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ABSTRACT

We present a system to automatically construct high resolution im-
ages from an unordered set of low resolution photos. It consists of

an automatic preprocessing step to establish correspondences be-
tween any given photos. The user may then choose one image and

the algorithm automatically creates a higher resolution result, sev-
eral octaves larger up to the desired resolution. Our recursive cre-
ation scheme allows to transfer speci ¢ details at subpixel positions
of the original image. It adds plausible details to regions not cov-

ered by any of the input images and eases the acquisition for large

scale panoramas spanning different resolution levels.

This is the author version of the paper. The original ver-
sion was published in Gl '10: Proceedings of Graphics Inter-
face 2010.

Index Terms: 1.3.3 [Computer Graphics]: Picture/Image
Generation— [I.3.6]: Computer Graphics—Methodology and
Techniques 1.4.3 [Computer Graphics]: Enhancement— [I.4.7]:
Computer Graphics—Feature Measurement

1 INTRODUCTION

Applications like Microsofts Photosynth or Photo Tourism [34],
Google Earth or Maps and Streetview as well as other projects
show that an ever increasing interest in nding new ways to deal
with photo collections exist as the acquisition becomes more and
more easy and cheaper. Our goal in this paper is to rely on mul-
tiple photos to add high-resolution details to a chosen input photo.
In such a way, a user can improve a holiday snapshot so that it be-
comes possible to zoom in to take a closer look at interesting parts
of the image far beyond the original image resolution. Starting with
an unordered photo collection of arbitrary images, our system auto-

matically arranges them in a dependency graph that describes WhiCl‘g
photograph contains details of another one. The user then choose%
any photo and the system seamlessly enhances it with the found

details up to the desired resolution.

High-resolution is of particular interest when images are shown
on larger screens where an insuf cient resolution is most visible,
but also received much interest in the context of browsable high-

resolution content [21]. Modern games already make extensive use

of high-resolution textures and future games will continue pushing

in this direction. For architectural purposes, virtual walkthroughs, t
or panorama shots high-resolution imagery is often a necessity and

renders the experience more convincing. Avoiding expensive and
time-consuming setups is a crucial bene t.
Our work addresses the following challenges:

Establishment of reliable correspondences between pho-
tographs in unordered photo collections, even if direct feature
matching would fail by making use of a dependency graph;
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Artifact free blending of (potentially overlapping) images at
different resolutions, taken with different cameras, different
focal length, white balancing or color aberrations;

Transfer and detail enhancement by information exchange be-
tween photos where no speci ¢ details are available through a
new multiscale texture synthesis algorithm based on discrete
optimization;

Adapting and enhancing well-known algorithms to form our
complete framework for detail enhancement.

A major dif culty is that human observers are very sensitive to arti-
facts in real world images. Hence, previous systems opted for user-
supported solutions, whereas we present a fully automatic method.

2 RELATED WORK

Panoramas, Gigapixel Images and Photo Browsing Cap-
turing and creating panoramic images is an idea almost as old as
photography itself. A very nice survey on related techniques can
be found in [37]. Most approaches assume that the camera stays
roughly in the same place during acquisition. With a carefully de-
signed camera setup, Kopf al. [21] take hundreds of images to
produce a Gigapixel image by stitching these photos together. The
approach creates beautiful results that can be explored by a user, bu
the setup is complex and requires special hardware. In comparison,
our system creates high-resolution images from unordered sets of
input images. Only few restrictions are made on our input images
making acquisition easy, and even image databases can be used.

Building upon the work by Snavely et al. [34, 33], Microsoft Re-
search recently released their Photosynth Tool. It provides a special
3D interface that allows the user to easily navigate a large photo
collection of a particular location. While the interface resembles a
D environment and is quite intuitive to use, color correction and
lending between photos was only added for convenience and still
reveals some artifacts. In contrast, we have to carefully address
these points to produce a high-quality output where different pho-
tos are merged in a common 2D domain. Our approach avoids any
3D information or camera calibration, but instead computes depen-
dency relations in order to faithfully transfer details between the
different shots, even if no 3D information could be reconstructed.

