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ABSTRACT

We present a system to automatically construct high resolution im-
ages from an unordered set of low resolution photos. It consists of
an automatic preprocessing step to establish correspondences be-
tween any given photos. The user may then choose one image and
the algorithm automatically creates a higher resolution result, sev-
eral octaves larger up to the desired resolution. Our recursive cre-
ation scheme allows to transfer specific details at subpixel positions
of the original image. It adds plausible details to regions not cov-
ered by any of the input images and eases the acquisition for large
scale panoramas spanning different resolution levels.

This is the author version of the paper. The original ver-
sion was published in GI ’10: Proceedings of Graphics Inter-
face 2010.

Index Terms: [.3.3 [Computer Graphics]: Picture/Image
Generation— [1.3.6]: Computer Graphics—Methodology and
Techniques 1.4.3 [Computer Graphics]: Enhancement— [1.4.7]:
Computer Graphics—Feature Measurement

1 INTRODUCTION

Applications like Microsofts Photosynth or Photo Tourism [34],
Google Earth or Maps and Streetview as well as other projects
show that an ever increasing interest in finding new ways to deal
with photo collections exist as the acquisition becomes more and
more easy and cheaper. Our goal in this paper is to rely on mul-
tiple photos to add high-resolution details to a chosen input photo.
In such a way, a user can improve a holiday snapshot so that it be-
comes possible to zoom in to take a closer look at interesting parts
of the image far beyond the original image resolution. Starting with
an unordered photo collection of arbitrary images, our system auto-
matically arranges them in a dependency graph that describes which
photograph contains details of another one. The user then chooses
any photo and the system seamlessly enhances it with the found
details up to the desired resolution.

High-resolution is of particular interest when images are shown
on larger screens where an insufficient resolution is most visible,
but also received much interest in the context of browsable high-
resolution content [21]. Modern games already make extensive use
of high-resolution textures and future games will continue pushing
in this direction. For architectural purposes, virtual walkthroughs,
or panorama shots high-resolution imagery is often a necessity and
renders the experience more convincing. Avoiding expensive and
time-consuming setups is a crucial benefit.

Our work addresses the following challenges:

e Establishment of reliable correspondences between pho-
tographs in unordered photo collections, even if direct feature
matching would fail by making use of a dependency graph;
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e Artifact free blending of (potentially overlapping) images at
different resolutions, taken with different cameras, different
focal length, white balancing or color aberrations;

e Transfer and detail enhancement by information exchange be-
tween photos where no specific details are available through a
new multiscale texture synthesis algorithm based on discrete
optimization;

e Adapting and enhancing well-known algorithms to form our
complete framework for detail enhancement.

A major difficulty is that human observers are very sensitive to arti-
facts in real world images. Hence, previous systems opted for user-
supported solutions, whereas we present a fully automatic method.

2 RELATED WORK

Panoramas, Gigapixel Images and Photo Browsing Cap-
turing and creating panoramic images is an idea almost as old as
photography itself. A very nice survey on related techniques can
be found in [37]. Most approaches assume that the camera stays
roughly in the same place during acquisition. With a carefully de-
signed camera setup, Kopf et al. [21] take hundreds of images to
produce a Gigapixel image by stitching these photos together. The
approach creates beautiful results that can be explored by a user, but
the setup is complex and requires special hardware. In comparison,
our system creates high-resolution images from unordered sets of
input images. Only few restrictions are made on our input images
making acquisition easy, and even image databases can be used.

Building upon the work by Snavely et al. [34, 33], Microsoft Re-
search recently released their Photosynth Tool. It provides a special
3D interface that allows the user to easily navigate a large photo
collection of a particular location. While the interface resembles a
3D environment and is quite intuitive to use, color correction and
blending between photos was only added for convenience and still
reveals some artifacts. In contrast, we have to carefully address
these points to produce a high-quality output where different pho-
tos are merged in a common 2D domain. Our approach avoids any
3D information or camera calibration, but instead computes depen-
dency relations in order to faithfully transfer details between the
different shots, even if no 3D information could be reconstructed.

