7 introduces GALES, the GPU-based Atmospheric
Large-Eddy Simulation, which combines simulation and visualization. Chapter 8 concludes
the thesis and provides an overview of future directions thework can take.
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Feature Tracking in VR for Cumulus Cloud Life-Cycle Studies

This chapter was originally presented as a peer-reviewed paper [36] at the Eurographics
Workshop on Virtual Environments in 2005.

Abstract

Feature tracking in large data sets is traditionally an off-line, batch processing operation
while virtual reality typically focuses on highly interactive tasks and applications. This paper
presents an approach that uses a combination of off-line preprocessing and interactive visu-
alization in VR to simplify and speed up the identification ofinteresting features for further
study. We couch the discussion in terms of our collaborativeresearch on using virtual reality
for cumulus cloud life-cycle studies, where selecting suitable clouds for study is simple for
the skilled observer but difficult to formalize. The preprocessing involves identifying indi-
vidual clouds within the data set through a 4D connected component labeling algorithm, and
then saving isosurface, bounding box, and volume information. This information is then in-
teractively visualized in our VR Cloud Explorer with various tools and information displays
to identify the most interesting clouds. In a small pilot study, reasonable performance, both
in the preprocessing phase and the visualization phase, hasbeen measured.

2.1 Introduction

Feature tracking and virtual reality often have conflictingrequirements. Virtual reality must
be interactive to be effective and maintain a feeling of immersion. Feature tracking often re-
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Figure 2.1: Raw data is generated by the LES, which, in turn, is processedto identify and track clouds in the data
and produce isosurfaces and other data for them. The cloud isosurfaces and other relevant data are visualized in our
virtual reality Cloud Explorer. A skilled user browses through the cloud field interactively and identifies interesting
clouds for further study.

quires reading and processing large, time-dependent data sets. Limited reading speeds from
storage generally mean that feature tracking cannot be donein real-time. However, certain
types of features are relatively simple to track in software, but it is difficult to determine
which of those are actually interesting to researchers. In such cases, visualization enables
scientists, whose backgrounds are in observational studies, to use their perceptual skills to
select features worthy of further study. Traditional scientific visualization, though, can be
awkward and unwieldy when dealing with 3D features and, moreso, when those features are
also timedependent. VR, on the other hand, brings 3D data sets to life in three dimensions,
which evokes a stronger perceptual response. This, coupledwith the more natural and di-
rect 3D interaction it provides, makes VR an attractive choice for dealing with 3D data sets.
It is our claim that scientific visualization in virtual reality is the logical choice when aid-
ing scientists in identifying the most interesting, 3D, time dependent features to investigate
further.

This study arose out of our work on simulating cumulus cloudswith Large-Eddy Simula-
tions, or LES, and using VR visualization to explore the results. The long term goals of this
collaborative project are to gain better insight into clouddynamics through interactive explo-
ration in VR. One of the first hurdles to be overcome in the project, though, is the selection
of suitable clouds to study.

The size of the data sets and the nature of the clouds make it challenging to identify in-
teresting clouds. The clouds develop unpredictably over the course of a simulation run, and
it is common for pieces of clouds, or entire clouds, to merge together or split apart. These
factors make it difficult to even track individual clouds through the data set. However, for an
individual cloud to be interesting, it must satisfy certainqualitative criteria, such as being of
sufficient size, going through the proper life-cycle stages, being a relatively cohesive, and not
merging with other clouds. These properties are difficult toput into a consistent and auto-
mated algorithm. The situation is further complicated by data sets that are several gigabytes,
and even up to 1 TB or more, in size. These difficulties are frustrating for atmospheric sci-
entists because they are accustomed to selecting clouds based on observation. When they are
presented with the opportunity to observe the clouds evolveover time, it is trivial for them to
identify the most interesting clouds.

Traditionally, cloud selection for research has been accomplished through the painstak-
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ing efforts of atmospheric scientists. We have streamlinedthe process with a combination
of preprocessing and interactive visualization in virtualreality. Individual clouds evolving
over time are identified and tracked in preprocessing through a 4D connected components
algorithm, and then isosurface, bounding box, and cloud volume data are generated. This
data is then visualized interactively in our Virtual Reality Cloud Explorer, which provides
various tools and information displays. Scientists using Cloud Explorer are then able to se-
lect certain clouds for further study. Using the connected components data, we are then able
to extract only those portions of the data containing the interesting clouds. See Figure 2.1.
This data can then be used to study the cloud dynamics over thecourse of the life-cycles by,
for example, generating mass flux plots or velocity profiles.The authors have successfully
employed Cloud Explorer in a small pilot study to identify interesting clouds, and reasonable
performance, both in preprocessing and in visualization, has been measured.

The remainder of this paper is structured as follows. The next section provides an overview
of feature tracking, LES, and other attempts to visualize clouds. The data preprocessing phase
is discussed in Section 2.3. Cloud Explorer is described in Section 2.4. Some results are pre-
sented in Section 2.5, and the paper concludes with Section 2.6.

2.2 Background

2.2.1 Feature Tracking

Feature extraction is an approach to visualizing very largedata sets. It entails detecting
structures or objects within the data that are of particularinterest to scientists for a given
research task. The features and their properties can be represented in a format that is both
suitable for interactive exploration and much more compactthan the original data. In fact,
data reduction ratios of up to 103 or 104 can be achieved.

Feature tracking is the extension of feature extraction to time varying data sets. Applying
feature extraction to time varying data sets involves more than just extracting the features
from each time step. The correspondence between features insubsequent time steps must
also be determined. By tracking the features across time steps, the temporal behavior of the
features can be studied. A further step can be the detection of important changes in the life-
time of features. These changes, or so-called events, can bethe appearance or disappearance
of features, but they can also be the merging together or splitting apart of features.

Several approaches to feature tracking and event detectionhave been published. Corre-
spondence between features can be determined by extractingthe features directly from the
4D spatio-temporal domain [105] or by searching subsequentframes for corresponding fea-
tures. This can be done by looking at the spatial extents of the features [89] or by calculating
feature attributes and searching for the feature with the most similar attributes in the next
frame [79]. For a survey of techniques, see [76].
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2.2.2 Large-Eddy Simulation

LES is a popular numerical tool in the atmospheric sciences to give insight into characteristics
of flows in the Atmospheric Boundary Layer, or ABL, where observational methods, e.g.
by satellites, airplanes or radar, are limited because theydo not give access to the entire
3D flow field. In LES, the Navier-Stokes equations are solved up to a certain scale. In
this way, the largest and most energetic flow circulations, or eddies, are resolved, and the
influence of smaller eddies are approximated via a statistical model. This type of simulation
was developed during the sixties and seventies, e.g. [91], to solve turbulent flows for large
(kilometer sized) domains and time scales while still taking into account the dissipation of
energy, which takes place at scales of motion aroundO(1mm) and is of vital importance
for the dynamics of the mean flow. Our simulations are performed by a parallelized version
of the code described by Cuijpers [17]. The data sets used in Section 2.5 are cases of the
Barbados Oceanographic and Meteorological EXperiment (BOMEX), which is documented
in [87].

To simulate a field of cumulus clouds, which are relatively small clouds located in the
ABL, a typical domain size is 6.4× 6.4× 3.2km. The simulation keeps track of several
variables: three velocity components, temperature, liquid water, and total moisture. These
are updated in the simulation by integrating between time steps representing 2 seconds of
real time. Using, for example, a grid size of 5123 and outputting every third simulation time
step, the data set produced for simulating 1 hour of real timewill be more than 500 GB.
Thus, the size of the dataset can be a disadvantage when attempting to investigate specific
features of the flow. This is especially true for exploring the evolution of flow characteristics
in time since this requires both a suitable cloud in space andknowledge of its history. While
a thorough selection procedure can slim the dataset considerably, in many cases it is still
insufficient. In those cases, a 3D, interactive environmentlike VR can be an excellent way to
increase the amount of data that can be handled by a user, and thus also enable searches of
the dataset for criteria that can be most readily identified by human perception.

2.2.3 Cloud Visualization

Many examples exist of cloud visualization. One early example ( [55]) describes techniques
for ray tracing volume density fields, resulting in fuzzy, cloud-like images. Later examples
are mainly concerned with clouds for application in animations or games, aiming at visual
realism using complex lighting models [80, 85], or high performance [42, 104]. In our case,
we are mainly interested in the physical accuracy of the cloud simulation, although visual
realism may be of some help to benefit from the observational experience of the atmospheric
researchers.
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Figure 2.2: This figure depicts the 26 neighboring cells of cell(xn,ym, tp) in a three dimensional, i.e. two spatial
dimensions and one temporal dimension, binary array.

2.3 Data Preprocessing

The first phase of our approach is data preprocessing, which prepares the raw data for vi-
sualization in VR (Figure 2.1). This phase proceeds in two major stages: feature tracking
and isosurface generation. For the purposes of this work, werefer to clouds as features in
the data. We incorporate the usual feature detection step into the tracking phase because it
is straightforward in our case. In the tracking phase, individual clouds in the data set are de-
tected, identified and tracked through time. We also record data about the clouds during this
stage. Once the tracking is complete, we generate isosurfaces representing the cloud shape
for later visualization.

The cloud data sets that we worked with are three dimensionalvolumes for each time
step. The volumes are 128×128×80 or 256×256×160 grid cells in size. The volumes are
periodic in both thex andy directions. This means that clouds may “wrap around” the sides
as they move with the wind. For preprocessing, we are only concerned with one of the scalar
quantities generated by the LES: the quantity of liquid water in the air, which is centered at
each grid cell. A non-zero amount of liquid water indicates there is visible cloud in the grid
cell, and we use this for cloud detection.

2.3.1 Cloud Tracking

Tracking clouds can be quite complex. Fortunately, atmospheric scientists are not interested
in clouds that go through large-scale merging events. We take advantage of this to greatly
simplify the tracking. We label all cloud masses that ever come in contact with each other as
a single cloud. During the later visualization process in VR, scientists can quickly identify
and disregard any undesirable “clouds” that result from multiple collisions or subdivisions.

To accomplish the feature tracking, we employ a four dimensional variety of the standard
connected components labeling algorithm. This type of algorithm is commonly used in com-
puter vision. A general approach to connected component labeling is described in [24]. In
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such an algorithm, a binary array, of arbitrary dimension, is examined, and all array cells that
have a 1 value are assigned a label based on their neighbors. Specifically, a cell will have the
same label as its neighbor cells, and no two distinct sets of cells will have the same label. In
this way, neighboring cells with 1 values are “clustered” together. For the four dimensional
algorithm, we consider all 80 spatio-temporal neighbors. See Figure 2.2 for a simplified il-
lustration. We construct the four dimensional binary arrayby considering each successive
time step, and we assign a 1 value for each grid cell with a non-zero amount of liquid water
and a 0 value otherwise. All cells in the binary array with a 1 value are considered part of a
cloud. Two grid cells that are part of clouds,v1 = (x1,y1,z1, t1) andv2 = (x2,y2,z2, t2) with
t1 andt2 representing time steps, are said to be neighbors, and thus part of the same cloud, if:

max(|x1−x2|, |y1−y2|, |z1−z2|, |t1− t2|)≤ 1.

The one caveat we must consider is that thex andy axes are periodic, whereas thez andt
axes are not.

The 4D connected component labeling is attractive for several reasons. It will work in
almost all cases, except for some small and uninteresting clouds, because of the slow cloud
development and significant overlap between frames. It gracefully handles merging and split-
ting of clouds. This has the added advantage that it lumps large groups of merging clouds
together, which allows them to be more readily ignored. It iscomputationally inexpensive,
and it makes identifying corresponding features in adjacent time steps trivial. Furthermore, it
offers fine-grained tracking, which other approaches like simple bounding box overlap may
lack.

While creating the connected components, we also keep track of other data. We record
the cloud volume by totaling the number of grid cells each cloud occupies in each time step.
Additionally, we keep track of the bounding boxes for each part of a cloud in each time
step. In a brief post processing step, these bounding boxes are enlarged for aesthetic reasons,
and overlapping boxes are merged. These bounding boxes are used in isosurfacing and later
visualization.

2.3.2 Isosurface Creation

Isosurface creation is a pipeline process. First, we prepare the data, and then we generate the
initial isosurfaces with the marching cubes algorithm [63]. We refine the resulting triangle
meshes with a series of filters, and finally we convert the refined meshes to triangle strips.
We must take some care in this process, however. We want to keep the size of the isosurface
data as small as possible to ease the burden on Cloud Explorer’s interactivity, and we would
like the clouds to have a more cloud-like appearance. Additionally, the triangle stripping
algorithm we use requires manifold triangle meshes as input.

Creating the initial isosurfaces is fairly straightforward. First, an empty volume is created
that is twice the size of the data volume in both thex andy directions. Next, the data for a
particular time step is selectively placed into this empty volume. This is necessary for creat-
ing “complete,” i.e. manifold, isosurfaces of clouds whereclouds wrap around the periodic
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Figure 2.3: If the data for a time step is selectively placed into a larger volume in the fashion shown, each cloud will
only appear in the volume once, and that one instance will be a manifold object.
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Figure 2.4: The centroid of the triangle lies within a cube where each corner of the cube is a grid cell. The black
corner belongs to cloud 5 while the white corners do not belong to any cloud. Therefore, the triangle is part of cloud
5.

boundaries. By considering which cloud each grid cell belongs to and what the bounding
boxes of that cloud are, it is possible to place the data for just one complete copy of each
cloud into the volume. See Figure 2.3. Marching cubes can then be applied to this volume to
generate triangle meshes representing the cloud shape.

After isosurfacing, the triangles are prepared for eventual storage and visualization. The
first step is to separate the triangles into sets of meshes representing the individual clouds. By
performing a look up into the connected components data for the centroid of each triangle, all
the triangles can be separated into appropriate sets. See Figure 2.4. This produces a collection
of sets of triangular meshes where each mesh represents a piece of a cloud and each set of
meshes represents a single cloud. Next, we perform three operations on the triangle meshes.
These are, in order of application, a windowed-sinc filter tosmooth the mesh, a decimation
pass to reduce the number of triangles in the mesh, and a pass to generate smooth normals
for the mesh and improve its appearance. See Figure 2.5 for the results of this.

The last step before storing the meshes is to convert them to triangle strips to reduce the
size of the stored data. We use a variation of the stripping algorithm presented by Gopi and
Eppstein [30]. Their algorithm produces a single triangle strip if given a manifold triangle
mesh as input, but it introduces new mesh vertices to do so. The cloud meshes are manifold,
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Figure 2.5: The top row illustrates the triangle mesh while the bottom rowshows the corresponding shaded model.
From left to right: raw output from marching cubes, after applying a windowed-sinc filter, after decimating the mesh,
and after generating smooth normals.

but we do not insert new vertices so we end up with multiple triangle strips. It is important to
note, though, that the resulting triangle strips are just strips of adjacent triangles, and actually
consist of alternating sequences of triangle fans and triangle strips (Figure 2.6). We keep
track of when the strips alternate between fans and strips sothat we are able to recreate the
surface later with consistent winding.

2.4 Virtual Reality Cloud Explorer

The second phase of our approach is interactive visualization in VR. Our VR Cloud Explorer
application allows users to interact with evolving cumulusclouds produced by LES. The in-
terface provides tools to allow users to focus on potentially interesting clouds. By examining
these clouds more closely within Cloud Explorer, they can pick out certain ones to study
further, e.g. for life-cycle studies. The application was built on top of OpenGL Performer
and the RWB library, which is a custom VR library described in [58]. In the remainder of
this section, we present a sample scenario for using Cloud Explorer, and then we describe the
components and relevant interactions in more detail.

2.4.1 Interaction Scenario

The user begins her interactions with Cloud Explorer once the visualization data is loaded
and the application is running. She first watches the cloud field over the entire simulation run
(Figure 2.7a). This gives her a feel for the clouds that are present, and she can quickly tell if
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Figure 2.6: A strip generated by Gopi and Eppstein’s algorithm [30] begins as a triangle strip, and then alternates
between triangle fans and triangle strips. Triangle fans are indicated with gray triangles.

anything went wrong with the simulation run. If the clouds seem reasonable, she proceeds to
hide all clouds not going through the entire life-cycle as they are not of interest (Figure 2.7b).
She continues to browse through time to spot potentially interesting clouds among those
remaining visible. She selects one of those clouds to examine the plot of its volume over
time (Figure 2.7c, Section 2.4.2). This gives her an overview of how the cloud evolves. She
is looking for clouds with bellshaped volume plots, which indicates that they go through the
proper life-cycle stages. If it is acceptable, she limits the time playback to the cloud’s life-
cycle so she can focus on the time steps from just before the cloud comes into existence to just
after it dies out (Figure 2.7d). Next, she hides all clouds except the cloud she is examining
(Figure 2.7e). She then lets the application play through the cloud’s life-cycle while she
orients the cloud field and examines it from various perspectives (Figure 2.7f). If she is
satisfied that the cloud is worthy of further study, she notesthe number of the cloud down.
Once she is done looking at a cloud, she shows all the clouds going through the complete life-
cycle again, and she examines any other potentially interesting clouds in a similar manner.
When she is finished with the application, she uses the numbersof the clouds she has written
down, along with the connected components data, to extract just the portions of the data set
that contain the interesting clouds. She can then perform various postprocessing steps on this
data to further analyze the clouds, and she can also generatemore detailed simulation results
focusing on these particular clouds.

2.4.2 Application Components and Interaction

Cloud Explorer provides users with three interaction techniques: ray casting, direct manipu-
lation, and world-in-miniature, or WIM. Ray casting and direct manipulation are used inter-
changeably for object selection and manipulation. The default interaction is ray casting, but
if the tip of the interaction device, a stylus in our case, is within an object, then we switch to
direct manipulation. Currently, we only use WIM as a method for orienting the cloud field.
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Figure 2.7: Cloud Explorer in various stages of use. See also Figure 2.8 and Section 2.4.2 for more details.
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Figure 2.8: Cloud Explorer components: a) cloud field, b) volume graph, c) WIM, d) buttons, and e) time control
panel.
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The user’s primary view on the data is the cloud field. This is the large box (Figure 2.8a),
which displays the cloud geometries. In the default mode, each cloud appears in the cloud
field in a distinct color. Above each cloud, a unique, identifying number is displayed for
collaboration between multiple users and use in post processing. If the user has selected a
particular cloud in the cloud field, that cloud will be displayed within its bounding box. The
user also has the ability to hide certain clouds in the cloud field with the provided buttons
(Figure 2.8d). In particular, he may choose to hide all clouds which do not go through the
entire life-cycle or all clouds except the currently selected cloud. If he chooses to only display
the selected cloud, then that cloud’s bounding box and identifying number will be hidden.

The user’s secondary view on the data is the volume graph. This panel displays two plots
of the currently selected cloud’s volume over time (Figure 2.8b). One is relative to the cloud’s
maximum volume, and the other is relative to the largest cloud’s maximum volume. The plots
give users an estimate of the currently selected cloud’s relative size and behavior over time.
When the user selects a new cloud, the plots are updated, and the identifying number of the
selected cloud is displayed above the plots. To assist the user, the volume graph has several
indicators. One indicates where along the time axis the current time step lies. Two others
mark the cloud’s birth and death. The final two indicate whichtime span the playback is
currently limited to.

For additional perspective and control, the user is provided with the world-in-miniature,
or WIM (Figure 2.8c). The WIM and the cloud field maintain the same orientation, making
the WIM a convenient tool for reorienting the cloud field. However, the WIM also plays a
minor informational role since it always displays all the clouds in the current time step and
indicates the selected cloud with its bounding box. In addition, the positive directions in each
of the x, y, and z directions are indicated in the WIM to serve asa reference point should the
user become disoriented. If the user finds the WIM unhelpful, he is able to remove it from
view.

The time control panel gives the user control over the time dimension. It consists of two
scroll bars and several video player-like buttons (Figure 2.8e). The top scroll bar controls
the frequency at which new time steps are displayed, and the buttons control the time step
sequence. The lower scroll bar gives the user more interactive control over which time steps
are displayed. He can move the slider around to rapidly browse through time or jump to a
time of interest. He can also limit the range of time steps that the playback cycles through.
Whenever the slider or the limits are moved on this scroll bar,the corresponding indicators
on the volume graph are also updated. In this way, the user canuse a combination of the time
control panel, the volume graph, and the cloud field to explore the evolution of the clouds
over time.

Cloud Explorer provides a set of button widgets for extra functionality (Figure 2.8d). The
buttons provide tools to change the current mode of operation for Cloud Explorer rather than
methods to directly interact with the data. With these, he isable to zoom in or out on the
cloud field, cycle through the clouds in the data set, and determine which clouds are visible
in the cloud field.
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Grid Size×Time Steps ql Size Total Size

A (128×128×80)× 600 1.46 GB 8.76 GB
B (128×128×80)×1184 2.89 GB 17.34 GB
C (256×256×160)×2169 42.36 GB 254.16 GB

Table 2.1: Three data sets consisting of three dimensional grids for each time step for each of six variables. For
preprocessing, we are only interested the variableql , which indicates liquid water. 600 time steps represent one
hour of real time, with one time step every 6 seconds.

CPU Time Peak Mem. Usage Avg. Mem. Usage

A 9m 44s 203 MB 156 MB
B 31m 24s 278 MB 223 MB
C 11h 38m 22s 2557 MB 1836 MB
A* 2m 49s 163 MB 117 MB
B* 6m 59s 238 MB 189 MB
C* 2h 04m 58s 1600 MB 1011 MB

Table 2.2: Processing time and memory usage for the three data sets. We useda dual 3.60 GHz Pentium Xeon Linux
machine with hyperthreading and 3 GB of RAM, and the data was stored on a RAID0 system with read speeds up to
320 MB/s. 4 time steps were processed simultaneously. In thosecases marked with a star, only clouds going through
the entire life-cycle were fully processed.

2.5 Results

2.5.1 Preprocessing

We implemented the preprocessing phase as a multi-threaded, stand-alone application. The
application is crossplatform, running on both Linux and Windows. We used three data sets
(described in Table 2.1) to measure the application’s performance in three key areas: overall
processing time, memory usage, and data reduction.

For each data set, we produced two sets of output. In all cases, we first identified and

Number Output Data Compression
of Triangles Size Ration (vs.ql )

A 11,731,822 165 MB 54 : 1 (9 : 1)
B 33,468,700 468 MB 36 : 1 (6 : 1)
C 517,110,152 6.9 GB 36 : 1 (6 : 1)

A* 2,493,716 39 MB 228 : 1 (38 : 1)
B* 6,456,066 99 MB 180 : 1 (30 : 1)
C* 46,824,994 679 MB 384 : 1 (64 : 1)

Table 2.3: The number of triangles, total output data size, and the resulting compression ratios when compared with
the total input data set size and just theql size. In those cases marked with a star, only clouds going through the
entire lifecycle were fully processed.
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tracked all clouds in the data set via the connected component labeling algorithm. We then
used the data collected in this stage to filter some clouds outof the subsequent processing. In
both sets, we eliminated all clouds having an average volumeof less than ten grid cells per
time step. In the second set of output, we also eliminated allclouds that did not go through
the full life-cycle, i.e. those clouds present in the first orlast time step. Table 2.2 relates the
processing time and memory usage required for the preprocessing. Table 2.3 gives a sense of
the content and size of the resulting data, as well as the compression ratios.

Eliminating clouds that did not go through the entire lifecycle yielded significantly smaller
output, which is also reflected in the shorter processing time required. This is because each
data set has one or two “super clouds”, which do not go throughthe entire life-cycle and
are present throughout most or all of the time steps. These clouds consist of several clouds
that continuously merge and split. Removing them means fewer triangles are generated in
isosurfaces, which in turn means less mesh refinement is necessary.

2.5.2 Cloud Explorer

To test the effectiveness of Cloud Explorer, we performed a simple pilot study on our Re-
sponsive Workbench (Figure 2.9) using data set C from Table 2.1. Currently, Cloud Explorer
loads all of the visualization data into memory for performance reasons. This did not fit into
memory so we, instead, confirmed the suitability of the data set by examining a handful of
time steps of the full output, and then we worked with the output containing only clouds going
through the entire life-cycle. Aside from these minor differences, our VR session proceeded
similarly to Section 2.4.1 During the session, we experienced frame rates between 20 and 30
FPS.

Using Cloud Explorer, we identified seven clouds of particular interest. We then extracted
the relevant parts of the data set. Using this per cloud data,we generated mass flux plots
indicating the motion trends within the clouds over their life-cycles. See Figure 2.10 for one
of the plots. The resulting plots were quite consistent, andthey demonstrated interesting
profiles when the clouds were decaying. We feel that the consistency in the graphs is a good
preliminary indicator that our approach is successful.

