Feature-Based Visualization

of Time-Dependent Data

Freek Reinders

TR 3662 &

Stellingen
behorende bij het proefschrift

Feature-Based Visualization
of Time-Dependent Data

Freek Reinders
12 maart 2001

1. Feature extractie is de enige praktische manier om zeer grote data sets
visueel te analyseren.

2. Feature extractie richt de aandacht van de onderzoeker minder op de
data en meer op de onderzochte verschijnselen.

3. Het nauwkeurig definiéren van features en events en de bepaling van de
detectie criteria, behoren tot het specialisme van de gebruiker en moet
als een deel van diens onderzoek worden beschouwd.

4. Ondanks dat allerlei methoden toepasbaar zijn in beide vakgebieden,
zijn beeldverwerking en data visualisatie zeer verschillend.

5. De toename aan verwerkingskracht van computers leidt wellicht tot het ‘
oplossen van het tera-byte probleem, maar leidt zeker ook tot een nieuw
peta-byte probleem.

6. Wandelen in de bergen is een goede metafoor voor het leven; de vol-
gende top lijkt altijd hoger, het volgende dal dieper, maar meestal is het
de rust die je zoekt.

7. Het openzetten van bruggen in Den Bosch naar aanleiding van suppor-
ters rellen, geeft aan dat middeleeuwse methoden ter bestrijding van ge-
weld nog steeds effectief zijn.

8. Real-life soap programma’s zoals Big Brother en De Bus zijn het levende
bewijs dat het nieuws daar is waar de camera’s staan.

9. De nieuwswaarde van een ramp hangt af van het aantal doden, de af-
stand tot je huis en de technologische ontwikkeling van het getroffen
land.

10. Voor roeiers zijn de beste stellingen de rolstellingen.

10.

. Feature extraction is the only practical way to visually analyze large data

sets.

Feature extraction directs the attention of the researcher less to the data
and more to the phenomena under investigation.

The exact definition of features and events, and the determination of the
detection criteria, belong to the expertise of the user and should be con-
sidered part of his research.

Despite the fact that many techniques are applicable in both fields, image
processing and data visualization are very different.

. The increase of the computational power of computers may lead to the

solution of the tera-byte problem, but it will certainly lead to a new peta-
byte problem.

. Hiking in the mountains is a good metaphor for life; the next peak always

seems higher, the next valley deeper, but most of the time it is peace that
you seek.

The raising of the bridges in Den Bosch in response to the supporter’s
riots, shows that medieval methods are still effective for the prevention
of violence.

Real-life soap programs such as Big Brother and De Bus are the living
proof that news is there where the cameras are.

The news value of a disaster depends on the number of casualties, the
distance to your home, and the technological development of the coun-
try hit by the disaster.

For rowers the best ‘stellingen’” are the ‘rolstellingen’.

{53

TR 23bb9

Feature-Based Visualization of

Time-Dependent Data

About the cover background
A visualization of an event graph, which gives an overview of feature evolu-
tions in time-dependent data.

About the back cover
Top left image: skeleton shape reconstruction of vortex structures in a turbulent
flow, see Figure 8.17. Data courtesy D. Silver and X. Wang of Rutgers University.

Top right image: iconic representation of the skeleton graph for one frame in the
time-series of the flow with turbulent vortex structures, see Figure 5.15. Data
courtesy D. Silver and X. Wang of Rutgers University.

Bottom left image: one step in the process of feature tracking, see Figure 6.4. Data
generated by our synthetic data generator.

Bottom right image: 3D vortices in the flow past a tapered cylinder, see Fig-
ure 8.28. Data courtesy NASA Ames Research Center.

))
SION NYO
This work is supported by the Netherlands Computer Science Research Foun-

dation (SION), with financial support of the Netherlands Organization for Sci-
entific Research (NWO).

I\
S P
, TN
W SN
3 rw.\;.s?vr:\
\ve

Advanced School for Computing and imaging

This work was carried out in graduate school ASCI.
ASCI dissertation series number 61.

Feature-Based Visualization of

Time-Dependent Data

PROEFSCHRIFT

ter verkrijging van de graad van docto x

aan de Technische Universiteit Delft{5 . kR

op gezag van de Rector Magnificus prof.ir. K. @Vall(ﬂer, N : |
voorzitter van het College voor Promoti < Deiy)

in het openbaar te verdedigen op maandag 12 maart 2004 om 16:00 uur

door
Koob Frederik Jan REINDERS

natuurkundig ingenieur
geboren te Noordoostpolder

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr.ir. EW. Jansen

Toegevoegd promotor:
Ir. EH. Post

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof.dr.ir. EW. Jansen, Technische Universiteit Delft, promotor
Ir. EH. Post, Technische Universiteit Delft, toegevoegd promotor

Prof.dr.ir. RL. Lagendijk, Technische Universiteit Delft
Prof.dr.ir. ET.M. Nieuwstadt, Technische Universiteit Delft
Prof.dr.ir. FC.A. Groen, Universiteit van Amsterdam
Prof.dr. D. Silver, Rutgers University

Dr. H.J.W. Spoelder, Vrije Universiteit Amsterdam

Preface

The research described in this thesis was carried out at the Computer Graph-
ics & CAD/CAM group of Delft University of Technology. It is the fifth PhD
project in a series of projects on visualization. The project was supervised by
Frits Post (TU Delft) and Hans Spoelder (VU Amsterdam), and was supported
by the Netherlands Computer Science Research Foundation (SION), with finan-
cial support of the Netherlands Organization for Scientific Research (NWO).

The research concentrated on feature-based visualization techniques. Fea-
ture-based visualization is particularly suited to visualize large data sets, such
as time-dependent data. It directs the attention to interesting phenomena (fea-
tures) in the data; the objective is to extract, quantify, and visualize these fea-
tures. Feature-based visualization of time-dependent data focuses on the evo-
lution of features in time. The process consists of four steps: feature extraction,
feature tracking, event detection, and visualization. These four steps are inves-
tigated in depth in this thesis.

This thesis is accompanied by a CD-ROM that contains animations, images,
sources, and web pages. It is included because time-dependent data cannot be
visualized only on paper: animations are indispensable. It is strongly recom-
mended to reproduce the CD, and give it to everybody who is interested.

A large number of people is of importance for the completion of a dissertation.
They contribute in many different ways; scientifically, technically, and person-
ally. It is impossible to thank everybody in person, but there are some people I
would like to thank in particular.

First of all I would like to thank my direct supervisor Frits Post, you were a
great inspiration during my research. Together with Hans Spoelder, my second
supervisor, you were able to put me on the right track a couple of times. The
two of you form a great pair of supervisors; Frits with his ideas and visions
that seem to be never-ending, and Hans with his background in physics and his
practice in implementation.

Two graduate students contributed to the work in a huge fashion: Melvin
Jacobson and Benjamin Vrolijk. To Melvin I would like to say: I'm glad you
graduated before me, because now I have a wonderful chapter about skeletons
in my thesis. Benjamin: I wish you had started your graduation earlier, because

\%

you added many useful things. Unfortunately, there was no time to describe
them all in my thesis, I hope you can write them down in your own.

Another person that I would like to thank personally is Ari Sadarjoen, who
has been my office mate for three years. You contributed in both scientific and
personal ways. It is funny to see how two people that have such different lives,
can get along very well. I sincerely hope you will recover completely from your
illness.

A number of people were involved with the project indirectly, but they also de-
serve credits. My promotor Erik Jansen for giving the opportunity to do this
project and for quickly, yet accurately, reading the thesis. Jack van Wijk with his
simple questions that are hard to answer, but always seem to give you new in-
sight. Deborah Silver and her group who gave me the data of the useful applica-
tion with the turbulent vortex structures. Pieter Jonker for making the skeleton
algorithms available to us.

Then, I would like to thank all people at the CG & CC group: the (PhD) stu-
dents, the technical staff, and the teachers. They created a pleasant environment
to work in, and an atmosphere which I enjoyed very much.

Also, I would like to thank all friends from the rowing club DDS, who made
sure that besides work there is also time for recreation, although time flies when
you're having fun.

Finally, I am grateful to my parents for their love and unconditional support;
they gave me the feeling that there is always someone to fall back to.