Recently another interesting system for exploring large collec-
tions of photos in a virtual 3D space has been presented by Sivic
et al. [32]. It allows virtual walkthroughs of a photo collection by
stitching similar scenes into one browsable image graph. The main
goal of [32] is photo browsing in a virtual navigation space, there-
fore transitions between images might still be visible if the images
differ too much, as they are not restricted to belong to the same
scene.

Texture Synthesis generally produces large texture maps
from one or more small exemplar patches [7, 24, 25, 15, 42] or
tiles [5, 41]. These approaches synthesize textures at one specific
scale, i.e. the features are usually not enlarged or shrunk in any way.
Though non-periodically arranged, the common problem of these
approaches is that they produce textures with relatively similar or
repeating structures. In contrast, multiscale approaches make use of
information available at different scales [19, 40, 31, 14]. The addi-
tion of specific details at specific locations is possible [25], though
limited, as many synthesis levels are needed for a seamless merge.
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Figure 1: Overview. (a) An unstructured set of images is transformed into (b) a dependency graph with scale relations. An image is chosen
and (c) its children are adjusted: Homographies are established, blending masks computed, and an image hierarchy according to the scale is
created. (d) An optimization-based texture synthesis then successively produces details at synthesis levels S' by relying on information of scale

i until the desired resolution is met.

Superresolution is a heavily researched area [39] with vari-
ous instances of algorithms based on exemplar-images or learning-
based methods. One possibility is to derive image statistics from
the image itself or a database of images [18, 35, 13, 43, 10]. Other
approaches rely on edges, gradients, or combinations with learning-
based methods [9, 6, 8, 36], reconstructed 3D geometry [4] or spe-
cialized hardware [12]. Similar in spirit to ours is a method to up-
sample a low-quality video based on a few high-resolution detail
photographs [1]. It works well if a region is covered in the detail
shots, but shows weaknesses if such information is missing. Fur-
ther, hierarchical dependencies between the images were not con-
sidered limiting the upsampling capability. Despite good quality at
moderate magnification, superresolution approaches are usually not
applicable for magnification spanning more than a few octaves.

3 OUuR APPROACH - OVERVIEW

Figure 1 shows an overview of our system that adds high-resolution
details to low resolution content. Starting with a set of unordered
images, we extract prominent features and use these to establish
parent-child relationships between images. A child contains details
of a parent image and we derive scale factors indicating the resolu-
tion gain when relying on the children’s content (Section 3.1).

Next, a user selects an image to be augmented by details. In the-
ory, we could project the children into the selected image, but this
would lead to visible artifacts. Therefore, we adjust these images to
make merging successful. Precisely, We remove objects from the
children images not visible in the parent image, adjust the colors
and use a blend mask to hide the transition between the chosen and
the detail images (Section 3.2).

Finally, parts not covered by the input images receive details
using our constrained multiscale texture synthesis algorithm. The
synthesis involves a discrete optimization procedure to add new de-
tails at various output resolution levels (Section 4).

3.1 Dependency Graph Construction

In order to create the high-resolution output, accurate information
about the image relationships is needed, i.e., whether one conveys
details of another, if they are overlapping in the output image do-
main, or if they are not related at all. This is done fully automati-
cally, the user only needs to chose the image he wants to augment
with additional information.

Given a collection of photographs, we start by extracting fea-
ture points in each image. We use the SIFT keypoint detector [27]
because of its invariance under affine image transformations. Espe-
cially scale-invariance proves useful for our task.

Parent Finding We rely on the SIFT feature descriptors to find
correspondences between image pairs /; and /; in order to establish
reliable parent-child relationships between images. We restrict each
child to have one parent, but each parent can have several children.

In a situation where an image A is contained in an image B, which
in turn is contained in a third image C, we want to avoid associating
A directly to C. Instead, we do not want to skip relations and aim at
establishing A as a child of B and B as a child of C.

