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Abstract

Feature modeling systems usually employ a boundary representation (b-rep) to store the shape information on a product. It has, however,

been shown that a b-rep has a number of shortcomings, and that a cellular representation can be a valuable alternative. A cellular model stores

additional shape information on features, including the feature faces that are not on the boundary of the product. Such information can be

profitably used for several purposes.

A major operation in every feature modeling system is boundary evaluation, which computes the geometric model of a product, i.e. either

the b-rep or the cellular model, from the features that have been specified by the user. Since boundary evaluation has to be executed each time

a feature is added, removed or modified, its efficiency is of paramount importance.

In this paper, boundary evaluation for a cellular model is described in some detail. Its efficiency is compared to the efficiency of boundary

evaluation for a b-rep, on the basis of both complexity analysis and performance measurements for the two types of evaluation. It turns out

that boundary evaluation for a cellular model is, in fact, more efficient than for a b-rep, which makes cellular models even more attractive as

an alternative to b-reps.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Feature modeling is now the predominant approach for

product modeling. Shape and related functional information

can be stored in a single product model, which can

considerably improve the product modeling process [1].

Current feature modeling systems usually maintain a

dual representation for a product: on the one hand, a

parametric definition of the product, and, on the other hand,

a geometric model representing the resulting shape; see

Fig. 1. The parametric definition might consist of a large

variety of information, normally organized in a graph

structure. Typically, the graph represents relations among

instances of parameterized features, constraints, Boolean

operations, auxiliary geometric entities, etc.
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Most commercial feature modeling systems employ a

boundary representation (b-rep) as geometric model to store

the shape information. B-reps have been successfully used

in traditional geometric modeling systems to support

specification, visualization and analysis of a model, but

they are, in fact, not powerful enough to store all shape

information that is relevant in a feature modeling context.

Therefore, cellular models have been suggested as an

alternative to b-reps. In a cellular model, additional shape

information on features can be stored, e.g. not only the faces

of the features that are on the boundary of the product, but

also those faces that are not on the boundary; see [2] for an

overview of several proposals.

The cellular model introduced by the Computer Graphics

and CAD/CAM Group of Delft University of Technology

[2], for example, has been profitably used for several

purposes. First, it allows the semantics of features to be

specified, and the validity of a feature model to be

maintained, which is essential to make feature modeling
Computer-Aided Design 37 (2005) 1266–1284
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Fig. 1. Generic scheme of current feature modeling systems.
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really more advantageous than geometric modeling [3].

Second, more functional information of a feature model can

be visualized, e.g. the above-mentioned faces of features

that are not on the boundary of the product, which can be

very helpful during specification and analysis [4]. Third, it

can serve as one of the main data structures for a multiple-

view feature modeling system, which can support the

integration of several product development phases [5].

Boundary evaluation is the process that computes the

geometric model of the product, i.e. either a b-rep or a cellular

model, on the basis of the parametric definition [6]; see again

Fig. 1. It is a major operation in any feature modeling system,

and, since it has to be executed each time a feature is added,

removed or modified, its efficiency is of utmost importance.

In this paper, boundary evaluation for a cellular model is

described in some detail. On the basis of the higher

complexity of a cellular model, compared to a b-rep

representing the same product, one can legitimately ask

how efficient boundary evaluation for a cellular model is,

compared to boundary evaluation for a b-rep.

The main goal of this paper is to answer this question.

This is done in two ways: (i) the computational complexity

of boundary evaluation algorithms for both representations

is analyzed [7], and (ii) statistics emerging from perform-

ance measurements of boundary evaluation for both

representations are presented and discussed. Performance

of boundary evaluation for a b-rep was measured with the

commercial feature modeling system Pro/ENGINEER [8],

and for a cellular model with SPIFF [3], a prototype feature

modeling system developed at Delft University of Tech-

nology. Preliminary performance measurements, without

any complexity analysis, have been published in [9].

Notice that for the boundary evaluation for the cellular

model, in the SPIFF system, the right arguments for the

complexity analysis and the explanation of the performance

measurements can always be given, but that for the

boundary evaluation for the b-rep, in the Pro/ENGINEER

system, sometimes only plausible arguments can be given.
Insufficient information is available on the latter system to

do better here.

In Section 2, model classes are defined for best, average

and worst case practical behavior for boundary evaluation,

and representative models are presented for each of them. In

Section 3, boundary evaluation for a b-rep is discussed, and

a complexity analysis of this process is given. In Section 4,

the cellular model of SPIFF, and the basic operations on it, are

described. In Section 5, boundary evaluation for the cellular

model and its complexity analysis are presented. In Section

6, the outcome of the performance measurements for the

two types of boundary evaluation is shown. In Section 7,

conclusions on the efficiency of boundary evaluation for the

cellular model are given.
2. Best, average and worst cases

In this section, three classes of feature models are

identified that present, in practice, best, average and worst

case behavior for boundary evaluation, and a representative

model is proposed for each class.

As will be recalled in the next sections, boundary

evaluation for feature models strongly relies on the use of

Boolean operations. The computational cost of such an

operation, in turn, is directly dependent on the number of

topologic entities in each of the operands, as well as on the

number of intersections among such entities. Therefore, in

the definition of the classes and their representative models,

these two factors play a predominant role. The representa-

tive models are regular, in the sense that they contain sets of

identical features, and are, therefore, suitable for studying

the behavior of the boundary evaluation algorithms for both

b-rep and cellular model. These models will be used

throughout the paper, both in the complexity analyses and in

the performance measurements.

So, in this paper, the best, average and worst cases do not

refer to mathematically well-defined, unique cases, because

this is impossible in the complex domain of feature models

considered here. Instead, these cases refer to (i) classes of

models which present, respectively, best, average and worst

behavior in practice during boundary evaluation, and/or

(ii) the representative models of these classes.

2.1. Best case

From a practical point of view, the class of feature

models presenting best case behavior for boundary

evaluation is made up of all models whose features are

disjoint, i.e. for each one of the models, each feature just

intersects some base stock.

Fig. 2(a) shows the representative model for this class,

which consists of a block with one row of 100 non-

intersecting cylindrical through hole features (numbered

from 1 to 100). This model can be built from scratch by

performing a sequence of 100 add feature operations.



Fig. 2. Representative models for (a) best case, (b) average case and (c) worst case behavior for boundary evaluation.
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2.2. Average case

In most real-world models, several features intersect

each other. However, given the local character of features,

which are typically small compared to the size of a whole

model, each feature usually intersects only a limited number

of other features.

Therefore, the class of feature models presenting average

case behavior for boundary evaluation consists of all models

for which each of its m features has a small average

number i of intersections with other features, i being

independent of m.

The representative model for this class is shown in

Fig. 2(b). It consists of a block with one row of 33 ‘feature

groups’, each ‘group’ having three intersecting features: a

rib, a slot, and a through hole spanning between both. In

terms of boundary entities, each hole feature intersects one

face of the rib, two faces of the slot, as well as one face of

the block. It is assumed that the features in each ‘group’ are

inserted sequentially: first the rib, then the slot, and finally

the through hole. Note that only the computation times for

operations on the hole features (numbered 3,6,.,99) will be

considered throughout the paper, thus guaranteeing the

desired regular behavior of this model regarding boundary

evaluation.
2.3. Worst case

Considering the two predominant factors pointed out

above, one can easily conclude that there is no absolute

worst case behavior in terms of boundary evaluation. The

number of topologic entities in a model, and of their

intersections with a new feature, has virtually no upper

bound. So, whichever adverse situation one devises, it is

always possible to think of an even worse model. An

example of a ‘very bad’ case would be a model with many

concave features which intersect each other many times.