2.6 Conclusions and Future Work

Cumulus cloud simulations generate very large, timevarying data sets of up to hundreds of
gigabytes.We showed how feature tracking and VR can help to deal with such large data
sets and how it can help scientists to interactively select good clouds for further study, e.g.
life-cycle studies.

The interactive selection is performed by first preprocessing the data and then interac-
tively visualizing the results. Through the efficient representation of the clouds as isosur-
faces, sufficient data reduction is achieved to allow the interactive VR visualization as done
in our Cloud Explorer application. VR has proved to be a very valuable tool for interactive
exploration, allowing theoretical and observational considerations to be combined.
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Figure 2.9: Playback of a recorded session on the Responsive Workbench.
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Figure 2.10: A mass flux plot for a cloud selected with Cloud Explorer. Positve flux (right of the zero line) indicates
the cloud mass is moving upwards at that altitude. The cloud begins to decay at approximatelyt = 32 minutes. After
this point, the cloud is no longer being fed by a thermal, and itdrifts upwards and dies out. Interestingly, the profile
retains most of its shape until the final minutes.
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Having made their selections, the scientists extract the relevant parts of the data. They
can then perform more detailed analyses of, for example, flowpatterns and heat exchange
at every stage of a cloud’s life-cycle. This combination of simulation and VR visualization
techniques will allow these types of studies to be done for the very first time.

This work is part of a larger project with many possible future directions. We hope to
further formalize and automate the cloud selection process. We would also like to incorporate
documentation facilities and new visualization techniques into Cloud Explorer. The aim of
these steps is to further enable the atmospheric scientiststo make use of their observational
skills, though, rather than to eliminate them from the pipeline. Additionally, we will need
to incorporate other large data handling facilities, such as out-of-core and multi-resolution
representations, to cope with the full magnitude of the datasets LES can produce.
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CHAPTER3

Quantitative Data Analysis in Virtual Environments through
Reprocessing

This chapter was originally published in the proceedings ofthe 2007 conference for the Ad-
vanced School for Computing and Imaging [35]. The conference paper was an expanded
version of a peer-reviewed short paper [34] originally presented at the ACM Symposium on
Virtual Reality Software and Technology in 2006.

Abstract

This paper presents an approach to help speed up and unify theexploration and analysis of
time-dependent, volumetric data sets by easily incorporating new qualitative and quantitative
information into an exploratory virtual environment (VE).The new information is incorpo-
rated through one or more expedited offline “reprocessing” steps, which compute properties
of objects extracted from the data. These objects and their properties are displayed in the ex-
ploratory VE. A case study involving atmospheric data is presented to demonstrate the utility
of the method.

3.1 Introduction

Today, many researchers make use of complex simulations to analyze various phenomena.
These simulations often produce time-dependent data sets,which are growing increasingly
large as more sophisticated simulation techniques and faster computing technology emerge.

37
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Figure 3.1: Left: The VE in use. Right: A closer view of the VE.

However, the time required to extract meaningful results from these simulations is also in-
creasing with the complexity and size of the simulation output. Virtual reality (VR) can help
scientists make sense out of such data sets, but most VR software for data visualization is de-
signed for specific problems and often lacks integration into the larger data analysis process.

Due to the lack of adequate exploratory environments for data sets produced by such sim-
ulations, researchers must often spend a significant amountof time moving between several
existing tools or devising new special purpose tools in order to analyze and understand their
data. As the scientists investigate their data, they often come up with yet more properties they
would like to examine. This can lead to using and developing even more tools, which then
further slows the process down. By providing these scientists with a more unified process
consisting of a set of flexible tools that are coupled with a suitable environment for exploring
these large, time-dependent data sets, it is hoped that the ratio of time the scientists spend on
exploration and analysis versus tool selection and development can be significantly increased.

This paper proposes an approach to help speed up and unify theanalysis and exploration
of large, time-dependent data sets. This is accomplished through the combination of an ex-
ploratory virtual environment (VE) and a data processing tool. The VE provides standard ma-
nipulation and data probing tools for exploring the 3D, multivariate data, and it incorporates
quantitative and qualitative information generated by thedata processing tool (Figure 3.1).
The data processing tool generates this information by using a simple expression parsing
grammar to perform a variety of computations on the data. Furthermore, the same data pro-
cessing tool can be reused during an arbitrary number of “reprocessing” steps to generate
new output data for inclusion in the VE. Currently this takesplace offline after examining the
data in the VE, but we plan to incorporate it as an interactive, real-time component of the VE
in the future.

The work presented in this paper stems from our cumulus cloudresearch project. As
the work evolved, we closely followed the analysis cycle described by Upson et al. [101]
(Figure 3.2). Later in the paper, we describe the iterationswe went through, and we relate
how the combination of the exploratory VE and the data processing tool we have developed
support the steps we took.

The remainder of this paper is organized as follows. We discuss related work in the next
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Figure 3.2: The analysis cycle as described by Upson et al. in [101]. Simulation data is filtered to produce data
for visualization, which is then mapped to geometric primitives. These primitives are rendered and studied yielding
insight, which can be used to initiate a new round of filtering.

secion. In Section 3.3, we give a general overview of our approach. In Section 3.4, we present
our software system and the salient points in its evolution from our previously developed VE
exploration tool for life-cycle studies [36]. In Section 3.5, we describe how this work relates
to the atmospheric research in our cooperative project. We conclude the paper in Section 3.6,
and we discuss our plans for creating a fully interactive system from the current one.

3.2 Background and Related Work

In their presentation of the AVS software, Upson et al. [101]describe the scientific data anal-
ysis process as largely a filter, map, render loop (Figure 3.2), which transforms the simulation
data into meaningful images that researchers can analyze. The loop gives scientists insight
into their data, which also helps drive further iterations of the loop. Researchers may also
generate plots, movies, or other visual representations for communicating the insight they
have gained. This model, however, focuses mainly on the visualization software itself, and
it does not really consider the supplemental tasks, which are still an important part of the
process.

Springmeyer et al. [93] further characterized the scientific data analysis process. He
breaks the process down into four components: analysing representations of the data, per-
forming calculations, maneuvering through and in the data,and expressing the ideas gleaned
from the process. These components each encompass a varietyof tasks that researchers per-
form during the analysis process. Based on these tasks, he suggests five functional require-
ments for software that is to support scientific data analysis: allow interactive, quantitative
exploration; assist in maintaining records of sessions; link materials from different stages of
a study; simplify navigation requirements; and provide support for culling large data sets. We
have attempted to incorporate most of these into the software we have developed.

A variety of exploratory data visualization environments exist. Popular examples using
the network data flow architecture are AVS [101], OpenDX (originally IBM Visual Data
Explorer) [64] and IRIS Explorer [27]. These environments employ a modular, visual pro-
gramming approach to allow users to piece together a visualization pipeline that generates
one or more views on their data. Another common approach is tobuild a custom application
on top of libraries such as the Visualization ToolKit (VTK) [86]. However, these environ-
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ments tend to be more geared towards image or film generation rather than the exploration
process itself. Interaction with the data can be clumsy due to the limitations of the mouse and
keyboard interface, and it is often difficult to effectivelyintegrate multiple views on the data.

Much work has also been done on data visualization within VR.See [16,19] for a variety
of examples. Still, as Johnson points out in [52], effectively visualizing time-varying, mul-
tivariate data remains a challenging and open problem. On deskop systems, and to a lesser
extent in VR, this is further complicated by a lack of effective interaction tools. Another
weakness Johnson points out in current systems is their lackof integration with the overall
problem solving environment. With our method, we are attempting to address these chal-
lenges by bringing together data processing and the exploratory VE and incorporating more
information into the VE.

In a process of ’selective visualization’, Van Walsum [103]used expression parsing tech-
niques to compute derived data from an original data field, tobe used in defining Boolean
selection expressions for selecting important parts of thedata. Facilities for performing ma-
trix/vector operations, calculating gradients, and determination of descriptive statistics were
included in this system. However, no facilities for direct exploration of the derived data were
available. This issue was addressed by an approach called ’linked derived spaces’ [46], in
which derived quantities could be calculated and also visualized in user-defined 2D coordi-
nate spaces that were directly linked to the original data. In our approach, a similar expression
parsing facility is used to calculate new data, but in our case the new data are imported in the
VE, so the full range of visualization and exploration techniques is available to the user.

3.3 Method Overview

With our previous Cloud Explorer application [36], we supported a research pipeline illus-
trated in Figure 3.3a. This linear approach helps cull the data set by allowing the scientists to
study only those portions of the data containing interesting objects, but the narrow focus of
the preprocessing and the VE prevent the scientists from gaining further insight into the data.
Instead, they must continue to rely on their traditional research software and methods.

Our newly proposed pipeline incorporates five steps:
Step 1: Simulation
Step 2: Data (re)processing
Step 3: Data visualization
Step 4: Repeat Steps 2 and 3 as needed
Step 5: Generate quantitative results.
The approach is reflected in Figure 3.3b. Aside from the generalization away from clouds,
the most important change is the data “reprocessing” cycle introduced into the process with
the optional jump from Step 4 to Step 2. With this, the new pipeline closely parallels the
analysis cycle described by Upson et al. [101] seen in Figure3.2.

The crux of the initial data processing phase is identifyingimportant objects in the data.
The lifespans and bounding boxes of these objects are determined and saved to disk. At the
researchers’ request, new copies of the raw data are createdcontaining only those portions of
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Figure 3.3: a)This pipeline represents the pipeline supported by our original Cloud Explorer application [36].b)
This pipeline represents our newly proposed pipeline, which incorporates a “reprocessing” cycle.

the data set contained in each object’s bounding box. This can greatly speed up later process-
ing of the data as, in our experience, objects often only occupy a small percentage of the total
data space and scientists are most interested in objects andtheir immediate surroundings.

The data visualization is the most important step in the method. The visualization process
gives the researchers insight into the data. This insight can inspire new lines of investigation
into the behavior and properties of the objects of interest.By integrating quantitative infor-
mation about the objects into the environment, researcherscan correlate object properties
with their behavior in time, and they can test the validity oftheir hypotheses by comparing
several objects during a session in the VE.

The data reprocessing step is the key new step in the method. This introduces a cycle into
the process, and it helps researchers spend more time in the VE, while making the time spent
in the VE more productive. By making the data processing toolflexible enough, it can be used
to generate new quantitative data based on the objects in thedata and expressions supplied
by the scientists. Due to the initial data processing step, this reprocessing can proceed quite
quickly. The generated information can then be directly loaded into the virtual environment.

The last step of the process is the generation of communicable results, in the form of
statistical data, plots, numbers, animations, or other representations. The researchers must
transform what they have learned from the VE into a form, which can effectively convey the
insight gained to other scientists or a wider audience. Publication or public demonstration
quality visual and numerical results often require precision, flexibility, and functionality be-
yond that which is sufficient for the exploration process. Hence, this is currently left as a
post-processing step for the researchers to tackle with more specialized tools. In the future,
however, we would like to incorporate more of this functionality into the VE.
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<input>
<path>/data/simulation001</path>
<variable name=“ql” file=“ ql.001” />
<time steps=“2000” />
<grid x=“256” y=“ 256” z=“ 160” />

</input>

Figure 3.4: This example snippet of the input section from a processing specification file describes the grid size, the
number of time steps, and the name and location on disk of one simulation variable.

3.4 Software System

The software described in this paper can be seen as an extension and generalization of our ini-
tial work on the Cloud Explorer application [36], and it is anintermediate step along the way
towards our goal of a fully interactive virtual environmentfor exploring and analysing large,
time-dependent, volumetric data sets. The expansion and generalization of Cloud Explorer
involved three major steps: generalization of the preprocessing, extension of the preprocess-
ing, and expansion of the Cloud Explorer environment.

3.4.1 Preprocessing Generalization

The Cloud Explorer software was specially designed for our atmospheric research project.
The result was successful, but it was not really applicable to other data sets because it placed
some restrictions on the format and nature of the data.

In the new system we have developed, most of these restrictions have been eased or
eliminated. The data can now be periodic in any direction, orit can be completely aperiodic.
The objects in the data are now identified by a user specified threshold, and they no longer
need to have manifold surfaces. The data must still be storedas a sequence ofz major grids,
but allowances are now made for file and time step headers and trailers.

The data processing program loads and interprets a processing specification file, which is
in extensible markup language (XML) [10] format. The specification file is broken into three
sections, which describe the input data (the simulation data), the desired output data, and any
necessary mappings from the input data to the output data. Figure 3.4 illustrates an example
portion of the input section.

3.4.2 Preprocessing Extension

Our primary goal when developing this software was to be ableto incorporate more quantita-
tive information in the VE. However, it is difficult to know inadvance what type of quantita-
tive information will be interesting to the research scientists. Therefore, the data processing
needed to be flexible enough to generate arbitrary quantitative data from the data set. To
make the software practical to use and to facilitate exploration, we required that it be possible
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to later generate new quantitative data from the data set. Wealso wanted it to be able to work
with multivariate data sets to take advantage of the full range of information generated by the
simulations.

The first and most basic extensions to the data processing application are the production of
subvolumes extracted from the data and downsampled versions of the data. The downsampled
versions of the data are for use with slicing tools, and the subvolumes, which each contain a
object and some of its surroundings, are used as a means for speeding up data calculations in
two ways. First, the size of all the subvolumes for a particular time step is often significantly
smaller than the size of the total grid, which means that the subvolumes can be read in from
disk much more quickly. Secondly, the researchers are ofteninterested in the properties of
the objects themselves, or just around the objects, and therefore only necessitates performing
calculations on the subvolumes for each object instead of the entire volume for a given time
step.

To support calculations based on the data set, we have implemented a small domain spe-
cific language (DSL). See [23] for an overview of DSLs. This language supports simple
mathematical expressions involving numbers, variables, and functions. Variables can be ei-
ther scalar or vector values or multidimensional matrices.A set of functions, in addition to
basic mathematical operations, has been included in the language to support various oper-
ations. These include summing and averaging data across a volume or a single dimension;
basic image processing functions like clustering, thresholding, and dilation / erosion opera-
tions; detecting maxima, minima and extents; and extracting a subvolume. Operations like
gradients are not currently supported, but could be easily incorporated in future versions.

We then coupled this DSL with the generalized data processing application. The user
writes expressions, which describe how to convert the inputdata into a meaningful quantita-
tive result. These are included in processing specificationfile. The user specifies which input
variables are required for the expressions, how they shouldbe prepared, e.g. limit the calcu-
lation to the object itself or also include the surrounding volume, and what output should be
saved from the evaluation of the expressions. The data processing application then evaluates
the expressions on the relevant (appropriately prepared) extract grids for each object in each
time step and saves the results to disk.

Currently, the data processing program can generate two types of quantitative data. The
first is simply one scalar value for each object for each time step, which allows traditional
plots of object properties as a function of time. The second is a vector value for each object
for each time step. The intention with the vector values is togenerate a scalar value for each
voxel plane along a coordinate axis in the subvolumes (Figure 3.5). Taking the example of
thez axis, an image can be generated where the pixel coordinates represent time and vertical
height in the (sub)volume and the pixel color or intensity represents the value for that voxel
plane at that point in time. Figure 3.8 illustrates suchzvector images.

Consider the following set of expressions follows:
bin grid = bin(grid)
volume = sum(bin grid)
ql vec = sumdim(sumdim(grid, 0), 0) /

sumdim(sumdim(bin grid, 0), 0)
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Figure 3.5: An illustration of a vector value. Here, each value in the vector represents the sum of all values in the
correspondingx-y voxel plane.

Figure 3.6: Left: The old Cloud Explorer interface. Right: The new application interface. New additions include
the use of windows, the slicing plane, and the new graph window.

Here,grid is the input subvolume, which has had all voxels not belonging to the object in
question set to 0. Thebin function converts all non-zero voxels to a 1, and thesum function
adds up the values of all voxels in the grid. Thus,volumeis set equal to the object volume,
in terms of voxel units. Thesumdim function reduces the dimensionality of the data by
summing all values along the specified dimension. In this case, the effect is to setql vec
equal to the average liquid water value at each height in the subvolume. See Figure 3.8 for an
example of the result.

The final extension was the inclusion of the “reprocessing” ability. This allows the pro-
cessing description file to be updated with new sets of expressions. If the data processing
program is then run again, any new output results are added tothe existing output without
having to recompute all prior calculations. This lets the scientists quickly see new quantitative
information in the VE.

3.4.3 Cloud Explorer Expansion

The last part of the generalization and expansion process was to update the Cloud Explorer
application itself. For this we updated the user interface,included new data probing tools, and
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Figure 3.7: An illustration of the graph window.

we expanded the capabilities for displaying graphs and 2D images for selected objects. We
also incorporated the IntenSelect interaction metaphor into the environment to make selec-
tion and manipulation tasks easier, especially with small widgets. See [37] for a description
of the interface widgets and the IntenSelect interaction metaphor. Figure 3.6 illustrates the
difference between the old interface and the new interface.

One revision worth describing in detail here is the new graphwindow. For each selected
cloud, up to five, a graph window is displayed with information about that cloud. See Fig-
ure 3.7 for an illustration of the window and Figures 3.6 and 3.8b for examples of the actual
windows. The window has a caption, displaying the number of the cloud it is showing data
for. This can also be used to move the window around. Next to the caption are either one or
two buttons, denoted by up or down wedges, used for adding or removing plot display areas
to the window. Next to these buttons are buttons for putting the window into windowshade
mode and hiding the window. In the lower right corner is a sizing widget, which can be used
to resize the window. The main area of the window is divided into one or more plot display
areas. For each plot display area, there is the actual display area, which displays one or more
user selected plots. This allows users to overlay various plots to check for correlations or
other interesting properties. Below the display area is a scroll bar representing time. This in-
cludes sliders to adjust the time limits for playback as wellas the currently visible time step.
Rectangles over the display area highlight those sections of the plots represented by each
of the three sliders. To the left of the scroll bar is a button,which opens the plot selection
window. This window allows the user to choose which plots to display in each plot area.

With the new interface, scientists can spend more time usingthe VE. They are able to
view quantitative information about several clouds at one time. This helps them compare
the properties of objects in the data and ascertain what is “normal”. With the addition of
the slicing plane, they can also check the behavior of simulation variables in and around the
objects. This can be used to confirm hypotheses or develop newlines of inquiry. If the data
processing application is run again to add new quantitativedata, then this will be incorporated
into the VE the next time it is run.
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3.5 Case Study

In this section, we present as a case study the evolution of our research into shallow cumulus
cloud life-cycles. We relate how the actual steps taken are supported by our method and the
software system we have developed.

3.5.1 Overview

Our research involves the use of a Large-Eddy Simulation (LES) of the Atmospheric Bound-
ary Layer (ABL) containing shallow cumulus clouds. LES is a simulation method where the
ruling Navier-Stokes equations are solved up to a certain scale, while the influence of smaller
scale (turbulent) motion is approximatied via a statistical model. This way a field of clouds in
a 6.4km×6.4km×3.2kmvolume can be resolved in time with a resolution of 256×256×160
gridpoints and a timestep of 2s without the need to resolve eddies smaller than the grid size
(20mdown to the smallest turbulent scales ofO(1mm)). The simulations are performed with
a parallelized version of the code described by [17]; the specific simulated case is based on
the Barbados Oceanographic and Meteorological EXperiment(BOMEX), see [87].

During the simulation run, every third time step (every 6s of simulation time) is written
to disk. Each time step consists of temperature, the amount of water (both in gaseous and in
liquid phase), buoyancy, and 3 velocity components for eachgrid point in the domain. Each
value is recorded as an unsigned, 16 bit integer yielding data sizes of 20 MB per time step per
variable. For one hour of simulation time, this results in about 12 GB of data per variable.
The average life-cycle of a cloud lasts 30 minutes.

3.5.2 Data Preprocessing and Observation

The first step in the research process was to identify interesting clouds for further study,
which was the focus of our previous work. See [36] and [48] fora detailed overview. In
short, the cloud isosurfaces were extracted from the data, along with volume information and
their bounding boxes. This information was interactively visualized in the Cloud Explorer
application. The VR environment enabled the visual identification of 40 interesting clouds
for further study. At first sight, it may be unclear as to why VRis useful in this task, but the
utility stems from the rather qualitative criteria defininginteresting clouds and the ability of
human perception to single them out. See Figure 3.1 for an example of the VE in use.

Since our new software is based on the extension and generalization of our previous soft-
ware, this phase of the process continues to be supported, and it does not differ substantially
from its previous form.

3.5.3 Study and Exploration

The next step after identifying interesting clouds was to start studying them. The study and
exploration phase proceeded iteratively, with each new analysis inspiring the next one.



3.5. CASE STUDY 47

a) b)

Figure 3.8: a)Horizontally integrated liquid water vs. height and time. This plot was generated via a special tool.
Darker areas indicate a higher concentration of liquid water. Each point represents the average amount of liquid
water at a given height in the cloud at a particular time step.b) An equivalent plot generated by our new software
and displayed within the VE.

The examination of the individual clouds began by looking atsimple properties, such as
how the base and top of the cloud moved up and down in time. The results of this were
interesting, but these just served as indicators of interesting behavior. They did not yield
information about the cause of the behavior.

To try to understand the cause, we examined the amount of liquid water in the clouds
because of its influential role in cloud dynamics. The first analysis step here was to plot the
horizontally integrated amount of liquid water as a function of height and time. Surprisingly,
the liquid water seemed to be concentrated in pulses that rose with time (Figure 3.8).

Continuing the investigation into these pulses, we repeated the analysis again, but with
buoyancy instead of liquid water. The same behavior was seenin these plots. By then ex-
amining the total water in and around the clouds, we discovered a correlation between an
increase in the amount of water underneath the clouds and theonset of the pulses.

At each step of the process, we performed the same analyses onnot just one cloud, but
several clouds. This enabled us to check whether the observed phenomena were generic or
specific to a particular cloud. It turned out that the observations were consistent across the
clouds, suggesting that the pulses are a defining feature of the clouds.

This iterative advancement of ideas is at the core of our proposed system. The analytical
data generated at each step is something that our new software supports. The height of the
cloud base and cloud top are scalar values, represented by the maximum and minimum extent
of the object in a given time step, and these scalar values canbe calculated and stored via the
data processing. The horizontal integration of liquid water and buoyancy can be achieved via
the vector calculatinos supported by the data processing. Figure 3.8, illustrates the original
liquid water integration plots and the equivalent plots generated by the data processing as
seen from within the VE. The slicing plane can be used to examine the behavior of total
water in the cloud base. By looking at the integration plot ofliquid water or buoyancy and
using the slicing plane simultaneously, the build up of liquid water preceding the appearance
of the pulses in the clouds can be verified.
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3.6 Conclusions and Future Work

In this paper we have presented an approach geared towards helping scientists working with
large, time-dependent data sets reach results more swiftly. The approach depends on the idea
of “reprocessing” the data, and incorporating new quantitative information into a scientific
visualization virtual environment. This introduces a cycle into the data analysis pipeline,
which reduces the amount of time scientists must spend selecting or developing their own
analysis tools.

We have described the expansion and extension of our previous software to meet the
objectives of the proposed method. We restructured the dataprocessing to handle a wider
variety of data sets, and we incorporated a small domain specific language of mathematical
expressions to generate quantitative data from the data sets. Lastly, we updated the VE to
incorporate this new quantitative data, among other improvements. The inclusion of the
quantitative data is an important point since it allows the research scientists to spend more
time working in the virtual environment, and it helps them get more out of the time spent in
the VE.

We presented a case study relating how our research into cloud life-cycles progressed,
and we described how our new software supports each step of the process. Out of the five
functional requirements for data analysis software suggested by Springmeyer et al. in [93]
(allow interactive, quantitative exploration; assist in maintaining records of sessions; link
materials from different stages of a study; simplify navigation requirements; and provide
support for culling large data sets), we now support, at somelevel, all except assisting with
maintaining records of sessions.

In the future, there are three major directions in which we would like to go. First, we
would like to begin making regular use of the software in our cloud studies, whereby we
hope to further refine and polish it. Secondly, we would like to continue working towards
the goal of making the “reprocessing” step a real-time addition to the virtual environment,
where new expressions can be entered at run time with their results immediately visible. Fi-
nally, we would like to further enhance the environment by including such things as particle
tracing, object surface properties, more intelligent large data handling capabilities, and ses-
sion recording capabilities. It is our hope that moving in these directions will lead to a VE
with visualization and analysis facilities capable of supporting the performance of virtual
experiments, which will allow scientists to develope and test new hypotheses within the VE.
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CHAPTER4

Fast Normal Vector Compression with Bounded Error

Abstract

We present two methods for lossy compression of normal vectors through quantization using
“base” polyhedra. The first revisits subdivision-based quantization. The second uses fixed-
precision barycentric coordinates. For both, we provide fast (de)compression algorithms and
a rigorous upper bound on compression error. We discuss the effects of base polyhedra on
the error bound and suggest polyhedra derived from spherical coverings. Finally, we present
compression and decompression results, and we compare our methods to others from the
literature.