Recently another interesting system for exploring large collec-
ions of photos in a virtual 3D space has been presented by Sivic
et al. [32]. It allows virtual walkthroughs of a photo collection by
stitching similar scenes into one browsable image graph. The main
goal of [32] is photo browsing in a virtual navigation space, there-
fore transitions between images might still be visible if the images
differ too much, as they are not restricted to belong to the same
scene.

Texture Synthesis generally produces large texture maps
from one or more small exemplar patches [7, 24, 25, 15, 42] or
tiles [5, 41]. These approaches synthesize textures at one specic
scale, i.e. the features are usually not enlarged or shrunk in any way.
Though non-periodically arranged, the common problem of these
approaches is that they produce textures with relatively similar or
repeating structures. In contrast, multiscale approaches make use of
information available at different scales [19, 40, 31, 14]. The addi-
tion of speci ¢ details at speci ¢ locations is possible [25], though
limited, as many synthesis levels are needed for a seamless merge.
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Figure 1: Overview. (a) An unstructured set of images is transformed into (b) a dependency graph with scale relations. An image is chosen
and (c) its children are adjusted: Homographies are established, blending masks computed, and an image hierarchy according to the scale is
created. (d) An optimization-based texture synthesis then successively produces details at synthesis levels S by relying on information of scale
i until the desired resolution is met.

Superresolution is a heavily researched area [39] with vari- In a situation where an imagkis contained in an imagB, which
ous instances of algorithms based on exemplar-images or learning-n turn is contained in a third imag& we want to avoid associating
based methods. One possibility is to derive image statistics from A directly toC. Instead, we do not want to skip relations and aim at
the image itself or a database of images [18, 35, 13, 43, 10]. OtherestablishingA as a child oB andB as a child ofC.
approaches rely on edges, gradients, or combinations with learning- Before selecting a parent fo, we rst create a set of potential
based methods [9, 6, 8, 36], reconstructed 3D geometry [4] or spe-parents; by comparing all photos; againstlj. A match between
cialized hardware [12]. Similar in spirit to ours is a method to up- features is considered valid if the euclidian distance in feature space
sample a low-quality video based on a few high-resolution detail between afeature vectorlipand its nearest neighborlipis smaller
photographs [1]. It works well if a region is covered in the detail than Q49 times the distance to the second nearest neighbor. An
shots, but shows weaknesses if such information is missing. Fur-evaluation on the in uence of this parameter can be found in [27].
ther, hierarchical dependencies between the images were not conif the number of all matched features betweeandl; is below a
sidered limiting the upsampling capability. Despite good quality at thresholdi,, = 10, the images are considered unrelated.This thresh-
moderate magni cation, superresolution approaches are usually notold is rather uncritical, other works propose to use up to 20 [34], but

applicable for magni cation spanning more than a few octaves. this is already a very conservative number, in order to remove false
positives, but can easily create false negatives. If the two images are
3 OUR APPROACH - OVERVIEW related, we try to establish a homogray j using RANSAC and

Figure 1 shows an overview of our system that adds high-resolution DLT [16]. Other registration methods could be used, but this one

details to low resolution content. Starting with a set of unordered worked particularly well and proved robust enough for our purpose

images, we extract prominent features and use these to establisVe denotdii j := Hir jl;.