Thanks to you all,

Freek Reinders

vi

Contents

1 Introduction

1.1 Visualization e e
1.2 Objectiveso e
1.3 Structureofthisthesis

2 Feature-Based Visualization

2.1 Basic Concepts of Visualization
21.1 Thecycle of investigation
212 Datafieldsandgrids

2.2 Motivation for Feature Extraction
221 Advantages
222 Disadvantages

2.3 Related Work on Feature Extraction
23.1 Anatomicalfeatures
232 Flowfeatures
2.3.3 Generic feature extraction techniques

2.4 Feature Extraction Pipeline

2.5 Visualization of Time-DependentData

2.6 Related Work on Feature Tracking
2.6.1 Pixel-basedmethods
2.6.2 Feature-basedmethods

27 ThesisPreview. e

3 Feature Data Representation

3.1 Framework forFeatureData
311 Motivation. e e
312 Requirements
3.1.3 Relevant functions and operations

32 ClassHierarchy
321 Attribute
322 Attributeset e e
323 Calculationmethod

vil

Contents

viii

Accuracy of Attribute Calculation

41 Attribute CalculationMethods
411 Volumeintegrals
412 Ellipsoidfitting

4.2 Problem Definition
421 Accuracyoftheprocedure.
422 Stabilityof theprocedure

43 ExperimentalSetup
431 Syntheticdata
4.3.2 Experiments with the ellipsoid fitting method

4.4 Results for Ellipsoid-Fitting
441 Theaccuracyofthemethod
442 Stabilityofthemethod

4.5 Guidelines for Attribute Calculation

Skeleton Shape Description
5.1 Skeletonization
52 DistanceTransform
53 Voxel GraphConstruction
54 GraphSimplification 0 0.
54.1 Topologicalgraph
542 Geometricgraph
5.5 ShapeReconstruction.
5.6 Accuracy of the Skeleton Attributes
57 FutureProspects.

Feature Tracking

6.1 CorrespondenceProblem

6.2 FeatureCorrespondence
6.21 Correspondencefunctions
6.22 Correspondencefactor

6.3 Tracking using Prediction-Verification
6.3.1 Initialization., ...
632 Multiplepasses

64 TheEventGraph

6.5 Visualization of Time-DependentData
6.5.1 Graphviewer,,
652 Featureviewer

6.6 Tracking User-Interface.
6.7 Comparison to other TrackingMethods

Contents

6.7.1 Attributetracking. o oL 101
6.72 Volumetracking 102
6.7.3 Greedyexchangetracking 103

6.8 FutureProspects. 104
Event Detection 107
7.1 DifferentTypesof Events. 107
72 Continuations 0 . 109
73 TerminalEvents, 110
7.3.1 Birth/Deathevent 110

732 Entry/Exitevent 112

74 InteractionEvents 114
741 Split/Mergeevent 115

75 TopologicalEvents 121
751 Topo-loopevent. 122
752 Topojunctionevent 123

76 Unresolved. 123
7.7 VisualizationofEvents, 125
78 FutureProspects. 126
Applications 129
81 PioneerVenusOCPP 129
811 TheOCPPdata 130
8.1.2 \Visualizationof the OCPPdata 134
8.1.3 Tracking OCPPcloud features 135

82 SyntheticData 139
8.2.1 Algorithmictests 139
822 Performancetests 142

8.3 Turbulent Vortex Structures, 144
8.3.1 Skeleton shape reconstruction. 144
832 Trackingand eventdetection 147

8.4 Flow Pasta TaperedCylinder 155
841 Tracking 156
842 \Vortexdetection. 158
Conclusions and Future Work 163
91 Conclusions i e 163
9.1.1 Feature quantification 163
9.12 Featureevolutionanalysis 164

92 FutureWork 166
9.2.1 Adaptive temporal refinement 166
9.2.2 Distributed computing 166
9.2.3 Computationalsteering 167

ix

Contents

Bibliography
Summary
Samenvatting

Curriculum Vitae

169

177

179

181

Chapter 1

Introduction

1.1 Visualization

Visualization is the process that transforms (numerical) data into a visual repre-
sentation. Numerical data are a low-level representation of natural phenomena,
and are often hard to interpret directly. Visual representations are much easier
to understand for humans. The human eye has phenomenal capabilities for de-
tecting structures, shapes and patterns. The expression is that ‘an image says
more than a thousand words’, or numbers in our case.

Examples from our daily life are the images of the weather forecast, as in
Figure 1.1. These images are widely known; we see them on TV and we know
more or less how to interpret them. Figure 1.1 tells us that there is an area of low
pressure to the northwest of Great-Britain. From experience, we know that this
means a high probability of rain in the area of Western-Europe.

. .
HIRLAM 0600z. Paraat :bkr Koo«
Geldig voor : zaterdag 021200 06 utc (H « 24 o \\”’“"\,mw\)

@ cap Tl KN

Figure 1.1: A visualization of a weather forecast, with curves showing iso-
pressure lines, and icons showing fronts, and high and low pressure areas. Im-
age courtesy the KNMI in The Netherlands.

Chapter 1. Introduction

Figure 1.1 is a good example of a feature-based visualization. Although the
original data includes wind, pressure, and temperature values over the whole
continent, the focus is directed to the interesting features: areas of locally high
and low pressure values, and the fronts. This is exactly the objective of feature-
based visualization: to extract and visualize the significant phenomena in the
data. Feature-based visualization often results in schematic, symbolic represen-
tations such as glyphs or icons, for instance the H and L signs, and the front
lines with motion indicators in the figure.

Once the features have been identified, it is interesting to see how they be-
have in time. If the low pressure area moves towards Scandinavia, we can ex-
pect rain for the next couple of days. Meteorologists build computer models
to predict tomorrow’s weather. These models result in time-dependent data in
which each time step can be represented by a visualization such as in Figure 1.1.
The images show us the evolution of the features, and we may recognize in-
teresting stages in this evolution by visual inspection, such as: will this storm
depression pass over our region, and when will this happen?

The example of the weather illustrates the need for feature-based visualization of
time-dependent data. In general, features can be any interesting pattern, structure,
or object that is considered relevant for the investigation of an application. In
previous work [van Walsum, 1995] a generic feature extraction technique was
developed based on selective and iconic visualization. Here, we want to further
analyze the features, for instance to investigate their behavior in time.

1.2 Objectives

The main objective of the research described in this thesis is to find ways to
analyze the behavior of features in time. This can be achieved in four steps:
feature extraction, feature tracking, event detection, and visualization.

1. Feature extraction. In each time-step (frame) extract the features, calculate
and store their attributes. A correspondence problem remains between
features in successive frames.

2. Feature tracking. Solve the correspondence problem based on the at-
tribute descriptions of the features. Feature tracking finds continuous
paths of features through time.

3. Event detection. Detect certain interesting ‘events’ by investigating the
evolution of features. Examples of events are birth, death, split, and merge.

4. Visualization. Interactively visualize the evolution of features in a player,
show the relations between features in successive frames, and highlight
particular events.

1.3. Structure of this thesis

The basis for this process are the numerical attributes which describe the charac-
teristics of features. Therefore, part of the research focuses on the quantification
of features.

One objective is to establish an accurate and stable basis of feature attributes
for temporal coherence. It is important to know if the calculated attributes are
accurate and stable before they can be used for further analysis. Research in this
area was published in [Reinders et al., 1998].

Another objective is to find new attribute calculation methods for impor-
tant classes of features. This thesis presents an attribute calculation method that
describes the shape of features. This part of the research was published in [Rein-
ders et al., 2000].

The feature attributes can be stored in a feature data representation that allows
the storage and manipulation of feature attributes. Using this feature data rep-
resentation, we can investigate the evolution of features in time-dependent data.

The next objective is to define correspondence criteria for the comparison of
feature attributes and to develop an algorithm to track features in time. This re-
search was published in [Reinders et al., 1999a; Reinders et al., 1999b]. Then, the
objective is to define significant events in the lifetime of a feature, and develop
algorithms to detect them. This was described in [Reinders et al., 2001].

The final objective is to find ways to visualize temporal patterns in feature
evolutions. It must be possible to interactively explore and investigate the evo-
lution in order to obtain a better understanding of the physical phenomena of
the application. Results in this part of the research were described in the publi-
cations given above.

1.3 Structure of this thesis

The structure of this thesis is as follows.

Chapter 2 provides an overview of related work in the field of feature-based
visualization. It defines the conceptual framework used in the rest of this thesis,
and describes related work to provide a perspective on the work presented here.

In Chapter 3, 4, and 5 the focus is on attribute representation and calculation.
Chapter 3 describes the feature data representation for the storage and manip-
ulation of features and their attributes. Chapter 4 addresses accuracy issues of
two commonly used attribute calculation methods: volume integrals and ellip-
soidal fittings. Chapter 5 presents an attribute calculation for the topological
and geometric description of the shape of a feature, based on the skeleton ex-
tracted from a feature object.

Next, the focus of the thesis is directed to the visualization of time-dependent
data by means of feature tracking and event detection. Chapter 6 describes the

Chapter 1. Introduction

tracking of features based on the feature data representation discussed in Chap-
ter 3. Chapter 7 discusses the detection of events in the evolution of features.

Finally, the techniques described in this thesis are put to the test with several
applications in Chapter 8, and Chapter 9 presents some conclusions and gives
directions for future research.

Chapter 2

Feature-Based Visualization

In [Post et al., 1999] visualization techniques were grouped in three classes:
global techniques, geometric techniques, and feature-based techniques. Global
techniques give a qualitative, global visualization of the data at a low level of
abstraction. Geometric techniques extract geometric objects (curves, surfaces,
solids) from the data. They can be considered as intermediate-level representa-
tions, both with regard to locality and level of abstraction. Feature-based tech-
niques extract high-level, abstract entities from the data. The emphasis is on
quantification for more precise evaluation and comparison [Silver & Zabusky,
1993].