4.1 Introduction

Since Deering [22] introduced geometry compression in 1995, it has been a popular research
topic. Much work in the field has focused on mesh simplification, connectivity compression,
and vertex position compression, but vertex attribute and normal compression have received
less attention. However, most work dealing with normal compression lacks rigorous analysis.
Additionally, many techniques require reasonable amountsof computational resources for
decompression, which, when applied to large amounts of compressed data, quickly becomes
a bottleneck.

We find compression necessary when visualizing time-dependent data due to the amount
of data that must be read from disk during interactive visualization. However, little process-
ing time is available for decompression because visualization often involves a large amount

51
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Figure 4.1: Ray-traced images of the smoothed Phlegmatic Dragon with (left) and without (right) compressed
normals.

of interactive data processing, e.g. for volume rendering or particle tracing. Furthermore,
decompression techniques requiring contextual knowledgeare undesirable since they hinder
GPU-based decompression and operating on subsets of the data.

Most existing normal compression techniques offer only image-based analysis of com-
pression error, if an analysis is provided. However, image artifacts introduced by errors in
normal directions are more visible in some areas than others, e.g. specular highlights and re-
flections. Thus, image quality assessment is scene, and often viewer, dependent, and it makes
quantitative method comparisons difficult.

Here, we focus on compressing normal vectors, with the goalsof bounded error and fast
(de)compression. Oliveira and Buxton [71] expanded on index-based normal compression
using subdivided “base” polyhedra and measured the resulting error. We extend and formalize
these ideas, and we provide a method using barycentric coordinates when higher precision
is necessary. We provide fast compression and decompression algorithms for both methods,
where GPU-based decompression is possible. Furthermore, we are able to analytically derive
upper bounds on the error for both methods. Using 16 bits per compressed normal, we are
able to achieve an upper bound on the angular error of less than 0.57◦, which presents almost
no visual difference when used for rendering (Figure 4.1). Based on our error analysis, we
suggest the use of new base polyhedra derived from sphericalcoverings [90].

The remainder of this paper is organized as follows. We discuss related work in Sec-
tion 4.2. In Section 4.3, we give an overview of our methods, and we cover the mathematical
underpinnings. We describe and analyze the methods in Section 4.4. In Section 4.5, we
present the results from our work. We conclude and discuss future work in Section 4.6.

4.2 Related Work

A major goal in geometry compression is overcoming transmission bottlenecks. Some work
targets the RAM/GPU bottleneck (e.g. [22, 15]). Other work focuses on network transmis-
sion (e.g. [99, 97, 100]). Peng et al. [74] and Gotsman et al. [32] give overviews of several
techniques. A recent example from Purnomo et al. [78] quantizes all vertex data based on
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an image quality metric. Here we primarily list work specifically describing methods for
quantizing normal vectors.

One alternative to quantization is entropy encoding. [32] and [74] list several techniques.
Entropy encoding, however, requires contextual knowledge, which makes it less desirable
when independent normal decompression is important, such as GPU-based implementations
or working with data subsets. We note, though, that through careful quantization, it is possible
to combine quantization with entropy encoding, such as in [22, 3, 51]. Thus, our techniques
could be combined with entropy encoding at the expense of decompression speed.

Most normal quantization methods exploit the face symmetryof face-transitive polyhedra
to generate a “uniform” distribution of points on the unit sphere. Deering [22] uses warped
spherical coordinates within the faces of a disdyakis dodecahedron. Ahn et al. [3] generate
regularly spaced points on the unit cube. The MPEG-4 BInary Format for Scenes (BIFS) [2],
also used in QSplat [82], generates non-linearly warped sets of points on the unit cube.
MPEG-4 3D Mesh Compression (3DMC) [1] uses a method described by Taubin et al. [98]
that uses representative points from the triangles of a recursively subdivided unit octahedron.
Botsch et al. [9] also subdivide the unit octahedron, but they project the result onto the unit
sphere and use the face normal normals as the representativepoints. Oliveira and Buxton [71]
further expanded on this idea by considering each of the Platonic solids as “base” polyhedra.

Several alternatives to the polyhedral methods exist. One approach is to use fixed pre-
cision spherical coordinates. Isenburg and Snoeyink [51] extract and quantize the smallest
two components of each normal vector. Another possibility is to quantize normals using the
points generated by the HEALPix method (Górski et al. [31]), which divides the unit sphere
into regions of equal area.

One element lacking from these methods, however, is a rigorous error analysis of the
quantization. Deering [22] stated that compression errorsshould be at most 0.01 radians
(0.573◦), to prevent visible artifacts, but he presented no analysis to verify that his method
satisfied this criterion. Aside from image-based metrics, the only error analysis we are aware
of since then is from Oliveira and Buxton [71]. They measuredthe errors resulting from
compressing normals from various models using quantized normals derived from subdividing
the Platonic solids. We are able to provide a rigorous upper bound on the error resulting from
quantization based on our methods and based on optimal quantization. Using these error
bounds, we have experimented with even more base polyhedra,and we have improved, often
significantly, on the error bounds from methods in the literature. Based on our comparisons
with other methods, we found that our subdivision method is the only method currently able
to satisfy Deering’s criterion at 16-bit precision.

4.3 Overview and Underpinnings

We propose two methods for compressing normal vectors through quantization: a subdivision
method and a barycentric method. Both methods refine convex polyhedra with vertices on the
unit sphere by splitting each face into a set of similar triangles and projecting the new vertices
onto the unit sphere (Figure 4.2, left). Quantization is is based on replacing normal vectors
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Figure 4.2: Left: An icosahedron “refined” by subdividing each face and projecting the new vertices onto the unit
sphere. Right: A dodecahedron and a dodecahedron triangulated by introducing a vertex at the center of each face.

with the “closest” vertex from a refined polyhedron. Any non-triangular polyhedral faces are
first triangulated by introducing a vertex at the face centroid, connecting each of the face’s
vertices to this new vertex, and projecting the new vertex onto the unit sphere (Figure 4.2,
right). For the method details, see Sections 4.4.2 and 4.4.3.

4.3.1 Definitions and Notation

Here, we considerunit normal vectors, or normals, and points on the unit sphere to be inter-
changeable. Boldface will be used to indicate when pointp on the unit sphere is being treated
as normal vectorp. In general, we will refer to a normal asn and the quantization ofn asn⋆.

A polyhedron, P = (F,V,E), has edges,E = {e1, . . . ,ek}, faces,F = { f1, . . . , fℓ}, and
vertices,V = {v1, . . . ,vm}. All vertices lie on the unit sphere, and each face,fi , has a face
normaln fi . F(P) are the faces of polyhedronP, andV(P) are the vertices. Atriangulated
polyhedronhas only triangular faces.

The shortest distance between two points,p and q, on the unit sphere is the angular
distance between them:

dist(p,q) = arccos(p ·q). (4.1)

The error,ε, between a normal,n, and its quantization,n⋆, is the angular distance between
them:

ε = dist(n,n⋆) = arccos(n ·n⋆). (4.2)

4.3.2 Normal Quantization

A normal is quantized in two steps. First, given normal,n, and triangular faces,F , where
n intersects at least onef ∈ F , one suchf ∈ F must be selected. Thisf is selected with
the FIND FACE algorithm (Algorithm 1). This algorithm iterates through all faces inF and
chooses the first face that is intersected byn. If, due to numerical precision issues, no such
face is found, thenf is chosen as the face whose normal is closest ton. Second, the closest
vertex from that face ton is selected using the QUANTIZE algorithm (Algorithm 2). This
algorithm compares the distance fromn to each of the vertices off in turn and chooses the
closest one ton. This closest vertex is the quantized normal,n⋆. Thus, given a triangulated
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polyhedron,P, n is quantized:

n⋆ = QUANTIZE(FIND FACE(F(P),n),n). (4.3)

Algorithm 1 FIND FACE(F,n)
F ← f1, . . . , fn {triangular faces}, n←normal vector
d←−1, best← 0
for all fi ∈ F do

va, vb, vc← vertices offi , counterclockwise
a← (vc×vb), b← (va×vc), c← (vb×va)
if (a·n) > 0 and (b ·n) > 0 and (c·n) > 0 then

return fi {n intersectsfi}
else if(n fi ·n) > d then

best← i, d← (n fi ·n) {n is close to face normaln fi}
end if

end for
return fbest

Algorithm 2 QUANTIZE( f ,n)
f ← triangular face,n←normal vector
va, vb, vc← vertices off
if (va ·n) > (vb ·n) and (va ·n) > (vc ·n) then

return v a {n is closest tova}
else if(vb ·n) > (vc ·n) then

return v b {n is closest tovb}
else

return v c {n is closest tovc}
end if

4.3.3 Error Bound

We will now prove an upper bound on the error for quantizing a given normal. We will show
that, if Equation 4.3 is used for quantization, then, given aconvex, triangulated polyhedron,
P, and a normal,n, and its quantization,n⋆:

dist(n,n⋆)≤max({dist(vi ,nf j )|vi ∈ f j , f j ∈ F(P)}).

That is, the maximum error between any normal and its quantization is at most the maximum
distance between a face’s normal and its vertices. Thus, theerror bound can be analytically
determined by examining each polyhedral face.
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Figure 4.3: Left: Spherical triangle and underlying planar triangle. Middle: The face normal of the planar triangle
intersects triangle’s circumcenter and the spherical triangle’s circumcenter. Both triangles share the same circumcir-
cle. Right: The circumcircle defines a spherical cap.

Figure 4.4: Left: Front and top view of a vertex from one face lying on the spherical cap defined by another face.
Right: Front and top view a vertex from one face lying outsidethe spherical cap defined by another face.

First, we observe that every face ofP represents a planar triangle and the spherical triangle
that is its projection onto the unit sphere (Figure 4.3 left). Hence, the faces ofP also represent
a set of spherical triangles covering the unit sphere.

Next, we note that the vertices,va, vb, andvc, of triangular face,fi , lie on the unit sphere.
These three points define a circle on the unit sphere, which isthe circumcircle offi (Figure 4.3
middle) and its spherical triangle. This circumcircle alsodefines a spherical cap, which lies
“above” the plane defined byfi (Figure 4.3 right). The line from the origin through the
circle’s center is normal to the plane in which the circle lies, which is the plane defined by
fi . Thus, the normal vector offi , n fi intersectsfi at its circumcenter.n fi , also intersects the
center of the spherical cap defined by the circle. Therefore,n fi is also the circumcenter for
the spherical triangle and so dist(nfi ,va) = dist(nfi ,vb) = dist(nfi ,vc).

To proceed, we introduce the following lemma.

Lemma 1. If triangulated polyhedron P is convex, then∀ fi ∈ F(P), dist(nfi ,v j)≤ dist(nfi ,vk)
with vj ∈ fi , vk /∈ fi , and vk,v j ∈V(P).

Briefly, the lemma states that, for a convex, triangulated polyhedron, no vertex from one
face may lie on the interior of the spherical cap defined by another face. See Figure 4.4.

Proof. Given the triangulated polyhedron,P, select face,fi ∈ F(P). Suppose that there is
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some vertex,vk ∈V(P), with vk /∈ fi , that is closer tonfi than the vertices offi . Therefore,vk

lies on the interior of the spherical cap defined byfi and is “above” the plane defined byfi .
Thus, there must exist a line segment betweenvk and some vertex offi such that some part of
the line segment passes “above”fi . SinceP is convex, nothing insideP can be “above”fi so
some part of the line segment must pass through the exterior of P. However, no line segment
connecting two vertices of a convex polyhedron may pass through its exterior. Therefore,
there can be no such vertexvk if P is convex.

One result of this lemma is that the spherical triangulationdefined by convex, triangulated
polyhedronP is, in fact, a Delaunay triangulation of the unit sphere since no vertex from one
face lies on the interior of the circumcircle (spherical cap) of another face (see, for exam-
ple, [29]). Hence, the vertices ofP are the “sites” of a spherical Voronoi diagram covering
the unit sphere, and the face normals are the Voronoi vertices. This leads to an “ideal” error
bound and an error bound specific to our normal compression methods.

The ideal error bound deals with normals quantized by replacing them with the clos-
est vertices fromP, and the more specific error bound deals with normals quantized using
Equation 4.3. These bounds are equivalent, and we will use the ideal bound to compare our
methods to others from the literature. We will now use Lemma 1to first prove the ideal error
bound and then to prove the specific error bound.

Theorem 1. Given a convex, triangulated polyhedron, P, a normal,n, and the closest vertex,
v⋆ ∈V(P), to n, then:

dist(n,v⋆)≤max({dist(vi ,nf j )|vi ∈ f j , f j ∈ F(P)}). (4.4)

Essentially, this theorem states that, if a normal is quantized by replacing it with the
closest vertex fromP, then the quantization error will be less than the maximum distance
between a triangular face vertex and the normal for that face.

Proof. From Lemma 1,Pdefines a spherical Voronoi diagram covering the unit sphere, where
V(P) are the sites and the face normals ofP are the Voronoi vertices. Clearly, all Voronoi
cells from a spherical Voronoi diagram are bounded, and, forbounded Voronoi cells, the far-
thest points on a cell from the cell’s site are Voronoi vertices of the cell. The Voronoi vertices
for the cell with vertex,v∈V(P), as its site are the face normals,nfk from all faces,fk∈F(P),
with v∈ fk. Thus, for any point,p, in that cell, we have: dist(p,v)≤max({dist(nfk,v)|v∈ fk}).
Since, a given point,n, on the unit sphere, must lie on some Voronoi cell with some vertex,
v⋆ ∈V(P), as its site, then we know that: dist(n,v⋆)≤max({dist(vi ,nf j )|vi ∈ f j , f j ∈ F(P)}).

We now prove the bound on quantization with Equation 4.3.

Theorem 2. Given a convex, triangulated polyhedron, P, a normal,n, and its quantization,
n⋆, from by Equation 4.3, then:

dist(n,n⋆)≤max({dist(vi ,nf j )|vi ∈ f j , f j ∈ F(P)}). (4.5)
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Figure 4.5: Acute (left) and obtuse (right) triangles, with the perpendicular bisectors shown and copies of the
circumscribing circle placed at the vertices.

Here, the idea is that quantizing normals by replacing them with the closest vertex from
the triangular face they intersect gives the same error bound as Theorem 1, where normals
are replaced by the closest vertex fromP.

Proof. From Lemma 1,Pdefines a spherical Voronoi diagram covering the unit sphere, where
V(P) are the sites and the face normals ofP are the Voronoi vertices. We also know that each
face, fi ∈ F(P), hasnfi as the center of the circle/spherical cap circumscribingfi . As the
circumcenter,nfi is coincident with the intersection of the perpendicular bisectors of the sides
of the spherical triangle defined byfi . These bisectors define three regions in the spherical
triangle, where all points from each region are closest to one triangle vertex and are at most
the radius of the spherical cap away from the that vertex. SeeFigure 4.5 for examples of the
planar case. The radius of the spherical cap is precisely thedistance betweennfi and any
vertex of fi . Thus, the maximum distance that any point on the unit spherecan be from the
closest vertex of the spherical triangle that contains it, is the distance between the normal
of that face and any of its vertices. SinceP is triangulated and convex and all normals are
quantized using Equation 4.3, the inequality in Theorem 2 holds.

4.3.4 Quantization Optimality

Here, we will prove that, given a convex, triangulated polyhedron,P, Equation 4.3 will opti-
mally quantize normal vector,n, if P has only acute triangles. By optimal quantization, we
mean thatn⋆ will be the closest vertex fromP to n.

Theorem 3. Given convex, triangulated polyhedron P, with all faces acute triangles, normal,
n, and its quantization,n⋆, from by Equation 4.3, then:

dist(n,n⋆) = min({dist(n,vi)|vi ∈V(P)}). (4.6)

Proof. From Lemma 1,Pdefines a spherical Voronoi diagram covering the unit sphere, where
V(P) are the sites and the face normals ofP are the Voronoi vertices. We also know that, since
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Figure 4.6: Left: Spherical triangles defined by an icosahedron. Right:The same spherical triangles with the
spherical Voronoi diagram illustrated.

the faces ofP are acute triangles, the circumcenters of the faces lie within the faces them-
selves. Therefore, the circumcenters of the spherical triangles also lie within the spherical
triangles. Thus, each spherical triangle contains one Voronoi vertex, and the Voronoi edges
perpendicularly bisect the sides of the spherical triangles (Figure 4.6). Each spherical trian-
gle lies in three Voronoi cells, the Voronoi sites of which are the spherical triangle’s vertices.
Therefore, no point in spherical triangle,△ABC, is closer to a vertex from another spherical
triangle than it is to one of the vertices of△ABC. Thus, quantizingn using Equation 4.3 will
result in the smallest possible distance betweenn⋆ andn.

One property of this theorem is that Equation 4.3 is relatively robust to numerical error.
The Voronoi cell for each vertex occupies a portion of all spherical triangles containing that
vertex. Thus, even if a normal is near the edge of a spherical triangle and Algorithm 1 se-
lects the incorrect face, Algorithm 2 will likely select thecorrect vertex. The cases where
Algorithm 2 could select the incorrect polyhedron vertex are those when the normal is near
a Voronoi edge. Since Voronoi edges are equidistant from Voronoi sites, i.e. the polyhedron
vertices, then, in those situations, selecting the wrong vertex has little effect on the quantiza-
tion error.

It is important to note that this theorem does not hold for convex, triangulated polyhedra
containing obtuse triangles. In such polyhedra, some triangles will contain multiple Voronoi
vertices, and, therefore, some regions of those triangles will be closer to a vertices from
adjacent triangles. However, from Theorems 1 and 2, we know that, while some normals
may be non-optimally quantized in such polyhedra, the upperbound on the error remains
the same. In order to preserve the optimality of the quantization, though, we should use
polyhedra containing only acute triangles.

As an aside, existing subdivision methods [71, 9, 1] are relatively susceptible to error. In
these methods, a normal is quantized by replacing it with a representative point from the
face it intersects. However, there is no guarantee that a normal is closer to the representative
point from that face than it is to those of neighboring faces,leading to possible non-optimal
quantizations. This exacerbates potential errors from incorrect face selection.
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Figure 4.7: Octahedron refined using the subdivision method (left) and the barycentric method (right).

4.3.5 Euler Characteristic

The Euler Characteristic for a polyhedron is defined as:

X = V−E +F

whereX is the Euler Characteristic andV, E andF are respectively the numbers of vertices,
edges, and faces of the polyhedron.X = 2 for the simply connected polyhedra we work with,
and, since we only work with triangulated polyhedra, we havethis useful relation:

V =
F
2

+2 (4.7)

4.4 Normal Compression

In this section, we provide the details over our two proposednormal compression methods:
the subdivision method and the barycentric method. See Figure 4.7.

4.4.1 Bit precision and efficiency

Bit precisionis the number of bits used to represent a compressed normal. In our approaches,
all compressed normals from a given set are represented withthe same bit precision.

For a given bit precision,b, there are 2b unique bit strings. Ideally, this would also mean
quantization methods would generate 2b unique normals. However, this is often not the case.
In general, for a given bit precision and quantization scheme, a polyhedron generating more
unique normals will have a lower error bound than one generating fewer unique normals (Ta-
ble 4.1). Therefore, it is desirable to seek out combinations generating more unique normals.

4.4.2 Subdivision Method

The subdivision method generates a set of quantized normalsby recursively subdividing the
faces of a triangulated polyhedron. At each subdivision level, each polyhedral face is sub-
divided by introducing new vertices at the midpoints of faceedges and projecting the new
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Figure 4.8: Triangular face (left) subdivided by introducing verticesat edge midpoints (middle), which are projected
onto the unit sphere (right).

38

39

40

0101000

Figure 4.9: A normal quantized by recursively finding the face it intersects and then selecting the closest vertex
from the final face. The quantized normal is a normal table index.

vertices onto the unit sphere. See Figure 4.8. For a triangulated polyhedron,P0, polyhedra,
P1, . . . ,Pn, represent different levels of subdivision.

Before a set of normals can be compressed, the base polyhedron, P0, is first refined to
a certain subdivision level,Pℓ, and every vertex fromPℓ is assigned a unique ID number.
This defines the normal table. Once the table is constructed,normals are quantized using
Algorithm 3. See Figure 4.9. If the base polyhedron,P0, and all refined polyhedron,Pi ,
are convex, then the guarantee from Theorem 3 will hold, and the compression process will
always find the closest polyhedron vertex for each normal.

Given a base polyhedron,P0, and a level of subdivision,s, the number of unique quantized
normals generated by the subdivision method is|V(Ps)|. SincePs has(4s)|F(P0)| faces, we
can use Equation 4.7 to compute this:

|V(Ps)|=
(4s)|F(P0)|

2
+2. (4.8)

However, the normal table can contain at most 2b entries at bit precision,b. Therefore, we
must calculate the maximum subdivision level,ℓ, for P0 such that|V(Pℓ)| ≤ 2b using the
following equation derived from Equation 4.8:

ℓ = ⌊log4(2
b+1−4)− log4|F(P0)|⌋. (4.9)

Given M normal vectors and base polyhedronP0 refined to subdivision levelℓ, decom-



62 CHAPTER 4. BOUNDED ERROR NORMAL VECTOR COMPRESSION

Algorithm 3 COMPRESSSUBDIVISION(P,n, ℓ)
P← triangulated polyhedron{vertices have unique ID}
n←normal vector
ℓ←maximum level of subdivision
f ← FIND FACE(F(P),n)
for i = 1. . . ℓ do

fa, fb, fc, fd← subdivided faces off
f ← FIND FACE({ fa, fb, fc, fd},n)

end for
v←QUANTIZE( f ,n)
return v.id

pression and compression complexities are as follows. Decompression only requires a normal
table look-up, and thus isO(M). The normal table can be constructed inO((4ℓ)|F(P0)|) time.
For large values ofM and small values ofℓ and|F(PO)|, this time is negligible. Compression
of the normals takesO(M(|F(P0)|+4ℓ)) time.

The subdivision method offers two chief advantages. First,decompression is trivial, and
thus incurs almost no computational overhead. Second, withcareful polyhedron selection, it
is able generate almost the maximum number of unique normals, which generally results in
a lower error bound. The normal table must be kept in memory, however, which is costly for
sufficiently large normal tables. Given that normal table index bit precisions are likely to be
multiples of 8 bits, then tables with indices above 16-bit precision begin to be impractical.

4.4.3 Barycentric Method

The barycentric method is based on refining faces of a base triangulated polyhedron by com-
puting fixed-precision barycentric coordinates. This divides the face into a set of similar
triangles, and the newly introduced vertices are then projected onto the unit sphere. See Fig-
ure 4.10. Unlike the subdivision method, the barycentric method is not recursive, and it does
not generate any intermediate polyhedra between the base polyhedron,P, and the refined
polyhedron,Pr . In fact,Pr is never explicitly generated. Instead, faces fromPr are computed
as necessary.

The compressed normals are represented as bit strings consisting of three integers (Fig-
ure 4.11). The first identifies the face from the base polyhedron, which the quantized normal
intersects. The next two integers represent theu andv barycentric coordinates. Since the
barycentric coordinatesu, v and w sum to 1, there is no need to explicitly storew. The
compression algorithm is presented in Algorithm 4. If both the base polyhedron,P, and the
refined polyhedron,Pr , are convex, then the guarantee from Theorem 3 will hold, andthe
compression process will always find the closest polyhedronvertex for each normal vector.