Before selecting a parent for I;, we first create a set of potential
parents I; by comparing all photos /; against I;. A match between
features is considered valid if the euclidian distance in feature space
between a feature vector in /; and its nearest neighbor in /; is smaller
than 0.49 times the distance to the second nearest neighbor. An
evaluation on the influence of this parameter can be found in [27].
If the number of all matched features between I; and /; is below a
threshold 7, = 10, the images are considered unrelated.This thresh-
old is rather uncritical, other works propose to use up to 20 [34], but
this is already a very conservative number, in order to remove false
positives, but can easily create false negatives. If the two images are
related, we try to establish a homography H; . j using RANSAC and
DLT [16]. Other registration methods could be used, but this one
worked particularly well and proved robust enough for our purpose.
We denote I;, j := H;, jI;.

Whenever it was possible to establish a homography from /; to
I;, we add I; to the set of potential parents I;. To find the most
appropriate parent, we project /; into each possible parent image
I; € I;. The area of I;_,; should be maximal in order to avoid skip-
ping relations, as indicated earlier. More precisely, we compute the
parent index for /; using the formula:

parentindex = argmax(A(H;—1;)), €))
J

where A is the area (number of pixels) of /;_ ; in I;. We impose that
A(l;) < A(Hj_I;), otherwise, the potential parent /; could also be
a child of [;. If I is not fully contained in I;, we mask out the
pixels outside the valid region.

Having parent information available for each image allows us to
create a complete dependency graph for the whole image collection
, see Fig. 1(b) (in the appendix we also give some pointers on how
to exploit overlapping root images). This rearrangement into the
dependency graph structure allows us to establish correct homogra-
phies to every ancestor of each node, which would not be possible
with direct feature matching, as current feature descriptors are only
scale-invariant up to a certain amount of very few octaves in prac-
tice. An example for correct detail placement using our dependency
graph is given in Figure 2.

Preparing detail candidates In the next step, the user is
urged to choose the root image Iy, and we extract the correspond-
ing subgraph from the dependency graph for further processing
(Fig. 1(b)). Due to possibly different resolutions of the input im-
ages, we need to establish the amount of detail that can be added
to Iy by each image ;. For this, we determine how much more
resolution I;_,( offers with respect to Iy. Let r be the largest pixel



Figure 2: The hierarchical nature of our dependency graph enables
us to find the correct position for details derived from the input im-
ages at arbitrary scales. This would not be possible with direct fea-
ture matching, as the details could be arbitrarily small in the original
image, even smaller than a single pixel. Top: Resulting Zooms from
our algorithm. Bottom: Original image.

size ratio when comparing /;_.q to Iy. If » < 1, the resolution of /; is
considered insufficient to add information to y. Basically, its pixels
are larger than those in y. In this case, we can remove /; from the
dependency graph and make its children the new children of /y. Re-
peating this process in a top-down manner removes all false details
from the dependency graph.

The established dependency graph and warps will facilitate the
later detail synthesis. Further, such dependency relations provide
much algorithmic flexibility and can already be useful in other con-
texts. E.g., all I;_,y together define a higher resolution panorama
image following standard techniques in [37], or, by storing the scale
ratio s = repjjg — " parent between each child and its parent on the
edges, the dependency graph becomes similar to an exemplar graph
(presented in [14]), but was fully automatically created.

3.2 Specific Detail Transfer

Our algorithm will improve the quality of the selected root im-
age using its children. Because the child images might have been
taken at different moments in time, with different cameras and from
slightly different locations than the root image, we need to first ap-
ply an adjustment and modify their content to better fit in the root
image. We remove regions with a strong photometric inconsistency,
adjust the color, and find a blending mask to create a good transition
between the inserted element and the original image. The treatment
described in this section is recursively applied to all children in the
dependency graph.

After these adjustments, it is possible to project all child images
into an upscaled version of the root image and it leads to artifact-
free transitions. This allows us to enhance the upscaled image al-
ready with the captured details. In Section 4, we will present a
texture synthesis algorithm to improve not only the covered areas,
but the entire root image.