parent-child relationships between images. A child contains details Whenever it was possible to establish a homography fiioim

of a parent image and we derive scale factors indicating the resolu-1j, we addl; to the set of potential parents. To nd the most

tion gain when relying on the children's content (Section 3.1). appropriate parent, we projegtinto each possible parent image
Next, a user selects an image to be augmented by details. In thedj 2 I;. The area ofy j should be maximal in order to avoid skip-

ory, we could project the children into the selected image, but this ping relations, as indicated earlier. More precisely, we compute the

would lead to visible artifacts. Therefore, we adjust these images to parent index fot; using the formula:

make merging successful. Precisely, We remove objects from the

children images not visible in the parent image, adjust the colors parentindex= argmaxA(Hir jli)); (1)

and use a blend mask to hide the transition between the chosen and )

the detail images (Section 3.2). whereA is the area (number of pixels) gf j inl;. We impose that
Finally, parts not covered by the input images receive details A(l;) < A(Hj lj), otherwise, the potential pareijtcould also be

using our constrained multiscale texture synthesis algorithm. The a child ofl;. If Ij; j is not fully contained inj, we mask out the

synthesis involves a discrete optimization procedure to add new de-pixels outside the valid region.

tails at various output resolution levels (Section 4). Having parent information available for each image allows us to

. create a complete dependency graph for the whole image collection
3.1 Dependency Graph Construction , see Fig. 1(b) (in the appendix we also give some pointers on how
In order to create the high-resolution output, accurate information to exploit overlapping root images). This rearrangement into the

about the image relationships is needed, i.e., whether one conveyslependency graph structure allows us to establish correct homogra-
details of another, if they are overlapping in the output image do- phies to every ancestor of each node, which would not be possible
main, or if they are not related at all. This is done fully automati- with direct feature matching, as current feature descriptors are only
cally, the user only needs to chose the image he wants to augmenscale-invariant up to a certain amount of very few octaves in prac-

with additional information. tice. An example for correct detail placement using our dependency

Given a collection of photographs, we start by extracting fea- graph is given in Figure 2.

ture points in each image. We use the SIFT keypoint detector [27]
because of its invariance under af ne image transformations. ESpe'urged to choose the root imagg and we extract the correspond-

cially scale-invariance proves useful for our task. ing subgraph from the dependency graph for further processing
Parent Finding We rely on the SIFT feature descriptorsto nd  (Fig. 1(b)). Due to possibly different resolutions of the input im-
correspondences between image piiesidlj in order to establish ages, we need to establish the amount of detail that can be added
reliable parent-child relationships between images. We restrict eachto I by each imagd;. For this, we determine how much more
child to have one parent, but each parent can have several childrenresolutionl;, ¢ offers with respect tdy. Letr be the largest pixel

Preparing detail candidates In the next step, the user is



pixel and only save the largest value of each color channel. Thresh-
olding the resulting imaget §sp= 0:35) reveals our nal mask,
marking the regions used for further processing. We tried other
methods as well, e.g., the mean-removed normalized cross correla-
tion, which has been proposed by Goesatlal.[11] for a similar
purpose. But the results were not always as satisfactory even with
an optimized threshold (see Figure 3 for a comparison).

Figure 2: The hierarchical nature of our dependency graph enables
us to nd the correct position for details derived from the in put im-
ages at arbitrary scales. This would not be possible with direct fea-
ture matching, as the details could be arbitrarily small in the original
image, even smaller than a single pixel. Top: Resulting Zooms from
our algorithm. Bottom: Original image.

Figure 3: Object Removal. Top row: (left) Parent image, (middle)

size ratio when comparing gtolo. If r 1, the resolution of; is cropped region of interest from parent image for displaying purpose,
considered insuf cient to add information tg. Basically, its pixels (right) warped child image cropped to region of interest. Note the
are larger than those ig. In this case, we can removefrom the strong parallax - the pavement visible in the detail image is occluded
dependency graph and make its children the new childrén &e- by a bush in large areas of the parent image. Bottom row: (left) In this

peating this process in a top-down manner removes all false details®3S€: the normalized cross correlation for 5 5 regions around each
from the dependency graph pixel between the parent and child image, as proposed in [11], does