This thesis is mainly concerned with techniques related to feature-based vi-
sualization. This chapter provides a motivation for feature-based visualization,
and puts the work described in this thesis in perspective to other research in this
field.

This chapter is organized as follows.

Before feature-based visualization is reviewed, Section 2.1 first gives an over-
view of a number of basic concepts of visualization, which defines a conceptual
framework for the rest of this thesis.

Section 2.2 discusses the motivation for feature extraction. Section 2.3 gives
an overview of related work in the field of feature extraction. Section 2.5 de-
scribes the use of feature extraction for the visualization of time-dependent data,
and Section 2.6 gives an overview of related work in this area. Finally, Section 2.7
provides a preview of the research described in this thesis.

2.1 Basic Concepts of Visualization

Visualization transforms data into visual representations. The data may result
from numerical simulations or from measurements, i.e. data capture or sensing
devices. For simplicity, we will assume that the data is generated from numeri-
cal simulations.

Chapter 2. Feature-Based Visualization

2.1.1 The cycle of investigation

Visualization plays an important role in scientific research, especially in the field
of computational science. Computational science involves the use of modeling,
simulation, visualization, and analysis. Real world phenomena are represented
by models which are used in numerical simulations. The numerical simulations
result in data sets that describe natural phenomena by means of numbers. These
numbers need to be visualized in order to analyze the results of the simulation.
The analysis of the data may lead to better models which ultimately leads to a
better understanding of the physical phenomena.

Visualization enables the researcher to observe the data and explore them: to
seek for unexpected phenomena or for confirmation or rejection of a hypothesis.
The new insights may lead to better models or to changes in the model param-
eters, after which the whole process of modeling, simulation, visualization, and
analysis is repeated. Thus, the process of investigation is cyclic, and it can be
steered using the visualizations.

2.1.2 Data fields and grids

In scientific visualization, data sets represent continuous data fields by samples
on discrete points (grid or measure points). The sample points are organized in
a grid which covers the space of the application domain. The data field between
the sample points can be reconstructed by interpolating the data values at these
points. Data fields are often three-dimensional (3D), and may consist of multiple
data quantities. For instance, a flow data set may include the three components
of the flow velocity vector, and in addition scalar quantities such as pressure
and temperature.

The grid is used in the numerical simulation; the solution of the numerical simu-
lation is usually computed at the grid points. Hence, the grid define the location
of the sample points in 3D space where the data quantities are given.

The grid may be regular, curvilinear, or unstructured (see Figure 2.1). In a
regular grid the point locations are regularly distributed over the domain. The
grid is structured, which means each grid point can be referenced by integer
indices (i, j, k). A curvilinear grid is also structured, but the grid lines (connect-
ing iso-index grid points) are curved. We must have the spatial coordinates for
each grid point in order to analyze this type of data. In an unstructured grid,
the grid points cannot be referenced by indices, the grid point locations are scat-
tered through space, however connectivity information between points is often
available.

The grid spans a volume in 3D space that can be subdivided in small volume
elements called cells. Usually, the corer points of the cells are the grid points
where the data are defined. The cells subdivide the entire application domain,
but may not intersect or overlap, and adjacent cells must have common edges

2.2. Motivation for Feature Extraction

aNTAN
& AT
AISISAAIN
e AT s
2 e sTAY AT AN A
AR N
X

VAVAVAY,
/7

/

Figure 2.1: Three types of grids: a) regular, b) curvilinear, and ¢) unstructured.

and faces. The shape of the cells depends on the grid type used. The shape of
the cells may be cubes (or voxels) for a regular grid, hexahedra for a curvilinear
grid, and tetrahedra for an unstructured grid. But it is also possible to define
differently shaped cells with the same set of grid points (for example, each cube
can be decomposed into five tetrahedra).

In data from numerical simulations, the specifications of the grid and cells
depend on the numerical method used. Numerical methods such as finite-
element, finite-difference, or finite-volume methods are based on the defini-
tion of a discrete, computational grid that spans the domain investigated. The
shape of the grid should be conform to the boundary of the domain. Computa-
tional fluid dynamics (CFD) simulations often use curvilinear grids because the
boundary of the domain is often curved.

2.2 Motivation for Feature Extraction

Feature-based visualization techniques aim at algorithmic, automated extrac-
tion of features from data sets. A feature is any object, pattern or structure in
the (visualized) data that is of interest and that is a subject of investigation. The
goal is to extract the feature and to calculate quantitative attributes describing
the characteristics of that feature. With the attributes, the feature can be visu-
alized and evaluated more precisely. We call feature extraction the process of
extraction, attribute calculation, and visualization of features.

Feature extraction should give answers to questions such as: ‘Does a cer-
tain phenomenon occur?’, “‘When/how /where precisely does it occur?’, “‘What
happens to it when parameters are changed?’, and ‘How does it develop in the
course of time?’. Feafture extraction focuses on the occurrence, quantification,
and analysis of phenomena. The task of feature extraction is to assist in answer-
ing these questions, and to help the user analyze the data and gain new insights
in the particular phenomena in these data.

Chapter 2. Feature-Based Visualization

221 Advantages

Feature extraction has a number of advantages compared to other visualization
techniques. The advantages are related to the questions mentioned above about
occurrence, quantification, and analysis.

Feature occurrence

The features are explicitly extracted and visualized. The extraction of interesting
features is not left solely to the visual perception of the observer. Instead of
‘seeing’ a feature in the data, the feature is extracted explicitly by an algorithmic,
automated procedure. The procedures are based on a definition underlying a
feature, and the data are tested to comply to the criteria based on this definition.
The procedures are a tool to aid the human perception in the analysis of the
data.

The extraction procedure ensures an objective interpretation of the criteria
for a feature. Feature extraction may find features that were not visible to the
eye, or may reject visible features. In these cases, the scientist may change the
criteria until he is satisfied with the resulting features. There is an interaction
between the definition for a feature and the criteria that are tested. Often, a
working definition for a feature is found after a process of exploration.

The definition of a feature is closely related to its conditions of occurrence,
and this is often precisely the purpose of an investigation. Thus, the searching of
good extraction criteria can be part of the investigation. As such the process of
developing feature-based visualizations is just as important as the final result.

Feature extraction raises the data abstraction to a higher level. A feature is an
abstract phenomenon that is more closely related to the concepts of the applica-
tion than the numbers in the dataset. The focus is redirected from the dataset as
a whole to the interesting parts in that data, irrelevant information is ignored. A
relatively small part of the data is extracted and characterized. This is a recur-
sive process; it is possible to find features in the extracted features [van Walsum
et al.,, 1996]. At each recursive step, the level of abstraction is raised to a higher
level.

Feature extraction often leads to abstract, simplified visualizations giving a
schematic representation of complicated phenomena. This is suitable because
the features represent the data at a higher level of abstraction. Because the vi-
sualizations are simple and schematic, they ensure a fast display and can be
visualized interactively.

Feature quantification

Feature extraction provides a quantification of a feature by attribute calculation.
Attribute calculation is an important step in the feature extraction since it gives

2.2. Motivation for Feature Extraction

a quantitative measure of the characteristics of the feature. Quantification con-
tributes to the raising in the level of abstraction: from data containing interesting
features to data describing the interesting features.

Feature extraction leads to a huge data reduction because the characteristics of
a feature are usually quantified by a small set of attributes. The transformation
from grid data to feature data often yields a reduction in the order of 1000. For
instance, a dataset existing of a scalar data field with 128 floats has a size of
8 Mb. Suppose the feature extraction finds 50 features (a relatively large num-
ber) and quantifies them by ellipsoidal fittings, the resulting feature data file
(see Section 3.3) has a size of 9 Kb. The data reduction is in the order of 1000,
which is a typical ratio. The applications discussed in Chapter 8 all show similar
ratios.

The data reduction obtained by feature extraction could be a solution to the
‘tera-byte problem’. With the increasing power of computers the data sets re-
sulting from numerical simulations become larger and larger. Computers are
able to generate so much data that it becomes impossible to visualize, let alone
analyze every aspect of the data. In the field of visualization this problem of
large data sets is referred to as ‘the tera-byte problem’.

The data reduction also provides an excellent opportunity for distributed
processing. The computationally intensive first part of a numerical simulation
and feature extraction can be executed on a remote high performance computer,
while the results, the feature data, can easily be transferred to the visualization
workstation by a low-bandwidth link. There the features can be visualized in
real time.

Feature analysis

The quantification of features leads to possibilities for the comparison and fur-
ther analysis of features. The attributes can be investigated with respect to sim-
ulation parameters or as a function of time.

The way simulation parameters affect the feature attributes may be of in-
terest. For instance, changes in the design of a wing from an aircraft results in
different flow patterns (e.g. vortices) above the wing which give the lift to an
aircraft needed for flying. The investigation may focus on the optimal design
parameters of the wing that results in the best lift. The simulation parameters
are changed interactively while running the simulation in the background and
viewing the results by visualization. Such systems are called computational
steering environments; see [Mulder et al., 1999] for an overview of work in this
area.