The bit precision for the barycentric method is divided between the face identifier and
the (equal precision) integeru andv coordinates. A base polyhedron,P, with |F(P)| faces,
requires a minimum bit precision of log2 |F(P)|+2. If u andv are eachc bits long, then the
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Algorithm 4 COMPRESSBARYCENTRIC(P,n, p)
P← triangulated polyhedron{faces have unique ID}
n←normal vector
p← barycentric coordinate bit precision
f ← FIND FACE(F(P),n)
va, vb, vc← vertices off
n̂← intersection point betweenn and f
d← 2p−1
u, v, w← barycentric coordinates of ˆn in f
if d− (⌊u∗d⌋+ ⌊v∗d⌋+ ⌊w∗d⌋) = 2 then

ux←
⌈u∗d⌉

d , vx←
⌈v∗d⌉

d , wx←
⌊w∗d⌋

d

uy←
⌈u∗d⌉

d , vy←
⌊v∗d⌋

d , wy←
⌈w∗d⌉

d

uz←
⌊u∗d⌋

d , vz←
⌈v∗d⌉

d , wz←
⌈w∗d⌉

d
else ifd− (⌊u∗d⌋+ ⌊v∗d⌋+ ⌊w∗d⌋) = 1 then

ux←
⌊u∗d⌋

d , vx←
⌊v∗d⌋

d , wx←
⌈w∗d⌉

d

uy←
⌊u∗d⌋

d , vy←
⌈v∗d⌉

d , wy←
⌊w∗d⌋

d

uz←
⌈u∗d⌉

d , vz←
⌊v∗d⌋

d , wz←
⌊w∗d⌋

d
else

return f .id, u∗d, v∗d
end if
x← uxva +vxvb +wxvc

y← uyva +vyvb +wyvc

z← uzva +vzvb +wzvc

n⋆←QUANTIZE({ x
|x| ,

y
|y| ,

z
|z|},n)

if n⋆ = x then
return f .id, ux ∗d, vx ∗d

else if n⋆ = y then
return f .id, uy∗d, vy∗d

else
return f .id, uz∗d, vz∗d

end if
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Figure 4.10: Triangular face (left) refined by introducing vertices at barycentric coordinates of fixed-precision
(middle), which are projected onto the unit sphere (right).
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Figure 4.11: A normal quantized by finding the face it intersects and computing barycentric coordinates. The
quantized normal is a face index and two fixed-precision coordinates.

number of unique vertices inPr can be computed with this equation:

|V(Pr)|=
(2c−1)2|F(P)|

2
+2 (4.10)

GivenM normal vectors and a base polyhedronP, decompression and compression com-
plexities are as follows. Decompression requires a face look-up, computing a weighted sum
of the vertices and normalizing the result. This requires constant time, and thus decompres-
sion isO(M). Compression of the normals takesO(M|F(P0)|) time since the face from the
base polyhedron containing the normal must be found before the barycentric coordinates can
be computed.

The primary advantage of the barycentric method is its fast decompression algorithm,
which does not require a large normal table. In comparison with the subdivision method, the
barycentric method has two disadvantages. For an equivalent bit precision, the barycentric
method will generate fewer unique normals. This is not a significant disadvantage though,
since, for higher bit precisions, it is impractical to keep anormal table in memory. Secondly,
the distribution of quantized normals generated by the barycentric method tends to distort
more in the center of the base polyhedron faces, whereas the subdivision method produces
more homogeneous distributions. For smaller base polyhedron faces, this tends to mean
that the subdivision method generates more even distributions, which usually result in lower
maximum errors. See Figure 4.7.
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4.4.4 Base Polyhedron Selection

Up to this point, we have not discussed the selection of a basepolyhedron for these methods,
but this selection has a significant impact on the error bound. While we are able to analyt-
ically determine the upper bound on the error for a given polyhedron, different base poly-
hedra will result in different refined polyhedra, which willhave different upper bounds on
the quantization error. We examined a variety of base polyhedra to determine which offered
the lowest upper bound. We looked at the Platonic solids, used by Oliveira and Buxton [71],
Archimedean solids, Catalan solids, and polyhedra generated by computing the convex hulls
of spherical coverings from Sloane et al. [90]. To compute the convex hulls, we used the
QHull software [7]. For all the polyhedra we considered, we triangulated any non-triangular
faces (Figure 4.2 right), and we projected all vertices ontothe unit sphere.

We defined five criteria for a polyhedron to be considered suitable for use with our meth-
ods.

1. The polyhedron must be convex.

2. The faces of the polyhedron must all be acute triangles.

3. The polyhedron must have 256 or fewer faces.

4. The polyhedron must remain convex when refined.

5. Faces of refined polyhedra must also be acute triangles.

In our experience, the fourth and fifth criteria are met if theangles of the spherical triangles
defined by the base polyhedron faces are all less than or equalto 90◦. We have been able to
verify this numerically, but we have not yet been able to provide a formal proof.

From our set of polyhedra, these criteria ruled out several of the Catalan solids and, no-
tably, the tetrahedron, which fails to satisfy criterion 4.We then tested the remaining poly-
hedra to see which yielded the lowest maximum compression error at different bit precisions
for both methods. Results from the polyhedra in Figure 4.12 are in Table 4.1. We found that
carefully chosen spherical coverings from Sloane et al. yield a lower maximum error in than
the Platonic, Archimedean, or Catalan solids in each of the four cases.

Furthermore, we found that the better spherical coverings for the barycentric method
performed at least as well as some of the poorer polyhedra from the subdivision method for
equivalent bit precisions. The best spherical covering from the barycentric method with 24-
bit precision reduces the maximum error by an order of magnitude over the best spherical
covering for the subdivision method at 16-bit precision.

4.5 Results

In this section, we present results related to our compression and decompression algorithms.
First, we present details about the performance of our compression and decompression meth-
ods. Secondly, we compare our method to various methods fromthe literature.



66 CHAPTER 4. BOUNDED ERROR NORMAL VECTOR COMPRESSION

Subdivision Method
12-Bit Precision 16-Bit Precision

Polyhedron F V |N| εmax |N| εmax

Cube∗ 24 14 3,074 2.54◦ 49,154 0.636◦

Octahedron 8 6 1,026 5.05◦ 16,386 1.27◦

Dodecahedron∗ 60 32 1,922 2.99◦ 30,722 0.747◦

Icosahedron 20 12 2,562 2.73◦ 40,962 0.684◦

Disdyakis Triacontahedron 120 62 3,842 2.38◦ 61,442 0.595◦

Rhombicuboctahedron∗ 80 42 2,562 3.24◦ 40,962 0.811◦

Spherical Covering 1 30 17 3,842 2.24◦ 61,442 0.561◦

Spherical Covering 2 126 65 4,034 2.18◦ 64,514 0.546◦

Spherical Covering 3 64 34 2,050 2.94◦ 32,770 0.735◦

Spherical Covering 4 256 130 2,050 2.93◦ 32,770 0.733◦

Barycentric Method
16-Bit Precision 24-Bit Precision

Polyhedron F V |N| εmax |N| εmax

Cube∗ 24 14 11,534 1.35◦ 3,133,454 0.0821◦

Octahedron 8 6 15,878 1.29◦ 4,186,118 0.0792◦

Dodecahedron∗ 60 32 28,832 0.773◦ 7,833,632 0.0469◦

Icosahedron 20 12 9,612 1.41◦ 2,611,212 0.0857◦

Disdyakis Triacontahedron 120 62 13,502 1.29◦ 3,901,502 0.0761◦

Rhombicuboctahedron∗ 80 42 9,002 1.73◦ 2,601,002 0.204◦

Spherical Covering 1 30 17 14,417 1.16◦ 3,916,817 0.0703◦

Spherical Covering 2 126 65 14,177 1.10◦ 4,096,577 0.0649◦

Spherical Covering 3 64 34 30,754 0.759◦ 8,355,874 0.0461◦

Spherical Covering 4 256 130 28,802 0.764◦ 8,323,202 0.0450◦

Table 4.1: Base polyhedra (Figure 4.12) with face (F) and and vertex (V)counts. Unique normals,|N|, and error
upper bound,εmax, are listed for each at 12 and 16-bit precisions (subdivision method) and at 16 and 24-bit precisions
(barycentric method). Polyhedra marked with an asterisk weretriangulated for use with our methods. The best
polyhedra in each column are bolded.
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Figure 4.12: Ten (triangulated) base polyhedra. Top row, from left to right: Cube, Octahedron, Dodecahedron,
Icosahedron, Disdyakis Triacontahedron. Bottom row, fromleft to right: Rhombicuboctahedron, Spherical Cover-
ings 1 through 4.

4.5.1 Performance

We tested the performance of our methods on six well-known models. For models lacking
normals, normals were generated using the PLY tools provided by the Stanford 3D Scan-
ning Repository1. Degenerate normals were ignored. We recorded the running time for both
compression and decompression for the subdivision and barycentric models using a 3.0 GHz
Pentium 4 machine. In our timings, we only timed the performance of compression and de-
compression on data resident in main memory, and we did not include the time necessary to
load the required data from disk. For each method, we recorded both the maximum error
found between a normal vector and the compressed normal during quantization and the aver-
age of all the errors. For the subdivision method, we used Spherical Covering 1 (Figure 4.12,
Table 4.1) as the base polyhedron, and, for the barycentric method, we used Spherical Cov-
ering 3. We chose these coverings over 2 and 4 for performancereasons. The error bounds
are only slightly higher, and, since the compression times for these schemes are linear in the
number of faces in the base polyhedron, the compression times are lower with these base
polyhedra.

Table 4.2 lists the performance of our subdivision and barycentric methods on six well-
known models. In all cases, the maximum recorded error remained below the analytically
derived error upper bound, and the average recorded error was slightly more than half of
the maximum error. The compression and decompression timesfor the barycentric method
follow a clear linear trend that increases with the number ofnormal vectors. The compression
times for the subdivision method shows a non-linear trend due to the overhead of explicitly
constructing the refined polyhedron from the base polyhedron. For larger numbers of normal
vectors, though, the subdivision method proves to be fasterthan the barycentric method.

The memory requirements for compression and decompressionare not listed in the table,

1http://graphics.stanford.edu/data/3Dscanrep/
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16-Bit Precision Subdivision
Spherical Covering 1

Model Normals tcom tdec max(ε) mean(ε)

Stanford Bunny 35,947 0.798s 0.0002s 0.548◦ 0.312◦

Armadillo 172,974 1.60s 0.0012s 0.557◦ 0.312◦

Happy Buddha 543,652 3.43s 0s.0036 0.556◦ 0.312◦

Phlegmatic Dragon 703,018 3.53s 0.0040s 0.554◦ 0.310◦

David (2mm) 6,924,951 30.3s 0.042s 0.560◦ 0.311◦

Lucy 14,027,872 60.8s 0.086s 0.556◦ 0.311◦

24-Bit Precision Barycentric
Spherical Covering 3

Model Normals tcom tdec max(ε) mean(ε)

Stanford Bunny 35,947 0.180s 0.008s 0.0458◦ 0.0267◦

Armadillo 172,974 0.92s 0.042s 0.0458◦ 0.0266◦

Happy Buddha 543,652 2.80s 0.131s 0.0459◦ 0.0267◦

Phlegmatic Dragon 703,018 3.56s 0.169s 0.0448◦ 0.0267◦

David (2mm) 6,924,951 34.0s 1.64s 0.0460◦ 0.0267◦

Lucy 14,027,872 70.0s 3.36s 0.0460◦ 0.0267◦

Table 4.2: Compression,tcom, and decompression,tdec, times for the normals from various known models. Average,
mean(ε), and maximum, max(ε), error recorded during compression are listed. Normals were compressed in both
methods using polyhedra derived from spherical coverings (See Section 4.4.4). In all cases, max(ε) remained below
εmax (Table 4.1).
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Figure 4.13: Ten sets of quantized normals generated at 10 bits of precision. Top row, from left to right (corre-
sponding with Table 4.3): our method, BIFS, HEALPix, Cube, Spherical Coordinates. Bottom row, from left to
right: Deering, Octahedron, 3DMC, PNORMS, and Projection.

but they are quite low. For compression with the subdivisionmethod, the normal table of
about 65,536 12-byte normals must be generated and kept in memory. This table is at most
768 kilobytes. For decompression with the subdivision method, this table must also be kept in
memory. However, all compressed normals share the same normal table so only one copy of
this table need be kept in memory. Note, though, that memory use for the subdivision method
grows exponentially with the bit precision of the quantizednormals so 16-bits is a practical
upper limit on the index bit precision. For the barycentric method, the base polyhedron must
be kept in memory, which means that each vertex must be storedas well as a list of faces,
which index into the vertices. For Spherical Covering 3, this is totals 600 bytes for 34 unique
12 byte vertices and 64 faces consisting of three one byte indices.

4.5.2 Method Comparison

Due to the lack of error analysis from existing methods, it isdifficult to compare our method
to those from the literature and other spherical point distributions. Here, we attempt a com-
parison of our method with those of Oliveria and Buxton [71] (PNORMS), the MPEG-4 3D
Mesh Coding [1, 98] (3DMC), Botsch et al. [9] (Octahedron), Deering [22] (Deering), the
MPEG-4 BInary Format for Scenes [2,82] (BIFS), Isenburg andSnoeyink [51] (Projection),
and Ahn et al. [3] (Cube). We also include a comparison with the point distributions gen-
erated by fixed precision spherical coordinates and by the HEALPix method [31]. For the
PNORMS method, we used an icosahedron as a base polyhedron, and, for our method, we
used the subdivision method on Spherical Covering 1 (Figure4.12, Table 4.1). Figure 4.13
illustrates the spherical point distribution generated byeach method at 10-bit precision.

In our test, we used each method to generate the set of all unique quantized normals
at 16-bit precision. Using QHull [7], we then converted thispoint set into a triangulated,
convex polyhedron. Taking advantage of Theorem 1, we are able to use this polyhedron to
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Method Unique Normals εmax

Our Subdivision Method 61,442 0.561◦

BIFS [2] 64, 896 0.612◦

HEALPix [31] 49,154 0.682◦

Cube [3] 64,896 0.779◦

Spherical Coordinates 65,026 0.787◦

Deering [22] 24,578 1.26◦

Octahedron [9] 32,768 1.26◦

3DMC [1] 32,258 1.27◦

PNORMS [71] 27,200 1.36◦

Projection [51] 41,712 1.38◦

Table 4.3: Number of unique normals generated andεmax for each method (Figure 4.13) at 16-bit precision.

analytically determine an upper bound on the error for quantizing normals based on that set
of points. Note that this error bound assumes that the actualnormal quantization process will
not exceed the error bound from optimal quantization. The actual error upper bound is likely
to be higher since the methods offer no such guarantees.

Table 4.3 contains the results of our comparisons. In general, the methods that had a
low error bound generated near the maximum number of unique normals and produced rel-
atively “uniform” distributions on the unit sphere. The error bounds from our subdivision
method were consistently lower than those of the other methods (Tables 4.1 and 4.2). Inter-
estingly, the method proposed by Deering, the Octahedron method, the 3DMC method and
even the PNORMS method all have a higher error bound than using fixed precision spherical
coordinates. Our barycentric method also has a lower bound than fixed precision spherical
coordinates, but its error bound is higher than that of BIFS and HEALPix.

4.6 Conclusions and Future Work

We presented two methods for lossy normal vector compression through quantization based
on refining base polyhedra. The first revises the existing subdivision methods, using a table
of normals comprised of the refined polyhedra vertices. The second method quantizes nor-
mals by computing fixed-precision barycentric coordinateswithin base polyhedron faces. We
provided fast compression and decompression algorithms with low memory requirements for
both methods, and we tested their performance on various known models.

We used the property that our quantized normals are verticesof refined polyhedra to
introduce three results. First, we showed an analytical upper bound on error for a normal
vector optimally quantized using a convex, triangulated polyhedron. Second, we showed that
this error bound also holds for quantization using our methods. Third, we showed that, if
all the faces of the base polyhedron and refined polyhedra areacute, then our methods will
optimally quantize normals.

We performed several comparisons with the error bounds we derived. First, we analyzed
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our methods using several base polyhedra. We found that basepolyhedra derived from spher-
ical coverings from Sloane et al. [90] gave the lowest error bound. We also found that the
subdivision method gives a lower error bound than the barycentric method at the same bit
precision. Thus, when a normal table can reasonably be kept in memory, the subdivision
method is preferable. Next, we were able to compute the errorupper bound, assuming opti-
mal quantization, for a variety of methods from the literature at 16 bit precision. We showed
that our subdivision method had the lowest error bound out ofthe methods we tested, and
that several existing methods had higher error bounds than using fixed precision spherical
coordinates. Further, our subdivision method was the only method, at 16-bit precision, to
satisfy Deering’s criterion that the error be at most 0.01 radians [22].

In the future, there are a variety of objectives we would liketo meet. We would like to
refine the compression process so that base polyhedra with more faces can be used. We plan
to implement GPU versions of the decompression algorithms.We also plan to extend this
work for use on arbitrary vectors. Lastly, we would like to beable to further formalize the
error bounds so that we analyze base polyhedra more quickly.

Acknowledgements

We would like to thank the Netherlands Organization for Scientific Research (NWO) for
providing project funding.

The Bunny, Happy Buddha, Armadillo and Lucy models are from the Stanford 3D Scan-
ning Repository. The David model is from the Digital Michaelangelo project. The Phlegmatic
Dragon is from the Academy of Sciences of the Czech Republic and the Czech Technical
University in Prague.



72 CHAPTER 4. BOUNDED ERROR NORMAL VECTOR COMPRESSION



CHAPTER5

Interactive Particle Tracing for Visualizing Large,
Time-Varying Flow Fields

Abstract

Particle tracing is a classical method of flow field visualization. For interactive exploration,
particles must be advected and displayed in real-time. Graphics Processor Unit (GPU) based
techniques can advect hundreds of thousands or millions of particles in real-time. We have
investigated such GPU-based techniques for interactive exploration of large, time-varying
flow fields. Our approach can be roughly divided into three categories: data preprocessing,
visualization and interaction. The preprocessing involves data compression, region of inter-
est computation and preparation of multi-resolution data.For flow visualization, we use use
the GPU for both data decompression and particle advection.More than 1,000,000 particles
can be visualized at interactive frame rates and data rates.We support the standard particle
visualization techniques of pathlines, streamlines and streaklines. We also represent particles
as flow-oriented ellipsoids, which can additionally be moved over their traversed pathlines
to explore their behavior in time. Dynamic features in the data are explored by interactively
seeding and tracking particles through time in both a standard display screen and a stereo-
scopic virtual environment. Further, we have validated ourparticle system by comparing its
particle trajectories with those generated by a Large-eddySimulation.

73
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Figure 5.1: Over 1,000,000 particles in a cumulus cloud being advected ina time-varying velocity field at interactive
frame rates.
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5.1 Introduction

Computational Fluid Dynamics (CFD) techniques such as Large-Eddy Simulation (LES) or
Direct Numerical Simulation (DNS) can produce very large, time-varying, multi-field data
sets. Exploration and analysis of these data sets is difficult due to their size, complexity
and time-varying nature. Various techniques have been developed over the years to explore
different aspects of the data. One popular technique for studying the fluid flow characteristics,
particle tracing, has recently been extended to handle time-varying flow data interactively
with the help of the Graphics Processing Unit (GPU) ( [83], [84], and [13] , Figure 5.1).

One of the main challenges to extending particle tracing to time-varying data has been the
sheer size of the data. Interactive exploration requires loading data time steps at interactive
rates in addition to interactive frame rates for the particle tracing algorithm. To ensure inter-
active frame rates, particle tracing algorithms are executed on the GPU. In order to maintain
an interactive data rate, new data must be continuously transferred from a source, such as disk
or a network computer, to the CPU and ultimately to the GPU. Both of these transfers rep-
resent potential bottlenecks, and, to overcome them, data reduction and filtering techniques
must be applied.

We present a system that supports interactive exploration of large, time-varying flow
fields. With the help of the GPU, we are able to advect more than1,000,000 particles at
interactive frame rates and data rates, see Figure 5.1. The system is targeted at our primary
source of data: LES data on a staggered, Cartesian grid with relatively compact features.
The system includes both a preprocessing phase and an interactive particle tracing engine.
The preprocessing step downsamples and quantizes the flow fields for each time step, and it
identifies, extracts, and quantizes full resolution regions-of-interest (ROIs) around features in
the data. The preprocessed data is loaded from disk and streamed to the GPU, where it is
used by the particle tracing engine. The engine supports a variety of data formats, integration
schemes and visual representations of the particles. The particle tracing engine has been in-
tegrated into both a stand-alone desktop application and a stand-alone Virtual Reality (VR)
application, and it has been integrated into our existing Cloud Explorer application [36]. Fur-
ther, we have validated our particle system by comparing itsparticle trajectories with those
generated by the Large-eddy Simulation system.

In addition to the standard features, we have added new functionality to our particle trac-
ing engine to aid in the interactive exploration of time-varying data. The input data has been
quantized to help overcome transmission bottlenecks, and the engine decompresses it on the
GPU to generate the actual flow fields used for particle advection. Since we are primarily
interested in how the particles move in and around features of interest in the data, we use
downsampled data for particle advection in the full domain,and, when an interesting fea-
ture has been identified, the engine performs multi-resolution particle advection, using full
resolution data for particles around the feature. To give a clearer idea of the instantaneous
flow characteristics, we generate ellipsoid glyph representations for the particles on the GPU.
Further, without storing extra information, we are able to interactively move the ellipsoids
along their pathlines to more closely study their behavior in time.

The remainder of this paper is organized as follows. We first provide an overview of
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related work in Section 5.2. In Section 5.3, we provide a top-down view of our system,
after which we discuss the type of data we are using and how we prepare it for interactive
exploration in Section 5.4. Then we describe our GPU-based particle system in Section 5.5.
This includes the GPU-based data decompression and particle advection as well as the GPU-
based visualization tools. Section 5.6 focuses on the interaction using a virtual environment
for exploration of the LES data. We show our results in Section 5.7 and end our paper with
conclusions and suggestions for future work in Section 5.8.

5.2 Related Work

Particle tracing in time-varying data has long been a popular topic for visualization research.
Lane [60] introduced one early approach. However, the ability to interactively advect and
view large numbers of particles in time-varying data has notbeen possible until recently.

In the last few years, the very high bandwidth, processing power and parallel architecture
of the GPU have been exploited to be used for other purposes than just graphics render-
ing [73]. The suitability of the GPU for processing large data in parallel makes it a good
candidate for algorithms such as particle advection.

Particle advection algorithms that exploit the processingpower of the GPU are described
in [56], [59], and [57]. These initial algorithms worked only with a stationary flow field (i.e.
non-time-varying). While interesting, performing the particle advection on the GPU is only
one aspect of dealing with time-varying data. These methodslack the necessary framework
to deal with such data.

More recently, these GPU particle tracing techniques have been extended to work with
time-varying data by Schirski et al. [83] and [84] and Bürger et al. [13]. Neither of these so-
lutions addresses the problem of dealing with large time-varying data in its entirety, though.
Schirski et al. use a high performance computing (HPC) back-end to generate a series of
velocity fields on a Cartesian grid based on a region-of-interest for GPU-based visualiza-
tion. However, their approach restricts particle advection to the region-of-interest and it lacks
out-of-core support, requiring all velocity fields to fit in RAM on the computers used for vi-
sualization. The work by B̈urger et al. represents a truly out-of-core approach that works on
standard desktop computers, but their approach does not employ any data filtering or reduc-
tion techniques. According to their hardware specifications, it takes 3.5 seconds to load the
velocity field for each time step from their example data set.Our approach, on the other hand,
is both out-of-core and incorporates data handling to help ensure interactive performance.

Other work similar to our ellipsoid glyphs also exists. Max,Crawfis and Grant [66] gen-
erate motion-blurred, semi-transpartent elliptical spots. Van Wijk [108] introduced particles
used to approximate stream surfaces, but these particles are flat. The most similar technique
to our approach is using glyph atlases for representing pseudo-3D shapes as in [59] and [57].
Unlike these techniques, we make use of the GPU to accuratelydraw the ellipsoids as 3D
objects from any viewing direction.
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Figure 5.2: The different stages of the GPU-based particle tracing pipeline. First, the compressed velocity field for
the current time step is transferred from a storage device to the GPU where it is decompressed on the fly. Next, the
decompressed velocity field is used as input for the GPU-basedparticle advection. Finally, the updated particles are
drawn to screen in an interactive application.

Figure 5.3: Our particle tracing engine in three applications. Left: Our desktop particle tracing application. Center:
Our stand alone VR particle tracing application. Right: OurCloudExplorer application running on the Virtual
Workbench.

5.3 System Overview

Our particle tracing system works with time-varying, velocity fields. We concentrate on data
where the features of interest are defined by one of the scalarvariables in the data. This is
in contrast to many fluid flow applications, where the features are defined by patterns in the
flow field itself, such as vortices and shock waves [76]. We are, therefore, interested in how
the features and the flow field interact with and influence eachother. The dynamic nature of
both the fluid flow and the features makes this a challenge.

