
IEEE/ EG Symposium on Volume and Point-Based Graphics (2008)
H.- C. Hege, D. Laidlaw, R. Pajarola, O. Staadt (Editors)

GPU-based Particle Systems for Illustrative Volume Rendering

R.F.P. van Pelt1, A. Vilanova 1 and H.M.M. van de Wetering2

1Department of Biomedical Image Analysis, Eindhoven University of Technology, The Netherlands
2Department of Visualization, Eindhoven University of Technology, The Netherlands

Abstract

Illustrative techniques are generally applied to produce stylized renderings. Various illustrative styles have been

applied to volumetric data sets, producing clearer images and effectively conveying visual information. We adopt

user-configurable particle systems to produce stylized renderings from the volume data, imitating traditional pen-

and-ink drawings. In the following, we present an interactive GPU-based illustrative framework, called VolFlies-

GPU, for rendering volume data, exploiting parallelism in both graphics hardware and particle systems. We

achieve real-time interaction and prompt parametrization of the illustrative styles, using an intuitive GPGPU

paradigm that delivers the computational power to drive our particle system and visualization algorithms.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Hardware Architecture]: Parallel processing
I.3.6 [Computer Graphics]: Graphics data structures and data types

1. Introduction

There exist various volume rendering techniques that pro-
duce images from 3D volumetric data sets. Typical exam-
ples of 3D volumetric data are medical data obtained by
computed tomography (CT) or magnetic resonance imag-
ing (MRI). Throughout the years the prevailing objective
within the volume visualization field was to generate im-
ages that closely resemble reality. However, a new volume
rendering branch investigates ways to create illustrative im-
ages from 3D scalar data. Techniques from traditional art and
illustration are incorporated in the volume rendering pro-
cess. The goal is to gain clarity compared to photo-realism
by emphasizing on important features, improving data ex-
ploration. Futile details are omitted and important aspects
are highlighted, resulting in more comprehensible images
[BTBP07,BG07].

Illustrative rendering applications typically include a sub-
stantial amount of user-configurable parameters. Fast and re-
liable interaction with these parameters is of great impor-
tance in order to produce the desired illustrative styles. Fur-
thermore, rendering illustrative styles from large volumetric
data sets at interactive speed requires a considerable amount
of computational power. The desired power in modern con-
sumer graphics hardware has been engaged to increase over-
all performance and interaction speed of both illustrative and
volume rendering applications [LM02,HBH03].

We have adopted the illustrative concepts of the Volume-
Flies framework, presented by Busking et al. [BVvW07].
This framework offers a general basis to produce illustrative
depictions from volumetric data sets. A variety of illustrative
styles can be directly applied, based on particle systems that

Figure 1: VolFliesGPU: illustrative styles on a voxelized
torso. The torso model is provided courtesy of Mangon and
Dretakkis by the AIM@SHAPE Shape Repository.

operate on the volume data. Currently included styles imitate
traditional pen-and-ink drawing techniques.

We have chosen the flexible particle-based approach of
the VolumeFlies framework, expecting a considerable per-
formance gain. GPU-based particle systems are able to pro-
cess and visualize hundreds of thousands of particles in real-
time [KSW04, KKKW05]. We have investigated the latest
graphics hardware to accelerate particle systems for illustra-
tive volume visualization. We present a real-time framework
where the algorithms from VolumeFlies [BVvW07] have
been transformed to fit GPU parallelism. Both our particle
system and our visualization algorithms are based on a novel
paradigm for general purpose computations on the GPU
(GPGPU). This paradigm is based on the GPU pipeline, and
incorporates recent extensions of the shader model.

c© The Eurographics Association 2008.

R.F.P. van Pelt & A. Vilanova & H.M.M. van de Wetering / GPU-based Particle Systems for Illustrative Volume Rendering

Summarizing, the main contributions of this paper are:
• A GPGPU paradigm, serving as a model for a wide range

of algorithms, exploiting computational parallelism (Sec-
tion 3). Algorithms vary from data parallel sorting and
searching, to image and volume processing.

• A GPU-based generic particle-system, employing this
paradigm. This system incorporates energy minimization
for particle redistribution, based on the work by Meyer et
al. [MGW05] (Section 4.1).

• A real-time illustrative volume rendering framework, ini-
tiating particle systems to create stylized depictions (Sec-
tion 4.2). Styles resembling pen-and-ink illustration tech-
niques, known from VolumeFlies [BVvW07], can now
be applied to volume features interactively. Most algo-
rithms were elaborately transformed to use GPU paral-
lelism, achieving fast interaction and parametrization.