Another example of further analysis is the investigation of the evolution of
feature attributes in time. Interesting events or stages in the evolution of the fea-
ture can be detected, quantified, and visualized [Silver & Wang, 1996; Reinders
et al., 2001]. The events are interesting phenomenon (features) in the evolution
of features. Thus the level of abstraction is raised to yet another higher level;

9

Chapter 2. Feature-Based Visualization

from data describing features to data describing the evolution of features. This
shows the recursiveness of feature extraction: one can extract features in the
features already extracted, thereby again raising the level of abstraction.

2.2.2 Disadvantages

Next to the number of advantages described above, feature extraction also has
a number of disadvantages.

Features are difficult to define, and many application specific feature extrac-
tion techniques exist. This by itself is a disadvantage. But additionally, once a
suitable extraction method is found, then still questions remain such as ‘Is what
we found really this feature?’, and ‘Have we found them all?’. Because of this
uncertainty, feature extraction remains a process of exploration. Exploration
helps in finding the right questions that may lead to a working definition for a
feature.

Feature extraction leads to more abstract visualizations, and therefore may
be less intuitive. Often, the context is lost and an explanation is needed because
many features do not have concrete shapes and can only be displayed by visual
symbols. A convention is needed, e.g. the front lines in Figure 1.1. This in
contrast to low-level, global visualizations where the resulting images are self-
explanatory. Because feature-based visualizations are abstract, the user often
must go back to the original data and create other visualizations that are less
abstract, in order to investigate the phenomena. However the advantage is:
now he knows where to look and what to look for.

The process is irreversible. It is not possible to go back from the feature
attributes to the raw data. It is possible to create a database mechanism for
the retrieval of the original grid data. But, these data cannot be derived from
the feature attributes since a link between feature characteristics and simulation
model parameters is not established. This could be one of the topics for future
research.

2.3 Related Work on Feature Extraction

There exist many application specific feature extraction techniques because fea-
tures are different for each application. This section first describes methods for
the extraction of anatomical features, originating from the field of medical vi-
sualization. Then, a number of application specific techniques is discussed for
the extraction of flow features. Finally, two generic extraction methods are de-
scribed of which one is the feature extraction technique which was developed
in previous work {van Walsum, 1995]. Still, no universal procedure exists to ex-
tract all types of features, and therefore exploration remains a vital step in the
extraction of features.

10

2.3. Related Work on Feature Extraction

2.3.1 Anatomical features

Medical visualization aims at the depiction of the human body for the use in
computer-assisted diagnosis and surgical planning [Xu, 1996; Nakajima et al.,
1997]. The data are mostly measured by medical devices such as MR and CT
scanners, which result in 3D images of the human body. Traditionally, physi-
cians analyze X-ray images visually, and mentally reconstruct the 3D shape
of organs and tissue from 2D slices in order to give a diagnosis. Nowadays,
user-supervised, automated segmentation and shape reconstruction is becom-
ing widely accepted.

Medical visualization focuses on the anatomy of the human body, it extracts
and visualizes organs and tissue. The features that are visualized include the
brain, the heart, blood vessels, and specific pathologies such as tumors. The
goal is to visualize the geometric structure of the feature. The obtained geome-
tries can be used for virtual walk-through and interactive exploration of the
structures [Bartz et al., 1999]. Most of the techniques known in medical visual-
ization focus on the segmentation and surface reconstruction of the anatomical
features.

Segmentation

The extraction of anatomical features first requires a segmentation of the images.
The segmentation of medical images is complicated because of the complexity
and variability of anatomical shapes. Moreover, boundaries between different
anatomical structures are often indistinct or even absent because of lack of con-
trast between these structures, or due to imperfect image quality (noise, sam-
pling artifacts, spatial aliasing, and partial volume effects). This may seriously
hamper the accuracy of the segmentation.

Many segmentation techniques from the field of 2D image processing are
implemented for medical purposes [Bezdek et al., 1993]. This is possible be-
cause often medical data are organized in stacks of 2D slices where the distance
between slices is considerably larger then the distance between pixels within a
slice. Many segmentation approaches first perform a 2D segmentation within a
slice, and then construct a 3D shape by connecting the segmented points in the
2D slices [Leymarie & Levine, 1992b; Atkins & Mackiewich, 1998].

There exists a large body of literature on segmentation of images. Examples
are region growing [Adams & Bischof, 1994; Boykov & Jolly, 2000], active con-
tours [Cohen, 1991; MclInerney & Terzopoulos, 1996], and snakes [Kass et al.,
1988]. Often, the segmentation process is initialized and supervised by the sci-
entist (the physician in this case) by placing control points on the boundary con-
tour of a feature. Within the slices a contour of the feature can be determined,
for instance by using the gradient of data values [de Bruin et al., 1999].

Figure 2.2 shows a slice of a medical data set, the control points inserted by
the physician, and the contour that is found. The figure shows two segmented

11

Chapter 2. Feature-Based Visualization

areas, each indicating a different human organ. After extending the contours
to subsequent slices, the result of the segmentation step is a labeled voxel grid
where each label indicates the anatomical structure the voxel belongs to.

Figure 2.2: Segmentation of medical features by a gradient contour finding tech-
nique, [de Bruin et al., 1998]. The control points added by the physician are
shown in black and the resulting contours are shown in white.

Surface reconstruction

The surface of the anatomical structure can be reconstructed by a triangular
mesh or by fitting some anatomical model over the segmented areas. Using
the triangular mesh or the model parameters, we can create a 3D geometry that
can be displayed using 3D computer graphics.

Generating a triangular mesh over the surface of an object, e.g. by marching
cubes [Lorensen & Cline, 1987], may result in millions of triangles that are hard
to display interactively and that often contain many unwanted artifacts. The
number of triangles can be reduced while still preserving the characteristic fea-
tures of the surface by surface simplification [Schroeder et al., 1992; Klein et al.,
1996; Cignoni et al., 1998; Frank & Lang, 1998]. The process of surface simpli-
fication is particularly problematic because the distance between slices is much
larger then the distance between pixels within a slice. Artifacts such as stair-
cases may result. Surface nets [Gibson, 1998] is one way to provide a solution to
this problem.

12

2.3. Related Work on Feature Extraction

Another approach for the reconstruction of shape is the use of anatomical
models. The features can be modeled by finding a ‘best fit’ between a paramet-
ric model and the image volume [Lelieveldt, 1999]. The model can then be vi-
sualized by mapping the model parameters onto a parametric geometric object
that can be displayed. For instance, the vascular structure can be modeled by a
tree-structure of generalized cylinders [Puig et al., 2000], after which the blood
vessel can be visualized by sweeping a contour cross-section along the model
trajectory. With this visualization we can easily recognize vascular pathologies
such as aneurysms and stenoses.

2.3.2 Flow features

In the field of computational fluid dynamics (CFD) many techniques exist for
the extraction of particular flow features. Examples of flow features are vor-
tices, critical points, shock waves, separation lines and surfaces, re-circulation
zones, and transition to turbulent flow. An overview of flow feature detection
techniques can be found in [Kenwright, 1999]. Here, a number of specific ex-
traction techniques are reviewed. They seem unrelated, but [Peikert & Roth,
1999] showed that a number of these specific techniques can be captured by a
common principle, the ‘parallel vectors’ operator.

Critical points and flow topology

Critical points are points in a velocity field where all three vector components
of the velocity are zero, i.e. v = 0. These points can be characterized accord-
ing to the behavior of nearby tangent curves. If we consider the Taylor series
expansion of a 2D field in the neighborhood of such a point, then the first order
partial derivatives of the field determine the vector field’s local behavior. Thus,
for a non-degenerate critical point (xg, yo) we can use the matrix of these deriva-
tives, i.e. the Jacobian matrix, to characterize the vector field and the behavior
of nearby tangent curves:

du Jdu
[a(u,v)] _ [B oa } @.1)
a(x’ }/) Xo,Y0 9x dy X0-Y0

The eigenvalues and eigenvectors of this matrix are of particular interest be-
cause they provide a classification of the critical points [Helman & Hesselink,
1989; Helman & Hesselink, 1991]. The eigenvalues are complex and are used to
classify the critical points, see Figure 2.3. The critical point can be an attracting
node, a repelling node, an attracting focus, a repelling focus, a center, or a saddle. In
this classification, the center indicate the center of a vortex structure that was
discussed in the previous paragraphs.

13

Chapter 2. Feature-Based Visualization

N
W

Repelling Focus Saddle Point Repelling Node
R1,R2>0 R1*R2<0 R1,R2>0
I, 12<>0 I,12=0 I1,12=0

Repelling Focus Center Attracting Node
R1,R2<0 R, R2=0 R1,R2<0
11,12<>0 I,2<>0 1,L12=0

Figure 2.3: Classification criteria for critical points. R1 and R2 denote the real
parts of the eigenvalues of the Jacobian, I1 and I2 the imaginary parts, [Helman
& Hesselink, 1989].

Other references to publications in the visualization literature about critical
points are [Lavin et al., 1997; Scheuermann et al., 1997; Lavin et al., 1998; Batra &
Hesselink, 1999].