Object Removal As the detail images do not need to be taken
from exactly the same viewpoint or at the same time, artifacts such
as parallax effects, temporal artifacts or new objects might appear
(or disappear) in the detail images. In a first step, we therefore
conservatively estimate similar regions in the parent and the child
image.

To remove the influence from small scale misalignments, which
should not be visible later on, we blur both images with a gaussian
filter with a standard deviation of o = 2. We compute the Sum
of Squared Differences (SSD) for each 5 x 5 window around each

pixel and only save the largest value of each color channel. Thresh-
olding the resulting image (Tssp = 0.35) reveals our final mask,
marking the regions used for further processing. We tried other
methods as well, e.g., the mean-removed normalized cross correla-
tion, which has been proposed by Goesele et al. [11] for a similar
purpose. But the results were not always as satisfactory even with
an optimized threshold (see Figure 3 for a comparison).

Figure 3: Object Removal. Top row: (left) Parent image, (middle)
cropped region of interest from parent image for displaying purpose,
(right) warped child image cropped to region of interest. Note the
strong parallax - the pavement visible in the detail image is occluded
by a bush in large areas of the parent image. Bottom row: (left) In this
case, the normalized cross correlation for 5 x 5 regions around each
pixel between the parent and child image, as proposed in [11], does
not provide a good clue on which parts of the image belong to the
same object. (middle left) The resulting mask after thresholding is
unsatisfactory. (middle right) The sum of squared differences gives a
better indication of differing regions in this case. (right) The resulting
mask after thresholding excludes the unwanted object pretty well.

Color Adjustment Varying white balance and exposure set-
tings can cause color aberrations between parent and child images.
In order to fix these, we use a recursive gradient domain fusion on
the elements of the dependency graph.

For each child /. and its parent image I, we apply the inverse

homography matrix ch p to warp I, into the image domain of the
child. This allows us to add an one-pixel border around the previ-
ously computed mask of the child image by sampling colors from
H. ! plp- We then find the image that best matches the gradients of
the child image while respecting the sampled boundary color val-
ues. This can be expressed as a Poisson equation with Dirichlet
boundary conditions following [30]. The boundary conditions are
given by the one-pixel border derived from H,_ -l plp, while the guid-
ance field v for the poisson equation is given by the gradient of /.. A
comparison with and without poisson blending is given in Figure 4.

Figure 4: Color Adjustment. Left: Without poisson blending, the de-
tail child patch might differ in color from the low resolution parent
image. Right: After poisson blending the colors are adjusted.



Blending Mask Copying a child image directly into I is likely
to produce seams, even after poisson blending, due to the higher
frequency bands present in the detail image. These seams are well-
known artifacts in panorama photography. To make the insertion
successful, we refine the computed mask by attributing weights to
all child-image pixels that indicate how to blend the content with
Iy. An easy way to extract a blending matte is to compute a dis-
tance map, also called grassfire transform [37]. For every pixel, the
distance to the image center is computed. The larger the distance,
the more transparent the pixel becomes. The downside of such so-
lutions is that image content is not taken into account. Instead, we
found that much better transitions are possible when exploiting the
image content. A result of our blending technique is shown in Fig-
ure 5.

We first establish a gradient map Iig for each color channel:

I =1Vl = |5, + |5, @

where I, and I, are the gradients in x and y direction respectively.

We establish a gradient density map Ifdm computing for every pixel
p the least cost path to a border pixel of its mask, using dynamic
programming [3], according to

B(p)=min{ Y I15(g)} 3)
path gepath

We combine the gradient density map of all three color channels
by saving only the maximum costs, a separate map for each color
channel would lead to unwanted color aberrations. The cost for pix-
els outside the mask are zero. Consequently, regions with only few
color gradient changes will be assigned a relatively slow growing
value from the border of the mask to the pixel of interest, while
in regions with strong edges the cost value will rise faster, as slow
blending could produce visible ghosting artifacts or unnecessary
blur in these areas (Figure 5). In addition, pixels closer to the patch
center will usually receive higher weights than those close to the
border. The final blending mask is then computed using a com-
bined thresholding and scaling:

Igdm
o; = min(1.0, ’T ) )

where 7 is kept to 0.4 of the maximum value of Iigdm throughout
our examples, which turned out to be a good tradeoff between the
speed of the transition and preserved area of the image. Using the
L) norm in Equation (2) leads to faster changes of the blending
values along edges, due to the triangle inequality, resulting in less
distracting transitions than with the common L, norm.