The established dependency graph and warps wil aciltat the "% P74 £ 9008 s on vl pare of 1 image neing o e
later detail synthesis. Further, such dependency relations provide

h algorithmi bili | fuli h unsatisfactory. (middle right) The sum of squared differences gives a
much algorithmic exibility and can already be useful in other con- better indication of differing regions in this case. (right) The resulting

texts. E.g., allly o together de ne a higher resolution panorama a5 after thresholding excludes the unwanted object pretty well.
image following standard techniques in [37], or, by storing the scale

ratio s= rehilg  I'parent between each child and its parent on the
edges, the dependency graph becomes similar to an exemplar graph color Adjustment Varying white balance and exposure set-

(presented in [14]), but was fully automatically created. tings can cause color aberrations between parent and child images.
. ) In order to x these, we use a recursive gradient domain fusion on

3.2 Speci c Detall Transfer the elements of the dependency graph.

Our algorithm will improve the quality of the selected root im- For each child and its parent imagg, we apply the inverse

age using its children. Because the child images might have beenhomography matrix,, *, to warply into the image domain of the
taken at different moments in time, with different cameras and from child. This allows us to add an one-pixel border around the previ-
slightly different locations than the root image, we need to rstap- ously computed mask of the child image by sampling colors from
ply an adjustment and modify their content to better t in the root Hg*plp. We then nd the image that best matches the gradients of
image. We remove regions with a strong photometric inconsistency, the child image while respecting the sampled boundary color val-
adjust the color, and nd a blending mask to create a good transition ues. This can be expressed as a Poisson equation with Dirichlet
between the inserted element and the original image. The treatmenfoundary conditions following [30]. The boundary conditions are
described in this section is recursively applied to all children in the given by the one-pixel border derived frdtig, 1 )| o, while the guid-
dependency graph. ance eldv for the poisson equation is given by the gradientofA

After these adjustments, it is possible to project all child images comparison with and without poisson blending is given in Figure 4.
into an upscaled version of the root image and it leads to artifact-
free transitions. This allows us to enhance the upscaled image al-
ready with the captured details. In Section 4, we will present a
texture synthesis algorithm to improve not only the covered areas,
but the entire root image.

Object Removal As the detail images do not need to be taken
from exactly the same viewpoint or at the same time, artifacts such
as parallax effects, temporal artifacts or new objects might appear
(or disappear) in the detail images. In a rst step, we therefore
conservatively estimate similar regions in the parent and the child
image. . . ) . .

To remove the in uence from small scale misalignments, which Figure 4: Color Adjustment. Left: Without poisson blending, the de-
should not be visible later on, we blur both images with a gaussian @ child patch might differ in color from the low resolution parent
lter with a standard deviation of = 2. We compute the Sum image. Right: After poisson blending the colors are adjusted.
of Squared Differences (SSD) for each 5 window around each




Blending Mask Copying a child image directly intly is likely

to produce seams, even after poisson blending, due to the higher
frequency bands present in the detail image. These seams are well-
known artifacts in panorama photography. To make the insertion
successful, we re ne the computed mask by attributing weights to
all child-image pixels that indicate how to blend the content with
lo. An easy way to extract a blending matte is to compute a dis-
tance map, also called grass re transform [37]. For every pixel, the
distance to the image center is computed. The larger the distance,
the more transparent the pixel becomes. The downside of such so-
lutions is that image content is not taken into account. Instead, we

found that much better transitions are possible when exploiting the
image content. A result of our blending technique is shown in Fig-
ure 5.