Figure 5.2 represents our approach to supporting interactive particle tracing for time-
varying flow fields. In order to maintain interactive frame rates, we rely on the GPU for
particle advection. In order to maintain interactive data rates, there are two major bottlenecks
we must overcome. The first is transferring data from disk to the CPU, and the second is
transferring the data from the CPU to the GPU. Our strategy for dealing with this is to reduce
the size of the data to load from disk through subsampling, region-of-interest extraction, and
data compression. Through our use of vector quantization for compression, we are able to
decompress the velocity fields directly on the GPU, which helps with the second bottleneck.
To enable interaction with the data, we have integrated the particle tracing engine into three
applications (Figure 5.3).
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5.4 Data Handling

We primarily work with data generated by Large-eddy Simulations of cumulus clouds. The
features we typically work with are the clouds in the data set, which are generally compact,
i.e. are bounded by a box with volume less than1

64th of the domain in size. The data output
by the simulations is arranged in a “staggered” grid, or Arakawa C grid [5]. We work directly
with the staggered grid as converting to a standard Cartesian grid would result in smoothing
and information loss. We have tested the system on data sets with resolutions of 64x64x40,
64x64x80, 128x128x80 and 256x256x220 and between 600 and more than 3000 time steps.
Each time step generally consists of 1 to 3 scalar variables and 1 vector variable. The vector
variable represents the velocity. Each scalar and each vector component are 16-bit short inte-
gers. The total size of the velocity field for one time step at these resolutions is, respectively,
0.94 MB, 1.9 MB, 7.5 MB, and 82.5 MB.

5.4.1 Data Preprocessing

In order to interactively load and stream new data time stepsto our particle tracing engine,
we must ensure that the amount of data to be loaded for each time step remains reasonably
small. For example, if the hard disk can read 30 megabytes persecond, then each time step
should not have more than 3 megabytes of data to ensure a data rate of 10 time steps per
second. In order to ensure that the data size per time step remains small, we first preprocess
the raw simulation output.

The first step in the preprocessing is to perform feature tracking to locate all the features
in the data. In the data we typically use, this involves a 4D connected component labeling
algorithm [36]. Once all the features are found, sub-volumes around each feature in each
time step for each variable are defined by inflating the feature’s bounding box for that time
step. These sub-volumes are the possible regions-of-interest (ROIs) in the data.

The second step in the preprocessing is to extract the ROIs and create subsampled versions
of the velocity fields. We subsample by reducing the grid dimensions in each direction by a
power of two and averaging the values from the full resolution cells contained in each low
resolution cell. We use the subsampled volumes to perform less accurate particle tracing in
the entire domain, and we use the ROIs to perform particle tracing in and around the features
at the data’s full resolution. By combining these two approaches, we are able to ensure that
the input data size remains small, which allows us to maintain an interactive data rate during
particle tracing, while providing sufficient detail in and around features of interest.

The last step of the preprocessing is to generate the input velocity fields. Our particle
engine works with three input data formats: 16-bit integer output created from the subsam-
pling and ROI extraction, 16-bit half-float data, and compressed data. The 16-bit integer is
converted from signed to unsigned data for use on the GPU by adding 32,768 to it. This data
is not interleaved since the individual components can be used for other parts of the visual-
ization pipeline such as slicing planes. The half-float datais interleaved and can be treated as
an RGB image. The half-float data only has 10 bits in the mantissa, but this is sufficient for
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most of the data we work with. The compressed data uses 32 bitsto represent each velocity
vector.

Our data compression involves separately quantizing the length and direction of each vec-
tor in the velocity field. This results in two new scalar fieldsof 16-bit unsigned integers. We
interleave these two fields together to represent each vector by one 32-bit unsigned integer.
We use our earlier unit vector quantization algorithm [33] to quantize the vector directions
with 16-bit precision. This method guarantees that the angular quantization error will not
exceed 0.561◦. We quantize the length of the vectors based on the range between the min-
imum and maximum vector length for the data set. With this compression scheme, we are
able to achieve a compression ratio of 3:2 for our raw data. For raw data consisting of three
32-bit components, the compression ratio would be 3:1. Whilethis compression ratio is rel-
atively small, it enables an entire vector to fit into one standard, 8-bit RGBA pixel, which is
convenient for use on the GPU.

5.4.2 Data Transfer

Transferring uncompressed velocity fields to the GPU is doneby storing the velocity field
for the current time step into one or more 3D textures. For uncompressed data, the separate
16-bit unsigned integer velocity components are stored in three separate 3D alpha textures.
For the half-float data, each the x, y and z velocity components are stored in the red, green
and blue color components, respectively of a 3D texture.

For our compressed velocity fields, we initially transfer a 2D texture containing a 256x256
look-up table to GPU memory. This look-up table holds up to 65,536 unit vectors, which can
be accessed using two 8-bit texture coordinates [33]. Thesevectors are used as the set of
quantized unit velocity vectors. For each time step, both the quantized lengths and direction
indices of the instantaneous velocity field are transferredto the GPU using one interleaved
RGBA 3D texture. The vector lengths are stored in the red and green components and the
vector direction look-up coordinates are stored using the blue and alpha components.

While data must initially be loaded from disk, we maintain a cache of recently loaded time
steps. If the data set is sufficiently small, then the entire data set will be cached in memory
after one pass through all time steps. Once cached, the data set can be very rapidly sent to
the GPU. If the entire data set does not fit into memory, then the cache functions as a “time
window”. Performing advection within this window also benefits from the rapid transfer of
data to the GPU.

5.5 GPU-based Visualization

We use the GPU for both the particle advection and the visualization of the particles and their
trajectories. In addition we use a GPU-based decompressionalgorithm to decompress the
flow data prior to or during our particle advection routine. In Figure 5.2, the different stages
of the particle advection pipeline are shown.
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5.5.1 GPU-based Data Decompression

Our compressed data helps to reduce transfer latency, and itcan be rapidly decompressed on
the GPU. Decompression can be performed on the fly by decompressing vectors on demand
for particle advection, or it can be performed at once for an entire velocity field with off-
screen rendering. If the off-screen rendering option is used, then the 3D texture generated
by the rendering is used as the velocity field for particle advection. The choice as to which
option to use depends on the size of the velocity field, the number of particles, and the number
of texture lookups per particle per velocity field required for particle advection.

In the off-screen rendering, each slice of the velocity fieldis decompressed separately
in a rendering pass. Each rendering pass renders a rectanglein a view port constructed to
match the size of one slice of the velocity field texture. Thisenables a fragment program
to execute the decompression algorithm. For each slice, each texel in the texture generated
during rendering represents one vector in the velocity field.

The decompression algorithm takes two textures as input: aninterleaved texture of quan-
tized vector lengths and quantized vector directions, and a256x256 vector direction look-up
texture. The blue and alpha components in the interleaved texture are used to look up the
direction of each vector in the velocity field. The directionvectors are then scaled according
to the length given by the red and green components in the interleaved texture.

5.5.2 GPU-based Particle Advection

We have implemented a GPU algorithm for updating the particle positions in relation to the
(decompressed) velocity field. Initially, the particle positions are stored in the color compo-
nents of a texture. The x, y and z positions for each particle are stored in the separate RGB
color components. The alpha component is used for storing a separate scalar value such as
a color or particle life time value (which, in the case of a particle emitting seed point, indi-
cates whether the particle is alive and should be visible, orthat it has died and should not be
drawn), similar to the particle system described in [56]. Two of these textures containing the
particle positions are used alternately for input and output of the off-screen particle advection
pass.

The velocity fields necessary for advection are stored as textures on the GPU. OpenGL
treats texel values as being centered in the middle of the 3D cell that the texel represents.
For particle advection with Cartesian grids, velocities atpoints in space can be found by a
straightforward texture lookup. For staggered grids, eachvelocity component must be looked
up independently by shifting the original point position one half-cell length in the negative
component direction. For example, if the width of a cell iscw, then to find the x component
of the velocity field at pointp = (xp,yp,zp), the texture value at(xp−

cw
2 ,yp,zp) must be re-

trieved. For the 16-bit integer and 16-bit half-float data formats, the texture lookup can make
use of hardware supported trilinear interpolation. However, if the compressed velocity fields
are being decompressed on the fly during particle advection,a software trilinear interpolation
must be used.

During particle advection, a position update for each particle is calculated. We have im-
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Figure 5.4: Creating a point sprite ellipsoid texture, from left to right. The point sprite is drawn as a square, which
is then rounded. Lighting is added to create the appearance of a real 3D sphere. Finally, the sphere is stretched and
oriented with respect to the velocity field.

plemented three possible integration schemes: Euler integration, second-order Runge-Kutta
(RK2) integration and fourth-order Runge-Kutta integration (RK4). Furthermore, we can
match the integration time step size to the data time step size or we can interpolate between
data time steps for smaller integration time steps. When using any integration scheme other
than Euler integration without time interpolation, two data time steps must be resident in
GPU memory.

If multi-resolution mode is enabled, then velocity fields for the ROI must also be resident
in GPU memory. Care must be taken when more than one time step is required for integration
as the location and presence of the ROI is time-dependent. Ifa particle lies within a region
of interest in one velocity field, then it is advected with theROI velocity field. Otherwise, it
is advected with the general velocity field. It should be noted that this will lead to velocity
discontinuities as particles enter or leave the ROI, but, aswe are primarily interested in their
behavior within the ROI itself, this is unimportant to us.

The particle position update calculated during advection is stored in an intermediate ve-
locity texture, which can then be used during visualization. This velocity texture is then used
to write updated particle positions in the output texture. The updated particle positions are
fetched from the texture in the vertex shader and used for visualizing the particles and their
trajectories.

5.5.3 GPU-based Visualization Tools

In order to explore the time-varying flow using particles, wehave added several GPU-based
visualization tools. With these we are able to change the color and shape of the particles,
visualize their trajectories and provide real-time interaction. We visualize particles in our
system as separate solid objects, using flow curves, or as additively blended point sprites, to
give the impression of a substance (smoke or liquid).

In order to make the solid particles look more realistic, we create a sphere shaped point
sprite for each of the particles on the fly using a shader program. Adding both diffuse and
specular lighting creates the impression of a real 3D object(Figure 5.4). This can all be done
on the GPU in a fragment shader by having OpenGL apply texturecoordinates to the point
sprite. To enhance the sense of depth and to maintain the illusion that the point is a 3D object,
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Figure 5.5: A comparison between the spherical point sprites (left) and the velocity-based view-oriented ellipsoids
(right). Both shapes only require one vertex. The ellipsoids give a better impression of the instantaneous flow
characteristics.

the point size of the particle is adjusted with respect to itsdistance from the viewpoint.
Although the moving solid spheres can give a good representation of the underlying flow,

viewing the animated particles from different angles can bedeceptive. Likewise, if the parti-
cle advection is halted, the spheres do not give any information about the local flow direction.
As an alternative, glyphs can be used to improve perception of flow direction. We have chosen
to use ellipsoid shaped glyphs to illustrate the flow direction (Figure 5.5).

Unlike using a glyph atlas as in [59] and [57], our glyphs are generated on the fly and are
adjusted to the current viewing angle. The ellipsoid shape is created for each particle individ-
ually using a shader program (Figure 5.4). The viewing direction vector is sent to the shader
program to construct a viewing plane. Next, to compensate for the viewing orientation, the
velocity vector is fetched from the flow data and projected onto the viewing plane, resulting
in the length, width and angle of the ellipsoid. In the same way as the impostor spheres, dif-
fuse and specular lighting are added to enhance the realism of the ellipsoid shape. The result
is a view-oriented ellipsoid glyph that indicates velocitydirection and magnitude at the cost
of only one vertex.

Our system is capable of rendering all of the standard flow curves: streamlines (Figure 5.6
left), streaklines (Figure 5.6 center), timelines (Figure5.6 right) and pathlines (Figure 5.7). It
can also render illuminated streaklines like those in [111]. This is done by saving the particle
positions over a number of time steps in a large texture and connecting the corresponding par-
ticles with line segments, described in [13]. In addition, we have implemented functionality
to move the particles along their paths, showing their position history over time.

The ellipsoid shaped particles-on-pathline give good insight on the movement and change
of velocity of the particle over time in a certain region (Figure 5.7). Fast browsing of the
particles over their pathline is possible since all the positions of the particles over the defined
time interval are already stored in the graphics memory. To determine the ellipsoid shape
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Figure 5.6: Left: Illuminated streamlines depict the underlying flow in a region in space at a certain position in time.
Center: Streaklines simulate the injection of dye into the flow. Right: Timelines represent sets of points released at
fixed points in time.

of each of the particles, we need the particle’s velocity at that time step. Since the we do
not have the velocity field data of all the time steps available, we determine the velocity by
calculating the positional difference between two subsequent particles.

5.6 Interaction

In this section we describe the type of tools we have chosen for interaction with the advected
particles within the domain of the time-varying flow field.

5.6.1 Particle Emitter

In order to explore the domain interactively, the ability torelease particles at arbitrary posi-
tions is desirable. Our particle emitter is a box that can be moved around the domain in all
three dimensions while emitting a large number of particlesin the time-varying flow field.
We assign each particle a time to live value so that it will dieafter a certain period of time and
be reincarnated at the emitter. Thus, the particle emitter can function as an infinite source of
particles. For our research, it is important to be able to move the particle emitter within the
domain because of the dynamic nature of the features in our LES data. Moving the emitter
allows us to search for and follow these features and observehow the particles behave in and
around the features.

We have also added save and restore functionality to allow the repetition of certain ob-
servations. When exploring this kind of simulated data, it may be desirable to observe the
behaviour of the particles over a certain time interval starting at a certain position and then
repeating this experiment with identical or slightly shifted initial particle positions. If the
starting point in space and time is exactly identical, then the particle advection will proceed
exactly as before.

Researchers can perform experiments by placing the emitterat a certain place in time and
space and observing the emitted particles. The shape of the particle emitter can be adjusted
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Figure 5.7: Ellipsoid particles shown on their pathlines. When browsingthrough time, the ellipsoids move along
the pathline, and their shapes depict the magnitude and direction of the underlying flow. The feature geometry also
changes to reflect the visible particle time step.
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Figure 5.8: Plane of particles indicating the vertical flow over a wider region.

to suit different kinds of experiments. The emitter shape and the distribution of particles
(random or regular) can be set. A small but very dense box of particles can be used for a
smaller region-of-interest, while, in the case of a larger ROI, a large plane of particles can be
used in order to maintain high particle density (compared toa larger box with low density).
For example, the dense plane of particles can be positioned at a certain height where the
movement of the particles in the plane indicates the vertical flow over a larger lateral region
(Figure 5.8).

5.6.2 Multi-Resolution Data for Regions-of-Interest

While exploring the data, selecting features enables multi-resolution mode. In this mode, a
full-resolution velocity field is used for particle advection inside an inflated bounding box
that encloses the selected feature during each time step. This combination allows researchers
to observe the general trend of the flow in the whole domain, while still being able to see the
details of the flow where it is interesting: in and around the features in the data (Figure 5.9).

5.6.3 VR and Interaction

Using the particle engine in VR offers two advantages: improved depth perception and im-
proved interaction. With the stereoscopic view, it is much easier to determine where the
particles are in 3D than in a standard desktop environment. Using the Virtual Workbench,
the particle emitter can be attached to a VR interaction toolsuch as a stylus. The stylus and
the stereoscopic view of the Virtual Workbench provide a simple way to position the parti-
cle emitter while exploring the time-varying flow field. Likewise, it is possible to move the
seeding point of the stream- and streaklines inside the domain during advection.

In addition to the stereoscopic view, depth fogging is addedto the particles to enhance the
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Figure 5.9: In multiresolution mode, particles inside the ROI are advected by a higher resolution velocity field.
Outside the region particles are advected using a lower resolution velocity field.

sense of depth. The depth fogging is implemented by adjusting the intensity of the color with
respect to the viewing distance. To avoid the sudden vanishing of the particles after they have
exceeded their life time parameter, they slowly fade out by blending in with the background
or having their transparency increased.

Our particle system has been implemented in a stand-alone desktop application allowing
the user to explore the data while sitting at his desk (Figure5.3 left). In addition, we have
integrated the particle tracing into a standalone VR application supporting stereo vision and
electro-magnetically tracked interaction tools (Figure 5.3 center). Finally, our particle engine
has been integrated into our CloudExplorer application [36] to combine the particle visualiza-
tion with dynamic geometric isosurfaces (Figure 5.3 right). We do not currently account for
off-axis stereo when rendering point sprites as spheres or ellipsoids, but, in our experience,
the effects are not very noticeable in normal use.

5.7 Results

5.7.1 System Performance

Interactive particle tracing using time-varying velocityfields requires interactive frame rates
as well as interactive data rates. By data rate, we mean the rate at which new data time steps
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Euler RK2 RK4
Data Type CG SG CG SG CG SG
Short 106 106 37 37 16 16
Half 190 104 73 28 34 12
Compressed 67 27 19 6.3 7.9 1.8

Table 5.1: This table lists the performance of our advection integration schemes in millions of integrations per
second. The tests were performed with 1024x1024 particles onstaggered (SG) and Cartesian (CG) grids for each of
three data formats: the original signed short integer data (Short), the half-float data (Half), and the compressed data
(Compressed).

are used for particle advection. Our GPU-based particle advection algorithm provides an in-
teractive frame rate for a very large number of particles, but, in order to have interactive data
rates, the data needed for each time step should be as small aspossible. Our data preprocess-
ing combined with GPU-based data decompression helps keep the data rate interactive.

We have measured the performance of our standalone application with the integrated
particle tracing in terms of both frame rate and data rate under a variety of conditions. We
have performed the different tests on a desktop PC with an Intel Pentium Core 2 Duo 2.2
GHz processor, 2 GB of RAM and an NVIDIA GeForce 8800 GTX graphics card.

To test the performance of advection algorithms, we advected 1,048,576 particles using
all three data types and both types of grid. Table 5.1 lists the results in terms of millions of
integrations per second. Advection using half-float data onCartesian grids performs the best.
Advection using staggered grids is slower than advection onCartesian grids for the half-float
and compressed data because it requires extra texture lookups. For the short integer data, the
velocity components are stored in separate textures so the number of texture lookups is the
same regardless of the grid type.

To test the performance of the system as a whole, we tested theframe rate under several
conditions. For these tests we used a data set of 3,000 time steps, which we downsampled
to 64x64x40 per time step. Using each data type and grid type,we measured the frame rate
for particle rendering and advection alone. We first tested the performance using 600 out
of the 3,000 time steps, which we cached in memory. This givesan idea of the “in-core”
performance. We also tested the performance on advecting particles in the full 3,000 time
steps both syncing the integration time step with the data time step and having 6 integration
time steps per data time step. This gives an idea of the “out-of-core” performance.

Table 5.2 lists the results from the tests when advecting 65,536 particles. All variations
performed well when the data resided in main memory. However, when the data must be
streamed in from disk to the GPU, the advantage of using the smaller, compressed data can
be seen. We have also performed these tests with 1,048,576 particles. For the short integer
data and the half-float data, the results remained the same for the streaming performance.
For the compressed data, the cost of decompressing the compressed data becomes dominant.
This can be alleviated by decompressing the entire velocityfield at once. The short integer
data performs worse than the half-float data largely becausethe data is stored in 3 files on
disk instead of 1 file.
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Data Type Grid Type No Time Cached Data 1s Integration 6s Integration
Short CG 691 fps 477 fps 241 fps 29 fps
Short SG 668 fps 471 fps 233 fps 28 fps
Half CG 817 fps 404 fps 240 fps 56 fps
Half SG 664 fps 409 fps 226 fps 56 fps
Compressed CG 617 fps 516 fps 275 fps 84 fps
Compressed SG 294 fps 276 fps 173 fps 83 fps

Table 5.2: This table lists the results of our performance evaluations.We tested each of the three data formats:
short integer data (Short), half-float data (Half) and compressed data (Compressed). We tested each format on both
Cartesian (CG) and staggered (SG) grids. For each data and grid combination, we tested the performance of the
advection alone (No Time), advecting data in 600 cached time steps (Cached Data), advecting particles in 3000 time
steps using an integration step size of 1 second (1s Integration), and advecting particles in 3000 time steps using
an integration step size of 6 seconds (6s Integration). The data was downsampled to 64x64x40 and each data time
step is 6 seconds apart. The particles were advected with Euler integration. Results are given in frames per second.
Except for the compressed data, the results were similar for 1,048,576 particles.

We have also tested the effects of regions-of-interest on the system performance. The
impact is dependent on the size of the ROI. Most of the ROIs in our data are small, i.e. less
than 1

4 the size of the downsampled grid, so their effect is small. Asthe ROI size approaches
the size of the subsampled domain, then the performances decreases by approximately 50%.

The effect of the various particle visualization options onperformance is also relatively
small in comparison to the base cost of rendering the particles. The more complex options,
such as ellipsoids, have a somewhat higher impact, but it is not very significant.

5.7.2 System Validation

Validating the particle advection is important for severalreasons. We must ensure that our
algorithm is correctly implemented, and we must be able to demonstrate this to users of the
system so that they can trust the visualization. Furthermore, since we make use of quantized
data, we must ensure that the errors introduced in the quantization are not too significant.
The results of the validation can also be used to improve the visualization by, for example,
coloring or discarding particles that have likely deviatedbeyond a certain threshold.

To measure the accuracy of the GPU-based particle advection, we compare the positions
of particles advected with our GPU particle advection with particles advected in an LES. For
our validation tests, we use particles advected by a LES as the “ground truth”. The LES was
performed on a grid size of 128x128x80 using time steps of 6 seconds. The particles were
integrated using Euler integration with an integration step size of 6 seconds. For each time
step, the LES wrote the velocity field and particle positionsto disk. Inside the LES, this
data is represented using 64-bit double precision floating point numbers. The output data is
converted to 16 bit signed integers.

In our tests, we use velocity fields generated by the LES for our GPU advection. We
seed particles in our GPU implementation at the same starting locations as the particles in the
LES. We then advect the particles on the GPU using both Euler and RK4 integration using
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Configuration 6s 60s 600s 1800s
Short Data, 64x64x40, Euler, 6s step 1.05m 7.06m 52.1m 163m
Short Data, 64x64x40, Euler, 1s step 1.05m 7.03m 51.6m 162m
Short Data, 64x64x40, RK4, 6s step 1.06m 7.10m 52.2m 163m
Short Data, 64x64x40, RK4, 1s step 1.05m 7.03m 51.6m 162m
Short Data, 128x128x80, Euler, 6s step 0.49m 1.38m 16.3m 74.3m
Short Data, 128x128x80, Euler, 1s step 0.47m 0.94m 11.8m 55.6m
Short Data, 128x128x80, RK4, 6s step 0.50m 1.53m 17.8m 80.1m
Short Data, 128x128x80, RK4, 1s step 0.48m 1.01m 12.4m 58.8m
Compressed Data, 64x64x40, Euler, 6s step 1.06m 7.15m 53.2m 167m
Compressed Data, 64x64x40, Euler, 1s step 1.06m 7.12m 52.7m 165m
Compressed Data, 64x64x40, RK4, 6s step 1.06m 7.18m 53.3m 167m
Compressed Data, 64x64x40, RK4, 1s step 1.06m 7.12m 52.7m 165m
Compressed Data, 128x128x80, Euler, 6s step0.49m 1.51m 17.3m 74.7m
Compressed Data, 128x128x80, Euler, 1s step0.48m 1.10m 14.0m 62.1m
Compressed Data, 128x128x80, RK4, 6s step0.50m 1.66m 18.9m 81.5m
Compressed Data, 128x128x80, RK4, 1s step0.48m 1.16m 14.5m 65.2m

Table 5.3: This table lists the results of our system validation tests.We compare the distances between particles
advected within the LES itself at a resolution of 128x128x80and particles advected with our GPU algorithm. The
data time steps are 6 seconds apart. The distances are given inmeters, and the size of our test domain in meters is
6400x6400x3200. The average particle velocity during the 300 time steps (1800 seconds) is 2.1 m/s. We give the
results averaged over 1,310,720 particles after 6s, 60s, 600s and 1800s.

integration steps of both 6 seconds and 1 second. We then average the distance between the
particle positions for the two systems after a certain number of time steps. We compare the
accuracy of the particle trajectories for two different resolutions: the original 128x128x80
resolution and a subsampled 64x64x40 resolution. We also compare for both the compressed
and short integer flow fields.