4 CONSTRAINED MULTISCALE TEXTURE SYNTHESIS

To add plausible details to the root image Iy we will make further
use of the derived scale relationship and image adaptation from Sec-
tion 3. In the following, we will describe how to use the scale re-
lationships to derive a multiscale dependency graph. This is cru-
cial for our texture synthesis algorithm, described in depth in Sec-
tion 4.1. The image synthesis works hierarchically by establishing
matches between images of corresponding levels. Starting with the
original resolution of Iy, we successively upscale this image. After
each upsampling, a blending and a detail synthesis step is applied
to the texture, where data is also used from other images of the
corresponding level.

Extended Dependency-Graph 1t is easier for the synthesis
to work with power-of-two scale factors. We, hence, determine a
resolution level I, representing a scale factor of 2!, For each detail
image /;, [ is maximized such that the original resolution ratio r
between Iy and ;_, is larger than 2.

Figure 5: Blending example: Combining a high and low-resolution
image. Top: gaussian mask (left), our result (right); Bottom: Close
ups and our blending mask.

Because the original input images would represent a very sparse
refinement candidate set, we create a gaussian pyramid out of each
I;_9. One downsampling operation, reducing width and height by
a factor of two, transforms a texture of level [ into a texture of level
[ —1 (Fig. 1(d)). Having defined these multi-resolution representa-
tions, we will denote the warped and accordingly scaled image /; at
level [ as ILO. Similarly, the blending masks are also denoted (xil
to reflect the corresponding scale. Adding Iy to each synthesis level
helps to refine regions with largely different colors than those rep-
resented in the detail images. Below we describe how to make use
of the previously derived representations in our multiscale texture
optimization framework.

4.1 Multiscale Texture Synthesis

Our algorithm builds an image pyramid $°,8',...,S” in a coarse-
to-fine order, where S7 is the final image of the desired output
resolution. The images S’ are not represented by color values,
at a pixel p, but rather store coordinate information in the form
S'[p] = (u,i,1), where u are pixel coordinates, i the image id, and
[ the scale level. We will use the notation xS’ to refer to the actual
color image of §'. Unlike traditional texture synthesis methods, we
do not start with a 1 x 1 image or random noise patterns, but rather
start by refining the root image I.

Each level S is generated by (1) upsampling the image S’ !,
(2) optionally blending the resulting color image *S" with the de-
tail images I!_, and then (3) locally refining the image by a detail
synthesis algorithm.

4.1.1 Upsampling

Instead of upsampling color from the last synthesis step, we up-
sample coordinates. Specifically, we adopt the idea of Lefebvre et
al. [25] and descend in the hierarchy to a higher-resolution level,
if available. Hence, we introduce new details even before refining
the upsampled image. For S~ ![p] = (u,i,), the upsampled patch
is defined by:

S 2p+A] = (2u44),i,1+1), with A € {(g) (?) (5) G)}
)

If a higher-resolution level is not available, we simply copy the con-
tent to all four corresponding pixels of the next resolution level.

4.1.2 Blending

As described in Section 3.2, we have all the information available
to directly blend entire child images into the synthesized image at



each level. This is especially helpful in the context of multiscale
panorama images. In this case, we compute a new solution xS’
from the upsampled coordinates of §'~!. To add the specific details
from our input images, we warp each child If—»o into xS’ and blend
them together using:

8" = of I+ (1 — o) (5"), (6)

where d/ is the previously computed blending mask. The blending
order of the children depends on the original scale level computed
in Section 3.1. The higher the relative resolution, the later it is
added.