From a practical point of view, however, the class of

feature models presenting worst case behavior can be
thought of being made up of all models for which each of its

m features intersects (once) i other features, i being now a

fraction of m.

The representative model for this class is shown in

Fig. 2(c). It consists of a block with 40 similar through

holes, each of them intersecting 20 other through holes, i.e.

half of the total number of features. To build this model

keeping that fraction (almost) constant, the through holes

are added alternately: one ‘horizontally’ (intersecting all

existing ‘vertical’ holes), the next ‘vertically’ (intersecting

all existing ‘horizontal’ holes), and so forth.
3. Boundary evaluation for a b-rep

Most commercial modeling systems are deemed history-

based: the most important relation in the parametric

definition graph is the order of creation of feature instances,

which defines the model history. Such systems typically use

a b-rep as geometric representation.

In history-based systems, adding a new feature to the

model, by providing a set of input values for its parameters,

appends a new node to the model history, yielding a new

parametric definition of the product. Similarly, feature

instances can be modified by specifying new values for their

parameters, or can be deleted from the model. This is done

by modifying, or deleting, the respective feature node in the

model history.
3.1. Boundary evaluation

The goal of the boundary evaluator in Fig. 1 is, for

history-based systems, to generate a b-rep that matches the

parametric definition at each moment [6]. Therefore,

whenever a new parametric definition is made, it should

be input to the boundary evaluator, and the corresponding

new b-rep should be generated.

When a new feature is added to (the top of) the model

history, all the evaluator needs to do is to combine the new

feature shape with the current b-rep. For this, Boolean union
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operations are used to process additive features, and

Boolean difference operations to process subtractive

features.

However, when a feature is modified in, or removed

from, the model history, the current b-rep is, in general, of

little use for the boundary evaluator. The simplest way to

generate the new b-rep is then to sequentially walk through

the nodes in the model history, and re-execute the associated

Boolean operations to build a new b-rep from scratch. Fig. 3

presents an example of this re-evaluation process. When the

width of the pocket highlighted in Fig. 3(a) is decreased, the

whole model history in Fig. 3(b) is sequentially re-executed,

yielding the model in Fig. 3(c). So, in this re-evaluation

scheme, all features in the model history are processed time

and again.

Re-executing the whole model history after modifying,

or removing, a feature has the shortcoming that its

computational cost is proportional to the number of features

in the model history. An improvement to this method, which

is currently used in most boundary evaluators, consists of

keeping the intermediate models between all history steps,

in which case only the history steps after the modified, or

removed, feature node need to be re-executed. Using this

method, the computational cost of boundary evaluation after

modifying, or removing, a feature becomes dependent on

the feature node position in the model history, but the

amount of memory required to store all intermediate models

is significant. An alternative improvement consists of

storing only the deltas, i.e. the model differences, between

history steps. This alternative requires less storage, because

deltas are typically much smaller than intermediate models,

but more computation time is needed to rollback from the

current b-rep to the state from which the model needs to be

re-evaluated. In both alternatives, however, typically

several features that are actually left unchanged by the

operation have to be re-processed, as is, for example, the

case for features 7–11 in Fig. 3.
Fig. 3. Boundary re-evaluation a
3.2. Complexity analysis

The basic feature operations on the b-rep model were

introduced in Section 3.1. In what follows, these

operations are analyzed in terms of the required

computation time, and the associated computational

complexity, using the classes and representative models

defined in Section 2.
3.2.1. Add feature operation

Let us consider a model made up of m features and n

boundary faces. Adding a new feature (F) to the model is

accomplished by combining the shape of the new feature

with the current b-rep model, through the appropriate

Boolean union or difference operation.

The required computation time (t) can be decomposed into

t Z tint C top C tupd;

where tint represents the time associated with the identification

of the nint boundary faces intersecting F, top represents the time

associated with the processing of these boundary faces to

accomplish the required Boolean operation, and tupd represents

the time required for the update of the b-rep representation.

Regarding the number of boundary faces involved, one

can argue that:
†

fter
the time tint is proportional to the total number of faces

defining the model boundary (n), since each face has to

be tested for intersection with the faces defining the new

feature F;
†
 the time top is proportional to the number (nint) of faces

intersecting the new feature F;
†
 the time tupd is proportional to the number (nop) of (new

and/or modified) faces arising as a result of the

performed Boolean operation.

The required computation time can then be written in

terms of the number of faces involved in the various
a feature modification.
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operations as

t Z a!n Cb!nint Cg!nop;

where a, b, and g are (constant) positive factors. Note that

these factors express average behavior: in general, not all

(intersected or created) faces are equally complex, nor

require the same computation time to be processed.

In what follows, given the general equation above, the

computation time of the add feature operation will be

analyzed for the best, average and worst cases of Section 2.

Best case. For a model in the best case class, the added

feature just intersects a few faces of the base stock, and the

faces defining the added feature have to be properly

combined into the model b-rep.

Consider now the representative model of Fig. 2(a).

Clearly, in terms of the number of boundary faces, a new

hole feature F intersects just two faces of the block (nintZ2)

and, after the feature addition, the model boundary is

defined by one more face. Regarding the computation time,

we then have

t Z a!n C2!b C3!g:

Therefore, the computation time needed for adding a new

feature to the model linearly increases with the number of

faces already making up the model boundary. And, as a

result of that operation, the overall number of faces

increases by just one unit. Regarding its complexity order,

the computation time has, thus, linear complexity, O(n).

Let us consider now that this model is being built up

through a sequence of best case feature additions. Regarding

the addition of the kth feature, the increase in the number of

boundary faces can be represented as

nk Z nkK1 C1;

where nk represents the number of faces after adding the kth

feature, with n0Z6 representing the (initial) block defined

by six faces. For the required computation time tk we have

tk Z a!nkK1 C2!b C3!g:

The above equations can be further simplified to

nk Z k C6; k Z 0; 1;.; 100;

and

tk Z a!k C ð5!a C2!b C3!gÞ Z a!k CDB;

k Z 1; 2;.; 100:

Thus, both the overall number of boundary faces and the

computation time associated with adding a feature have, in

this case, linear complexity order.

Average case. For a model in the average case class, an

added feature F intersects a limited number of other model

features and, thus, a limited number of boundary faces

(nintZr), and a limited number of boundary faces are

generated or modified (nopZs).
Regarding the computation time, we then have

t Z a!n Cb!r Cg!s:

As explained in Section 2, the number of actually

intersected faces (r) is smaller than n, and knowing that s

depends on both r and the number of faces bounding the

inserted feature, it can be concluded that the computation time

required by an add feature operation, for the average case, has

linear complexity order, similarly to the best case above.

In order to better understand the average behavior, a

detailed analysis pertaining to the representative model of

Fig. 2(b) will be given in what follows. Note that any added

through hole feature intersects a rib and a slot, as well as the

block, in such way that:
†
 the hole feature intersects one of the faces defining the

rib, as well as two of the faces defining the slot;
†
 five boundary faces are generated or modified after the

feature addition.

Let us consider now that the model is being built up by a

sequence of add feature operations, corresponding to

successively adding a rib, a slot and a cylindrical through

hole, 33 times. Adding just a rib and a slot feature increases the

overall number of boundary faces by eight. Adding next a hole

feature further increases the total number of faces by two.