The results from our tests are in Table 5.3. The errors are listed in meters, and, for the
128x128x80 and 64x64x40 resolutions, one grid cell is 50x50x40 meters and 100x100x80
meters respectively. The average particle velocity for theLES particles was 2.1 m/s. The
positions of the LES particles were rounded to the nearest meter before the comparison. The
error for particles advected with the subsampled grid is higher than that of the full resolution
grid, which is to be expected. After 300 time steps (1800 seconds) the particles remain, on
average, within 2 and 4 grid cells of the LES particles in the 128x128x80 and 64x64x40
resolution data, respectively. After 100 time steps, the particles are, respectively, less than 1
and around 1 grid cell away from the LES particles. This is important since the features we
typically study have a lifetime of approximately 300 time steps, and we are most interested
in the behavior of particles during shorter time spans. Fromthe results, we can also see that
it can be advantageous to use smaller integration time stepsbut not especially so. This is
likely due to the error introduced by interpolating in spacedominating the error introduced
by interpolating in time. Also of note is that our compresseddata maintains nearly the same
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Configuration Time 50m 100m 150m 200m
Short Data, 64x64x40, Euler 6s 100.0% 100.0% 100.0% 100.0%
Short Data, 64x64x40, Euler 60s 99.65% 99.98% 100.0% 100.0%
Short Data, 64x64x40, Euler 600s 66.77% 89.51% 95.42% 97.35%
Short Data, 64x64x40, Euler 1800s 36.45% 54.90% 66.53% 75.30%
Short Data, 128x128x80, Euler 6s 100.0% 100.0% 100.0% 100.0%
Short Data, 128x128x80, Euler 60s 99.82% 99.98% 100.0% 100.0%
Short Data, 128x128x80, Euler 600s 97.18% 98.51% 98.89% 99.10%
Short Data, 128x128x80, Euler 1800s 70.42% 83.30% 89.37% 92.63%
Compressed Data, 64x64x40, Euler 6s 100.0% 100.0% 100.0% 100.0%
Compressed Data, 64x64x40, Euler 60s 99.65% 99.98% 100.0% 100.0%
Compressed Data, 64x64x40, Euler 600s 66.86% 89.59% 95.46% 97.37%
Compressed Data, 64x64x40, Euler 1800s 36.13% 53.85% 66.56% 75.33%
Compressed Data, 128x128x80, Euler 6s 100.0% 100.0% 100.0% 100.0%
Compressed Data, 128x128x80, Euler60s 99.82% 99.98% 100.0% 100.0%
Compressed Data, 128x128x80, Euler600s 97.39% 98.57% 98.92% 99.11%
Compressed Data, 128x128x80, Euler1800s 73.25% 84.98% 90.39% 93.27%

Table 5.4: This table lists the percentage of particles with errors less than 50m, 100m, 150m and 200m after 6s, 60s,
600s and 1800s. All configurations use Euler integration anda time step of 6s. The original simulation grid cells are
50x50x40 meters.

accuracy as the short integer data.
Table 5.4 gives a more detailed analysis of the errors for four configurations. In each

of these configurations, Euler integration with a time step of 6s was used. These results
again show that the compressed data maintains nearly the same accuracy as the short integer
data. This table also highlights the effects of using a subsampled velocity field for advection:
after approximately 10 time steps, the accuracy begins to fall off markedly. However, in
all cases, the majority of the particles, remain within about 4 simulation grid cells of the
LES particles, with the particles advected using the full resolution data remaining even closer
than those advected using lower resolution data. These results give us confidence that the
GPU-advected particles are sufficiently accurate to give insight into the flow behavior around
features of interest in the data during visualization.

5.8 Conclusions and Future Work

In this paper we have presented an approach for interactively visualizing large, time-varying
flow fields. Our approach involves data preprocessing, real-time GPU-based flow field de-
compression, GPU-based particle advection and particle visualization. We have integrated
our particle advection engine into three interactive applications: our CloudExplorer applica-
tion, a standalone VR application, and a desktop application.
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In our data preprocessing, we find and extract regions-of-interest around features in the
data, create subsampled versions of the velocity fields, andcompress the subsampled fields
and ROIs through quantization. The reduced size of the compressed velocity fields allow for
a faster data transfer from disk to the GPU, which enables us to stream the data at interactive
rates.

Our GPU-based particle advection pipeline supports rendering and advecting more than
1,000,000 particles at interactive frame rates. Our pipeline supports GPU-based decompres-
sion of the quantized data, and it can use both a ROI and a subsampled velocity field simul-
taneously for multi-resolution particle advection.

Our different visualization tools support the explorationof time-varying flow fields in
a virtual environment. These tools include the standard flowcurves and our additions of
ellipsoidal particles and the ability to move the particlesover the traversed paths. The tools
are available in both a standard desktop environment and twostereo VR environments.

In the future, we would like to make several improvements. Wewould like to better in-
tegrate the particle visualization into the research process through, for example, providing
support for recording quantitative information about the particles. We would also like to fur-
ther improve the accuracy of the advection itself. One possibility for this is incorporating the
statistical subgrid model used in the LES for modeling subgrid scale turbulence. Additionally,
we would like to further improve the application performance. One way to accomplish this
is through optimization of our GPU implementation. We couldalso improve the data trans-
fer rate by further compressing the data for storage on disk and performing an intermediate
decompression step on the CPU.
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CHAPTER6

Cloud Explorer

Cloud Explorer is a cloud visualization system designed forvisualizing cumulus clouds sim-
ulated in Large-Eddy Simulations. Chapters 2 and 3 describeportions of the system. Cloud
Explorer also incorporates the particle tracing system described in Chapter 5 and makes use
of the quantization techniques presented in Chapter 4. Thischapter completes the picture
by giving a high level overview of the complete system, presenting some components not
described elsewhere, and discussing how Cloud Explorer wasput to use by atmospheric sci-
entists.

6.1 System Overview

Cloud Explorer has many components. The visualization itself is part of a larger frame-
work for working with Large-Eddy Simulation data. Figure 6.1 shows the various system
components. The two main components are data processing anddata visualization. Data
processing transforms the raw simulation data into a data format suitable for visualization.
Data visualization encompasses both a visualization environment and a set of visualization
tools available within that environment. Within each of these components there are a number
of subcomponents.

6.1.1 Data Processing

One aspect of the data processing is feature processing. This involves detecting and track-
ing the clouds in the simulation data. Once the clouds have been identified, isosurfaces are

93
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Figure 6.1: Overview of the components of the Cloud Explorer visualization system.

extracted. Next, the isosurfaces are smoothed, and the geometry is compressed using quan-
tization. Additionally, during feature processing, axis-aligned bounding boxes are computed
around each cloud in each time step for later use as regions-of-interest.

Another aspect of the data processing is preparing the data for use with particle tracing
and slicing planes. Cloud Explorer works with downsampled data in the full domain and full
resolution data around clouds of interest. The data processing generates the downsampled
data, and it also extracts the full resolution regions-of-interest around clouds for variables
that the user specifies. When preparing data for particle tracing, the user can also choose to
compress the vector fields using quantization, which can give better performance when the
data is read from disk.

The third aspect of data processing is generating derived data and computing statistical
plots. As described in Chapter 3, the user can supply expressions that are evaluated to derive
scalar or vector quantities from the data. These are computed on a per-feature basis using the
regions-of-interest around the clouds. The results of the computations are stored for use in
the plot windows in Cloud Explorer. Users can run the data processing multiple times with
different expressions to compute new statistical data for use in Cloud Explorer.

6.1.2 Visualization

Cloud Explorer supports several types of visualization. The data can be explored in time by
browsing through the data time steps. The scalar simulationvariables can be visualized using
isosurfaces (the clouds) and slicing planes. The vector variables can be visualized using
particle tracing. Contextual information about the cloudsis presented with statistical plots
and “decorations” on the visualization.

The user can interact with the data both in space and time. Using a stylus, the user can
select and manipulate the clouds, and he can interact with the various widgets in the user
interface. Using a plexiglass panel, the user can probe the data domain directly. With the
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time control window, the user can control the direction and speed of playback through time,
and he can also browse freely through the data time steps.

Cloud Explorer gives the user a wide variety of visualization options. The user can:

• enable or disable particle tracing,

• enable or disable the slicing plane,

• choose which variables to visualize using the slicing plane,

• select and edit a color map to use for the slicing plane,

• hide and show different sets of clouds in the data domain,

• zoom in and out on clouds of interest,

• change the colors of the clouds,

• choose the which plots to display in each plot,

• highlight different time steps or altitudes in the plot windows,

• scale the plots in the plot windows,

• choose color maps for vector plots, and

• choose the interaction technique he would like to use in the environment.

6.2 User Interface and Interaction

In Cloud Explorer, user interface tasks are divided betweeninteracting with the data, gaining
additional information about the data, and system control tasks. Data interaction tasks include
selecting and manipulating clouds of interest, positioning the particle emitter, probing the data
with a slicing plane, and manipulating the data domain. Information gathering tasks involve
showing additional information in the visualization to better understand cloud properties in
time or space. System control tasks include controlling time step playback and enabling
and disabling different visualization modes. Cloud Explorer employs a hybrid interface to
support interaction and system control, and it adds “decorations” to objects in the VE to
provide additional contextual information.

6.2.1 Hybrid Interface

Cloud Explorer’s user interface integrates 3D interactiontechniques with more traditional
2D interface elements into the virtual environment. The input devices in the VE are a stylus
and a tracked, plexiglass panel. Users select objects in theenvironment with the stylus using
either ray casting or IntenSelect, a time-dependent, cone-based selection technique that makes
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Figure 6.2: An overview of the Cloud Explorer user interface.

selecting smaller objects such as UI widgets easier [39]. Manipulation is done by fixing the
distance and orientation of an object relative to the styluswhen the user selects it with the
stylus button and then keeping this relationship constant as the user moves the stylus.

The user interface is set up with the clouds in the middle of the VE with informational
and system control widgets layed out around them. System control widgets are placed in 2D
windows, which behave similar to their traditional counterparts. There are also 2D windows,
which show statistical plots for the clouds the user has selected. Additional information about
widgets in the user interface is provided to the user with tooltips. See Figure 6.2.

The combination of windows, tooltips, and IntenSelect provides for a flexible and com-
pact hybrid interface. By using tooltips, labels on widgetsin the UI can be shortened or
replaced with icons, which, in turn, allows the widgets to besmaller. Using IntenSelect for
selection and manipulation makes it easier for users to interact with small widgets or with
widgets that are farther away. Using 2D windows allows for logical groupings of related
widgets, which the user can move, show and hide as necessary.De Haan et al. [37] pro-
vides a more detailed discussion, but, using these techniques allows for more options to be
comfortably presented to the user and for more space in the VEto be reserved for the 3D
visualization.

6.2.2 Contextual Information

In Cloud Explorer’s virtual environment, it’s important for the atmospheric scientists to un-
derstand the relations between the different aspects of thevisualization. In particular, the
relations between time, space, and the current 3D view are important to understand. Cloud
Explorer uses two techniques to help make these relationships clear: linked interaction wid-
gets and visual feedback in the form of “decorations”.
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The linked interaction widgets are sets of widgets that provide the same functionality in
different locations. For controlling time, there is a window with a video player control for
moving forward and backwards through time, but, in each statistical plot window, there is
also a slider that the user can use to browse through time. Similarly, there is a widget on the
domain box to measure altitude that is also duplicated on theplot windows. This duplication
lets the user adjust visualization parameters without having to shift focus away from the
current cloud or plot window.

The decorations are additions that provide visual cues about visualization parameters. In
the domain box, a white band is drawn around the clouds at an altitude specified by the user.
On the plot windows, a vertical green line indicates the current time step, and a horizontal
gray line corresponds with the altitude the user has specified. See Figure 6.3, top. These
decorations also come in the form of small pop-up windows. For example, when setting
the initial altitude of a plane of particles, a window appears showing the altitude in meters
(Figure 6.3, right). The third example (Figure 6.3, center)draws only contour lines for the
clouds above the slicing plane. This reveals the scalar values inside the clouds while still
giving the user an idea of where the cloud itself is.

6.3 Data Handling

Several techniques for visualizing data that does not fit into main memory are described in
the literature. Silva et al. [88] discuss several includinggeometry simplification, specula-
tive prefetching of data, replacing geometry with imposters, and different forms of culling.
Other techniques include using clever data structures or time windows (see e.g. Vrolijk and
Post [102]). The common factor among many of these approaches is that they seek to over-
come data transfer bottlenecks by reducing the amount of data needed in memory for inter-
active visualization.

In fact, one of the main challenges when dealing with large, time-dependent data like
the LES data is efficiently transferring data from disk to theGPU. There are two important
bottlenecks in the transfer process. The first bottleneck isdisk transfer speed, which imposes
strict limits on the amount of data that can be moved from diskto main memory in a given
amount of time. The transfer speed between main memory and the GPU is the second bot-
tleneck. When the visualization data fits into main memory, then the second bottleneck is
usually the limiting factor on performance. For out-of-core visualization, then disk transfer
speed is the most important bottleneck. When the data is transformed in main memory, e.g.
decompressed, then the CPU can also become a performance bottleneck.

6.3.1 Data Cache

In Cloud Explorer, one method employed to mitigate the effects of the disk transfer speed
bottleneck is the use of a data cache. The cache is a large segment of main memory that
Cloud Explorer manages. As data is loaded from disk, it is stored in the cache. When Cloud
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Figure 6.3: Portions of the Cloud Explorer user interface. Top: Displaying additional contextual information relates
the selected cloud to plots of its behavior over time, the current time step with thex axes of the plots, and the
highlighted altitude on the cloud with they axes of the plots. Center: Drawing the cloud using contour lines shows
the scalar values on the slicing plane inside of the cloud. Bottom: The tooltip displays the altitude of the initial plane
of particles.
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Explorer needs data for visualization, it first tries to retrieve the data from the cache. If the
data is not in the cache, then the data is loaded from disk.

The main memory segment used by the cache is divided into a setof pages. Each page
is sufficiently large to hold the largest single piece of visualization data, which for example
might be an isosurface or a region of interest in a scalar field. Whenever data is read from
a cache page, it is marked as the most recently used cache pageand moved to the front of a
linked list of cache pages. When data is loaded from disk, Cloud Explorer attempts to store
the data on the most recently used cache page. If there is insufficient space in the page, then
one of two things happens. If the cache is not yet full, a new cache page is used. If the cache
is full, the least recently used page is emptied, and the datais stored in it.

When using the data cache, loading data from disk remains relatively slow, but retrieving
data that is already in the cache is comparatively very fast.When visualizing a data set that
can fit entirely into main memory, the entire data set will be in the cache after the user has
browsed through the data once. Any further exploration willthen be much more interactive.
When visualizing a data set that does not fit entirely into mainmemory, the data cache acts
as a sort of time window. If the user browses forward through time and sees something
interesting in the data, the recent data time steps will be inthe cache allowing him to more
quickly browse back and forth to study it further.

6.3.2 Data Compression

Another method that Cloud Explorer employs to overcome transfer bottlenecks is data com-
pression. In particular, Cloud Explorer quantizes vector field data and isosurface geometry
data during preprocessing.

Isosurface coordinate positions are quantized using three16-bit integers. With the vector
quantization algorithm described in Chapter 4, the surfacenormal vectors are quantized us-
ing one 16-bit integer. The isosurfaces themselves are saved as indexed triangle strips. The
list of triangle strip lengths and the list of triangle stripvertex/normal indices are quantized
using the smallest unsigned integer type allowed given, respectively, the length of the longest
triangle strip and the number of vertices/normals. This approach compresses the vertex/nor-
mal information to1

3 its size when represented with six 32-bit floating point numbers. It
compresses the length and index information by 25% or 50%.

The vector field data is also quantized using the algorithm inChapter 4. However, in
addition to the 16-bit integer quantization of the vector direction, the length of each vector
is also quantized using a 16-bit integer. Thus a vector can berepresented by two 16-bits
integers instead of three 16-bit or 32-bit numbers. While thequantization introduces error,
comparisons of particle paths traced using the original vector data and the quantized vector
data do not differ very much (See Section 5.7.2).

When Cloud Explorer loads quantized data, the data is stored as-is in the data cache. The
data is then sent “as is” to the GPU for rendering or particle tracing. The quantized vectors
are decompressed on the GPU by using a texture look up to retrieve the vector direction. The
quantized vertex positions are “decompressed” by multiplying them by a constant scaling
factor.
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6.4 Virtual Reality and Desktop Visualization

Cloud Explorer runs on a variety of Virtual Reality (VR) systems: a responsive workbench
(described by Koutek [58]), a PDRIVE system (described by DeHaan et al. [38]) and a
powerwall system. Figure 6.4 shows the workbench and a PDRIVE. Both the workbench
and PDRIVE provide users with a stylus and a plexiglass pad for directly interacting with the
data. The powerwall, intended primarily for presentations, offers a stereo view of the data,
but provides no direct interaction. Cloud Explorer also runs on standard desktop computers,
which also provide no direct interaction with the data. Instead, on these systems, interaction
is done with the mouse and keyboard.

Support for mouse and keyboard interaction is provided through a set of keyboard short-
cuts, which let the user choose between using the mouse to manipulate the view point and the
world. When manipulating the world, the mouse cursor casts aninvisible ray into the scene
perpendicular to the screen, which allows the user to interact with objects, such as buttons
and isosurfaces, under the mouse cursor. This makes common 2D tasks such as clicking on
buttons, dragging sliders, and moving objects in the screenplane simple and intuitive, while
still also allowing more general 3D interaction.

While Cloud Explorer was initially intended to be a purely VR visualization environ-
ment, the utility of having it be a dual VR and desktop visualization environment became
increasingly clear. When visualizing the data, the added value that VR provides lies mainly
in increased spatial perception of the data and simplified interaction with the data. These
advantages are beneficial, but they require using a VR system. For the atmospheric scien-
tists, this requires planning ahead and going to the VR laboratory with suitably prepared
data. This added inconvenience makes it less likely that they will use the VR software for
casual exploration and experimentation. Letting Cloud Explorer also work on the desktop
gave the researchers more freedom to use it at their convenience. It also aided in the devel-
opment process and made it easier to control the applicationwhile giving demonstrations on
the powerwall.

In practice, each system was found to have its own advantages. The workbench offered
the most immersive experience and could be comfortably usedby two to three people simul-
taneously with one person controlling the visualization and the others observing. The power-
wall proved most effective at giving stereo presentations to larger groups (six to eight people).
It was also surprisingly effective for particle tracing visualization due to several factors: the
particles greatly benefited from stereo visualization, thekeyboard gave easy control over the
wide variety of visualization options, and the users did nothave to interact overly much with
the data. The standard desktop environment was most often used during development due to
it being both readily available and not requiring the use of extra devices (trackers, projectors,
stereo glasses, etc.). The PDRIVE offered the best trade-off between the workbench and the
desktop environment: a mouse, keyboard, and development terminal were within easy reach
while still offering a full virtual environment with tracked input devices.
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Figure 6.4: Top: Illustration of Cloud Explorer running on the responsive workbench. Bottom: A user at a PDRIVE.
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6.5 Collaboration with Atmospheric Scientists

Cloud Explorer was developed in close collaboration with atmospheric scientists. It served
as a test-bed environment for the visualization tools created for analyzing the Large-Eddy
Simulation data generated by the scientists. The visualization tools were then used to help
answer important questions about cumulus cloud dynamics.

6.5.1 Developing Cloud Explorer

The atmospheric scientists played an integral role in developing Cloud Explorer. Perhaps
most importantly of all, they supplied the data to be visualized. The difficulties they had in
processing and visualizing the large, complex, and time-varying data motivated automating
the processing and providing interactive visualization. This led to the development of the data
processing and data handling portions of Cloud Explorer. Inaddition to providing the data
and its challenges, they also provided direction for developing visualization tools in order to
study specific aspects of cloud behavior.

In the early stages of their research, they were focusing on cloud life cycle studies. These
studies required the feature detection and feature tracking portions of the data processing.
When studying individual clouds, they would use their own software packages to make sev-
eral statistical plots of different cloud properties over time. It became clear that it would be
helpful for them to be able to compute and visualize these types of plots using Cloud Ex-
plorer. This led to the idea of data reprocessing and incorporating the 2D plots into the 3D
environment.

In the later stages, they focused more on studying the interaction of the clouds with the
environment around them. They built particle tracing into their Large-Eddy Simulation to be
able to quantify, statistically, how the air in and around the clouds moved around. However, it
was difficult for them to visualize the particle motion, which led to creating the GPU particle
tracing engine. The dynamic nature of the clouds also led to several of the particle tracing
extensions such as ellipsoid particles and viewing particles on their pathlines.

6.5.2 Using Cloud Explorer

Throughout its development, Cloud Explorer was used by the atmospheric scientists for re-
search purposes. It played an important role in helping to answer the cloud research questions
posed in Section 1.2.1: what are the defining characteristics of cumulus clouds during the dif-
ferent life cycle stages and how does a cumulus cloud influence and interact with the dry air
around it. For both of these questions, Cloud Explorer was helpful both in the research pro-
cess and also in sharing the results with others.

On the research side, Cloud Explorer played a key role in identifying interesting cumulus
clouds to study, as described in Chapter 2. The dynamic, time-dependent nature of the clouds
made an automated selection process for identifying interesting clouds difficult. Clouds of-
ten break into multiple pieces or collide with each other. Bytracking clouds through time
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and presenting visually to the atmospheric scientists, they could readily pick the clouds they
wanted to study.

During the life cycle research, the scientists created several statistical plots of the inter-
esting clouds to identify and study the different life cyclestages. What they found was that
the clouds did not follow the traditional life cycle of birth, maturity and dying out. Instead,
the clouds pulsate as they are fueled by pulses at regular intervals of warm, moist air. This
behavior was also clearly visible in some of the statisticalplots. By incorporating these plots,
which could be generated through “reprocessing” the data, as described in Chapter 3, other
scientists could readily understand the pulsating behavior.

In the next phase of the research, studying the interaction of clouds with their surround-
ings, the particle tracing described in Chapter 5 played an important role. Through the use
of particle tracing, the scientists were able to verify the existence of the so-called descending
shell: a thin layer of downward moving air around a cloud thatcompensates for the upward
air movement in the cloud itself. They were also able to verify that the descending shell
was caused by air on the sides of clouds subsiding due to the liquid water there evaporat-
ing. While the “hard” evidence was provided by statistical analysis of dispersion shown by
massive numbers of particles advected in the large-eddy simulation itself, the insight into the
descending shell was gained by visually watching the particles in and around the clouds. This
insight guided the statistical analysis. The particle tracing also helped others quickly see the
descending shell.

6.5.3 Lessons Learned

Collaboration between atmospheric scientists and visualization experts has proven fruitful
for both parties. The atmospheric scientists were a source of interesting and challenging
visualization data as well as research directions to follow. They were then able to benefit
from using the visualization techniques described in this thesis to help advance their research.
The atmospheric research results obtained with the help of visualization can also be seen as
a validation of the visualization research. It’s important, though, to emphasize the nature of
such a collaboration and the risks, from a visualization research perspective, involved with it.

The collaboration described here was primarily two independent lines of research where
regular contact, on a monthly basis, was maintained betweenvisualization and atmospheric
researchers. The atmospheric scientists made use of the visualization software at certain key
times during their research. The lack of regular use of the visualization software can be at-
tributed to several factors: the visualization research started after the atmospheric research,
the visualization was often prototype quality requiring expert guidance to use, the VR soft-
ware could only be run in the VR laboratory, and the visualization software was only a small
part of the larger atmospheric research process. Even though the visualizations were infre-
quently used, they were still very valuable to the atmospheric scientists due to the insight they
could gain with them.

While more frequent usage is in some ways desirable, it also has many risks. Visual-
ization research often sits quite close to applications research. Investing the time to develop
visualization tools that are sufficiently polished, flexible, and easy to use that they become
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embedded in the domain scientists’ work flow can easily crossthe sometimes fuzzy boundary
between applications research and general software engineering. Also, working towards the
goal of providing such tools often leads to focusing on toolsthat are interesting to the do-
main scientists but are not interesting for visualization research. It’s necessary thus to strike
a balance between value for domain scientists and value for visualization research when col-
laboratively developing new visualization tools.



CHAPTER7

Interactive Simulation and Visualization of
Atmospheric Large-Eddy Simulations

Abstract

In this chapter, GALES is presented. GALES is a physically-correct, GPU-accelerated, At-
mospheric Large-Eddy Simulation. GALES is a mixed-precision LES implementation using
NVIDIA’s CUDA to parallelize and accelerate computation while also providing interactive
visualization. GALES, with visualization, outperforms anexisting LES implementation run-
ning on 32 processor cores of a supercomputer. We demonstrate physical correctness by
comparing GALES’s results to those of other LES implementations. The ability to run inter-
active, scientific simulations on a desktop computer offersnew possibilities for atmospheric
researchers.

7.1 Introduction

Cloud dynamics is an important research topic in atmospheric physics. One way to investigate
these dynamics is to simulate the turbulent atmospheric boundary layer using Large-Eddy
Simulation (LES). LES resolves the dynamic effects of large-scale eddies and uses a statistical
model for the dynamics at smaller scales. It can be used at thedesired domain size and grid
resolution at reasonable computational cost. Typically, LESs are run off-line as batch jobs on
supercomputers and generate very large, time-dependent data sets. This makes it difficult to
get timely, interactive feedback about running simulations. Gaining insight into simulation
results requires extensive post processing and visualization of the simulation data.