4.1.3 Detail Synthesis

In the last section we augmented our upsampled image with known
details. For the other regions, we will try to find plausible details
by texture synthesis.

For each synthesized pixel p in &', the detail synthesis step seeks
to find a pixel m(p) in any detail image I'_, of level r whose local
5 x5 neighborhood N,,,(,) best matches the 5 x 5 neighborhood Np,
centered at p (Fig. 6). A neighborhood N, around a pixel position
q consists therefore of 25 RGB-values. Although out of the scope
of this article, the matching step can usually be very costly, which
is why we give some pointers on the accelerations we employed in
the appendix. Using a larger neighborhood usually only increases
computation time in hierarchical texture synthesis, as was already
pointed out by several other authors [25, 15].

Basically, our goal of synthesizing new details can then be seen
as the minimization of an error functional, which is determined by
mismatches of input/output neighborhoods:

E:=) [Ny =Nyl @)
pes’

where E measures the sum of all neighborhood differences across
the current image. Basically, if neighboring pixels had neighboring
matches, this functional would be minimal. In practice, even if
pixels are neighbors in the output image, the best matches might be
very different and we need to apply an optimization procedure.

Optimization procedure In order to globally minimize the er-
ror functional 7, we minimize the error for each level using a dis-
crete two-step EM-like (Expectation/Maximization) solver, similar
in spirit to [22, 15].

In the M-step, the set of output pixels p remains fixed and a set
of the n best matching input neighborhoods {N,,,, ¢} is found per
pixel p, k denotes the index of the k-th best matching neighborhood.
In practice, we use n = 3, [14] used n = 2 which we found to be a
too small number for sufficient results, [38] proposed touse n < 11,
but we did not experience any visual improvement beyond n = 3.

In the E (expectation) step, the set of matching input neighbor-
hoods {N,,(,} remains fixed while we optimize for S'[p] and,

hence, modify S'. To do this optimization, we look at all pixels
at position p+ A in a 3 x 3 neighborhood (candidate neighborhood)
around p. We then gather all their best matching neighborhood cen-
ters {m(p +A)¥}. To chose the new value for §'[p], we compare all
neighborhoods N, Ay to the neighborhood N, around p, as
illustrated in Figure 6. Let N,,(,45)i 5 be the neighborhood that
minimizes the difference to N,. We then associate with S[p] the
value of m(p -+ 8)/ — §, i.e. position, index and level.

The E- and M-step are repeated until a minimum is reached,
i.e., the best matches m(p) do not change anymore from one it-
eration to the next, or a maximum number of iterations is reached.
To summarize this step, the detail synthesis tries to adjust the im-
age in such a way that every local neighborhood around each pixel
resembles a neighborhood in one of the input images of the cur-
rent level. This optimization does not affect the blended areas, as

best matches in candidate images of scale t

N+ 0 | Nwg+cr.p! | N+ 1,92
o :
Bl=H—EL |
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1 {t Find best hing candidate neighborhood |
T

Figure 6: Optimization procedure: Color values are optimized by im-
proving coherence of neighboring pixels. For each pixel from p’s
3 x 3 neighborhood, its 5 x 5 neighborhood is extracted and the best
matches are found in the candidate images (Nmmk, gray grids on the
right). The neighborhoods from the shifted center pixel (N, sy _a
dotted region around red pixels on the right) are then compared to
p's original neighborhood (N, )and p is replaced with its best match.

for these perfect matches can be found and they will therefore not
be replaced with other values, except at the boundaries for a better
merging with the rest of the image.

5 RESULTS

We have evaluated our system with several test collections. The
synthesis itself took about 30 seconds for an image of size 256 x
256 on an AMD Athlon 64 X2 Dual Core Processor 4800+, with
only one core used, and 3GB of RAM. It scales linearily with the
number of output pixels and approximately logarithmically with the
number of input pixels, i.e., the exemplars. Four iterations have
been applied during the optimization step of each level in all exam-
ples.