The flow topology can be analyzed using the critical points, and the separation
and attachment lines discussed in the next paragraph. The characteristic points
can be linked into a partially connected graph representing the topology. The
curves connecting the various critical points can be obtained by integrating for-
ward and backward starting from the critical points along the incoming and
outgoing directions of the eigenvectors. The resulting schematic graph repre-
sentation helps us to investigate flow topology.

Figure 2.4 shows the flow topology generated for a computed 2D flow around
a circular cylinder (Figure 2 of [Helman & Hesselink, 1991]). The flow is incident
from the left, with one instantaneous streamline ending directly on the front of
the cylinder. Points de, at, ce, and sp denote detachment, attachment, center,
and saddle points, respectively. All instantaneous streamlines starting above
that curve are deflected over the top of the cylinder, and those starting below
are deflected beneath it. Vortex shedding occurs behind the cylinder, as indi-

14

2.3. Related Work on Feature Extraction

cated by the detachment-attachment ‘bubble’ in the topology, which develops
into a paired saddle and center later in time.

Figure 2.4: Schematic representation of flow topology of a flow around a circular
cylinder, [Helman & Hesselink, 1991].

Very complex topologies can be present in turbulent flow, leading to visual-
izations with a cluttered image which are difficult to interpret. In [de Leeuw
& van Liere, 1999], the visualization is simplified by collapsing pairs of critical
points while still preserving a consistent topological map. By only displaying
the most important critical points, a simplified topological map can be obtained.
Other publications about flow topology are [Helman & Hesselink, 1990; Globus
et al., 1991; Delmarcelle & Hesselink, 1992; Lavin et al., 1997].

Separation and attachment

In addition to critical points, certain points and lines on the walls of objects or
bodies in a fluid flow can be important: the separation and attachment points
and lines. Flow separation and attachment occur when a flow abruptly moves
away from or returns to the solid body such as the surface of an aircraft. The
lines along which this occurs are called separation and attachment lines. Be-
cause we often associate separation lines with vortices and recirculation zones,
determining separation topologies is important both for understanding funda-
mental fluid dynamics and practical applications in aircraft and nozzle design.

In [Kenwright, 1998], a method is described that extracts separation and at-
tachment lines automatically using a phase plane analysis. Some other publica-
tions about separation and attachment lines include [Helman & Hesselink, 1990;
Globus et al., 1991; Pagendarm & Walter, 1994; Peikert & Roth, 1999].

Shock waves

Supersonic and hypersonic flows often show discontinuities of some physical
quantity, such as pressure, known as shock waves. Determining the exact loca-

15

Chapter 2. Feature-Based Visualization

tion and structure of shock waves in computed flow solutions is not straight-
forward. Though physical shocks are very sharp, numerically computed shocks
are ordinarily smeared over several grid cells, due to limited resolution of the
computational grid. Moreover, the grid point locations rarely coincide with the
shock location, so that interpolation issues arise.

In [Pagendarm & Seitz, 1993] shock waves are extracted by determining zero
crossings for the second derivative of the desired quantity. Iso-surfaces are cre-
ated by a threshold at the maximum or minimum of the pressure gradient in
the direction of the flow velocity. The results are flat surface-like features that
represent the shock waves. Other references to publications about the detection
and visualization of shock waves are [Ma et al., 1996; Lovely & Haimes, 1999].

Vortices

Vortices are well known features in the field of CFD. However, it is surprisingly
difficult to establish a definition of a vortex that is robust enough to locate all
the coherent structures that a flow physicist would consider to be vortices. One
working definition is [Robinson, 1991]:

A vortex exists when instantaneous streamlines mapped onto a plane
normal to the vortex core exhibits a roughly circular or spiral pattern,
when viewed from a reference frame moving with the center of the
vortex core.

With this definition in mind a number of methods were developed for extracting
vortex cores and for finding spiral streamline patterns.

There are many publications about vortex detection: [Sujudi & Haimes, 1995;
Roth & Peikert, 1996; Kenwright & Haimes, 1997; Portela, 1997; Haimes & Ken-
wright, 1999]. Here, we will give two examples that provide nice intuitive solu-
tions to the detection of a vortex.

In [Banks & Singer, 1995] a predictor-corrector algorithm is described that ex-
tracts the vortex core. The method is illustrated in the schematic diagrams of
Figure 2.5. Starting from a user-specified seed point, the next position of the
vortex core is predicted by integrating along the vorticity vector w = V x v
(top of the figure). The predicted point typically misses the vortex core. Next,
the heuristic is used that the centripetal acceleration within a vortex results in
a local pressure minimum at the core. In a plane perpendicular to the core,
the pressure minimum is expected to coincide with the point where the core
pierces the plane. The predicted point is corrected to the pressure minimum in a
plane that is perpendicular to the vorticity vector (bottom of the figure). Hence,
a vorticity-predictor, pressure-corrector method is used for finding the vortex
core.

The next step is to construct a tube around the vortex core. The cross-section
is created by sampling the vorticity along radial lines emanating from the core

16

2.3. Related Work on Feature Extraction

@

vi]

Pia

Compute the vorticity at a
point on the vortex core.

Step in the vorticity direction
to predict the next point.

3) Wisl (tY]
Compute the vorticity at Correct to the pressure min
the predicted point. in the perpendicular plane.

Figure 2.5: Four steps of the predictor-corrector algorithm for extracting the vor-
tex core, [Banks & Singer, 1995].

in a plane perpendicular to the core vorticity. Steps are taken along the line until
local vorticity violates a certain threshold condition. Using the cross-sections,
the vortex tube geometry is reconstructed.

The second example of vortex extraction uses the winding angle of streamlines
[Portela, 1997; Sadarjoen & Post, 1999]. Streamlines are calculated in a 2D plane
which should be taken perpendicular to the (expected) vortex core. Looping
streamlines are selected from all streamlines by testing the winding angle. The
winding angle is the sum of the angles between the line segments of a streamline
(see Figure 2.6). The selection criteria for the streamlines are: the winding angle
law,i| > 271, and the distance between the starting point and the final point is
relatively small compared to the average radius. The latter criterion is used to
ensure locality.
After the selection of streamlines, the selected streamlines are clustered in
order to group the streamlines belonging to the same vortex. The clustering is
based on the center point or the geometric mean of the streamline positions P;.
Once clustered, the streamlines in each cluster are used to quantify the vortex,

17

Chapter 2. Feature-Based Visualization

R
o
X
o
o
o
o
!
o
o
!
o
o

_ Py
pO (X,W—OCI+OL2+...

Figure 2.6: The winding angle &, ; is the sum of the angles between the edges,
[Sadarjoen & Post, 1999].

ie. to calculate quantitative attributes. The shape of the vortices is approxi-
mated by 2D ellipses (see also Section 4.1.2). In addition, a number of specific
vortex attributes can be calculated: the vortex rotational direction, and vortex
angular velocity:

S

streamline center: S; = S E
il j=

1Ck|
cluster center: Cy = | C | Z k1)
cluster covariance: My = cov (‘I’(Ck))
ellipse axis lengths: A = eig (My)
ellipse axis directions: dj = eigvec (My)
vortex rotational direction: d; = sign (aw,k)

1 G
Wik = =73 Kap,1
CalBt 2
where |S;| is the number of points in streamline S;, Cx = {Sk 1,52, -} is a
cluster of streamlines, Sy, is streamline #! in cluster #k, |Cy| is the number of
streamlines in that cluster, and ¥ (Cy) are all the points on all the streamlines in
cluster k.

vortex angular velocity:

Figure 2.7 shows two vortices extracted with the winding angle method. The
vortices appear in the wake of a tapered cylinder. This data set and the utiliza-
tion of the winding angle method are reviewed in more detail in the application
described in Section 8.4.2.

18

2.3. Related Work on Feature Extraction

Figure 2.7: Vortices detected by the winding angle method in the wake of a
tapered cylinder, [Sadarjoen & Post, 1999].

2.3.3 Generic feature extraction techniques

The work discussed so far describes techniques to extract specific features. Also,
a number of generic feature extraction techniques exist. Two of them are: selec-
tive and iconic visualization, and linked derived spaces.

Selective and iconic visualization

Selective visualization [van Walsum, 1995] is based on the principle that features
are identifiable by local regions of interest where certain data values are within
a specific range of values. Selective visualization uses a selection expression that
identifies the grid points where the data values are within a user-specified range.
The selection expression may include derived quantities from the data and com-
binations of multiple threshold values. This expression yields TRUE or FALSE
for every grid point in the data. Hence, it results in a number of selected grid
points that usually form connected clusters or regions of interest.

For each region of interest a number of attributes is calculated, describing the
characteristics of the features. The attributes may describe the feature’s geom-
etry, data, or combined data-geometry properties. The resulting attributes can
be mapped onto the parameters of a parameterized iconic object [van Walsum
et al., 1996]. Thus, a selective and iconic visualization is obtained.

19

Chapter 2. Feature-Based Visualization

The feature extraction step used in this thesis is usually based on selective
and iconic visualization. Therefore, this process is discussed in more detail in
Section 2.4.