We rst establish a gradient mad for each color channel:

17 = N2 = i+ s @
Figure 5: Blending example: Combining a high and low-resolution
wherely andly are the gradients ir andy direction respectively. image. Top: gaussian mask (left), our result (right); Bottom: Close

We establish gradient density maqgijmcomputing for every pixel ups and our blending mask.
p the least cost path to a border pixel of its mask, using dynamic

programming [3], according to S .
Because the original input images would represent a very sparse

l_gdm( p) = minf & 19(q)g ?) re nement candidate set, we create a gaussian pyramid out of each
! path ! lii 0. One downsampling operation, reducing width and height by
a factor of two, transforms a texture of levehto a texture of level
We combine the gradient density map of all three color channels | 1 (Fig. 1(d)). Having de ned these multi-resolution representa-
by saving only the maximum costs, a separate map for each colortions, we will denote the warped and accordingly scaled iniaae
channel would lead to unwanted color aberrations. The cost for pix- level | asl), . Similarly, the blending masks are also denoggd
els outside the mask are zero. Consequently, regions with only few to re ect the corresponding scale. Addihgto each synthesis level
color gradient changes will be assigned a relatively slow growing helps to re ne regions with largely different colors than those rep-
value from the border of the mask to the pixel of interest, while resented in the detail images. Below we describe how to make use
in regions with strong edges the cost value will rise faster, as slow of the previously derived representations in our multiscale texture
blending could produce visible ghosting artifacts or unnecessary optimization framework.
blur in these areas (Figure 5). In addition, pixels closer to the patch . .
center will usually receive higher weights than those close to the 4-1 Multiscale Texture Synthesis
border. The nal blending mask is then computed using a com- Our algorithm builds an image pyram@;S';:::;S" in a coarse-
bined thresholding and scaling: to- ne order, whereS' is the nal image of the desired output
resolution. The image§ are not represented by color values,

02 path

. igdm at a pixel p, but rather store coordinate information in the form
aj = min(1:0; ——) 4 S[p] = (u;i;1), whereu are pixel coordinates, the image id, and
I the scale level. We will use the notatio to refer to the actual
wheret is kept to 04 of the maximum value ofigdm throughout color image ofS. Unlike traditional texture synthesis methods, we

our examples, which turned out to be a good tradeoff between the do not start with a 1 1 image or random noise patterns, but rather

speed of the transition and preserved area of the image. Using theStart by re ning the root imagé. _ _

Ly norm in Equation (2) leads to faster changes of the blending _ Each levelS is generated by (1) upsampling the imae,

values along edges, due to the triangle inequality, resulting in less (2) optionally blending the resulting color imagé with the de-

distracting transitions than with the commbgnorm. tail imagesl!, , and then (3) locally re ning the image by a detail
synthesis algorithm.

4 CONSTRAINED MULTISCALE TEXTURE SYNTHESIS

To add plausible details to the root imalgewe will make further . .
use of the derived scale relationship and image adaptation from sec/nstead of upsampling color from the last synthesis step, we up-
tion 3. In the following, we will describe how to use the scale re- Sa@mple coordinates. Speci cally, we adopt the idea of Lefeletre
lationships to derive a multiscale dependency graph. This is cru- & [25] and descend in the hierarchy to a higher-resolution level,
cial for our texture synthesis algorithm, described in depth in Sec- If available. Hence, we |ntroguce new details even before re ning
tion 4.1. The image synthesis works hierarchically by establishing the upsampled image. F& “[p] = (u;i1), the upsampled patch

4.1.1 Upsampling

matches between images of corresponding levels. Starting with thelS d& ned by:
original resolution oy, we successively upscale this image. After

each upsampling, a blending and a detail synthesis step is appliedS[2p+ [ ]:= ((2u+ I );i;l + 1); with | 2f 0 0 11 g
) : 0O 1 0 1

to the texture, where data is also used from other images of the 5

corresponding level. (5)

If a higher-resolution level is not available, we simply copy the con-

Extended Dependency-Graph It is easier for the synthesis  tent to all four corresponding pixels of the next resolution level.
to work with power-of-two scale factors. We, hence, determine a

resolution level ) representing a scale factor df For each detail ~ 4.1.2 Blending
imagel;, | is maximized such that the original resolution ratio  As described in Section 3.2, we have all the information available
betweerlg andl;; g is larger than 2 to directly blend entire child images into the synthesized image at



each level. This is especially helpful in the context of multiscale
panorama images. In this case, we compute a new solufibn
from the upsampled coordinates®f 1. To add the speci ¢ details
from our input images, we warp each chi[d ointo S and blend
them together using:

S=ajly o+ (1 af)( 9); (6)
wherea} is the previously computed blending mask. The blending
order of the children depends on the original scale level computed
in Section 3.1. The higher the relative resolution, the later it is
added.