Similarly to what was done for the best case, and

regarding the insertion of the kth hole feature, the total

number of faces is given by

nk Z nkK1 C10;

with n0Z6 representing the number of faces in the initial

model defined just by the block. Note that the 10 additional

faces result from the insertion of a ‘group’ (rib, slot and hole).

This recursive equation can be written in closed form as

nk Z 10!k C6; k Z 0; 1;.; 33:

For the computation time associated with the insertion of

the kth hole feature, we can now write

tk Z a!ðnkK1 C8ÞC3!b C5!g;

assuming that a rib and a slot were already added and eight

additional faces were created. This can be further simplified to

tk Z 10!a!k C ð4!a C3!b C5!gÞ

Z 10!a!k CDA;

k Z 1; 2;.; 33:

Thus, both the overall number of faces and the compu-

tational cost associated with adding a hole feature have, as

expected, linear complexity order.

Worst case. When adding a feature to a model in the

worst case class, the new feature intersects a substantial

fraction of the features making up the model, entailing a

large increase in the number of faces defining its boundary.
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In order to better understand such worst case behavior, as

well as the fundamental difference regarding the previous

cases, a detailed analysis pertaining to the representative

model of Fig. 2(c) will be given in what follows. Note that

this model has an even number (40) of cylindrical through

hole features, and that there are as many ‘vertical’ as

‘horizontal’ hole features. Any of the 20 horizontal,

respectively vertical, hole features intersects once each

one of the 20 vertical, respectively horizontal, hole features.

To see how the number of boundary faces grows after

adding a new feature, let us analyze how the model can be

built through a sequence of feature addition operations,

starting with just one block:
†
 the initial model is the block defined by six faces: n0Z6;
†
 adding the first feature (say, a vertical through hole)

results in a boundary defined by seven faces: n1Z7;
†
 adding the second feature (a horizontal through hole)

intersecting the first one, both holes splitting each other

into two, increases the number of faces by three.

Consider now that several features are successively

added to the model, in this alternate way, and that the next

feature being added is the kth hole feature, which intersects

(k div 2) other hole features, as well as two block faces.

After adding the kth feature, the overall number of faces

is then,

nk Z nkK1 C2!ðk div 2ÞC1; k Z 1; 2;.; 40;

and the computation time for such an operation is

tkZa!nkK1 Cb!ðk div 2C2ÞCg!ð3!ðk div 2ÞC3Þ;

k Z1;2;.;40:

Note that, when adding the kth feature, the number of

faces added to the model is approximately equal to twice the

number of hole features intersected by the added feature.

After some algebraic manipulation, we get a closed

formula for the number of faces after adding the kth feature:

nk Z
1

2
ðk C1Þk C ðk C6ÞK ½ðk C1Þ div 2�;

k Z 1; 2;.; 40:

Grouping the terms we can write

nk z
1

2
k2 Ck CDW ; k Z 1; 2;.; 40:

Therefore, the number of faces is proportional to the

square of the number of inserted features and has, thus,

O(n2) computational complexity.

The required computation time can be approximated as:

tk zaW !k2 CbW !k CgW ; k Z 1; 2;.; 40:

Thus, contrary to the best and average cases, both the

overall number of faces and the computational cost
associated with adding a new feature for this worst case

have quadratic complexity order.
3.2.2. Remove feature operation

Let us consider a model made up of m features and n

faces. Removing from the model a given feature F is

accomplished by identifying the feature’s position in the

model history, and sequentially walking through the history

nodes and re-executing the associated Boolean operations,

as explained in Section 3.1. The computational cost

depends, thus, on the position of the removed feature in

the model history and on the time required to accomplish

each of the necessary Boolean operations.

Suppose the kth feature is to be removed. The required

computation time (tk) can be decomposed into

tk Z trb C
Xm

jZkC1

tinsertionðFjÞ;

where trb represents the time associated with the appropriate

rollback of the model history, and the summation represents

the time required to re-add the (mKk) features. In the

following analysis, we will assume the latter is the dominant

term, and trb will, therefore, be disregarded.

Given the general equation above, the computation time

of the remove feature operation will be analyzed for the

best, average and worst cases of Section 2.

Best case. To illustrate the best case behavior for feature

removal, we use again the representative model of Fig. 2(a):

the feature F being removed just intersects the block, and is

independent of any other features.

The equation representing the required computation time,

for removing the kth feature (k!mZ100), is then written as

tk Z
X99

jZk

tinsertionðjÞ;

since the features being re-added are all of the same type.

Using the expression previously obtained for the best

case for feature addition we get

tk Z
X99

jZk

fa!j CDBg;

which can be written in closed form as

tk Z
a

2
ð100 KkÞð99 CkÞC ð100 KkÞ!DB;

k Z 1; 2;.; 99:

This is a quadratic equation in k.

Note that, although the various hole features are disjoint

and of the same type, removing any of these features does

not have the same computational cost: the position of the

removed feature in the model history is crucial.

Average case. To illustrate the average case behavior for

feature removal, we use again the representative model of
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Fig. 2(b). Note the difference to the previous case: from

each ‘group’ made up of a rib, a slot and a through hole,

the first two features remain in the model, and only the hole

feature is being removed.

The equation representing the required computation

time for removing the kth hole feature (for k!33) is

written as

tk z
X33

jZkC1

tinsertionðRibjÞC
X33

jZkC1

tinsertionðSlotjÞ

C
X33

jZkC1

tinsertionðHolejÞ;

where each summation represents the re-addition of

features of the same type. Note that this formula is now

approximate: in fact, the actual times for re-adding all

these features are slightly lower than those previously

obtained for the add feature operation, because the

number of faces in the model is now somewhat lower,

due to the absence of the kth hole feature.

Let us just analyze the last summation. Using the

expression previously obtained for the average case of the

add feature operation, we estimate

tk;Holes z
X33

jZkC1

f10!a!j CDAg;

which can be written in closed form as

tk;Holes z5!a!ð33 KkÞð34 CkÞC ð33 KkÞ!DA;

k Z 1; 2;.; 32:

Again, this is a quadratic equation in k. Similar

expressions would be obtained for the other two sum-

mations, and thus for the total time tk.

Worst case. For a model in the worst case class, the

number of features intersecting the feature F being

removed is a fraction of the overall features. To illustrate

this situation, the representative model of Fig. 2(c) is used

again.

The equation representing the required computation time

(for k!mZ40) is then, similarly as for the best case,

written as

tk Z
X39

jZk

tinsertionðjÞ:

Using the expression previously obtained for the worst

case for feature addition, we can estimate this time as

tk z
X39

jZk

faW !j2 CbW !j CgW g;
which is equivalent to

tk z
X39

jZ1

aW !j2 K
XkK1

jZ1

aW !j2 C
X39

jZk

bW !j C
X39

jZk

gW ;

k Z 1; 2;.; 39:

The above equation can be written in closed form as

tk z20; 540!aW K
1

6
kðk K1Þð2k K1Þ!aW C

1

2
ð40 KkÞ

!ð39 CkÞ!bW C ð40 KkÞ!gW ;

which is a polynomial of degree three in k.

In terms of computational complexity, for this worst

case model, the remove feature operation is therefore,

O(n3).

3.2.3. Modify feature operation

The computation time required for the evaluation of the

modification of a feature is similarly dependent on the

sequence number of the feature being modified. After

changing the parameters associated with the given feature, it

is necessary to sequentially walk through the succeeding

nodes in the model history and re-execute the associated

Boolean operations.