2. Previous work

A particular extensive field of research investigates illus-
trative visualization [VBS∗07]. We strive for an interactive
framework, offering a variety of illustrative styles. Hence we
are mainly concerned with hardware-rendered approaches
that produce pen-and-ink style renderings from volume data.

Pen-and-ink style drawing techniques convey object
shape by varying tone. A customary technique that applies
such shading is called stippling. Image-based approaches,
such as presented by Secord et al. [Sec02], define shape by
means of a stipple point distribution. The general disadvan-
tage of image-based approaches is the precarious process
to ensure frame-coherence. Alternatively, object-space infor-
mation can be combined with procedural textures to achieve
frame-coherence. Such a hybrid approach was presented by
Baer et al. [BTBP07]. Furthermore, there are object-based

approaches. Lu et al. [LMT∗03] presented an interactive ap-
proach, controlling the stipple density on a voxel basis.

Another traditional shading style is called hatching, pro-
ducing tone variations by means of combined stroke pat-
terns. The hatches convey surface shape by means of their di-
rections, commonly guided by curvature information. Simi-
lar to the stippling methods, real-time surface hatching was
implemented through procedural textures, such as the hybrid
approach presented by Praun et al. [PHWF01]. Furthermore
there are object-based approaches, that generate the actual
hatch stroke geometry, e.g., Nagy et al. [NSW02].

Most illustrative techniques emphasize on object bound-
aries by visualizing the contours or silhouettes. By definition
contour extraction is view-dependent. Apart from image-

based filtering approaches, object-based methods exist that
extract contours from volume data. A marching lines ap-
proach was presented by Burns et al. [BKR∗05]. A method
based on ‘photic extremum lines’, which detects changes in
luminance, was presented by Xie et al. [XHTS07]

A complete framework for illustrating surfaces in volume
data was presented by Yuan et al. [YC04]. Another frame-
work was presented by Busking et al. [BVvW07]. Their
particle-based approach is flexible and configurable and al-
lows to apply all previously mentioned pen-and-ink styles.

The GPU is often being used for mathematical computa-
tions [OLG∗07, G0̈5], even though the hardware is geared
towards graphics processing. A variety of algorithms that
can be executed data parallel, such as searching and sort-
ing [KW05], typically show a substantial performance gain.
The increasing interest in GPGPU is supported by the new
software platform, named Compute Unified Device Archi-
tecture (CUDA). CUDA allows developers to execute algo-
rithms using the GPU, without knowledge of the underly-
ing hardware architecture. For our illustrative framework we
have decided to directly employ the graphics hardware for
both general computations and rendering algorithm.

In general, particle systems offer a generic and flexible ap-
proach for both simulations and visualization. Moreover,
operations on individual particles have the potential to be
executed in parallel. Typically, the behavior of the parti-
cles is affected by rules from dynamics, resulting in a par-
ticle flow [KSW04, KKKW05, VF07, Dro07]. The visual-
ization of the particles can be chosen freely; dots, arrows
and streamlines are common representations in flow simula-
tions. This freedom of visual representation also benefits pri-
marily visualization oriented goals, as presented by Meyer
et al. [MGW05]. They present a energy minimization that
evenly distributes particles on implicit surfaces, facilitating
point-based surface representations and mesh generation.

We present a particle-driven illustrative framework, which
allows real-time parametrization and interaction with fea-
tures in volumetric data. First of all we present our GPGPU
paradigm, describing a generic concept to execute data par-
allel algorithms on the GPU. The required performance was
obtained by engaging our GPU paradigm. Finally we present
the performance results, our conclusions and view on future
work.

3. GPGPU paradigm using transform feedback

The common GPGPU approach involves rendering a
window-size quad, gathering input values from a 2D texture
and performing computations on a fragment basis [G0̈5].
Output values are returned through a render-to-texture op-
eration. Although this approach offers a solid solution for
many algorithms [KW05], it is a rather counterintuitive man-
ner to use the GPU pipeline. We propose an intuitive and
flexible approach to perform general computations on the
GPU, by employing new extensions in the shader model.

Processing an algorithm generally requires an input, a
processing stage and an output. Implementing these three
basic steps on the GPU, requires a suitable mapping to the
stream processing pipeline. The general relations between
an arbitrary algorithm and our GPGPU paradigm are listed
in table 1.

Algorithm GPU Implementation

Input Read from Buffer Object or Texture
Processing Vertex / Geometry Shading threads
Output Transform Feedback to Buffer Object

Table 1: GPGPU relations

c© The Eurographics Association 2008.