4.1.3 Detail Synthesis

best matches in candidate images of scale t

= [ B

Nmp+(10f | Nmp+crnf | Nmp+ 1P

giacel heseeel
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T

g
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Figure 6: Optimization procedure: Color values are optimized by im-
proving coherence of neighboring pixels. For each pixel from p's

In the last section we augmented our upsampled image with knownz 3 neighborhood, its 5 5 neighborhood is extracted and the best

details. For the other regions, we will try to nd plausible details
by texture synthesis.

For each synthesized pixplin S, the detail synthesis step seeks
to nd a pixel m(p) in any detalil imageiﬂ o Of levelt whose local
5 5neighborhoodN .y, best matches the 55 neighborhoodp,
centered ap (Fig. 6). A neighborhoodNg around a pixel position
g consists therefore of 25 RGB-values. Although out of the scope
of this article, the matching step can usually be very costly, which
is why we give some pointers on the accelerations we employed in

the appendix. Using a larger neighborhood usually only increases

matches are found in the candidate images (Nm(p)k, gray grids on the
right). The neighborhoods from the shifted center pixel (Nm(p+D)k D

dotted region around red pixels on the right) are then compared to
p's original neighborhood (Np)and p is replaced with its best match.

for these perfect matches can be found and they will therefore not
be replaced with other values, except at the boundaries for a better
merging with the rest of the image.

computation time in hierarchical texture synthesis, as was alreadys REgsuLTs

pointed out by several other authors [25, 15].

Basically, our goal of synthesizing new details can then be seen
as the minimization of an error functional, which is determined by
mismatches of input/output neighborhoods:

Ei= & jiNp Nuypiiz: 7)
p2S

We have evaluated our system with several test collections. The
synthesis itself took about 30 seconds for an image of size 256
256 on an AMD Athlon 64 X2 Dual Core Processor 4800+, with
only one core used, and 3GB of RAM. It scales linearily with the
number of output pixels and approximately logarithmically with the
number of input pixels, i.e., the exemplars. Four iterations have
been applied during the optimization step of each level in all exam-

whereE measures the sum of all neighborhood differences across ples.

the current image. Basically, if neighboring pixels had neighboring
matches, this functional would be minimal. In practice, even if

Relationship reconstruction To test the relationship recon-
struction presented in Section 3.1, we created a database of 46 im-

pixels are neighbors in the output image, the best matches might beages which we took from 7 different scenes and also used differ-

very different and we need to apply an optimization procedure.

Optimization procedure In order to globally minimize the er-
ror functional 7, we minimize the error for each level using a dis-
crete two-step EM-like (Expectation/Maximization) solver, similar
in spirit to [22, 15].

In the M-step, the set of output pixefsremains xed and a set
of the n best matching input neighborhootil <9 is found per
pixel p, k denotes the index of tHeth best matching neighborhood.
In practice, we use = 3, [14] usedh = 2 which we found to be a
too small number for suf cient results, [38] proposed to nse 11,
but we did not experience any visual improvement beyord3.

In the E (expectation) step, the set of matching input neighbor-
hoodsf Ny ;xg remains xed while we optimize for S[p] and,

hence, modifyS. To do this optimization, we look at all pixels
at positionp+ Dina 3 3 neighborhood (candidate neighborhood)
aroundp. We then gather all their best matching neighborhood cen-
tersf m(p+ D)¥g. To chose the new value f&[p], we compare all
neighborhood®N,,y . py« p to the neighborhoodN, aroundp, as
illustrated in Figure 6. LeNyy s q)i ¢ be the neighborhood that
minimizes the difference tbdlp. We then associate witl [p] the
value ofm(p+ d)! d, i.e. position, index and level.