The required computation time can be estimated in a

similar way to what was done above. Note, however,

that an additional hole feature is re-added in every

case, corresponding to the modified feature. The

analysis will, still, result in O(n2) complexity for the

best and average cases, and in O(n3) complexity for

the worst case.
4. The cellular model

In this section, the cellular model used in the SPIFF system

is described, with emphasis on its functionality for

modifying model topology [2].

4.1. Basic notions

The cellular model is a non-manifold geometric

representation of the feature model of a product, and

integrates the contributions from all its volumetric

features. It represents each part as a connected set of

volumetric quasi-disjoint cells of arbitrary shape, and

represents each feature as a connected subset of these

cells. The cells are such that a part is exactly

represented, i.e. its shape is not approximated. The

cellular subdivision is determined by the property that

two cells may never volumetrically overlap. So, when-

ever two features overlap, their cells are such that one or

more cells are shared by the two features, and the

remaining cells lie in either of them.
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Any two adjacent cells are separated by a number of

interior faces in the cellular model. Such faces can be

regarded as having two ‘sides’, designated as partner cell

faces. A face that lies on the boundary of the cellular model

has only one cell face (one ‘side’), that of the only cell it

bounds. In either case, a cell face always bounds one and

only one cell. As a consequence of this cell subdivision,

each feature face is represented by a connected set of cell

faces. See Fig. 4 for an example of a cellular model

containing some overlapping features.

To identify and analyze features in the cellular model,

each cell has as attribute an owner list indicating which

features it belongs to (see again Fig. 4). Similarly, each cell

face has an owner list indicating which feature faces it

belongs to. Finally, the nature of a cell expresses whether its

volume represents ‘material’ of the product or not, and,

similarly, the nature of a cell face expresses whether it lies

on the boundary of the product or not.

So, the cellular model contains much more information

than only the model boundary of the product. In particular, it

contains explicit information on the ‘not on boundary’ faces

of subtractive features and on intersecting features. The

cellular model, including its attribute mechanism to

maintain the owner lists of cells and cell faces, has been

implemented in the SPIFF system using the Cellular

Topology Component of the ACIS geometric modeling

kernel [10].

Two basic operations have been defined that modify the

cellular model: adding a new feature shape to the cellular

model, and removing an existing feature shape from the

cellular model. The effect of these operations is twofold: (i)

they change the topology of the cellular model, and (ii) they

update the owner lists of its cellular entities accordingly.

Both aspects are described and illustrated for the two

operations in the following subsections.
Fig. 4. Cellular model of a product and owner lists of its cells.
4.2. Adding a feature shape to the cellular model

The goal of this operation is to add the imprint of a new

feature shape to an existing cellular model.

In the first stage, the new feature is represented by a one-

cell shape, which is dimensioned and positioned relative to

the cellular model according to the feature parameters. In

the owner list of this cell, only a reference to the new feature

is contained, whereas, the owner list of each of its cell faces

contains a reference to the respective feature face. This is

illustrated in Fig. 5(a) for a rectangular slot feature.

In the second stage, a non-regular cellular union

operation is performed, between the cell representing the

new feature and the cellular model. This Boolean operation

computes the cellular decomposition described in the

previous subsection, and changes the owner lists of the

relevant cells and cell faces, e.g. whenever these are split, so

that each entity always ‘knows’ precisely which feature

shapes, or feature faces, it belongs to.

During a non-regular cellular union, first, every cell (Ci) of

the cellular model is identified that somehow intersects the

new cell (C). Mutual cellular decomposition is then carried

out between C and each Ci. This may occur in two ways:
(1)
 The two cells intersect only over their boundaries,

in which case there are no new cells created;

instead, their overlapping cell faces are decom-

posed, yielding partner cell faces that lie inside the

boundary intersection (i.e. bounding both cells) and

cell faces that lie outside it (i.e. bounding only one

of the cells). Split cell faces get as owner list that

of the cell face from which they originate.
(2)
 The two cells volumetrically overlap, in which case the

decomposition results in new cells that lie either inside

the intersection or outside it. Mostly, a subset of the

boundary of the two cells is also decomposed (except

when one of the cells lies entirely inside the other),

yielding cell faces that lie either on the intersection or

outside it. Whenever two cells undergo this mutual

decomposition, the owner lists of the new entities are

determined as follows:

(a) a new cell that lies in the intersection of C and Ci gets

as owner list the union of the owner lists of C and Ci;

(b) the other cells resulting from the decomposition get

as owner list that of the respective cell from which

they originate (either C or Ci);
and, analogously:

(a) a new cell face lying on the boundary of both C and

Ci gets as owner list the union of the owner lists of the

overlapping cell faces from which it originates;

(b) a new cell face lying on the boundary of either C or Ci

gets as owner list that of the respective cell face from

which it originates;

(c) the remaining new cell faces (e.g. partner cell faces

of the above) get an empty owner list.
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Fig. 5(c) illustrates both the cellular decomposition and

the owner list propagation after the non-regular cellular

union between the slot feature in Fig. 5(a), and a cellular

model consisting of a single block (see Fig. 5(b)), which is

an example of case 2 mentioned above. The owner lists of

both cells before the operation are shown in Fig. 5(a) and

(b), though for the sake of legibility, only some cell face

owner lists are depicted. After the operation, the block cell

has been decomposed into two cells, of which one is shared

with the slot. The owner lists of the two new cells, as well as

the owner lists of some cell faces, are shown in Fig. 5(c).
4.3. Removing a feature shape from the cellular model

The goal of this operation is to completely remove

from the cellular model the imprint of a feature. This

operation comes down to a selective removal and merge

of topologic entities in the cellular model, and is

conceptually much simpler than a conventional Boolean

operation. It is carried out in three stages, all of which

are confined to the set of cells owned by the feature to

be removed.

In the first stage, these cells are walked through in order

to remove from their owner lists all references to that

feature. Similarly, all references to faces of that feature are

removed from the owner lists of the cell faces bounding

those cells.

In the second stage, the same set of cells is searched for

cells exhibiting an empty owner list. Such cells are removed

from the cellular model, which is easily accomplished by

removing all one-sided faces bounding them.

In the third stage, each of the remaining cells in the set is

analyzed. Whenever it exhibits the same owner list as one of

its adjacent cells, they are merged, which is easily

accomplished by removing all two-sided faces that separate

them. After all such cells have been merged, the cellular

model has the minimal number of cells required to represent

the remaining features, but it may still exhibit a non-

minimal number of faces and edges. A final cleanup is

therefore performed, merging any adjacent faces which
have the same geometry and whose cell faces have equal

owner lists.

Fig. 6 illustrates this operation for a simple part

consisting of a block, a step and a rib (see Fig. 6(a)).

Fig. 6(b) shows the corresponding cellular model, where

its five cells are identified, together with the respective

owner lists. When the rib is removed from the model, at

the end of the first stage, the cell owner lists are those

shown in Fig. 6(c). Cell 5, which was owned exclusively

by the rib, has now an empty owner list and is therefore

removed in the second stage, after which the cellular

model shown in Fig. 6(d) is obtained. In the third stage,

adjacent cells 2 and 3, having equal owner lists, are

merged, and the same is done for cells 1 and 4, yielding

the model in Fig. 6(e). The redundant faces left,

highlighted in Fig. 6(e), are subsequently merged with

their adjacent faces during the final cleanup, resulting in

the final part and cellular model shown in Fig. 6(f) and

(g), respectively.
5. Boundary evaluation for a cellular model

The boundary evaluation for the cellular model in SPIFF

follows the general scheme given in Fig. 1. The boundary

evaluator here produces a cellular model.