R.F.P. van Pelt & A. Vilanova & H.M.M. van de Wetering / GPU-based Particle Systems for Illustrative Volume Rendering

The actual paradigm, depicted in figure 2, heavily relies on
the recently introduced Unified Instruction Set Architecture.
Programming the Unified Shader Model or Shader Model

4.0 allows for more flexible use of the graphics hardware,
and takes over the task of load-balancing from the developer.

Figure 2: GPGPU paradigm using transform feedback.

Our paradigm implies an intensive use of both vertex shaders
and geometry shaders, while fragment shaders are com-
pletely discarded. This stands in contrast to the commonly
applied render-to-texture approaches.

Input: The input side requires a buffer object containing the
data to be processed, accompanied by a proxy geometry that
commences the algorithm for each buffer element.

In the context of our paradigm, a proxy geometry com-
prises a set of vertices, created CPU-side and stored on GPU
memory by means of a vertex buffer object (VBO). The ver-
tex positions encode indices for elements in the input buffer.

We generally choose a one-dimensional texture buffer ob-
ject (TBO), representing the input data in an array-like form.
Data values can now be obtained by means of a vertex texel
fetch for each of the proxy-geometry vertices.

Processing: Active vertex or geometry shader threads,
which serve as computation kernels, are triggered by render-
ing the vertices of the proxy geometry. The single program,
multiple data architecture of the GPU enforces parallel pro-
cessing of the input, applying an identical set of operations
to each input value. Be aware that his approach is only effi-
cient when shader processing is unified.

Output: The output values are returned to a buffer object by
means of a transform feedback. This transform feedback ex-
tension, or stream-out in DirectX terminology, records ver-
tex attributes for each of the processed primitives. Hence the
graphics hardware now provides support to return, or scatter,
data from a vertex- or geometry-shading stage. As a result all
fragment processing can be discarded.

Computations often require the return of multiple outputs,
in which case a geometry shader thread is employed as pro-
cessing kernel. The recently introduced geometry shading
stage operates on the level of geometry primitives, allowing
creation and destruction of vertices. A point primitive from
the proxy geometry encodes a single input data value from
the input TBO. After processing the algorithm, a line-strip
serves as an array of output values, where the data elements
are encoded by the line-strip vertices.

In the case where multiple output values are returned, the
transform feedback offers a more flexible approach com-
pared to rendering to multiple render targets (MRT). Not
only can the output values be recorded to separate buffers,
also the values can be recorded interleaved into a single
buffer. Be aware that the performance of these methods
varies for different hardware architectures.

This paradigm supports easy implementation of iterative ap-
proaches. The output texture buffer, containing the results of
one computation stage, can be used as an input for the subse-
quent stage. This is depicted in figure 2 by the dashed arrow.
Be aware that the correct input buffer for each computation
stage is determined CPU-side.

The next section describes how the GPGPU paradigm was
employed to create an interactive illustrative volume render-
ing framework, called VolFliesGPU.

4. The VolFliesGPU framework

The VolFliesGPU framework comprises an interactive il-
lustrative visualization framework for real-time pen-and-ink
style rendering of volume data. First, we present the initial-
ization of the particle system, followed by the various illus-
trative styles. The framework is based on the work by Busk-
ing et al. [BVvW07], and is schematically depicted in fig-
ure 3. Each of the framework modules are parallelized, for
which we have employed our GPGPU paradigm.

Figure 3: The VolFliesGPU framework.

4.1. Initializing the particle system

Feature location

Initially the framework simply places a set of particles near
a feature in the volume. For this paper a feature is an iso-
surface at a user selected iso-value, and the initialization
samples the volume data at a user defined grid. In a marching
cubes like approach (Lorensen and Cline [LC87]), a particle
is created between the sample positions and its neighboring
grid point if the iso-surface lies inbetween, see Algorithm 1.

Algorithm 1 FEATURE LOCATION

Input: Volume
Processing per grid point r:

1: for each neighboring grid point n do
2: sample Volume at grid points n and r

3: if iso-surface is crossed then
4: output particle between grid points n and r

Output: Initial Particle Set

c© The Eurographics Association 2008.

R.F.P. van Pelt & A. Vilanova & H.M.M. van de Wetering / GPU-based Particle Systems for Illustrative Volume Rendering

The complexity of the initialization is in the order of the
number of grid points. We aim for a real-time exploration
of the volume data, and employ our GPGPU paradigm as a
basis for the brute-force initialization.

Input: The proxy geometry comprises a 3D grid of equally
spaced vertices, and the volume data consists of a 3D texture.

Processing: Each active shader thread determines the lo-
cation of the new particles near an iso-surface. For each
grid point values are compared to sampled values of the
front, right and top neighboring grid points. This compari-
son might result in zero, one, two or three particle positions.
Since the algorithm has a varying number of output values,
the geometry shader is used to perform the comparisons.