105
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Figure 7.1: GALES’s interactive visualization.
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To address these issues, we developed GALES: a physically-correct, GPU-accelerated,
Atmospheric, Large-Eddy Simulation that integrates interactive visualization (Figure 7.1).
GALES is based on the Dutch Atmospheric Large-Eddy Simulation (DALES) [17, 47] and
is one of the first GPU-accelerated scientific LES implementations. By using NVIDIA’s
CUDA [70] to parallelize and accelerate computation and incorporating mixed precision,
GALES can outperform DALES running on 32 cores of a supercomputer. We have also
verified that GALES and several existing LES implementations produce quantitatively com-
parable results. The ability to run interactive, scientificsimulations on a desktop computer
offers new possibilities for atmospheric researchers.

The remainder of this paper is structured as follows. In Section 7.2, we discuss related
work and background information on LES, cloud simulation and CUDA. Sections 7.3 and 7.4
describe, respectively, the technical details of GALES andits implementation. Section 7.5
discusses GALES’s interactive visualization. In Section 7.6, we present performance results
for GALES and compare it with other LES implementations. We conclude in Section 7.7.

7.2 Background and Related Work

A detailed survey of compuational fluid dynamics (CFD) and CFD visualization techniques
is outside the scope of this paper. It is important to note, though, that most computer graphics
CFD research has placed more importance on performance and appearance than physically-
correct simulation. See, for example, Stam [95] and Fedkiw,Stam and Jensen [26]. In this
paper, by contrast, we are interested in accurate simulation with interactive performance that
can be used in atmospheric research.

7.2.1 CFD for Cloud-Dynamics Studies

Most CFD simulations aim to efficiently solve the Navier-Stokes equations up to a desired
level of detail. In turbulent fluid flow, the behavior of smallscales, down to the Kolmogorov
scale, are important for the flow, but these small scales are not always interesting to re-
searchers.

In atmospheric research, three common approaches to solving the Navier-Stokes equa-
tions are Direct Numerical Simulation (DNS), Large-Eddy Simulation (LES) and Reynolds-
Averaged Navier-Stokes (RANS). DNS explicitly resolves all turbulent structures, down to
the Kolmogorov scale. RANS, on the other hand, models the entire turbulent structure of the
flow. LES explicitly resolves the largest turbulent structures but models smaller (typically
below 10m) scales.

Due to the size and turbulent nature of clouds, LES is the mostsuitable of the three
techniques for high resolution modeling of cloud dynamics.LES has been used in modeling
of the cloudy atmospheric boundary layer since [92] and has been extensively validated by
comparisons with measurement campaigns (see, e.g., [87,11]).
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7.2.2 Cloud Simulation

In computer graphics, research focusing on cloud simulation is most closely related to our
work. Due to the computational complexity of cloud-resolving CFD simulations, most early
approaches were either not real time (e.g. Kajiya and von Herzen [55]) or used crude approx-
imations of the physics to generate a realistic appearance (e.g.. Dobashi et al. [25]).

As computational power has increased, cloud simulations have focused more on physi-
cal correctness. Overby, Melek and Keyser [72] and Harris etal. [43] developed more so-
phisticated cloud simulations that solved the Navier-Stokes equations using techniques from
Fedkiw, Stam and Jensen [26]. These simulations, however, employed some simplifying
assumptions and were not yet truly interactive. GALES, on the other hand, offers truly inter-
active performance while being based on the fundamental equations of cloud physics.

7.2.3 CUDA Overview

We chose NVIDIA’s CUDA [70] for GALES’s implementation. CUDA supports the stream
programming model, wherekernelsoperate on elements fromstreamsof data. CUDA pro-
vides extensions to C and C++ allowing kernels to be written that are executed on the GPU.
When a typical kernel executes, a separate GPU thread operates on each output element in
a stream. These threads are organized into groups of 32 threads calledwarps. Blocksare
comprised of one or more warps, and synchronization can occur between threads in a block.
Blocks are organized intogrids. The hierarchy of grids and blocks is used by threads to
determine the stream data elements to process.

7.3 Large-Eddy Simulation Details

GALES is closely related to DALES and is similar to other atmospheric LESs. As such, we
briefly present the simulation details here and refer the reader the literature on DALES [17,47]
and to Moeng [68] for a more in depth explanation.

GALES resolves flow motion using the Boussinesq approximation and after applying the
LES filter. The equations of motion that are resolved in GALES, using Einstein’s notation,
are:
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where the tildes denote the filtered mean variables, averaged over a grid cell.~u is velocity,
g is the gravitational constant, andδ is the size of a grid cell. The thermodynamical state
of the system is defined by the scalar values: liquid water potential temperatureθl , the total
liquid water contentqt , and the pressurep. θv is the virtual potential temperature.θ0 is the
reference state potential temperature and~Ω is the earth’s angular velocity. Viscous transport
terms are neglected.Fi represents large scale forcings. The large-scale source terms for
scalarϕ are given bySϕ . The subfilter-scale (SFS), or residual, scalar fluxes are denoted
by Ru j ,ϕ ≡ ũ j ϕ − ũ j ϕ̃, i.e. the contribution to the resolved motion from all scales below the
LES filter width. The sub-filter scale momentum fluxes are denoted by tensorτi j . These are
the small-scale turbulent fluctuations that need to be modeled. Following DALES, they are
modeled using one-and-a-half order closure [21]. The turbulent kinetic energy of the SFS
turbulence is included in the modified pressure:

π =
1
ρ0

(p̃− p0)+
2
3

e,

which is determined by solving a Poisson equation:
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7.3.1 Grid and Numerical Schemes

The simulation is discretized on a staggered grid, where thesize of a grid cell is(∆x,∆y,∆z)
and∆x = ∆y. The pressure, SFS kinetic energy, and the scalars are defined at cell centers.
Velocity components are centered at corresponding cell faces.

For time integration, we use a third-order Runge-Kutta scheme (see [107]). For advection,
we use a second-order central differencing scheme.

7.3.2 Condensation

The condensation scheme is used to calculate the liquid water contentql from pressure, tem-
perature and total water content. In the model, we assume that there is no liquid water present
in an unsaturated grid cell, while all moisture above saturation valueqs is liquid water:

ql =

{
q̃t −qs if q̃t > qs

0 otherwise.

To calculateqs≡ qs(T̃, p), whereT is temperature, an implicit equation needs to be solved,
which is done following [92].
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7.3.3 Boundary Conditions

The computational domain has periodic boundary conditionsin the horizontal directions. At
the top of the domain, we take:

∂ ũ
∂z

=
∂ ṽ
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= w̃ = 0;
∂ θ̃l

∂z
,

∂ q̃t

∂z
constant.

Horizontal fluctuations at the top of the domain (for instance gravity waves) are damped out
by a sponge layer through an additional forcing/source term:

Fsp =−
1
τr

(
φ(z)−φ

)
,

with φ the slab average value of quantityφ , andτr a relaxation time scale that goes from
τ0 = 360s at the top of the domain to infinity at the bottom of the sponge layer.

At the surface, velocities are equal to zero, and either surface values or their subfilter-scale
fluxes forθ̃l andq̃t are prescribed. Monin-Obukhov similarity theory is used tocalculate the
remainder of the surface conditions, see for example [28].

7.4 Implementation Details

The basic structure of GALES is a loop that computes a series of updates to the velocity field
and scalars in the LES and uses these updates to perform integration in time. The basic steps
performed in the loop are:

1. Compute updates from advection.

2. Compute updates from SFS terms.

3. Apply Coriolis and gravitational forces.

4. Apply large-scale forcings.

5. Compute pressure.

6. Create a divergence free velocity field.

7. Perform time integration.

8. Enforce boundary conditions.

9. Update the thermodynamic state.

10. Update the LES visualization.
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Figure 7.2: CUDA block and thread structure for a) regular kernels and b)reduction kernels.

We have chosen to implement these computations using CUDA kernels because imple-
menting these steps on regular grids is well suited to the stream programming model. With
some exceptions, for each grid cell, these updates can be computed independently and require
only information from spatially local cells. Once a framework for working with the simula-
tion domain has been established, implementing kernels to compute most of these updates is
straightforward. We will now briefly discuss our framework for these kernels and highlight
portions of the implementation that required special attention. We will also discuss the use
of mixed precision in the simulation.

7.4.1 Kernel Structure and Memory Layout

The simulation grid is arranged in memory using the standardx-major order. In order to
achieve the best performance, it is important that warps of CUDA threads read contiguous
portions of data from rows in the simulation grid. Therefore, for most kernels, we structure
our CUDA thread blocks so that each block processes one entire row in the 3D domain at a
time. See Figure 7.2a.

In GALES, two primary types of kernels have been defined: regular kernels and reduction
kernels. Regular kernels compute new values for each grid cell in the domain. Reduction
kernels compute a mean, minimum or maximum value for an entire horizontal slab in the
domain. For regular kernels, with a simulation grid size ofX×Y×Z, we execute a CUDA
grid ofY×Z blocks, where each thread computes values for one cell and each block computes
values for one row in the domain (Figure 7.2a). For reductionkernels, we execute a CUDA
grid of Z blocks, where each block processes an entire horizontal slab. Each thread in a block
first reduces a column in the slab to a single value, resultingin one row of values, which is
stored in shared memory. See Figure 7.2b. A standard pairwise reduction is then applied to
this row of values to reduce it to a single, final value.

There are two additional memory access patterns of note in GALES. First, whenever
threads for a kernel must access data from other cells in a row, the entire row is loaded into
shared memory for a block. In this way the memory access is coalesced while providing
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random access to the row’s data for that thread block. Secondly, whenever threads must
access a constant value per horizontal slab, e.g. the average temperature, this value is read
from constantmemory.

7.4.2 Poisson Solver

The Poisson solver is a key part of GALES and it is used to compute pressure, which in turn is
used to project a divergence free velocity field. Since our domain is periodic in the horizontal
directions, we can use the Fast Fourier Transform (FFT) to solve the Poisson equation in
these directions. In the vertical direction, we solve a tri-diagonal matrix system using the
well-known Thomas algorithm.

For the FFT portion of our Poisson solver, we opted to implement a GPU version of
the power-of-two real-to-real transform from FFTPACK [96]. We chose to do this rather
than using the CUDA FFT library, CUFFT, for two reasons. First, DALES makes use of
FFTPACK so we could more closely match its LES implementation. Secondly, CUFFT is
not optimized for the type of FFTs that GALES needs to perform, which is many, small 2D
FFTs.

Our GPU version performs a batch of 2D FFTs simultaneously (one for each horizontal
slab in the domain). Each 2D FFT is performed as a 1D FFT first along the rows and then
along the columns or vice versa. For each 1D FFT pass, we prepare the data by transposing
each slab appropriately with an optimized transpose kernelso that the 3D domain can be
seen as a(Y ∗Z)×X 2D matrix, where each column will be transformed. We then execute
CUDA blocks such that each block performs the 1D FFT on a groupof columns in the matrix
simultaneously. This ensures that reads and writes during the FFT will be coalesced.

7.4.3 Mixed Precision

GALES can perform its computations in a variety of precisionmodes, from fully single pre-
cision to fully double precision, but it is primarily intended to be used in mixed-precision
mode. Mixed-precision offers a good balance between speed and precision by allowing the
simulation to take larger time steps without sacrificing much performance.

In mixed precision mode, all computations in GALES are performed in single precision
with the following exceptions. The Poisson solver uses double precision because we found it
to be the most numerically sensitive step in GALES. We use double precision in our statistics
routines since they sum large numbers of small values. Also,the few CPU calculations are
done in double precision.

Newer CUDA-enabled NVIDIA GPUs support double precision natively. On these GPUs,
GALES uses this for its double precision calculations. On older CUDA-enabled GPUs, how-
ever, there is only support for single precision. To allow for higher precision on these GPUs,
we implemented emulated double precision using a double-single data type, based on DS-
FUN90 [6] and the float-float multiplication operator from DaGraça and Defour [18]. This
data type achieves approximately 46 bits of precision in themantissa.
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Figure 7.3: Plots from the GALES visualization. Left: A time history of percent cloud cover. Right: An instanta-
neous profile ofu andv wind speed components at different heights in the domain.

7.4.4 CPU Computation

With two exceptions, simulation computation is performed exclusively on the GPU in GALES.
The first exception is some one-off computation during initialization. The second exception
is computation performed during the simulation that is based entirely on quantities that are
constant within a single horizontal slab in the domain. These computations are: computing
some input parameters for the surface routine kernels and computing the pressure and Exner
values for each horizontal slab in the domain.

7.5 Interactive Visualization

GALES can provide interactive visualization of running simulations with little impact on
performance. The visualizations include both a volume visualization of the clouds in the
simulation and various statistical plots. These provide anoverview of the current simulation
state and an overview of some trends during the simulation run. This interactive insight into
the simulation state and behavior is a marked contrast with DALES, where visualizing the
results of simulation runs requires storing and extensive processing of very large data sets.

The primary visualization is the volume visualization of clouds in the simulation. This
is implemented using simple volume ray-casting, which provides reasonable results. See
Figures 7.1 and 7.4. This is coupled with simple interactionso that the user can navigate
through the simulation volume to get a better sense of the spatial relation between the clouds
in the simulation.

We also incorporate two types of statistical plots into GALES. The plots can be seen in
context in Figure 7.1. One type of plot is a time history plot,which shows the progression
of a single scalar value, such as percent cloud cover (Figure7.3, left), over time. These plots
provide a high-level overview of the simulation behavior that led to the current state. The
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64x64x80 128x128x80 256x256x80
DALES-SINGLE 6240s 24908s 101910s
DALES-MPI 116s 438s 2092s
GALES-NOVIS 72s 195s 761s
GALES-VIS 104s 225s 791s

Table 7.1: This table lists run times in seconds for DALES and GALES in different configuations.

other type of plot is a profile plot, which shows scalar values, such as wind speed components
(Figure 7.3, right), averaged over each horizontal slab in the domain. These provide more
quantitative insight into the current state of the simulation and their change over time can
highlight interesting trends in the data.

In principle, all parameters of the LES can be made accessible for interactive steering of
the simulation. If a truly interactive simulation is available, this can have significant impact
on atmospheric research practice. At this time, though, theeffect on the workflow of the
atmospheric scientists is hard to assess, and design of a true steering interface for GALES
would require a large collaborative effort between atmospheric scientists and interaction/vi-
sualization researchers.

7.6 Results

GALES can simulate many of the same cases that DALES can simulate. Figure 7.4 shows
two of these. The bottom case is the BOMEX case, which is discussed in Section 7.6.2

7.6.1 Performance

We tested the relative performance of GALES, both with and without visualization, and
DALES. In our tests, we used the same input for each simulation, altering only the grid size
between tests. We tested each simulation on grids of 64×64×80 cells (3.2×3.2×3.2km3),
128×128×80 cells (6.4×6.4×3.2km3) and 256×256×80 cells (12.8×12.8×3.2km3).
In each test, we simulated 6 hours of real time with time stepsof 10s. We ran DALES
(DALES-MPI) on one supercomputer node with 16 4.7 GHz dual-core processors, for a total
of 32 cores. We ran GALES, with (GALES-VIS) and without (GALES-NOVIS) visualiza-
tion. In both cases, we ran GALES in mixed-precision mode using native single and double
precision on a 2.4 GHz Pentium quad-core PC with an NVIDIA GTX 280-based GPU. For
comparison purposes, we also ran DALES on one core of the samePC (DALES-SINGLE).

The results of our tests are shown in Table 7.1. The CPU time for DALES increases
approximately linearly with the size of the simulation grid. GALES also demonstrates this
behavior when moving from the 128×128×80 grid to the 256×256×80 grid. However,
the slower times at the lowest resolution indicate that GALES makes less effective use of the
GPU’s processing power at that resolution. The roughly constant difference of 30s between
GALES-NOVIS and GALES-VIS is due to the fact that we did not change the user’s view
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Figure 7.4: Two of the cases GALES can simulate.
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64x64x80 128x128x80 256x256x80
FLT-FLT* 189s 538s 2055s
FLT-DBL 72s 195s 761s
DBL-DBL 147s 451s -
FLT-DBS 74s 204s 805s
DBS-DBS 237s 651s -

Table 7.2: This table lists run times in seconds for GALES using various precision modes. FLT-FLT was run with a
time step of 3s for stability reasons. The other configurations were run with a time step of 10s.

of the simulation during execution. Thus, we only needed to render one image per simula-
tion time step, and we used the same number of ray-casting iterations regardless of the grid
resolution.

We also tested the performance of the different precision modes implemented in GALES.
These tests used the same grids as we did in the previous tests, and we ran these tests on the
same PC. We tested GALES using single precision (FLT-FLT), mixed single and native dou-
ble precision (FLT-DBL), native double precision (DBL-DBL), mixed single and emulated
double precision (FLT-DBS), and emulated double precision(DBS-DBS). The FLT-DBL re-
sults are precisely those from the previous test. The emulated double precision used our
implementation of the double-single data type. We were unable to run the DBL-DBL and
DBS-DBS tests for the 256×256×80 grids as they required more than the available 1 GB
of memory on our GPU. Also, for the FLT-FLT tests, we used a time step of 3s since that was
the largest stable time step.

Table 7.2 lists the results of our tests. In per time step cost, FLT-DBL and FLT-DBS
were only about 20% to 30% slower than FLT-FLT. This slight penalty is more than made up
for by being able to take larger time steps. Surprisingly, the performance for both FLT-DBS
and FLT-DBL was roughly equal. This is likely due to the limited use of (emulated) double
precision in mixed precision mode and the performance difference between single and double
precision arithmetic on the GPU. Further, all tests followed the same pattern of a roughly 3x
increase in execution time between 64×64×80 and 128×128×80 grids.

It is important to note that grid sizes of 64×64×80 and 128×128×80 are representative
grid sizes. While there is a trend towards higher resolution grids for some problems, these
sizes are frequently used in a variety of experiments, such as those in the following section.

7.6.2 BOMEX Comparison

This section compares results from GALES with an LES intercomparison study by Siebesma
et al. [87]. In this study, Siebesma et al. compared 10 different LES implementations that
simulated the BOMEX (the Barbados Oceanographic and Meteorological Experiment [50])
case study. We chose this study since BOMEX is widely studiedand relatively straightfor-
ward. Also, GALES has all of the functionality necessary to simulate BOMEX, and we have
results from DALES for BOMEX. This case can be seen in the bottom of Figure 7.4.



7.6. RESULTS 117

0

0.5

1.0

1.5

2.0

2.5

H
ei

g
h
t 

(k
m

)

Liquid Water (g/kg)
0 0.002 0.004 0.006 0.008 0.01

0

0.5

1.0

1.5

2.0

2.5

H
ei

g
h
t 

(k
m

)

Total Water Specific Humidity (g/kg)

Domain

Cloud

Core

4 6 8 10 12 14 16 18

Core Mass Flux (m/s)

0

0.5

1.0

1.5

2.0

2.5

H
ei

g
h
t 

(k
m

)

0 0.005 0.01 0.015 0.02 0.025 0.03

DBL-DBL
DBS-DBS
FLT-DBS
FLT-DBL
DALES

0 60 120 180 240 300 360
0

10

20

Time (mins)

C
lo

u
d
 C

o
v
er

 (
%

)

a)

b)

c)

d)

Intercomparison Mean
Standard Deviation
Minimum/Maximum

Figure 7.5: Comparisons of our results and DALES with those from the LES intercomparison study by
Siebesma et al. [87].
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We simulated the BOMEX conditions in a 6.4×6.4×3.0km3 domain during a 6 hour
time span using a simulation grid of resolution 64×64×75 and a time step of 10s, as in the
intercomparison study. We repeated the test case for GALES in the FLT-DBL, DBL-DBL,
FLT-DBS and DBS-DBS precision modes described in the previous section. We also ran the
test case using DALES.

Figure 7.5 shows some of our results superimposed over the results from the original
study. Figure 7.5a shows the average mass flux (vertical velocity) by height for positively
buoyant, cloudy grid cells. Figure 7.5b shows the average amount of liquid water by height.
Figure 7.5c shows the average total water specific humidity by height for the whole domain
(Domain), cloudy grid cells (Cloud) and positively buoyant, cloudy grid cells (Core). Fig-
ure 7.5d shows the evolution in time of cloud cover (percent of vertical columns in the grid
containing liquid water) during the course of the simulation. The liquid water profile and the
total water specific humidity domain profile were averaged over the last hour of the simu-
lation. The mass flux profile and the other two total water specific humidity profiles were
averaged over the last three hours of the simulation.

A complete listing of our results compared to those of the study is beyond the scope of this
paper. However, as in Figure 7.5, our results were generallywithin one standard deviation
of the intercomparison mean, and the results from GALES werealways in good agreement
with the results from DALES. Given that minor deviations areexpected in turbulent flow
and that the results from GALES always agreed well with the results from DALES, we have
confidence that GALES is physically correct.

One important additional result of this comparison is a validation of our mixed precision
implementation. Given how well the results from all precision modes agree with each other,
DALES and the other LES simulations, we can conclude that ouruse of mixed precision does
not significantly alter the simulation results.

7.7 Conclusions and Future Work

In this paper, we presented GALES, our physically-correct,GPU-accelerated, Atmospheric
Large-Eddy Simulation. Based on the existing DALES, GALES is a mixed-precision, CUDA
LES implementation. GALES also includes interactive visualization capabilities, which give
immediate insight into running simulations.

In our experiments, we showed that GALES outperforms DALES running on 32 proces-
sor cores on a supercomputer while still providing interactive visualization. This translated
into a roughly 50x speedup over DALES running on a single processor core on the same
standard, desktop computer.

We demonstrated GALES’s physical-correctness by simulating the well-known BOMEX
case study. We compared our results to those of DALES and the 10 simulations in the case
study. Our results agreed well with those from the literature and agreed very well with the
results from DALES.

GALES offers many new possibilities for atmospheric scientists. By being physically
accurate, GALES can be employed as a research tool. It can be used for its raw simulation
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power to run many simulations to explore the simulation parameter space. However, it can
also be used as a high-performance, interactive tool. Its interactive visualization, among other
things, reduces the need to store large amounts of data and can reduce the time required to
set up new case studies.

Beyond some of these possibilities, there are many options for expanding the simulation’s
visualization capabilities. Additions such as particle-tracing, improved cloud rendering, and
an improved user-interface are all planned for the future. GALES’s interactive performance
also opens the door to computationally steering the simulation, which is another interesting
avenue to explore.
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CHAPTER8

Conclusions

This chapter discusses the results of the research presented in this thesis as a whole and how
it fits into the larger context of visualization research. The chapter closes with a look at where
to go with the research in the future and some unanswered questions raised during the work
presented here.

8.1 Thesis Summary

This thesis presented a variety of techniques for visualizing large, multivariate, time-varying,
3D data. The data was generated by Large-Eddy Simulations offair-weather cumulus clouds.
This thesis also introduced a new, GPU-based LES implementation to interactively simulate
the cumulus clouds.

Chapter 2 focused on feature tracking. It introduced an automated method for detecting
and tracking cumulus clouds in the LES data. The cumulus clouds were then visualized in
the initial implementation of Cloud Explorer, which let theatmospheric scientists visually
identify interesting clouds. By selecting approximately 40 clouds, they were able to use
statistical techniques to study the cloud life cycles.

Chapter 3 focused on data reprocessing. The data processingpipeline was updated to
support generating new, derived data based on mathematicalexpressions supplied by the
atmospheric scientists. This data was calculated on a per-feature basis and then included in
Cloud Explorer in the form of statistical plots associated with selected clouds. The Cloud
Explorer user interface was also extended to support these plots, which introduced more
quantitative information into the virtual environment.

121
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Chapter 4 presented a technique for compressing normal vectors using quantization. The
technique presented has two advantages: decompression is amatter of a table look up and the
angular error introduced by quantization is bounded. Usingthis technique, normal vectors for
cloud isosurfaces can be compressed, reducing their size ondisk. By extending this technique
to arbitrary vectors by also quantizing the vector length, the vector field data from the LES can
also be compressed. Using the compressed data helps to overcome the bottlenecks between
disk and main memory and between main memory and the GPU.

Chapter 5 introduced a GPU-based particle tracing system that can advect over a million
particles at interactive frame rates. The particle tracingworks with both quantized vector
fields and uncompressed vector fields, and supports standardparticle tracing, the standard
flow curves, rendering flow oriented ellipsoids, and drawingparticles on their pathlines. The
particle tracing engine was integrated into Cloud Explorer, as well as standalone desktop and
VR particle tracing applications.