Relationship reconstruction To test the relationship recon-
struction presented in Section 3.1, we created a database of 46 im-
ages which we took from 7 different scenes and also used differ-
ent camera models, a subset is shown in Figure 7. This way we
could establish a ground truth dependency graph against which we
compared the result of our algorithm. Our system created correct
relationships for 91.3% of the images, four images were excluded
by the system, but none were falsely assigned. The whole process
took about 725 seconds, as every image had to be matched to each
other image in our current implementation.

Figure 7: Some images from our ground truth data set to test our
relationship reconstruction.

Multiscale Panorama Figure 8 shows a large-scale panorama
created from 9 input images at different scales. In contrast to pre-
vious panorama-stitching methods, the resolution is not fixed in ad-
vance, but we create the needed resolution on demand. The recur-
sive warping and blending steps assure that details appear at the cor-
rect positions and orientations in the output images. For invisible
parts, the synthesis can highly benefit from the derived knowledge
of scale relations. As shown in Figure 8 bottom, plausible details
can be added even for regions not covered by any of the detail im-
ages.

Multiscale Texture Synthesis Using reflexive edges in the
dependency graph allows us to produce results similar to a mul-
tiscale texture synthesis [14], extended by our optimization-based



Figure 8: Multiscale-Panorama Stitching: Using 9 input images at various zoom levels, partly overlapping and of varying sizes between 483x525
and 1086 x 585 our algorithm automatically establishes the dependency graph, scale relations, and blending masks to create a high-resolution
panorama image. We upsampled the original panorama with a 683 x 512 resolution 5464 x 4096. 1% row: Thumbnails of used input images.
2" yow: Panorama generated by our algorithm. 3" row: Two examples of regions incorporating information from the detail images and the
respective part in the original panorama image. Notice that the given details have been faithfully included in the high resolution panorama. 4
row: Two examples for enhanced details next to their respective parts from the original panorama image. Both examples show regions where
no direct correspondence relation with respect to the input images existed. Our solution adds subresolution detail, invisible in the original input
image (here, with 64 times more pixels). In many cases, plausible details are added by our algorithm, e.g., the solar panels on the roof (left). The
texture synthesis step is especially useful for small scale and repetitive structures like the leafs of the trees. Nonetheless, if no sufficient detail
information is available from other parts of the input images, it is not possible to reconstruct semantically meaningful structures like the houses

on the right faithfully.

synthesis approach that exceeds the original image resolution. Fig-
ure 9 shows an image whose resolution of 256 was virtually in-
creased to 81922 using a single exemplar with a single reflexive
edge.

Online Database Even though not directly designed for this
purpose, our algorithm is also applicable to online databases. The
result in Figure 10 used the first 35 hits on Flickr using the phrase
Big Ben. The enlarged image on the top left was then chosen man-
ually to be augmented with details. Even though the images have
been taken by completely different cameras, angles, viewpoints and
at different times, our algorithm added plausible details to the root
image. The algorithm found a substitute in the image database for
the clock-face and replaced it. The other images were not used,
because they differed too much.

Even for parts of the image where no detail information was
available, plausible details have been added by our algorithm, see
Figure 11. Our algorithm is no real Super-Resolution algorithm in
the classical sense, as it provides only similarity to the input image
but does not guarantee equivalence when downsampling the result.

On the downside this can lead to a small loss of contrast in the im-
age, as one pixel sized details might be removed in the process. On
the other hand this feature has several beneficial aspects. The algo-
rithm has more freedom to add details to the image because of this
loosened constraint and small artifacts, like the halo or compres-
sion artifacts around the tower in Figure 11 are reduced, also in the
downsampled version, Figure 11 right.

The dependency graph of all examples in this paper, except for
Figure 9, have been automatically created by our algorithm.