The geometry shader thread creates an output array by
constructing a line-strip of at most three vertices. Each ver-
tex encodes the object-space position of a new particle.

Output: Finally, the vertices of the line-strip primitives are
recorded into a texture buffer object. Each vertex represents
a particle position (x,y,z).

Redistribution

The initial particle placement results in particles on a rec-
tilinear grid, as depicted in figure 4a. A redistribution step
moves the particles towards the actual iso-surface location,
evenly spreading them over the surface. This comprises an
energy minimization scheme, similar to the work presented
by Meyer et al. [MGW05]. They present a general approach
where particles exert repulsive forces to nearby particles,
while restraining them to the surface. The behavior of the
particles can be adjusted by using different energy functions.

In this section, we present a GPU-driven equivalent of the
redistribution approach, based on our GPGPU paradigm. We
aim at a fast and reliable redistribution, which terminates
when the system reaches an equilibrium. The main challenge
lies in the inter-particle communications, because neighbor
interactions counteract parallel processing of the particles.

(a) Before redistribution (b) After redistribution

Figure 4: Particles redistribute evenly over the surface by ex-
erting repulsive forces to nearby particles. The bunny model
is the courtesy of Stanford University.

Repulsive forces between particles only operate within a
user-defined influence radius. A rectilinear binning structure
is introduced to provide locality within the volume. The bins
are uniquely numbered and their size equals the repulsion ra-
dius. We propose a four-step iterative redistribution scheme:

(I) Sort the particles, (II) create a bin look-up table, (III) min-
imize energy, and (IV) verify if the system is stable.

I) The particles will be sorted, with the bin number as sorting
key. Sorting has been applied to particle systems for depth
ordering and inter-particle collision detection [KKKW05].
GPU-based sorting [KW05] is typically data-independent,
exploiting computational parallelism. We have adopted the
odd-even merge sort algorithm by Kipfer et al. [KW05].

Replacing their fragment-based approach with our
GPGPU paradigm, the particles in the input buffer are pro-
cessed in parallel, performing the comparison operations.
The intermediate results are stored into a new buffer through
a transform feedback, omitting any fragment processing.
After each iteration step, the input and output buffers are
swapped, creating a simple ping-pong memory scheme.

II) Addressing all particles within the repulsion radius re-
quires to examine the space taken by an environment of 27
bins surrounding a particle. Because a typical system con-
tains considerably more particles than bins, the duration of
this search process can be reduced by means of a bin look-
up table. We create such a look-up table, by performing a
binary search for each bin, searching in the sorted particle
array for the lowest index of any particle in that bin.

We use our GPGPU paradigm to engage vertex shader
threads that perform a binary search through the particle
buffer in parallel for all bins, searching for the corresponding
particle index. The results are recorded to a newly created
texture buffer object: The actual look-up table.

III) The third step performs the actual energy minimization
scheme, moving the system one step closer to an equilib-
rium. Every particle pi has energy Ei and is expected to move
to locally lower energy state by a steepest descent along
the energy gradient direction. We adopt the two-step update
scheme and the energy function Ei from the work presented
by Meyer et al. [MGW05].

~gi =∇ f (pi); ~ni =−
~gi

|~gi|
; ~vi =−∇Ei

Step 1:pi← pi +(I−~ni ·~n
T
i)~vi; ~gi←∇ f (pi) (1)

Step 2:pi← pi− f (pi)
~gi

|~gi|2
(2)

The gradient descent vector ~vi is projected on the tangent
plane by the matrix I−~ni ·~n

T
i . Here I is the identity matrix,

and ~ni is the local normalized gradient direction ~gi of the
surface. Algorithm 2 performs a single minimization step.

Algorithm 2 ENERGY MINIMIZATION

Input: Volume, SortedParticles, BinLookup
Processing per particle (SortedParticles):

1: Calculate displacement vector vi (requires Volume),
Neighboring particles are obtained through BinLookup

2: Update particle position in tangent plane (Step 1)
3: Reproject position back to the iso-surface (Step 2)

Output: Updated particles with lowered energy state

c© The Eurographics Association 2008.

R.F.P. van Pelt & A. Vilanova & H.M.M. van de Wetering / GPU-based Particle Systems for Illustrative Volume Rendering

Figure 5: Hatches trace a single direction over the surface
(left), or smoothed principal curvature directions (right). The
bunny model is the courtesy of Stanford University.