The most relevant information at the parametric

definition level is structured around the Feature Dependency

Graph (FDG), which relates all feature instances, each of

them having its own set of parameter values, by means of

the dependency relation [3]. A dependency is a directed

relation between two features, and expresses an attach or

positioning/orientation reference that a feature has to

another feature in the model.

Adding a feature to the model typically creates one or

more dependencies in the FDG between the new

feature node and the feature nodes already in the graph.

Removing a feature requires eliminating its node from the

FDG, though not without first making sure that it has no

dependents. Modifying an existing feature, in turn, is done
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by editing its parameters in the respective node in the FDG.

Whenever this feature has dependent features, it is likely

that the modification will affect some of them as well.

After the FDG has been modified, the boundary evaluator

is invoked to update the cellular model accordingly. This is

carried out in two phases. In the first phase, the cellular

model is incrementally re-evaluated. In the second phase,

the new cellular model is interpreted, i.e. the final shape it

represents is determined, according to the feature infor-

mation stored in its cellular entities, and the current

dependencies among the features in the FDG.

5.1. Incremental re-evaluation

In contrast with the boundary evaluation described in

Section 3, which employs two non-associative Boolean

operations (union and difference) to compute the b-rep, only
one Boolean operation is used by the SPIFF system to

compute the cellular model from scratch: the non-regular

cellular union of the shapes of all features (see Section 4).

Since it is a union operation, and therefore, commutative

and associative, the order in which the shapes are processed

is irrelevant for the final cellular model obtained.

The computational cost of building the whole cellular

model from scratch is proportional to the number offeatures in

the model, as is the case for computing a b-rep. Fortunately,

this is only required when the cellular model needs to be built

in one step, e.g. when starting a modeling session with a model

file containing a previously created parametric definition.

Once there is a cellular model, re-evaluating it after each

modeling operation is done incrementally, i.e. only for the

features whose geometry is actually involved in the

operation. The computational cost of this incremental

evaluation is dependent on the number of such features,
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which is usually very low, and is, therefore, independent of

the total number of features in the model. The three

modeling operations are performed as follows:
(1)
 Adding a new feature instance to the cellular model: the

shape extent of the new feature is combined with the

current cellular model. For this, the non-regular cellular

union operation is used, as described in Section 4.2.
(2)
 Removing a feature instance from the cellular model:

the current cellular model is modified using the

operation to remove a feature shape described in

Section 4.3.
(3)
 Modifying a feature instance in the cellular model: the

modified feature, and all its dependent features affected

by the operation, need to be taken into account. They

are removed from the cellular model and then re-added

with their new parameters, using the add and remove

feature operations just mentioned.
5.2. History-independent interpretation

Interpretation of the cellular model consists of determin-

ing, for each cell, whether the point set represented by the

cell belongs to, or represents ‘material’ of, the product, i.e.

determining the nature of that cell. This requires deciding

which of the features in its owner list ‘prevails’, either as

additive or as subtractive. To this purpose, precedences

among features have to be established.

If, based on some precedence criteria, a global ordering is

defined on the set F of all features in the model, say

assigning to them unique, increasing precedence numbers,

then every cell owner list (referring to a subset of F) can be

sorted according to these precedence numbers. The nature

of a cell becomes, then, the nature of the last feature in its

owner list, i.e. the feature with the highest precedence

number. Appropriate precedence criteria produce an

interpretation of the cellular model that is unambiguously

determined without invoking any model history consider-

ations [3]. This, together with the incremental character of

model evaluation, are important advantages of a cellular

model.

Because this phase is based on simple owner list queries,

and involves no geometric computations at all, its

computational cost is negligible compared to that of the

incremental re-evaluation, and will, therefore, be left out of

the following complexity analysis.

5.3. Complexity analysis

The basic feature operations on the cellular model were

detailed in Section 4, and incremental model evaluation

after either adding, removing or modifying a feature

instance was described in Section 5.1. In what follows,

these operations are analyzed in terms of the required

computation time and their associated computational

complexity.
5.3.1. Add feature operation

Let us consider a model made up of n cells. Adding a new

feature (represented by cell C) to the model is accomplished

through a non-regular cellular union operation, as explained

in Section 4.2.

The required computation time (t) can be decomposed

into

t Z tint C tdec C tupd;

where tint represents the time associated with the identifi-

cation of the nint cells intersecting C, tdec the time associated

with the mutual cellular decomposition operations, and tupd

the computation time associated with the update of model

information, given the ndec cells resulting from the

decomposition.

Regarding the number of cells involved, one can argue

that:
†
 the time tint is proportional to the total number of cells

(n), since each cell has to be tested for intersection with

the new cell C;
†
 the time tdec is proportional to the number (nint) of cells

which intersect the new cell C, and which have to be

properly decomposed;
†
 the time tupd is proportional to the number (ndec) of cells

arising as a result of the performed cell decompositions.

Note that, after performing the above operations, the total

number of cells increases and is given by

nnew Z n C ðndec KnintÞ;

where the subtraction corresponds to the substitution of

original cells by their new updated counterparts. For

simplicity, only the contribution of intersecting cells

which overlap volumetrically is here being taken into

account; cells which intersect only over their boundaries, as

explained in Section 4.2, are handled in a significantly

simpler way, and their contribution can here be neglected.

The required computation time can then be written in

terms of the number of cells involved in the various

operations as

t Z a!n Cb!nint Cg!ndec;

where a, b, and g are (constant) positive factors. Note that

these factors express average behavior: in general, not all

(intersected or generated) cells are equally complex, nor

require the same computation time to be processed.

The two equations above will now be used to analyze the

computation time for the best, average and worst cases of

Section 2.

Best case. Clearly, in terms of the number of cells and the

computation time for a model in the best case class, the new

cell C intersects just one cell C1 (nintZ1) and, afterwards,

the overall number of cells is

nnew Z n C1;
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with ndecZ2, i.e. two (new) cells result from the intersec-

tion, and one of them replaces (or updates) the former cell

C1. Regarding the computation time, we have then

t Z a!n Cb C2!g:

Therefore, it linearly increases with the number of cells

making up the model.

Let us consider now the representative model of

Fig. 2(a), which is being built up through a sequence of

best case feature additions. After the insertion of the kth

feature, the number of cells (nk) is given by

nk Z nkK1 C1;

with n0Z1 representing the (initial) model defined by just

one cell, and the required computation time for that

operation is

tk Z a!nkK1 C ðb C2!gÞ:

The above equations can be further simplified to

nk Z k C1; k Z 0; 1;.; 100;

and

tk Z a!k C ðb C2!gÞ Z a!k CDB;

k Z 1; 2;.; 100:

Thus, both the overall number of cells and the

computation time associated with adding a feature have,

in this case, linear complexity order.

Average case. In terms of the number of cells and the

computation timeforamodel in theaveragecaseclass, thecell

C associated with the added feature intersects r cells Ci (nintZ
r) and, afterwards, the overall number of cells becomes

nnew Z n C ðndec KrÞ:

Regarding the computation time, we have then

t Z a!n Cb!r Cg!ndec:

As explained in Section 2, the number of intersections of

the added feature with other features is independent of their

number (n). Therefore, the number of intersected cells (r) is

independent of n, and knowing that ndec depends on r, it can be

concluded that the computation time required by an add

feature operation for the average case has linear complexity

order, similarly to the best case.