Linked derived spaces

Feature detection in linked derived spaces was introduced by [Henze, 1998]. A
linked derived space consists of a data browser in which many graphs of ‘co-
ordinate spaces’ can be displayed simultaneously. The coordinate spaces are
xy-plots where two data values are plotted against each other, while still pre-
serving the original mesh connectivity. For instance, Figure 2.8a shows the orig-
inal mesh in the physical (x,y) space and 2.8b shows the derived space of vy
versus vy (With (vy, vy) the two velocity components).

flow reversals

d .

Figure 2.8: Linked derived spaces of an airfoil dataset, [Henze, 1998]: a) in phys-
ical space, and b) in velocity component space. Selections: c) in velocity compo-
nent space result in d) a corresponding image in physical space.

20

2.4. Feature Extraction Pipeline

The field data in the derived spaces retain the original mesh connectivity, al-
though it is redistributed into new geometric patterns in each coordinate space.
The various coordinate systems preserve the spatial connectivity and temporal
variability. The coordinate axes are specified by some subset of the dependent
variables (or quantities derived from them). The position in the derived space
by itself indicates the dependent variable value.

The linked derived spaces can be used to explore data characteristics, in
search of data points with interesting data. For instance, the free-stream flow
from left to right in physical space, Figure 2.8a, is a point on the positive x-axis
in the derived space, Figure 2.8b. Also, the grid points on the left of the y-axis
in the derived space are data points with negative v, and hence indicate areas
with flow reversal.

Selections can be made with a brush tool in one image, resulting in linked
image selections in the other images, as can be seen in Figure 2.8 c and d. The
different images in derived spaces are linked together. The corresponding selec-
tions in the linked images are calculated and displayed.

The selections in the linked derived spaces are very similar to the selection
expressions used in selective visualization. In fact, any selection made in the
linked derived spaces can be transformed to a selection expression. Linked de-
rived spaces also allows combined multiple selections with boolean operators.
The functionality of the linked derived spaces is the exploration of parameter
spaces, e.g. for the use of feature detection.

2.4 Feature Extraction Pipeline

The selective and iconic visualization process mentioned above (Section 2.3.3)
was developed at the Computer Graphics group at Delft University of Technol-
ogy [van Walsum, 1995]. It can be modeled by the pipeline shown in Figure 2.9.
The pipeline consists of the following steps: selection, clustering, attribute cal-
culation, and iconic mapping.

The process of feature extraction is controlled by the scientist in the sense that
his knowledge of the data and his conceptual model of an interesting feature are
translated into several options and parameters used during the extraction pro-
cess: the selection expression, the connectivity criteria, the calculation method
and the mapping function. These will be explained below.

Selection

Selection identifies the grid points where the data satisfy the criteria of what is
interesting. The data in each grid point are evaluated by a selection expression
that yields TRUE or FALSE. The general idea is that scalar quantities are tested
to one or more thresholds in order to select a range of data values. The criteria

21

Chapter 2. Feature-Based Visualization

Selected Regions of Attribute
Raw Data Nodes Interest Sets Icons
Attribute .
Calculation Display

[Daa | . .
| Generation H Selection —'b Clustering

Scientist's knowledge and
conceptual model

Figure 2.9: The feature extraction pipeline based on the selective and iconic vi-
sualization process.

for “interesting’ is expressed by a logical combination of threshold values test-
ing the raw data and/or derived data quantities; it is possible to use multiple
thresholds.

The selection expression is a mathematical formulation of the underlying
physics of the feature. For instance, a vortex can be defined as the region where
vorticity is high and pressure is low:

Sijk =IIVXVijill 2 ToAPjx <Tp (2.2)

where S, ; is the selection result, v; ; ; is the velocity vector at the grid point with
indices (i, j, k), P,-’j,k is the pressure at that point, and T, and T, are threshold
values for the vorticity and pressure respectively.

A language was developed with a set of operators (boolean, scalar, vector,
and matrix operators) and functions (gradient, and statistical functions) in order
to specify the selection expression. With this language almost any selection can
be created based on the data values, and on the point positions. For instance,
equation 2.2 can be expressed as (the threshold values T; = 0.8 and T, = 0.2
can be found by exploration):

; calculate the vorticity ’vort’

vort = curl{(velocity)

; calculate the magnitude of the vorticity ’mag_vort’
mag_vort = len(vort)

; set the two threshold values

T1 = 0.8

T2 = 0.2

; create the selection ’select_out’

select_out = mag_vort > T1 AND pressure < T2

2.4. Feature Extraction Pipeline

It shows that data quantities can be derived from the original raw data, and that
the selection can be based on a combination of multiple thresholds.

The evaluation of a selection expression yields TRUE or FALSE, whether points
are selected or not. The result of the selection step is a binary data field. The se-
lection step can also be replaced by any segmentation technique which produces
a binary field as output. In the field of image processing many segmentation al-
gorithms exist, e.g. see Section 2.3.1.

Clustering

The clustering step gathers neighboring selected points into regions of interest.
Individual selected points have no other meaning than an indication of the po-
sitions where the data satisfy the criteria of interest. However, our concern is
finding coherent regions consisting of more than one point: regions of interest.
Therefore, the task is to find clusters of connected points that are part of the
selection.

The clustering procedure has two connectivity criteria: the connected com-
ponent definition and the cluster threshold. The connected component defini-
tion determines the adjacency of points, whether they have 6 neighbors (face-
connected), 18 neighbors (edge-connected), or 26 neighbors (vertex-connected).
The cluster threshold is equal to the minimal number of points needed to form
a cluster. Clusters of just a few points may be the result of noise or inaccuracy,
and can be eliminated using the cluster threshold.

Each cluster represents a region of interest in the data, and is considered as
a feature. Clustering assigns a label to every selected point that identifies the
cluster number, and the feature identity.

Attribute calculation

Once the clusters have been identified, each cluster is used to calculate attributes
that characterize the feature. There are many possible methods to calculate at-
tributes. Methods can be applied from areas such as computer vision (object
fitting methods) and image processing (morphological operators, skeletoniza-
tion). The user can add any attribute that seems interesting for this type of
feature. More than one calculation method can be used, each method resulting
in an additional set of attributes.

Chapter 4 presents two attribute calculation methods: the volume integral
and the ellipsoid fitting. Volume integrals are used to calculate global integral
attributes of a cluster. Examples are the center position of the cluster points, and
the volume of the cells around the points. These are basic attributes describing
global characteristics of a feature.

Ellipsoid fitting determines the ‘best fit’ of an ellipsoid around the cluster
of points. They can be calculated using the variance/covariance matrix of the

23

Chapter 2. Feature-Based Visualization

point positions [Fung, 1965], which can be calculated by a volume integral. The
ellipsoid has the following parameters: the center position, the axes lengths, and
the axes orientations. In 3D, this result in a set of nine attributes (nine degrees
of freedom). Ellipsoid fittings are commonly used and provide a good sense of
position, and size.

The representation of a feature by a set of attributes leads to a large data
reduction. We must carefully select the attributes to be stored, because informa-
tion is lost. The attributes should describe the feature as precisely as required
for the purpose. Therefore, we need a wide range of methods for attribute cal-
culation in order to obtain all relevant characteristics of a feature.

Iconic mapping

Once the attributes have been determined, the characteristics of the features can
be clearly visualized. An iso-surface can be generated using the segmented data,
but attributes of the feature can be visualized more directly by mapping them
onto the parameters of a parametric icon or glyph [van Walsum et al., 1996].

An icon is a symbolic object that gives a visual representation of the features,
and which can relate to the physical concepts and visual languages of the area of
application. An icon can be represented as a geometric object with a parametric
shape and visual attributes that can be linked to the attributes of a feature. The
relation between the parameters of the icon and the attributes is called the map-
ping function. The goal of iconic mapping is to visualize essential characteristics
of a feature in a symbolic representation.

As with the number of features, the number of different types of icons is
unlimited; the design of an icon depends on the specific application area and
research problem. In [van Walsum et al., 1996] a icon modeling language is
introduced that can create a wide range of icons.

A fast display is guaranteed since the icons are relatively simple geometric
objects with a limited number of triangles. Figure 2.10 shows a number of icons
that can be used to display ellipsoid fitting attributes.

2.5 Visualization of Time-Dependent Data

It is feasible to solve time-dependent equations with numerical methods, result-
ing in time-dependent data sets. Time-dependent data constitute of data sets
for each time step (frame) defined on a grid that may also change in time. Thus,
thousands of frames are calculated each resulting in a dataset that can be visual-
ized and explored. The amount of data is so huge that it is becoming difficult to
store it, let alone to visualize and analyze it. Examples of large time-dependent
data sets are listed in Table 2.1, from [Kenwright, 1999].