Input: Unlike Meyer et al. we execute this algorithm on the
GPU, employing our GPGPU paradigm. The volume data,
stored in a 3D texture, the sorted particle texture buffer (I)
and the bin-lookup texture buffer (II) are input to the com-
putational kernels that perform the update scheme.

Processing: The actual two-step algorithm is executed in
parallel by the GPU, employing vertex shader threads.

Output: The transform feedback records the updated parti-
cle positions into the output texture buffer.

The algorithm performs faster compared to the software-
driven approach, despite the required additional steps. The
scheme is iterative, which means that at this point the pro-
cess could start over, moving the particle even closer to a
steady state.

IV) In order to determine if the system has reached a steady
state, we observe the difference of the total system energy
from one iteration to the next. This global system energy
can be calculated by summing the energy values at all par-
ticle locations. This summation is executed by means of a
reduction operation, again using the GPGPU paradigm. It-
erative pair-wise addition of values in a 1D texture buffer
containing the energy values, results in the global system
energy value. The texture buffer containing the global en-
ergy level is memory mapped, such that it becomes available
CPU-side. The energy level for each redistribution iteration
is stored, and compared with the value of the previous itera-
tion. If the difference is below a user-defined threshold, the
system has reached a steady state.

4.2. Visualizing the particle system

A wide variety of illustrative styles can be applied to a par-
ticle set. We apply styles that resemble pen-and-ink illustra-
tions on the visible particles. This section will address point-
based stippling techniques (figure 7a), stroke-based hatching
techniques (figure 7b) and contour visualization (figure 7c).

For all styles, the VolumeFlies [BVvW07] hidden surface
removal filter is applied: The iso-surface is splatted with
uniquely colored cones, generated by the geometry shader,
and particle visibility is determined by an off-screen frame-
buffer.

Figure 6: Hatches follow the main principal curvature di-
rections (left), or the smoothed directions (right). The horse
model is the courtesy of Georgia Institute of Technology.

Stippling

Stippling is a technique where points are used to convey ob-
ject shape. Therefore we render our particles using point
primitives, while varying the scale of the point primitives.
Parameters can be configured interactively, adjusting bright-
ness and contrast of the stipple visualization.

The point primitives are scaled with the result of the basic
diffuse lighting equation [BVvW07] (figure 7a). The point
size is determined during vertex shading, which allows to
set the size of the point primitive per particle.

Hatching

Hatching highlights curved areas, while shading a surface
by gradual variation of the hatch stroke density. We present
an approach that traces hatches as a polyline over the sur-
face along either a fixed direction, or a smoothed principal
curvature direction.

Input: The particle positions are passed on to the geometry
shader threads, as the seed point for a hatch trace.

Processing: The hatches are represented by line-strip prim-
itives, which can be pre-computed since the approach is not
view dependent. The geometry shader thread determines the
vertices connecting the hatch segments, by projecting the di-
rection to the tangent plane.

Output: The resulting line-strip primitives are recorded.

In a subsequent rendering pass, the line-strips can be fetched
from the texture buffer and rendered in real-time. The ap-
pearance of the hatches can now be adjusted interactively.

The curvature-based approach (figure 5b) improves the way
hatches convey object shape, by guiding the hatches into the
direction of the principal curvature on the implicit surface.

Sigg and Hadwiger [SH05] presented a fast cubic B-spline
filtering approach in order to reconstruct partial derivatives
from the volume data. These derivatives are used to compute
the principal curvature directions in real-time.

Curvature information is computed on demand while trac-
ing the hatches. However, directly tracing along the principal
curvature directions yields to messy results, when the main
direction is not robustly defined (figure 6b). The field of prin-
cipal curvature directions should therefore be smoothed.

c© The Eurographics Association 2008.

R.F.P. van Pelt & A. Vilanova & H.M.M. van de Wetering / GPU-based Particle Systems for Illustrative Volume Rendering

Figure 7: Various illustrative visualization styles. Stippling allows surface shading by changing the stipple scale (left). Hatching
also conveys shape by tracing hatch stroke in one or two (middle) directions. Contours (right) highlight the feature boundaries.
The CT head data set is the courtesy of University of North Carolina, Chapel Hill.

Smoothing of the curvature directions comprises computing
a weighted average~si, based on the main principle curvature
directions ~κ1 j

of the particles p j in the neighborhood. This
smoothing is executed on the GPU, estimating curvature in-
formation of neighboring particles on the fly.