In order to better understand the average behavior, a

detailed analysis pertaining to the representative model of

Fig. 2(b) will be given in what follows. Regarding that

model, any added through hole feature intersects a rib and

a slot, as well as the block, in such way that:
†
 the hole feature is decomposed into three cells, each one of

them being shared with either the block, the rib or the slot;
†
 the single cells associated with the rib and with the slot,

as well as the block ‘main cell’, are each decomposed

into two cells, one being shared with the hole feature.
Therefore, for this particular model, three cells are

intersected by the new feature (rZ3) and six cells result

from the decompositions (ndecZ6).

The overall number of cells is then, after adding the new

hole feature,

nnew Z n C3

and, the computation time for such operation is

t Z a!n C3!b C6!g:

Similarly to the best case, this time linearly increases

with the number of cells making up the model.

Let us consider now that the model is being built up by a

sequence of add feature operations, corresponding to

successively adding a rib, a slot and a cylindrical through

hole, 33 times. Note that adding just a rib and a slot feature

increases by two the overall number of model cells.

Similarly to what was done for the best case, after the

insertion of the kth hole feature, the total number of cells is

given by

nk Z nkK1 C5;

with n0Z1. This recursive equation can be written in closed

form as

nk Z 5!k C1; k Z 1; 2;.; 33:

For the computation time associated with the insertion of

the kth hole feature, we can now write

tk Z a!ðnkK1 C2ÞC3!b C6!g;

assuming that a rib and a slot were already added and, thus,

two additional cells were already created. This can be

further simplified to

tk Z 5!a!k K2!a C3!b C6!g

Z 5!a!k CDA;

k Z 1; 2;.; 33:

Thus, both the overall number of cells and the

computation time associated with adding a hole feature

have, as expected, linear complexity order.

Worst case. In terms of the number of features and

computation time for a model in the worst case class, the

insertion of a feature corresponds to a situation, where the

new feature intersects a fraction of the features making up

the model, entailing a large increase in the number of cells

defining the model.

In order to better understand the worst case behavior, as

well as the fundamental difference regarding the previous

cases, a detailed analysis pertaining to the representative

model of Fig. 2(c) will be given in what follows. Remember

that this model has an even number (40) of cylindrical

through hole features: any of the 20 horizontal, respectively

vertical, hole features intersects once each one of the other
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20 vertical, respectively horizontal, hole features, as well as

21 times the block.

In order to understand how the number of cells grows

after adding a new feature, let us analyze how such a model

can be built through a sequence of add feature operations,

starting with just one block:
†
 the initial model has just one cell: n0Z1;
†
 adding the first feature (say a vertical through hole)

results in a model made up of two cells: n1Z2;
†
 adding the second feature (a horizontal through hole)

intersecting the first one, both holes now being divided

into three cells each (the ‘middle’ one being shared by

both holes), results in a model made up of six cells:

n2Z6.

Consider now that several features are successively

added to the model in this alternate way. When the kth hole

feature is added to the model, it intersects (k div 2) other

features. In terms of the cellular operations, it is easy to

see that:
†
 the new hole feature is decomposed into (2!(k div 2)C1)

cells, (k div 2) of them being shared with one of the

intersected hole features, the other (1Ck div 2) being

shared with the block;
†
 each of the (k div 2) intersected hole feature cells is

decomposed into three ‘new’ cells, one of those being

shared with the added hole feature;
†
 the cell associated with the block is decomposed into

(2Ck div 2) cells, (1Ck div 2) of them being shared with

the added hole feature.

Therefore, rZ1Ck div 2 cells are intersected by the

added feature, and ndecZ4!(k div 2)C2 cells result from

the decompositions.

The overall number of cells is then, after adding the kth

feature,

nk Z nkK1 C3!ðk div 2ÞC1; k Z 2; 3;.; 40;

and the computation time for such an operation is

tkZa!nkK1 Cb!ðk div 2C1ÞCg!ð4!ðk div 2ÞC2Þ;

k Z2;3;.;40:

Note that the number of cells no longer increases by just

a constant factor, but by a factor proportional to the number

of features in the model: when inserting the kth feature,

the number of cells added to the model is approximately

three times the number of intersected cells, which in turn is

linearly dependent on k.

After some algebraic manipulation, we get a closed

formula for the number of cells after inserting the kth

feature:
nkZ
3

4
ðk C1Þk C ðk C1ÞK

3

2
½ðk C1Þ div 2�;

k Z 0; 1;.; 40:

The number of cells is proportional to the square of the

number of inserted features and has, thus, O(n2) compu-

tational complexity.

Therefore, contrary to the best and average cases, both

the overall number of cells and the computation time

associated with adding a new feature have quadratic

complexity order.
5.3.2. Remove feature operation

Let us consider a model made up of m features and n cells

Removing from the model a feature F (represented by the

set CF of cells owned by that feature) is accomplished

through a selective sequence of operations performing the

deletion and merge of topologic entities, as explained in

Section 4.3.

Since a feature removal operation is explicitly accom-

plished in three stages, the required computation time (t) can

be decomposed into

t Z trem C tempty C tmerge;

where trem represents the time associated with the removal

of all references to F (and its faces) from the owner lists of

the cells in CF (and their cell faces), tempty represents the

time associated with the removal from the cellular model of

all cells in CF which have now an empty owner list (i.e. cells

which were owned exclusively by feature F), and tmerge is

the time associated with processing the remaining cells in

CF and, where needed, performing cell and face merging

operations in the cellular model.

Regarding the number of cells involved, we can

legitimately assume that:
†
 the time trem is proportional to the number of cells in CF,

nCF
, or, more precisely, to the total number of elements in

their owner lists, nowners;
†
 the time tempty is (again) proportional to the number of

cells in CF;
†
 the time tmerge is proportional to the number of the

remaining cells in CF, nremain.

Similarly to what was done before, and using (different)

constant factors to express average behavior, the former

equation can be written as

t Z a!nowners Cb!nCF
Cg!nremain:

Although the above equation is similar to the corre-

sponding equation for the add feature operation, it has to be

remarked that:
†
 the three terms are (in general) no longer proportional to

the overall number of cells in the model, but instead to
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the (smaller) number of cells associated with feature

F, nCF
;

†
 when no cells with empty owner lists have to be

removed, nremain ZnCF
;

†
 instead of an increase in the number of cells, after

performing the feature removal, a decrease in the overall

number of cells occurs.

Given the expression above, the computation time of the

remove feature operation will now be analyzed for the best,

average and worst cases of Section 2.

Best case. To illustrate the best case situation for feature

removal, we again use the representative model of Fig. 2(a):

when removing a hole feature F, in this case defined by just

one cell Ch, set CF has just one element ðnCF
Z1Þ, which is

associated with the feature being removed and the block

(nownersZ2).

In the first step, the owner list of Ch has two elements and

the reference to F is removed from it. Since, in the second

step, the owner list of Ch is not empty, cell Ch remains in CF.

Finally, in the third step, cell Ch is merged with the block

‘main cell’.

The equation representing the required computation time

can then be written as

t Z 2!a Cb Cg:

Note that, since all hole features are disjoint and of the

same type, removing any of these features has the same

computational cost.

Average case. For a model in the average case class, set

CF has a small number of elements, which is independent of

n. To illustrate such a situation, the representative model of

Fig. 2(b) is used.

When removing a hole feature F, in this case defined by

the three cells Chb, Chr and Chs, shared with the block, the rib

and the slot, respectively, set CF has three elements

ðnCF
Z3Þ. The three owner lists of these cells have a total

of seven elements (nownersZ7).