6 DiscussiON AND FUTURE WORK

Limitations Despite feature matching and optimization steps,
our method is still sensitive to parallax effects, occuring if the im-
ages have been taken from largely varying viewpoints. Splitting the
input images into smaller patches and using a voting might help
to reduce these effects, similar to [1]. It would also allow for a
more flexible dependency graph, as overlaps in the images could be
exploited more finely and the algorithm would rely less on the re-
quirement of fitting homographies to entire images. In our current
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Figure 9: Single exemplar: A 256x256 exemplar (upper left) with one
reflexive edge makes an infinite zoom possible. Each image doubles
the resolution, yet the quality remains high compared to bilinear or
NN upsampling (bottom).

implementation, we wanted to be independent of reconstructed 3D
geometry, but if enough images are available, it might turn out use-
ful to incorporate 3D information as well, as it was done by Goesele
etal. [11].

Our algorithm might also suffers from strong changes in the il-
lumination of the different images. While the color correction step
helps to resolve global color changes, it is currently not able to suf-
ficiently remove artifacts caused by strong shadows. Working com-
pletely in the gradient domain and removing strong gradients, not
in accordance to the parent image, or using intrinsic images similar
to [26] might resolve this issue.

In our current implementation we assume that the detail images
actually provide details. This is not the case if the objects of interest
are out of focus. One might want to add an additional preprocessing
step to remove these images.

Conclusion We have introduced a framework for detail en-
hancement in photographs. In this context, we showed a robust
method to establish parent-child and scale relationships in un-
ordered sets of photographs. Its derived graph structure enables
us to find relations between images where simple feature matching
would fail. We explained how to adjust the content of child im-
ages to a user-selected image. This enables a well-behaved detail
synthesis and eases fusion. We proposed a new optimization-based
approach for multiscale texture synthesis which adds details at var-
ious levels to the output image. It allows us to add specific details
at specific positions. Combined with our dependency graph, even
sub-pixel content with respect to the original image can be created.
Our method is fully automatic, enabling novice users to create high-
resolution results without a complicated or expensive setup.

Future Work Currently we applied our algorithm only to rel-
atively small databases consisting of a few dozens of images. An
interesting future direction might be to incorporate larger databases
such as data from GPS or satellite views containing thousands or
more images [17, 32]. In such a scenario, fast rejection and con-
struction methods for the dependencies are needed, using GIST [29]
or scalable recognition and query approaches like [28] could speed
up the process.

Figure 10: Online Database: Our algorithm can derive relationships
between photographs in image databases like Flickr. These relations
enable us to add specific details. Top: A subset of the first 35 images
for the query Big Ben on Flickr. The enlarged image on the left was
then chosen by the user. Bottom left: Detail of the original image.
Bottom right: Result by our algorithm. A closeup on the small turret
in the bottom right of the root image is given in Figure 11.

We would also like to give more artistic freedom to the user,
e.g., marking regions, such as an interesting lighting condition, he
wants to keep in order to propagate this information to the rest of
the image.

Investigating how to derive HDR information for the whole im-
age if only details are captured with different exposure settings is
also an interesting field for future research. One direction is the use
of metadata tags (e.g., exposure time) during the matching process.
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Accelerating Neighborhood Matching For faster computa-
tions, we use an approximate nearest-neighbor search [2] to find the
k best-matching neighborhoods N,y in all Ii_, for each N,,. We
did not adopt k-coherence [38] in this step, as this might restrict us
to too few good matches. We further project all neighborhoods into
a truncated principal component analysis (PCA) space. The PCA
basis for each level 7 is constructed by using all neighborhoods from
all admissible candidates I/ ;. We automatically derive the num-
ber of needed eigenvalues by truncating as soon as the eigenvalues
drop to 0.5% of the largest eigenvalue. This usually results in 9 to
15 eigenvalues used for projection. For possible GPU implementa-
tions, we refer the reader to [23, 42].

User selection of rootimage  Photographers usually take a lot
of similar pictures of a scene and choose the best one afterwards.
We can augment this photo with a slight change to our algorithm.
We first establishe the dependency graph as usual. Then all root
images except for the one selected are deleted and a homography of
their child nodes to the selected image is computed. Upon success,
the whole subtree is added as a child to the selected image, as its



established relations remain valid. Otherwise the whole subtree is
removed from further consideration.