~si = wT

∑ρ j
~k1 j

∑ρ j
+(1−wT)~sT , where wT =

∑ρ j

∑ j 1

The trace reliability weight wT is determined by averaging
the surface reliability ρ j of all neighboring particles. This
surface reliability determines whether the local main cur-
vature direction is suitable for hatching. If it is suitable for
hatching the curvature directions will be weighted with relia-
bilities ρ j, otherwise the hatch is guided along a user defined
fixed direction~sT . The surface reliability ρ is determined as:

ρ(κ1,κ2) =

0 if |κ1|< ε and |κ2|< ε

1−|2(|s|−
1

2
)| otherwise

Here κ1 and κ2 are the principal curvature magnitudes, while
s is the shape index, indicating the shape of the local surface.
The ε parameter defines which nearly flat surfaces are con-
sidered flat. The shape index s ∈ [−1,1] was introduced by
Koenderink and Van Doorn [KvD92], and is defined as:

s =
2

π
arctan

κ2 +κ1

κ2−κ1
(κ1 ≥ κ2 and |κ1|+ |κ2|> 0)

The hatch strokes may now be traced along the smoothed
curvature field. We use a simple weighting scheme, tracing
the hatches based on the smoothed curvature directions and
the number of segments from the seed point. This approach
might lead to intersections for long hatch strokes.

Observe that in figure 5a the hatches are traced nearly ver-
tical along the surface, while the curvature-based hatches in
figure 5b indeed follow the smoothed field. Especially con-
sider the strokes on the surface of the ears of the bunny.

Both hatching approaches are extended with cross-hatching
functionality. A second hatch stroke is generated at each par-
ticle position, departing under a user-defined angle from the
original hatch stroke. The increase of hatch density results in
a darker tone. Using a two-level threshold on the basic dif-
fuse lighting equation, three tones can be used to shade the
surface. The brightest areas contain no hatches, intermedi-
ately illuminated areas are hatches with single strokes, and
the darkest areas are cross-hatched (figure 7b).

Contours

Contours are known for their ability to convey object shape
by emphasizing object boundaries (figure 7c). The contours
of an object are defined by the set of lines, demarcating areas
where the objects surface turns away from the viewer.

The contours are generated, starting from particle posi-
tions near the contours, similar to the creation of the hatch
strokes. In contrast, the contours cannot be generated prior
to rendering, since they are by definition view-dependent.

Particles within a user-defined distance from the contours
are selected, and segments are traced along the contours by
a geometry shader. Particles near the contour are now con-
sidered to be point primitives, transformed by the geometry
shader into line-strips that resemble a part of the contour. In
contrast to the hatches, the line-strips are not recorded to a
texture buffer, but directly rendered to screen.

The original VolumeFlies framework [BVvW07] presents
constant-width contours, by placing a threshold on a curva-
ture dependent measure τ. Both the trace direction, and the
measure for constant-width contours were adopted.

Combined styles and context visualization

The illustrative styles can be combined, while keeping in-
teractive framerates. Moreover, multiple particle-set can be
created, visualizing different styles on multiple iso-surfaces.
Adding particle sets comes with a performance cost, which
eventually leads to loss of interactivity. Approximately

c© The Eurographics Association 2008.

R.F.P. van Pelt & A. Vilanova & H.M.M. van de Wetering / GPU-based Particle Systems for Illustrative Volume Rendering

Figure 8: Various illustrative styles. Curvature-based hatching with contours (left). Direction-based hatching on cone-splatted
bone tissue (middle), combined with a scale-based stippled skin iso-surface with contours. Similar styles, with added contours
on the bone surface (right).

200.000 particles can be rendered interactively, which in
practice is sufficient to illustrate the desired features.

Figure 1 demonstrates a splatted iso-surface without shad-
ing. Black contours are enabled and directional hatches are
applied in combination with a faint scale-based stippling.

In contrast to figure 1, figure 8c includes two particle sets,
visualizing two iso-surfaces. This demonstrates that illustra-
tive rendering is particularly useful for context visualization,
originating from the sparseness of elements.

5. Results

We have shown a particle-based illustrative volume ren-
dering framework for which we employed our GPGPU
paradigm. Various illustrative depictions are presented in
figure 8. The framework was implemented in C++ using
the OpenGL 3D graphics API in combination with the GL
shading language (GLSL). All algorithms are entirely GPU-
driven, currently bound to the NVidia 8 series.