Chapter 6 gave an overview of the final Cloud Explorer system.Cloud Explorer’s user
interface makes use of IntenSelect together with a hybrid interface for interaction and it pro-
vides the user with various forms of contextual information. Cloud Explorer employs data
compression through quantization, both of vector information as well as geometry vertices,
to improve performance. Cloud Explorer maintains a cache ofthe most recently used visual-
ization data in memory to support rapidly browsing back and forth through recent time steps.
Cloud Explorer’s visualization environment can be run in a variety of virtual reality environ-
ments, and it can also run as a standard, desktop applicationusing the same user interface.

Chapter 6 also discussed how Cloud Explorer was used by the atmospheric scientists for
their research. Using Cloud Explorer, atmospheric scientists can process and interactively vi-
sualize LES data both in virtual reality and on a desktop computer. In this project, Cloud Ex-
plorer was used to help answer the two atmospheric research questions posed in Section 1.2.1:
what are the defining characteristics of cumulus clouds at different stages of their life cycles
and how do cumulus clouds interact with and influence the dry air around them. By statisti-
cally analyzing several clouds selected using Cloud Explorer, they found that the traditional
cloud life cycle did not apply, and that, instead, the cloudswere driven by a series of pulses of
warm, moist air. By studying the motions of particles both inCloud Explorer and on a larger
scale in the LES, they concluded that cumulus clouds generate a “descending shell” of cooler
air around them through lateral mixing, that compensates for the upward buoyant force of the
cloudy air. In short, the collaboration with atmospheric scientists yielded fruitful research re-
sults for both atmospheric science and visualization even though the visualization techniques
presented here were not completely embedded in the atmospheric science workflow.

Chapter 7 presented a new GPU-based LES, GALES, that can run interactively on a desk-
top computer while visualizing the running simulation. This is a departure from traditional
way of running an LES on a remote supercomputer, and it represents an initial step towards a
new mode of atmospheric simulation.
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8.2 Visualization Challenges

In 2004, the year when this work started, Chris Johnson [52] listed 15 challenges for scien-
tific visualization. These challenges identified importantresearch areas both to improve the
science of visualization and to provide insight into complex and varied scientific data. Of
the 15 challenges Johnson names, many are relevant here and were addressed by the work
presented in this thesis.

• Think about the science.In other words, visualization cannot exist in a vacuum. The
data being visualized originates from some domain, and it’svital to collaborate with
scientists from that domain when developing visualizationtechniques to study data
from the domain.

Here, one of the important goals was to answer specific questions about cumulus
clouds, which are complex, turbulent structures. Answering these questions required
specially tailored visualization techniques, and workingclosely with atmospheric sci-
entists helped provide guidance in choosing suitable visualization techniques to de-
velop. The feature tracking, data reprocessing, particle tracing in Cloud Explorer and
GALES itself were all motivated by the atmospheric scientists. Their expert knowledge
of the domain was also invaluable in validating these techniques.

• Efficiently using novel hardware architectures. Providing efficient processing and
interactive visualization of large, multivariate, time-varying, 3D data like the cumulus
cloud data is computationally demanding. Making the entireprocess interactive by
integrating the simulation into the visualization is even more computationally demand-
ing. Taking advantage of specialized hardware is currentlythe only way to make this
feasible.

The graphics processing unit (GPU) has been crucial to many of the techniques pre-
sented here. The particle tracing presented in Chapter 5 happens entirely on the GPU,
which made it possible to interactively advect over one million particles. The GPU
also plays an important role in decompressing quantized data and “decorating” the 3D
clouds with contextual information. The increasing capability of GPUs for general
purpose computing made the development of GALES possible.

• Human-computer interaction. Visualization tools must take ease-of-use into account
or else they will be relegated to the status of demonstrations only usable by experts.
When visualizing complex data like cumulus clouds, where theuser needs access to
many visualization tools and options, keeping the visualization environment usable
quickly becomes very challenging.

In Cloud Explorer, a number of steps were taken to address usability issues. For one,
Cloud Explorer is a virtual reality (VR) application. As such, it supports direct interac-
tion with the 3D data. For system control tasks, Cloud Explorer uses a set of familiar,
2D widgets such as windows, buttons and sliders. Cloud Explorer also functions as
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a desktop application, where these 2D widgets behave as expected. In the VR envi-
ronment, the IntenSelect [37] technique is used to simplifyselection and manipulation
tasks for the user.

• Global/local visualization. Visualizing a feature of interest in isolation is less useful
than visualizing it within some larger context. With cumulus clouds, providing addi-
tional spatial and temporal cues helps the user relate features in the data to their spatial
surroundings and their behavior over time.

In Cloud Explorer, this contextual information takes several forms. The 3D data do-
main is shown both as a world-in-miniature and as a larger container for the 3D visu-
alization. This provides a frame of reference for the clouds, the particles from particle
tracing, and the slicing plane. Within the data domain, the clouds provide a reference
frame for the features seen on the slicing plane and patternsseen in particle behavior.
Statistical plots in 2D windows around the 3D domain show cloud behavior over time.
Some of these plots also show behavior over time at differentaltitudes. Decorations
on these plots highlight both the current time step and an altitude. The altitude corre-
sponds with a white band drawn around the cumulus clouds. These different pieces of
information can all help the user gain a better understanding of the data.

GALES also shows the simulation domain as a 3D box, and any clouds in the simula-
tion are visualized within the box. Information about the current state of the simulation
is displayed with profile plots, which display the mean values of simulation variables
at different altitudes in the domain. Information about thehistory of the simulation
is shown with plots that show the mean value of simulation variables over the whole
domain at different points in time.

• Integrated problem-solving environments.Understanding complex data through vi-
sualization is often an iterative process where scientistsgenerate new data to visualize
based on observations they made during previous visualization sessions. Providing
scientists with an environment where they can experiment with the data in addition to
just visualizing the data can assist with this process. The idea is that, by using such
an environment, scientists can spend less time performing custom data processing or
running additional simulations, which can reduce the time required for each step in the
iterative process.

The data reprocessing presented in Chapter 3 is meant to be a step in this direction.
Cloud Explorer’s data processing pipeline was extended to support calculating new
derived data from the simulation data. The derived data can then be included in the
visualization. This introduces quantifiable data into the visualization, providing a more
rich visualization environment. It also allows the scientists to use Cloud Explorer to
generate the same kinds of statistical information about the clouds in the data that they
would normally generate using their own custom tools. Integrating the functionality
into Cloud Explorer lets the scientists spend more time visualizing the cumulus clouds
and less time developing custom tools.
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• Multifield visualization. The cumulus cloud data studied here consists of much more
than just clouds. Each time step consists of a 3D grid with sixor more variables for each
grid cell. Three of these variables comprise the velocity field, which is the wind speed
and direction. One of the variables is liquid water, which isa direct cloud indicator.
Additional variables include temperature and humidity. Toproperly understand the
cloud behavior, it’s necessary to visualize many of these variables in combination, but
care must be taken to choose appropriate visualizations forthe different variables.

Here, a variety of techniques for visualizing the variableswere presented. The cumulus
clouds are visualized as isosurfaces in Cloud Explorer. In GALES, the clouds are
visualized using direct volume rendering. Both techniquesgive a meaningful physical
representation to the liquid water variable. In both GALES and Cloud Explorer, scalar
quantities, either simulation variables or derived values, are visualized using statistical
plots. These plots give insight into the mean temporal and/or spatial behavior of the
variables. Cloud Explorer provides a slicing plane for visualizing individual scalar
quantities. Cloud Explorer also provides particle tracingfor directly visualizing the
velocity field. Both the slicing plane and the particle tracing can be used together
with the isosurface visualization to understand the relationship between the clouds and
their environment. When used together, the clouds are drawn as contour lines so that
the particles or slicing plane inside the clouds remain visible. By using each of these
techniques and combining them as necessary, the user can develop a more complete
understanding of the simulation data.

• Feature detection.In order to study features in a data set, they must first be detected.
Thus, the first step in studying cumulus clouds in data generated from a Large-Eddy
Simulation is to detect the clouds in the data and track them through time. Detecting
and tracking clouds offers an interesting challenge: it is nearly trivial to programmati-
cally identify individual clouds, but it is very difficult toautomatically determine which
clouds are interesting for study. In Cloud Explorer, the user is brought into the loop to
resolve this dilemma. By observing the tracked clouds over time, the user can readily
select clouds to study further.

• Time-dependent visualization.Cumulus clouds are not static; they evolve over time.
As such, it is insufficient to study only static snapshots of the clouds. They must be
studied in both space and time to understand how they developand how they interact
with their environment. To do this effectively requires a visualization environment that
allows the user to interactively and intuitively navigate through both time and space.
The environment must also incorporate global/local visualization techniques to help the
user relate the instantaneous 3D state of a feature he or she sees with its full behavior
in time.

Here a number of approaches have been taken to help the user understand how the data
changes in time. The Cloud Explorer visualization environment allows the user to play
forwards and backwards in time through simulation data. Both Cloud Explorer and
GALES use statistical plots to provide insight into behavior over time. With particle
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tracing, particles can be rendered as flow-aligned ellipsoids to provide more informa-
tion when the advection is paused. Also, particles can be rendered on their pathlines to
connect their current position with their past (and future)positions.

8.3 Future Directions

The work presented in this thesis suggests three broad areasfor future research efforts: im-
proving Cloud Explorer, improving GALES, and improving collaboration with domain sci-
entists.

There are several opportunities for extending and improving Cloud Explorer. New vi-
sualization techniques can be added such as coloring the cloud isosurfaces with properties
from the data or visualizing the data with volume rendering.The idea of reprocessing can be
extended by incorporating a data calculator into the visualization environment, which would
better support experimentation with the data. Calculatingderived data for visualization using
the GPU may also be interesting to consider. The performancecan be increased by making
better use of multi-resolution data and multi-threaded data loading. Another avenue to ex-
plore is updating Cloud Explorer to support other types of cloud data, such as stratocumulus
clouds, where studying individual features is less interesting than studying the general behav-
ior of the cloud layer, and deep convection, where the simulation grids cover a much higher
vertical domain and often have layers of different thicknesses. One additional question to
consider is whether realistic cloud rendering can help atmospheric scientists related features
from simulated clouds to those observed in nature.

The fast pace at which GPU technology is progressing opens the door for many new
research directions. At the time of this writing, GPUs are undergoing major architectural
changes to make them more amenable to general purpose computing while continuing to in-
crease in computational power. The first step will be to update GALES to make the most
of these next generation GPUs, which should allow it to run larger simulations with better
visualizations interactively. Another important step to take is to have GALES run on multiple
GPUs simultaneously. Extending GALES to make it more of an experimental platform would
also be very interesting. One important option for this is totry to computationally steer the
simulations to, which can, for example, let scientists ensure that certain events take place dur-
ing a simulation. Also here adding a data calculator to the environment to let scientists derive
arbitrary contextual data to visualize is another option. Afurther research area to explore is
that of performing parameter studies by running multiple simulations simultaneously. This
also brings the challenging comparative visualization problem of how to visualize multiple
running simulations and understand their similarities anddifferences.

Developing a better understanding of how visualization is used by the domain scientists
and how visualization can be better integrated into their workflows is important as the field
of scientific visualization matures. Learning more about what the domain scientists wish to
discover will help visualization scientists develop a cohesive set of visualization techniques
that are more tailored to the domain scientists’ needs. Studying how they use visualization
tools can provide insight into how to make visualization more readily accessible to domain
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scientists. Lowering the adoption threshold visualization tools can help domain scientists
spend more and higher quality time using visualization tools. This, in turn, can help advance
visualization towards one of the ultimate goals: developing a complete system for performing
virtual experiments.

8.4 On Visualization in Virtual Reality

When taking a step back from these specifics of the visualization techniques presented in this
thesis, there are two important unanswered questions that have come up along the way. When
is virtual reality necessary for visualization and what level of immersion is necessary? In the
author’s anecdotal experience, interacting with 3D data iseasier with the direct interaction
afforded by VR. However, scientists often work at their own desktop computer, and it’s un-
clear at what point this ease of interaction is significant enough to warrant them leaving their
computer and going to a VR system, possibly far away and possibly requiring an appoint-
ment, to visualize their data. Similarly, in the author’s experience, viewing data in stereo can
be a great help in certain cases, such as particle tracing, but it’s unclear when the benefits
justify the cost and effort. Immersion level is another factor that complicates these questions.
Systems with higher immersion are generally more expensiveand less accessible to domain
scientists. Does higher immersion level improve insight gained from visualization, and, if so,
when does it justify the cost and effort?

VR clearly has a role to play in scientific visualization, andit has been successfully em-
ployed in industries like the automotive industry and the oil and gas industry. However, VR
scientists have thus far shied away from answering these difficult questions. Moving for-
ward, though, it is critical to answer them in order to clarify the role and quantify the value of
VR in visualization. This will give VR visualization scientists a better sense of purpose and
direction to help guide their research effort, which is currently lacking.
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Summary

Visualizing Cumulus Clouds in Virtual Reality

This thesis focuses on interactively visualizing, and ultimately simulating, cumulus clouds
both in virtual reality (VR) and with a standard desktop computer. The cumulus clouds in
question are found in data sets generated by Large-Eddy Simulations (LES), which are used
to simulate a small section of the atmosphere over a period ofseveral hours. These data sets
are large, 3D, multi-variate, and time-varying, which poseseveral difficult visualization chal-
lenges. In order to overcome these challenges and gain insight into such complex data, several
techniques are developed and employed together. At a high level, the research presented in
this thesis can be divided into four categories: analyzing and visualizing interesting features
in the data, giving the user sufficient control over the visualization, keeping the visualization
interactive, and interactively simulating the cumulus clouds.

The first step to understanding the data was to find and track the features, i.e. the clouds,
in the data. Through the use of a connected component labeling algorithm, individual clouds
in the data could be identified. These clouds were then visualized in a VR visualization
environment, which allowed atmospheric scientists to visually identify interesting clouds for
further study.

The next step along the way was to improve the visualization experience. One aspect of
this was to develop data “reprocessing”. This allowed the atmospheric scientists to generate
derived data from the raw simulation data for inclusion in the visualization environment.
Another aspect of this was to improve the user interface witha more intuitive interaction
technique and through the use of familiar 2D widgets.

The next challenge to address was the data access bottleneck. In order to move more data
from disk to main memory and from main memory to the GPU, a lossy vector compression
method based on quantization is developed. By analyzing andbounding the angular error
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introduced by quantization, unit vectors can be quantized using 16 bits with less than 0.4 de-
grees of angular error. This can reduce the size of mesh geometry, and, when also quantizing
vector length, can be used to compress vector fields.

In order to help understand the relationship between the clouds and the air around them,
interactive particle tracing was the next research area. Using the power of the GPU, millions
of particles could be advected interactively. These particles could be visualized as particles
in different visual styles or as flow curves such as stream-lines or streak-lines. By combining
vector-field compression with a multi-resolution advection scheme, users could interactively
seed and advect particles around selected clouds of interested through time.

Most of the techniques developed in this thesis have been integrated into Cloud Explorer,
which is an experimental VR visualization platform for interactively visualizing and study-
ing the cumulus cloud data. Several techniques have also been integrated into stand-alone
applications.

The final research area addressed in this thesis was interactive simulation of the cumulus
clouds. GALES, a GPU-based, atmospheric, Large-Eddy Simulation, was the result of this
effort. GALES runs 16x faster than the Dutch Atmospheric Large-Eddy Simulation, which
is a Fortran-based LES, while maintaining comparable numerical accuracy. This speedup
enables GALES to interactively run and visualize simulations that fit into GPU memory.
This opens new and exciting possibilities for future computational steering research.

Eric J. Griffith



Samenvatting

Het Visualiseren van Stapelwolken in Virtual Reality

Dit proefschrift richt zich op het interactief visualiseren en uiteindelijk simuleren van stapel-
wolken zowel in virtual reality (VR) als met een standaard desktop computer. Deze stapel-
wolken bevinden zich in data sets die gegenereerd zijn door Large-Eddy Simulaties (LES),
waarmee kleine stukjes van de atmosfeer voor een periode vanmeerdere uren gesimuleerd
kunnen worden. Deze data sets zijn zeer groot, 3D, multivariate, en tijdsvarïerend, en ze
stellen meerdere moeilijke visualisatie uitdagingen. Om deze uitdagingen te overwinnen en
inzicht in de data te krijgen, zijn verschillende technieken ontworpen en in combinatie met el-
kaar toegepast. Op een hoog niveau kan het onderzoek beschreven in dit proefschrift worden
onderverdeeld worden in vier categorieën: het analyseren en visualiseren van interessante
verschijnselen in de data, de gebruiker voldoende controlegeven over de visualisatie, de
visualisatie interactief houden, en het interactief simuleren van de stapelwolken zelf.

De eerste stap naar het begrijpen van de data was om de verschijnselen, d.w.z. de stapel-
wolken, terug te vinden in de data en deze vervolgens te kunnen volgen. Door het gebruik
van een algoritme voor het labelen van samenhangende componenten konden de individuele
wolken gëıdentificeerd worden. Daarna werden deze wolken gevisualiseerd in een VR visu-
alisatie omgeving, waarmee atmosferische onderzoekers visueel interessante wolken konden
uitkiezen om verder te bestuderen.

De volgende stap was het verbeteren van de visuele ervaring.Een onderdeel hiervan was
het ontwikkelen van een data “herbewerking” waarmee atmosferische onderzoekers afgeleide
data konden genereren op basis van de originele simulatie data voor gebruik in de visualisatie
omgeving. Een tweede onderdeel was het verbeteren van de gebruikersinterface met een meer
intüıtieve interactie techniek en het gebruik van bekende 2D widgets.

De volgende uitdaging om aan te pakken was het knelpunt van toegang tot de data. Om
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data sneller te verplaatsen van de schijf naar geheugen en van geheugen naar de GPU is
een niet-exact omkeerbare vector compressie methode ontwikkeld op basis van vectorkwan-
tisastie. Door het analyseren en begrenzen van de hoekfout gëıntroduceerd door kwantisatie,
kunnen eenheidsvectoren gekwantiseerd worden met 16 bits en minder dan 0.4 graden van
hoekfout. Dit kan de grootte van de mesh geometrie verkleinen en als de vector lengte ook
gekwantiseerd wordt, de grootte van vector velden ook comprimeren.

Om de relatie tussen de wolken en de lucht eromheen te begrijpen werd interactief parti-
cle tracing het volgende onderzoeksonderwerp. Met gebruikvan de GPU konden miljoenen
deeltjes interactief geadvecteerd worden. Deze deeltjes kunnen zowel als deeltjes met ver-
schillende visuele stijlen en als stromingskrommen zoals stroomlijnen of streaklijnen worden
weergegeven. Met de combinatie van vector veld compressie en een multi-resolutie advec-
tie schema kunnen gebruikers interactief deeltjes zaaien en laten advecteren in de tijd door
wolken.

De meeste van de technieken ontwikkeld in dit proefschrift zijn gëıntegreerd in Cloud Ex-
plorer. Cloud Explorer is een experimenteel VR visualisatie platform voor het visualiseren en
bestuderen van stapelwolk data. Meerdere technieken zijn ook in afzonderlijke toepassingen
gëıntegreerd.

Het laatste onderzoeksonderwerp dat in dit proefschrift aan de orde komt is het interactief
simuleren van stapelwolken. GALES, een GPU-gebaseerde atmosferische Large-Eddy Simu-
latie was het resultaat van deze inspanningen. GALES draait16x sneller dan de Nederlandse
Atmosferische Large-Eddy Simulatie (DALES), dat een Fortran-gebaseerde LES is. Deze
toename in snelheid laat GALES simulaties die binnen het GPUgeheugen passen interac-
tief draaien en visualiseren. Dit biedt nieuwe mogelijkheden voor toekomstig computational
steering onderzoek.

Eric J. Griffith



Curriculum Vitae

I was born on April 3, 1980 at the Naval Hospital in Long Beach,California, USA, which
has since been replaced by a shopping mall. I completed my secondary school education in
1998 at Portsmouth High School in Portsmouth, Rhode Island.

In the fall of 1998, I enrolled in Rensselaer Polytechnic Institute (RPI) to pursue a bach-
elor’s degree in computer science. After taking one year offfrom my studies in 2000 to
work for an internet startup company, I completed my undergraduate education in the spring
of 2003 with the expected bachelor’s degree in computer science and an unexpected second
bachelor’s degree in mathematics.

I then immediately began working on my master’s degree in computer science at RPI,
which I completed in the summer of 2004 with a thesis entitled, “A Design Tool for Specify-
ing Implicit Algebraic Blend Surfaces”. During the year I worked on my M.S., I also taught a
“Programming in Perl” course for two semesters and developed an interest in the algorithmic
challenges posed by digital microfluidic systems.

In August of 2004, I began my PhD studies at TU Delft, the end result of which is this
thesis. My PhD research was conducted under the guidance andsupervision of Frits Post
and with Erik Jansen as my promotor. During my time at TU Delft, I also collaborated with
Gerwin de Haan on some papers that fell outside the scope of this thesis. After leaving TU
Delft in November of 2008, I began working at PetrotechnicalData Systems in Rijswijk on
visualization software for seismic data for use by Royal Dutch Shell.

151


	Preface
	Introduction
	Scientific Visualization
	Visualization Pipeline
	Flow Visualization
	3D, Multivariate, Time-Dependent Visualization
	Visualization in Virtual Reality
	Simulation and Visualization
	Open Problems

	Cumulus Clouds
	Research Topics of Interest
	Large-Eddy Simulation

	Visualizing Cumulus Clouds in Virtual Reality
	System Requirements
	Existing Visualization Systems
	Cloud Explorer and GALES
	Research Contributions

	Thesis Structure

	Feature Tracking in VR for Cumulus Cloud Life-Cycle Studies
	Introduction
	Background
	Feature Tracking
	Large-Eddy Simulation
	Cloud Visualization

	Data Preprocessing
	Cloud Tracking
	Isosurface Creation

	Virtual Reality Cloud Explorer
	Interaction Scenario
	Application Components and Interaction

	Results
	Preprocessing
	Cloud Explorer

	Conclusions and Future Work

	Quantitative Data Analysis in Virtual Environments through Reprocessing
	Introduction
	Background and Related Work
	Method Overview
	Software System
	Preprocessing Generalization
	Preprocessing Extension
	Cloud Explorer Expansion

	Case Study
	Overview
	Data Preprocessing and Observation
	Study and Exploration

	Conclusions and Future Work
	Acknowledgments

	Fast Normal Vector Compression with Bounded Error
	Introduction
	Related Work
	Overview and Underpinnings
	Definitions and Notation
	Normal Quantization
	Error Bound
	Quantization Optimality
	Euler Characteristic

	Normal Compression
	Bit precision and efficiency
	Subdivision Method
	Barycentric Method
	Base Polyhedron Selection

	Results
	Performance
	Method Comparison

	Conclusions and Future Work

	Interactive Particle Tracing for Visualizing Large, Time-Varying Flow Fields
	Introduction
	Related Work
	System Overview
	Data Handling
	Data Preprocessing
	Data Transfer

	GPU-based Visualization
	GPU-based Data Decompression
	GPU-based Particle Advection
	GPU-based Visualization Tools

	Interaction
	Particle Emitter
	Multi-Resolution Data for Regions-of-Interest
	VR and Interaction

	Results
	System Performance
	System Validation

	Conclusions and Future Work

	Cloud Explorer
	System Overview
	Data Processing
	Visualization

	User Interface and Interaction
	Hybrid Interface
	Contextual Information

	Data Handling
	Data Cache
	Data Compression

	Virtual Reality and Desktop Visualization
	Collaboration with Atmospheric Scientists
	Developing Cloud Explorer
	Using Cloud Explorer
	Lessons Learned


	Interactive Simulation and Visualization of Atmospheric Large-Eddy Simulations
	Introduction
	Background and Related Work
	CFD for Cloud-Dynamics Studies
	Cloud Simulation
	CUDA Overview

	Large-Eddy Simulation Details
	Grid and Numerical Schemes
	Condensation
	Boundary Conditions

	Implementation Details
	Kernel Structure and Memory Layout
	Poisson Solver
	Mixed Precision
	CPU Computation

	Interactive Visualization
	Results
	Performance
	BOMEX Comparison

	Conclusions and Future Work

	Conclusions
	Thesis Summary
	Visualization Challenges
	Future Directions
	On Visualization in Virtual Reality

	Bibliography
	List of Figures
	List of Tables
	Summary
	Samenvatting
	Curriculum Vitae