In the first step, the reference to F is removed from the

three owner lists, and none of them becomes empty;

therefore, no cell is removed from CF in the second step.

Subsequently, in the third step, the three cells Chb, Chr and

Chs and their faces are appropriately merged to define the

new cells associated with the block, the rib and the slot.

The equation representing the required computation time

can then be written as

t Z 7!a C3!b C3!g:

Similarly to the best case model, the same computation

time is required for removing any of the hole features, since

they all have the same kind of interaction with the block, a

rib and a slot.

Worst case. For a model in the worst case class, the

number of features intersecting the feature F being removed

is a fraction of the overall number of features, and thus
the set CF has a larger number of elements. To illustrate

such a situation, the representative model of Fig. 2(c) is

used.

When removing a hole feature F, in this case defined by

41 cells, shared with the block and the intersected holes, set

CF has 41 elements ðnCF
Z41Þ. The 41 owner lists of these

cells have a total of 102 elements (nownersZ102).

In the first step, the reference to F is removed from the

owner lists of the 41 cells in CF, and none of the lists

becomes empty; therefore, no cell is removed from CF in the

second step. Subsequently, in the third step, the cells

and their faces are appropriately merged to define the new

cells associated with the block and each of the formerly

intersected holes.

The equation representing the required computation time

can then be written as

t Z 102!a C41!b C41!g:

Note that all steps associated with the removal have, in

this case, a significantly higher computational cost than for

the best and average case models, due to the number and

characteristics of the involved cells.

Similarly to the previous cases, the same computation

time is required for removing any of the horizontal or

vertical through hole features, since each hole intersects in

the same way the remaining features.
5.3.3. Modify feature operation

Modifying a feature F from a given model is accomplished

by identifying the features affected by the modification (F and,

possibly, some of its dependent features), which are removed

from the model and re-added with their new parameters, as

mentioned in Section 5.1.

Therefore, a modify feature operation corresponds to the

sequential execution of remove and add feature operations,

and its total computation time is the sum of the

corresponding partial computation times.

Let us consider again the representative models

described in Section 2, and assume that one of the

cylindrical hole features is modified in the following way:

it undergoes a small translation, but without entailing any

topologic changes in the feature interactions and in the

associated cellular decompositions. Moreover, none of the

other features is dependent on the hole feature, remaining

therefore unaffected by such a translation: only one hole

feature removal and a subsequent hole addition operations

are performed for such a modification.

In this way, modifying one such hole feature, in any of

the models having m features, requires the time correspond-

ing to the removal step plus the time required for re-adding

the modified hole to a model consisting of (mK1) features.

Both these times have been derived above for the best,

average and worst cases, and turned out to be constant in all

cases. So, for the three cases, modifying any feature has

again constant computational cost.
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6. Performance measurements

To complement the complexity analyses, given in the

previous sections, of boundary evaluation for a b-rep and for

the cellular model, their performance was measured. In this

section the outcome of the measurements is presented and

interpreted.
6.1. Setup used for the measurements

The performance measurements for boundary evaluation

for a b-rep were done with the commercial system

Pro/ENGINEER [8]. Measuring evaluation times in this

system was more complex than in SPIFF, because the source

code of Pro/ENGINEER could not be adapted for this.

However, Pro/ENGINEER uses a so-called trail file to

record all user actions during a modeling session. Such a

trail file can subsequently serve as a script file for another

modeling session, possibly after changing it. By including

timestamp commands in a trail file around the boundary

evaluation step in the script, and executing this file, the

evaluation times could be measured. The measurements

were done with Pro/ENGINEER 2001 running under

Windows 2000 on an Intel Pentium 2 processor.

The performance measurements for boundary evaluation

for the cellular model were done with the prototype feature

modeling system SPIFF. Measuring evaluation times could

simply be done by including timers in the source code of the

system around its boundary evaluation algorithm. SPIFF is

running under Linux, and the measurements were done on

an Intel Pentium 4 processor.

A major problem was that, because of the measuring unit

of the timing commands, the measured CPU times had an

inadequate precision compared to their order of magnitude.

Therefore, all measurements were done several times, and

the results averaged. With some elementary statistical

theory, it was determined that 100 measurements were

needed to guarantee sufficient accuracy of the average time.

Because the measurements for the two approaches had to

be performed on two different computer systems, the CPU

times were not directly comparable. To make them more

congruent, a simple benchmark was run on both systems to

compare their performance in general. This resulted in a

normalization factor that was applied to the measured times

for Pro/ENGINEER. Notice, however, that although the

normalized times for Pro/ENGINEER are mostly in the

same order of magnitude as the times measured for SPIFF,

care should be taken in comparing their absolute values.

They are still dependent on, for example, the available

memory, the operating system, and the degree of optimiz-

ation of the implementation of the modeling software.

However, the goal here is not to compare the two

approaches in absolute computation times, but, instead, to

compare trends in their behavior. The times presented here

are perfectly suitable for that purpose.
6.2. Results of the measurements

Computation time was measured for several models; for

three of those, already introduced in Section 2, representing

best, average and worst case behavior, the results are

presented here. For other models, similar results were

obtained.

For each model, times required for a series of add,

remove and modify feature operations were measured. For

the modify operation, a slight (hole) feature displacement

was performed, as described in Section 5.3, so that no

topology changes occurred in the model. The results are

presented in Fig. 7 for the add feature operation with both

Pro/ENGINEER (on the left) and SPIFF (on the right), and in

Fig. 8 for the remove and modify feature operations, again

with both Pro/ENGINEER (on the left) and SPIFF (on the

right). The times for the remove and modify feature

operations, for one model on one system, were merged in

a single graph, in order to facilitate the comparison of their

related magnitudes.

The six graphs in each figure show (normalized)

computation times for the series of add, remove and modify

feature operations. Depending on the operation, for position

n on the horizontal axis of each graph, the computation time

is depicted to respectively:
(1)
 add feature n to the model consisting of features 1 to

nK1;
(2)
 remove feature n from the complete model;
(3)
 modify feature n in the complete model.
6.3. Analysis of the experimental results

In this subsection, the measurement results will be

analyzed, and trends in the presented graphs will be deduced

and, where possible, inter-related. The comparison of these

results to the outcome of the complexity analyses given in

Sections 3.2 and 5.3 will be left to the final section.

6.3.1. Add feature operation

For position n on the horizontal axis of the add feature

operation graphs (Fig. 7), the computation time is displayed

for adding feature n to the model consisting of features 1 to

nK1.

In both systems and for all cases, the cost of adding a

feature to the model is in the same order of magnitude, and it

increases with the number of features already in the model.

For the best and average case models, Fig. 7(a) and (b), this

cost increases linearly, whereas, for the worst case model,

Fig. 7(c), it increases quadratically. For the first two cases,

the cost of adding a feature is always very low, showing that

both systems scale well when building models with a

considerable number of features.

In the worst case, however, the cost of adding a feature to

the model significantly increases as the number of

intersections per feature grows from 0 up to 20. For



Fig. 7. Measurements of boundary evaluation time for adding a feature in Pro/ENGINEER (left) and SPIFF (right).
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Pro/ENGINEER, this cost increases rather rapidly: when the

8th hole feature is added (i.e. when each hole has four

intersections), the maximum cost of an add feature

operation on the average case model (229 ms) is surpassed.

For SPIFF, on the other hand, only when the 18th hole feature

is added (i.e. when each hole has already nine intersections)

is the maximum cost of an add feature operation on the

average case model (172 ms) reached. As the number of

hole intersections further increases, the cost of adding each

new hole becomes considerably higher, for both systems.