The E- and M-step are repeated until a minimum is reached,
i.e., the best matchas(p) do not change anymore from one it-
eration to the next, or a maximum number of iterations is reached.
To summarize this step, the detail synthesis tries to adjust the im-

age in such a way that every local neighborhood around each pixel

resembles a neighborhood in one of the input images of the cur-

ent camera models, a subset is shown in Figure 7. This way we
could establish a ground truth dependency graph against which we
compared the result of our algorithm. Our system created correct
relationships for 91.3% of the images, four images were excluded
by the system, but none were falsely assigned. The whole process
took about 725 seconds, as every image had to be matched to each
other image in our current implementation.

Figure 7: Some images from our ground truth data set to test our
relationship reconstruction.

Multiscale Panorama Figure 8 shows a large-scale panorama
created from 9 input images at different scales. In contrast to pre-
vious panorama-stitching methods, the resolution is not xed in ad-
vance, but we create the needed resolution on demand. The recur-
sive warping and blending steps assure that details appear at the cor-
rect positions and orientations in the output images. For invisible
parts, the synthesis can highly bene t from the derived knowledge
of scale relations. As shown in Figure 8 bottom, plausible details
can be added even for regions not covered by any of the detail im-
ages.

Multiscale Texture Synthesis Using re exive edges in the
dependency graph allows us to produce results similar to a mul-

rent level. This optimization does not affect the blended areas, astiscale texture synthesis [14], extended by our optimization-based



Figure 8: Multiscale-Panorama Stitching: Using 9 input images at various zoom levels, partly overlapping and of varying sizes between 483525
and 1086 585 our algorithm automatically establishes the dependency graph, scale relations, and blending masks to create a high-resolution
panorama image. We upsampled the original panorama with a 683 512 resolution 5464 4096 1% row: Thumbnails of used input images.
2" row: Panorama generated by our algorithm. 3 row: Two examples of regions incorporating information from the detail images and the
respective part in the original panorama image. Notice that the given details have been faithfully included in the high resolution panorama. 4t
row: Two examples for enhanced details next to their respective parts from the original panorama image. Both examples show regions where
no direct correspondence relation with respect to the input images existed. Our solution adds subresolution detail, invisible in the original input
image (here, with 64 times more pixels). In many cases, plausible details are added by our algorithm, e.g., the solar panels on the roof (left). The
texture synthesis step is especially useful for small scale and repetitive structures like the leafs of the trees. Nonetheless, if no suf cient detail
information is available from other parts of the input images, it is not possible to reconstruct semantically meaningful structures like the houses
on the right faithfully.

synthesis approach that exceeds the original image resolution. Fig-On the downside this can lead to a small loss of contrast in the im-

ure 9 shows an image whose resolution of 28@s virtually in- age, as one pixel sized details might be removed in the process. On
creased to 8192using a single exemplar with a single re exive  the other hand this feature has several bene cial aspects. The algo-
edge. rithm has more freedom to add details to the image because of this

. . . ) loosened constraint and small artifacts, like the halo or compres-

Online Database Even though not directly designed for this  gjon artifacts around the tower in Figure 11 are reduced, also in the
purpose, our algorithm is also applicable to online databases. Thedownsampled version, Figure 11 right.

result in Figure 10 used the rst 35 hits on Flickr using the phrase 11,4 dependency graph of all examples in this paper, except for

Big Ben The enlarged image on the top left was then chosen man- i,re 9 have been automatically created by our algorithm
ually to be augmented with details. Even though the images have IGUFe = hav . i y ouraigortm.