The GPU was brought forward to increase performance of
general purpose computations. In table 2, we show the actual
performance gain for each of the operations performed by
the hardware-rendered framework, in comparison with the
software-rendered framework.
From these results we can conclude that all elements of the

General information:

Processor Intel Core 2 Duo 2.4 GHz; 3GB RAM
Graphics hardware NVidia GeForce 8800GTX

Dataset CT Head (2563 voxels x 8 bits)
Number of particles 60.000

Initialization: CPU GPU speed-up
Load volume data 3.92 sec 0.14 sec 28x
Brute-force particle placement 9.83 sec 0.14 sec 70x
Redistribution (25 steps) 253.34 sec 4.00 sec 63x
Redistribution (15 steps) * 2.58 sec -

Visualization: CPU GPU speed-up
Stippling (Scale-based) 7 fps 1135 fps 162x
Hatch smooth field directions 7.73 sec 1.16 sec 6x
Hatch generation (Direction-based) 52.65 sec 0.07 sec 752x
Hatch generation (Curvature-based) 53.05 sec 0.29 sec 183x
Hatch visualization 1 fps 18 fps 18x
Contours < 1 fps 15 fps 324x
* Uses stop criterion, which is not included in software-rendered VolumeFlies

Table 2: Performance comparison

framework show a big performance gain. In particular the
steps without inter-particle communication show a striking
increase of speed. Computation times of the pre-processing
steps are decreased significantly. For example the particle
placement now allows real-time change of iso values. Also
the particle redistribution step shows a big performance gain,
for which we believe no GPU-based solution was available.

The visualization of the illustrative styles requires frame-
to-frame processing. Also here we achieve interactive fram-
erates. Volumes can be inspected in real-time, while apply-
ing multiple styles and changing associated parameters.

Table 3 shows the performance of the figures presented
throughout this paper. The performance of an illustrative
rendering depends heavily on the amount of particles in
the system, while the volume dimensions and quantification
hardly harm the overall performance. The amount of parti-
cles in the system depends on the surface area of the selected
iso-surface, yet the amount can be changed interactively by
changing the spacing of the sampling grid. The dimensions
and quantification of the volume is limited to the amount of
memory available on the GPU.

Figure Resolution #Particles Framerate

Torso (fig. 1) 5123 (16 bits) 20324 15.1 FPS

Bunny (fig. 4) 1283 (16 bits) 25354 104.2 FPS

Skull a (fig. 7a) 2563 (8 bits) 57030 51.3 FPS

Skull b (fig. 7b) 2563 (8 bits) 26808 29.6 FPS

Skull c (fig. 7c) 2563 (8 bits) 57030 11.3 FPS

Bunny (fig. 5) 1283 (16 bits) 27420 45.1 FPS

Horse (fig. 6) 1283 (16 bits) 18492 63.6 FPS

Bunny (fig. 8a) 1283 (16 bits) 17242 14.0 FPS

Hand (fig. 8b) 2563 (8 bits) 41122 12.6 FPS

Head (fig. 8c) 2563 (8 bits) 75668 3.6 FPS

Table 3: Performance of the GPU-based framework

6. Conclusions and Future work

We have presented an interactive particle-based illustrative
volume rendering framework, based on a GPGPU paradigm.
The paradigm allows data parallel execution of both the
particle-system and algorithms in the framework.

c© The Eurographics Association 2008.

R.F.P. van Pelt & A. Vilanova & H.M.M. van de Wetering / GPU-based Particle Systems for Illustrative Volume Rendering

The flexible and generic GPU-based particle system can be
used in different types of applications. We presented a par-
ticle redistribution scheme, which to the best of our knowl-
edge was not yet realized on a GPU basis.

Illustrative styles that resemble pen-and-ink drawings can
be applied interactively to iso-surfaces in volumetric data.
Different iso-surfaces can be inspected in real-time, and vi-
sualization parameters can be adjusted easily. Furthermore,
the performance of the pre-processing steps is improved.

The GPU currently implies memory limitations. The vol-
ume and intermediate buffers should fit in GPU memory. In
the future, rendering larger data could be investigated.

The amount of particles should be restricted, because it
strongly influences performance of the algorithms. Large
screen resolutions do not affect interactivity. Currently, the
particle density does not scale with the zoom factor.

The presented framework is flexible and extensible with
new styles and techniques. Incorporating the single operator
for particle visibility determination by Katz et al. [KTB07],
might increase hidden surface removal performance.

Particles are sparsely distributed, which makes them suit-
able for context visualizations (figure 8c). We are interested
in combining direct volume rendering with the presented in-
direct illustrative methods for focus-and-context rendering.

References

[BG07] BRUCKNER S., GRÖLLER M. E.: Style trans-
fer functions for illustrative volume rendering. Computer
Graphics Forum 26, 3 (2007), 715–724.

[BKR∗05] BURNS M., KLAWE J., RUSINKIEWICZ S.,
FINKELSTEIN A., DECARLO D.: Line drawings from
volume data. ACM Transactions on Graphics (Proc. SIG-

GRAPH) 24, 3 (Aug. 2005), 512–518.