6.3.2. Remove feature operation

For position n on the horizontal axis of the remove

feature operation graphs (lighter lines in Fig. 8),

the computation time is displayed for removing feature n

from the respective complete model.
In Pro/ENGINEER, the cost of removing a feature (on

the left of Fig. 8) is generally much higher than the cost

of adding a feature (on the left of Fig. 7). The lowest

cost for a feature removal operation is for removing the

last feature of the model (i.e. the most recent one in the

model history); it costs, respectively, around 80 ms (best

case), 80 ms (average case) and 770 ms (worst case).

Considering these figures, one can wonder which

procedure is actually being applied in Pro/ENGINEER

for re-evaluating the model. If full intermediate models

were being stored between each step of the model

history, one would expect that removing this last feature,

in whichever model, would mean to simply revert to the

intermediate model lastly stored, and thus would have

a constant, very low cost. The values above suggest the

application of some other history re-evaluation procedure,



Fig. 8. Measurements of boundary evaluation time for removing (light line) and modifying (dark line) a feature in Pro/ENGINEER (left) and SPIFF (right).
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e.g. storing only the deltas between history steps. Then,

reverting the model, even for a single step, would have a

cost which is dependent on the complexities of both the

delta and the model, which seems to be the case.

In SPIFF, removing a feature, regardless of whether it is

the last or not, has a constant cost which is, respectively,

around 55 ms (best case), 150 ms (average case) and

4030 ms (worst case).

We can conclude that, for the best and average case, the

cost of this operation on the last feature of the model is in the

same order of magnitude for both systems; however, for all

other features, that cost is significantly higher in Pro/EN-

GINEER (up to one order of magnitude), whereas, it is

constant in SPIFF. For the worst case, the same trends hold,

but the constant cost of this operation in SPIFF is one order of

magnitude higher than that in the average case, meaning that
the remove feature operation is more sensitive to a high

number of intersections on the feature in question than the

add feature operation.
6.3.3. Modify feature operation

For position n on the horizontal axis of the modify

feature operation graphs (darker lines in Fig. 8),

the computation time is depicted for modifying feature n

in the respective complete model.

As one might reasonably expect, in both systems and for

all cases, the cost of modifying a given feature is always

higher than the cost of removing that same feature from the

model. Particularly, for SPIFF, we can observe that the cost of

modifying a given feature (on the right of Fig. 8) is

always slightly above the sum of the cost for removing it
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(also on the right of Fig. 8) and the cost of adding the last

feature in the model (on the right of Fig. 7).

For Pro/ENGINEER, the cost of modifying a feature (on

the left of Fig. 8) is generally much higher than the cost of

adding a feature (on the left of Fig. 7). However, a surprising

result of Pro/ENGINEER in all cases is that the cost of

modifying the last feature of the model (i.e. the most recent

one in the model history) is always (slightly) lower than the

cost of adding that same feature to the model. As stated in

Section 1, we have insufficient information on Pro/ENGI-

NEER to explain such behavior. The lowest cost for a

modify operation is for the last feature of the model (i.e. the

most recent one in the model history), which takes,

respectively, around 120 ms (best case), 240 ms (average

case) and 1340 ms (worst case). One should also notice that

all graphs on the left of Fig. 8 are concave. In other words,

when it comes to re-evaluate a model history consisting of

similar steps, each of the more recent steps has a higher cost

than any of the older steps. This increase in ‘cost per step’

towards the end of the model history is stronger in the worst

case than in the best case, which can be attributed to the

increased complexity of the model as more recent history

steps are evaluated.

In SPIFF, modifying a feature, regardless of whether it is

the last or not, takes a constant time, which is, respectively,

around 90 ms (best case), 360 ms (average case) and

5230 ms (worst case).

The conclusions regarding the trends of the modify

feature operation in the two systems are, mutatis mutandis,

the same as for the remove feature operation.
7. Conclusions

Boundary evaluation for a cellular model has been

described, and its efficiency has been compared to the

efficiency of boundary evaluation for a b-rep. The compu-

tational complexity of boundary evaluation algorithms for

both representations has been analyzed, and figures emerging

from performance measurements of boundary evaluation for

both representations have been presented.

The outcome of the complexity analyses, given in

Sections 3.2 and 5.3, has been confirmed by the measure-

ments performed for each feature operation, shown in the

graphs of Figs. 7 and 8. In other words, the same trends arise

from the analyses and from the measurements. These trends

are summarized in Table 1, for both representations and for
Table 1

Trends of boundary evaluation for b-rep and cellular model

Operation Best case Average case

b-rep Cellular model b-rep

Add feature Linear Linear Linear

Remove feature Quadratic Constant Quadratic

Modify feature Quadratic Constant Quadratic
all operations and cases. Note that, in this table, the trends

for the add operation reflect the evolution of the cost while

building the whole model feature by feature, whereas, the

trends for the remove and modify operations refer to the cost

of these operations while applying them on each individual

feature of the whole model.

The complexity analyses showed that the computational

cost of boundary evaluation for each operation on a feature,

is basically dependent on two factors: (i) the overall number

of topologic entities in the model, i.e. the model size, and

(ii) the number of intersections that the feature in question

has. Furthermore, from the three cases analyzed, one can

observe that these two factors are not necessarily indepen-

dent: in the best and average case models, it is the model

size that plays the predominant role in the computational

cost, as the number of intersections per feature is kept

limited; in the worst case model, on the other hand, it is the

increase in the number of intersections per feature that

drives the growth in model size, and therefore also in the

computational cost.

Based on the outcome of the measurements on these

different models, the following can be concluded for the

cellular model, with respect to all feature operations:
(1)
 Regarding the factor ‘model size’ alone, boundary

evaluation scales very well for large models.
(2)
 Regarding the factor ‘number of intersections’, bound-

ary evaluation scales well up to a moderate number of

intersections per feature, its cost remaining much lower

than for the b-rep; for a high number of feature

intersections, however, its cost can get close to the

order of magnitude of that for the b-rep.
From a practical point of view, the average case provides

the most relevant information. The number of intersections

of each feature in an average case model is limited, which is

also typically the case in real-world models, because of the

local character of features: usually, features are small

compared to the whole product, and intersect only with

a small number of other features. Therefore, on the basis of

these observations, the following can be concluded:
(1)
 For the add feature operation, boundary evaluation for

the cellular model has the same performance trend as

boundary evaluation for a b-rep; for both, the time

linearly increases with the number of features already in
Worst case

Cellular model b-rep Cellular model

Linear Quadratic Quadratic

Constant Cubic Constant

Constant Cubic Constant
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the model, and the times are in the same order of

magnitude.
(2)
 For the remove and modify feature operations, however,

the trends are different. Boundary evaluation for the

cellular model has a constant cost that is in the same order

of magnitude as the cost of an add feature operation in the

same model. Boundary evaluation for a b-rep, on the other

hand, has a cost that is dependent on the position in the

model history of the feature being removed or modified;

this cost follows a quadratic trend and is very high

compared to the cost of an add operation.
Usually, most of the time during a modeling session is

spent on adjusting features already in the model, rather than

on adding new features. The overall conclusion is therefore

that boundary evaluation for the cellular model is in practice

more efficient than boundary evaluation for a b-rep.

Considering this conclusion, and the applications and

advantages of cellular models mentioned in Section 1, it

can be expected that in the future such models will be

increasingly used in feature modeling systems.
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