Visualization of large data sets, such as time-dependent data, is difficult be-
cause the data cannot be held in main memory. Furthermore, the exploration is

24

2.5. Visualization of Time-Dependent Data

Figure 2.10: Different icons to visualize ellipsoids.

| Data set name and year | # vertices | # time steps | size (Mb) |
Tapered Cylinder 90 131,000 | 400 1,050
McDonnell Douglas F/A-18 92 | 1,200,000 400 12,800
Descending Delta Wing ‘93 900,000 1,800 64,300
Bell-Boeing V22 tiltrotor ‘93 1,300,000 1,450 140,000
Bell-Boeing V22 tiltrotor ‘98 | 10,000,000 1,450 600,000

Table 2.1: List of time-dependent data sets, from [Kenwright, 1999].

often very tedious because the user cannot change visualization parameters in-
teractively without waiting a long time for the result. This is caused by the fact
that data processing consumes much time, and the geometric objects generated
by the visualization are often very large (with many triangles).

One way to visualize time-dependent data is to create animations off-line. It
is possible to create global visualizations of each frame and save these as 2D
images, or 3D scenes. Animation of the images or scenes provide a dynamic im-
pression of the phenomena in the time-dependent data. Additionally, the visu-
alization technique can be adapted in order to emphasize the dynamics [Becker
& Rumpf, 1998].

Off-line creation of animations has the deficiency that it does not allow inter-
active manipulation of visualization parameters. In case of 2D movies, there is
an additional disadvantage: the viewpoint is set, so that the only interaction is

25

Chapter 2. Feature-Based Visualization

provided by the video-functions. However, the advantage of 2D movies is that
display frame rate only depends on image size, not on scene complexity.

When viewing an animation, the user visually scans for coherently moving
structures, and he tries to track apparent features. Playback animation leaves
the extraction of these features to the visual perception of the observer, and it
does not give a quantitative description of the evolving phenomena. These are
all reasons to use a feature-based approach.

Another way to process and visualize time-dependent data is to investigate the
evolution of features. The feature-based approach for the visualization of time-
dependent data can be achieved in four steps (Figure 2.11): feature extraction,
feature tracking, event detection, and visualization.

frame
]
[}
]
i-1 Feature
Extraction
i
— Feat Feature Event . .
Extraction Tracking P Detection P Visualization
i+1 Feature
Extraction
1
]
L]
——> mm- -> - -- >
grid feature feature events
data data paths

Figure 2.11: The feature-based approach for the visualization of time-dependent
data.

1. Feature extraction. Extract the features from each frame in a preprocessing
step, calculate and store their attributes. A correspondence problem [Ballard
& Brown, 1982] remains; it must be determined which feature in frame i
corresponds to which feature in frame i + 1. This correspondence problem
can be solved by tracking the features from one frame to the next.

2. Feature tracking. Solve the correspondence problem based on the at-
tribute descriptions of features in successive frames. Feature tracking re-
sults in path descriptions of continuously evolving features. The next step
is to search for interesting evolving phenomena, or events.

26

2.6. Related Work on Feature Tracking

3. Eventdetection. Detect certain interesting events by investigating the evo-
lution of features. An event is any significant change in the life cycle of a
feature, or a change of state of a feature that is interesting and worthwhile
to investigate. Examples of events are birth, death, split, merge, collision,
transition to another type of feature, or unusual changes. Each event has
its own specific criteria that should be met.

4. Visualization. Interactively visualize the evolution of features in a player,
show the relations between features in successive frames, and highlight
particular events.

The feature-based approach results in entirely new ways of visualizing evolv-
ing phenomena. It allows us to select one feature, create a description of its
lifespan, describing its motion, growth, interaction with other features, and to
visualize that evolution. Also, the time-series as a whole can be investigated in
search of occurring patterns in the evolution of features.

2.6 Related Work on Feature Tracking

The correspondence problem is an issue in several scientific disciplines such
as image processing, computer vision, and scientific visualization. Although
each discipline has its own view to the problem, many approaches are related.
The methods can be classified in two categories: 1) pixel-based methods, and 2)
feature-based methods.

2.6.1 Pixel-based methods

In pixel-based methods, the correspondence is determined on a pixel-to-pixel
basis. There is no separate object recognition step, the correspondence is deter-
mined directly based on pixel patterns. Each pixel of the image in one frame is
compared to all, or part of, the pixels of the image in the next frame.

A well known technique to determine the correspondence between two im-
ages is to calculate the cross-correlation [Castleman, 1996]:

Ryg(0) = f(+g(-1) = [f(ogle-+ 23)

In a sense, the cross-correlation function indicates the relative degree to which
two functions agree for various amounts of miss-alignments (shifting). The shift
that results in the maximal cross-correlation between two images (or parts of
two images) is related to the motion of objects in the images. Maximization of
the cross-correlation function between a target area from the first image and a
search area from the second image, is a technique that is often used in practice.
Especially, in astrophysics a number of algorithms exist that are based on the

27

Chapter 2. Feature-Based Visualization

maximization of the cross-correlation [Rossow et al., 1980; Rossow et al., 1990;
Toigo et al., 1994].

Another approach is the use of optical flow [Hildreth, 1984; Adiv, 1985]. In
computer vision, the motion of objects is determined by calculating the optical
flow. For each pixel a displacement vector is estimated, which results in a field
of vectors: the displacement field or optical flow. Let f(x,y, k) be the image
intensity of the point (x, y) at time k, then the displacement components Ax and
Ay can be estimated by:

~ Ay k) Sf(x Y k)

Af(x,y,k+1) = —Ax x Ay 5 24)
For each pixel we have two unknowns (Ax and Ay) but only one equation. The
problem can be solved by applying a reasonable additional constraint [Hildreth,
1984]. Examples of such a constraint are based on assumptions such as: each
pixel and its neighboring pixels are moving with the same velocity; the dis-
placements are consistent with a rigid motion on the image plane; the velocity
field is smooth.

The pixel-based approaches are computationally expensive because they require
an optimization process. The optimization is still feasible for 2D images, but the
number of calculations becomes immense for 3D data fields, especially when
vector fields are concerned. For data fields the feature-based methods are much
more suited.

2.6.2 Feature-based methods

The feature-based methods first extract significant features, such as points, lines,
contours, or volumes. Then the correspondence problem is solved by com-
paring the extracted features in successive frames. The comparison of features
can be achieved by two mechanisms: region correspondence and attribute cor-
respondence.

Region correspondence

Region correspondence compares the regions of interest that were obtained by
extraction or segmentation. The input consists of two binary images containing
the different features at each time step. Region correspondence compares these
binary images in order to solve the correspondence problem.

The objects in successive binary images can be corresponded by similar meth-
ods as the pixel-based methods, only performed on the objects. The objects are
used to limit the search area. Correspondences can be established using a min-
imum distance or a maximum cross-correlation criterion [in den Haak et al.,
1992]. Also, it is possible to minimize an affine transformation matrix [Kalivas
& Sawchuk, 1991].

28

2.6. Related Work on Feature Tracking

Another way of region correspondence is the extraction of iso-valued fea-
tures in 4D scalar data, where time is considered as the fourth dimension [Wei-
gle & Banks, 1998]. The complete series of time-steps is considered as one data
set, in which an iso-surface is determined. Hence, the correspondence between
3D objects is entirely based on spatial overlap. Two objects in successive frames
correspond when they share one selected point in space. This method is simple,
however it fails when objects in successive frames accidentally overlap but do
not correspond, or if a small object moves fast and does not overlap in succes-
sive frames.

Spatial overlap between features in successive frames is a simple criterion for
correspondence. The problem of accidental overlap can be solved by additional
tests on the attributes of the two features. [Silver & Wang, 1996} introduced a
tracking method based on a combination of overlap and attribute correspon-
dence. Features are represented by a representation of the segmented volume
(an octree representation in the earlier work, and a linked-list representation in
later work) in combination with a number of attributes such as position and size.
Spatial overlap between features in successive frames is established by testing
the leaves of the octree, after which correspondence is established by testing the
attributes in a similar fashion as in [Samtaney et al., 1993] (discussed in the next
subsection).

The spatial overlap limits the number of features that must be compared, for
that purpose it is also useful in the detection of certain events. [Silver & Wang,
1996] use the spatial overlap as a neighborhood criterion in order to limit the
number of combinations that is tested for split/merge events. A split is detected
by testing the attributes of every combination of all the features in the next frame
that overlap with the feature in the current frame. Since the number of features
that overlap is limited, the number of combinations is limited. Additional work
of this tracking approach is presented in [Silver & Wang, 1997; Silver & Wang,
1998; Silver & Wang, 1999].

The region-based correspondence methods are computationally less expensive
than the pixel-based methods since they work on part of the data, i.e. on the
features. However, they still need a representation for the segmented data, and
therefore are memory consuming. Also, the overlap criterion fails in tracking
small features that move fast.

Attribute correspondence

Attribute correspondence uses the calculated attributes in order to compare fea-
tures. Examples of attributes are the center point position, the volume, the mass,
or average data values. The attributes describe the characteristics of the features,
and do not need the original grid data. Usually, the attributes are a small set of
numbers that consume little memory. It is possible to store the feature attributes
of the whole time series in main memory. This is a significant advantage, since

29

Chapter 2. Feature-Based Visualization

now it is possible to track forward and backward through the frames in multiple
passes without losing interaction. The user can explore the tracking process by
changing tracking parameters and viewing the results.