[BTBP07] BAER A., TIETJEN C., BADE R., PREIM B.:
Hardware-accelerated stippling of surfaces derived from
medical volume data. In EuroVis (2007), pp. 235–242.

[BVvW07] BUSKING S., VILANOVA A., VAN WIJK J.:
Particle-based non-photorealistic volume visualization.
The Visual Computer Journal (2007).

[Dro07] DRONE S.: Real-time particle systems on the
gpu in dynamic environments. In ACM SIGGRAPH ’07:

courses (2007), ACM, pp. 80–96.

[G0̈5] GÖDDEKE D.: GPGPU–Basic Math Tutorial.
Tech. rep., FB Mathematik, Univ. Dortmund, Nov. 2005.

[HBH03] HADWIGER M., BERGER C., HAUSER H.:
High-quality two-level volume rendering of segmented
data sets on consumer graphics hardware. In VIS ’03:

Proceedings (2003), IEEE Computer Society, p. 40.

[KKKW05] KRÜGER J., KIPFER P., KONDRATIEVA P.,
WESTERMANN R.: A particle system for interactive vi-
sualization of 3d flows. IEEE TVCG 11, 6 (2005), 744.

[KSW04] KIPFER P., SEGAL M., WESTERMANN R.:
Uberflow: a gpu-based particle engine. InHWWS ’04 pro-

ceedings (2004), ACM, pp. 115–122.

[KTB07] KATZ S., TAL A., BASRI R.: Direct visibility
of point sets. In SIGGRAPH ’07 papers (2007), p. 24.

[KvD92] KOENDERINK J. J., VAN DOORN A. J.: Surface
shape and curvature scales. Image Vision Computations

10, 8 (1992), 557–565.

[KW05] KIPFER P., WESTERMANN R.: Improved GPU
sorting. In GPUGems 2: Programming Techniques for

High-Performance Graphics and General-Purpose Com-

putation (2005), Pharr M., (Ed.), pp. 733–746.

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes:
A high resolution 3d surface construction algorithm. In
SIGGRAPH ’87 proceedings (1987), ACM, pp. 163–169.

[LM02] LUM E. B., MA K.-L.: Hardware-accelerated
parallel non-photorealistic volume rendering. In NPAR

’02: Proceedings (2002), ACM, pp. 67–ff.

[LMT∗03] LU A., MORRIS C., TAYLOR J., EBERT D.,
HANSEN C., RHEINGANS P., HARTNER M.: Illustrative
interactive stipple rendering. IEEE TVCG 9, 2 (2003),
127–138.

[MGW05] MEYER M., GEORGEL P., WHITAKER R.:
Robust particle systems for curvature dependent sampling
of implicit surfaces. In Proceedings of the Int. Conference
on Shape Modeling and Appl. (June 2005), pp. 124–133.

[NSW02] NAGY Z., SCHNEIDER J., WESTERMANN R.:
Interactive volume illustration. In Proceedings of Vision,

Modeling and Visualization Workshop ’02 (2002).

[OLG∗07] OWENS J., LUEBKE D., GOVINDARAJU N.,
HARRIS M., KRÜGER J., LEFOHN A., PURCELL T.: A
survey of general-purpose computation on graphics hard-
ware. Computer Graphics Forum 26, 1 (2007), 80–113.

[PHWF01] PRAUN E., HOPPE H., WEBB M., FINKEL-
STEIN A.: Real-time hatching. In SIGGRAPH ’01 pro-

ceedings (2001), Fiume E., (Ed.), pp. 579–584.

[Sec02] SECORD A.: Weighted voronoi stippling. In
NPAR ’02: Proceedings (2002), pp. 37–43.

[SH05] SIGG C., HADWIGER M.: Fast third-order texture
filtering. In GPUGems 2: Programming Techniques for

High-Performance Graphics and General-Purpose Com-

putation (2005), Pharr M., (Ed.), pp. 313–329.

[VBS∗07] VIOLA I., BRUCKNER S., SOUSA M. C.,
EBERT D., CORREA C.: IEEE visualization tutorial on
illustrative display and interaction in visualization, 2007.

[VF07] VENETILLO J. S., FILHO W. C.: Gpu-based par-
ticle simulation with inter-collisions. The Visual Com-

puter 23, 9-11 (2007), 851–860.

[XHTS07] XIE X., HE Y., TIAN F., SEAH H.-S.: An
effective illustrative visualization framework based on
photic extremum lines. IEEE TVCG 13, 6 (2007), 1328.

[YC04] YUAN X., CHEN B.: Illustrating surfaces in vol-
ume. In VisSym (2004), pp. 9–16, 337.

c© The Eurographics Association 2008.