been taken by completely different cameras, angles, viewpoints and
at different times, our algorithm added plausible details to the root
image. The algorithm found a substitute in the image database for Limitations Despite feature matching and optimization steps,
the clock-face and replaced it. The other images were not used,our method is still sensitive to parallax effects, occuring if the im-
because they differed too much. ages have been taken from largely varying viewpoints. Splitting the
Even for parts of the image where no detail information was input images into smaller patches and using a voting might help
available, plausible details have been added by our algorithm, seeto reduce these effects, similar to [1]. It would also allow for a
Figure 11. Our algorithm is no real Super-Resolution algorithm in more exible dependency graph, as overlaps in the images could be
the classical sense, as it provides only similarity to the input image exploited more nely and the algorithm would rely less on the re-
but does not guarantee equivalence when downsampling the resultquirement of tting homographies to entire images. In our current

6 DiscussIiON AND FUTURE WORK



Figure 10: Online Database: Our algorithm can derive relationships
between photographs in image databases like Flickr. These relations
enable us to add speci c details. Top: A subset of the rst 35i mages
for the query Big Ben on Flickr. The enlarged image on the left was
then chosen by the user. Bottom left: Detail of the original image.
Bottom right: Result by our algorithm. A closeup on the small turret
in the bottom right of the root image is given in Figure 11.

Figure 9: Single exemplar: A 256x256 exemplar (upper left) with one
re exive edge makes an in nite zoom possible. Each image dou bles
the resolution, yet the quality remains high compared to bilinear or
NN upsampling (bottom).

implementation, we wanted to be independent of reconstructed 3D
geometry, but if enough images are available, it might turn out use-
ful to incorporate 3D information as well, as it was done by Goesele

etal.[11].

We would also like to give more artistic freedom to the user,
e.g., marking regions, such as an interesting lighting condition, he

Our algorithm might also suffers from strong changes in the il- wants to keep in order to propagate this information to the rest of

lumination of the different images. While the color correction step the image. . . . .
helps to resolve global color changes, it is currently not able to suf-  Investigating how to derive HDR information for the whole im-
ciently remove artifacts caused by strong shadows. Working com- 2ge if only details are captured with different exposure settings is
pletely in the gradient domain and removing strong gradients, not also an interesting eld for future research. One direction is the use
in accordance to the parent image, or using intrinsic images similar ©f metadata tags (e.g., exposure time) during the matching process.
to [26] might resolve this issue.
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Original SR [20] Our result Our result LR

Figure 11: Comparison to Super-Resolution in the Big Ben scene.
Super-Resolution approaches upsample images by guaranteeing
equivalence to the original image after downsampling. Our approach
instead assures similarity to the original, this loosened constraint al-
lows the algorithm to add new plausible details to the image. From
left to right: Original image, upsampled image by three octaves using
the method described in [20], upsampled image using our proposed
algorithm, downsampled result of our algorithm. None of the input
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Accelerating Neighborhood Matching For faster computa-
tions, we use an approximate nearest-neighbor search [2] to nd the
k best-matching neighborhoodl, ) in all If;  for eachNp. We
did not adopt k-coherence [38] in this step, as this might restrict us
to too few good matches. We further project all neighborhoods into
a truncated principal component analysis (PCA) space. The PCA
basis for each levelis constructed by using all neighborhoods from
all admissible candidatd ,. We automatically derive the num-
ber of needed eigenvalues by truncating as soon as the eigenvalues
drop to 05% of the largest eigenvalue. This usually results in 9 to
15 eigenvalues used for projection. For possible GPU implementa-
tions, we refer the reader to [23, 42].

User selection of rootimage Photographers usually take a lot
of similar pictures of a scene and choose the best one afterwards.
We can augment this photo with a slight change to our algorithm.
We rst establishe the dependency graph as usual. Then all root
images except for the one selected are deleted and a homography of
their child nodes to the selected image is computed. Upon success,
the whole subtree is added as a child to the selected image, as its



established relations remain valid. Otherwise the whole subtree is
removed from further consideration.