Since we use a feature extraction technique that results in feature attributes,
itis obvious to track features using attribute correspondence. Examples from the
literature that use attribute correspondence are the tracking of markers [Sethi &
Jain, 1987; Salari & Sethi, 1990; Sethi et al., 1994], the tracking of clouds [Arnaud
et al., 1992], and the tracking of flow features [Samtaney et al., 1993; Samtaney
et al., 1994].

Below we will discuss two of these methods in more detail: Sethi’s greedy
exchange method [Sethi et al., 1994] and Samtaney’s feature tracking method
[Samtaney et al., 1994].

Sethi’s greedy exchange method

In [Sethi et al., 1994], markers or tokens in images are tracked for vision tasks
such as object tracking, motion capture, and structure from motion. The basic
property (attribute) of each token is its position, but it is also possible to include
other properties (such as volume and mass). The correspondence problem is
solved by establishing trajectories in the property space, i.e. the attribute space.
The algorithm is based on path coherence and smoothness of motion. The total
property coherence for all trajectories is optimized.

The basic approach for optimization is to get initial trajectories by connect-
ing the closest (in property space) tokens and then iteratively refine them in a
systematic fashion till a terminating condition is met. The iterative refinement
consists of exchanging tokens in paths and calculating the gain of the exchange,
the path with maximum gain is chosen. Tokens are only exchanged if they lie
within a certain distance maximum dp,x in the property space, thus not every
possible connection is tested. The method is referred to as the greedy exchange
(GE) method. It is also possible to use another optimization method based on
simulated annealing (SA).

The gain of each exchange is calculated using a property coherence measure
for three successive mappings of a feature. This property coherence measure is

given by:
ab * bc
F(ﬂ, b,C) = (1 — —_—_> +
llabll [|bc]l

llab]] * ||bc]|
wo 1-2Y——— (2.5)
llabl| + [|be]|
where 4, b, and ¢ respectively represent the three feature mappings in a k-

dimensional property space. The first term on the right hand side gives a mea-
sure of change in the direction of the movement (directional coherence), and the

30

2.6. Related Work on Feature Tracking

second term provides a measure of the speed of the movement (speed coherence).
Both of these measures are combined through suitable weights w1 and w,.

For example, the 2D property space in Figure 2.12 consists of the (x, y) po-
sitions of three successive features. The first term in equation 2.5 measures the
angle between vectors b — a and ¢ — b, and the second term measures the dif-
ference in length between vectors b — a and ¢ — b. In this case, only the (x,y)
coordinates are taken into account, but it is also possible to calculate a property
coherence measure for additional attributes, when available.

v

[,

X

Figure 2.12: The property space of three feature mappings 4, b, and c.

Also, the property coherence measureis provided with suitable scaling terms
for each axis of the property space:

L k
abxbc = Y si(tyi — ai)(rei — Tvi) (2.6)
i=1
. k
llabl = \ Y si(rpi — 7ai)?
i=1
. k
el = \ Y sirei — 1hi)?
i=1

where s; is the scaling factor for the i*" axis of the property space and ¥_s; = 1.0,
and r,; is the i* property value of feature a. With these scaling terms, one axis

can be assigned more weight than another.
Samtaney’s feature tracking method

[Samtaney et al., 1994] introduced the following evolutionary events (see Fig-
ure 2.13): continuation, creation, dissipation, bifurcation, and amalgamation.
First, all continuations are determined by testing each object in frame i to the

31

Chapter 2. Feature-Based Visualization

nearest (in position) object in frame i + 1. Then, combinations of the remaining
unmatched objects are tested for bifurcation and amalgamation. Finally, all ob-
jects that could not be matched in one direction are classified as either dissipated
or created. Thus, features are linked on a two-frame basis resulting in the paths
and evolutions of individual objects.

continuation (

]\ Vo |
1) \/a

)
)
V 54

dissipation ‘ creation
\ ¥ |

Figure 2.13: Tracking events: continuation, creation, dissipation, bifurcation,
and amalgamation, [Samtaney et al., 1994].

malgamation

The criterion for correspondence between two features is that the difference
between each attribute pair must fall within a certain tolerance. For continua-
tion, the criterion for an attribute is:

attr(O5Y) — attr(OY) < Tanr (2.7)
with Of;l the object in frame i + 1, Of,‘ the object in frame i, and Ty, the toler-

32

2.6. Related Work on Feature Tracking

ance value for a specific type of attribute. In case the attribute is a position, the
distance between the two objects can be tested:

dist(O5'", 0) < Taist (2.8)

In case the attribute is a scalar value such as a volume, the difference or the
relative difference can be tested:

vol (O51) — vol (O})
vol(O%) — vol (O
max (vol(OiBH), vol(qu))

IA

Tvol (2-9)

Toor (2.10)

The user has to assign a certain tolerance value Ty, for each type of attribute
that he wants to be tested.

Bifurcation is detected by testing the sum of attributes of the group of objects
that result after bifurcation } attr(S;g\,). Thus, the correspondence criterion for
bifurcation is:) '

Y attr(Spt),) — attr(OY) < Tapr (2.11)

with S;;g\, the sum of the combination of objects in neighborhood N. The sum-
mation of attributes may be slightly different depending on the type of attribute:
e.g. the position attribute is weighted by the volume or mass:

pos(SiHL) = Y vol (O x pos(02+1)
beN Zi\] ’ool(Olb'H)

(2.12)

In this way the center of gravity of a combination of objects is calculated. The
correspondence criterion for amalgamation is the inverse of the bifurcation cri-
terion.

Also, [Samtaney et al., 1994] introduced a schematic representation that shows
the relations of features in successive frames by means of a directed acyclic
graph (DAG). Each feature is represented by a node and the correspondences
between features are shown by edges. Figure 2.14 shows a DAG history of fea-
tures (the first number in each box is the feature number, and the second num-
ber is the frame number). Specific events are recognized by the number of edges
that go in and out of a feature node.

Evaluation of the two methods

The method of [Sethi et al., 1994] results in smooth trajectories corresponding to
the preferences of the human visual system for continuity of motion. However,
it uses the attributes as individual parameters in a k-dimensional property space
where attributes are not related to each other and have no physical meaning.
Furthermore, the greedy exchange method uses an optimization and therefore

33

Chapter 2. Feature-Based Visualization

(1| |[l2w]] [[3@]| |[4@]
1@] |[2@]] |[[B@] |[[4@]] |[5@]
(13]| [[2@]| [[3@®]] |[[4®]] |[53)]

Figure 2.14: Directed acyclic graph (DAG) history of the evolution of features,
[Samtaney et al., 1994].

is computationally expensive, this is shown in Section 6.7.3. Also, the method
cannot detect events.

The method of [Samtaney ef al., 1994] does treat the attributes as meaningful
variables, and does detect particular events. However, the method lacks sense of
continuity of motion and the events ‘creation’ and ‘dissipation’ are not explicitly
detected; they are merely a result of failing to find a positive match.

In conclusion, the two methods present interesting ideas. Especially, [Sam-
taney et al., 1994] is a precursor and a great source of inspiration to our work.
The use of feature attributes for tracking presents opportunities for interactive
tracking, and the concept of event detection brings new ideas for different types
of events. The lack of continuity of motion could be compensated by means pre-
sented by [Sethi et al., 1994], thus combining the advantages of both methods.

2.7 Thesis Preview

The research described in this thesis focuses on the following three main sub-
jects:

o Feature quantification and data representation.

A generic feature data representation is designed that allows the stor-
age and manipulation of features with many different types of attributes
(Chapter 3). Many of the features obtained by feature extraction tech-
niques described above, can be represented by this feature data represen-
tation.

The accuracy of the calculated feature attributes is tested for two attribute
calculation methods (Chapter 4). Furthermore, a new attribute calculation
method is presented that determines skeleton shape attributes, which al-

34

2.7. Thesis Preview

lows the description of the geometric and topological structure of an object
(Chapter 5).

e Feature tracking and event detection.

The feature data representation allows the investigation of feature evolu-
tion in time-dependent data. Features are tracked based on their attributes
only, i.e. the original grid data is not needed. The feature tracking method
(Chapter 6) has a better sense of continuity of motion than the method of
Samtaney, and treats attributes as related quantities instead of individual
parameters in a k-dimensional property space (like Sethi). Also, the track-
ing method can track generic features; as long as they can be represented
by our feature data representation.

The feature tracking results in continuous paths of features that describe
the evolution of objects. This evolution can be investigated for significant
events by our event detection method (Chapter 7). We improved the event
detection and classification described by Samtaney with a number of new
events.

o Visualization of evolving phenomena.

The results of the feature tracking and event detection are visualized by
a linked combination of two views: the feature view and the graph view.
The feature view shows the features in 3D space by iconic representations.
The graph view shows the event graph which is the result of the feature
tracking and event detection stage. With these two views the user can
interactively investigate the tracking results and analyze the evolution of
the features. The combination of these two views provide a more sophis-
ticated visualization than the DAG-visualization by Samtaney.

The techniques described above are successfully applied to a number of case
studies (Chapter 8).

35

Chapter 3

Feature Data Representation

The feature-based visualization techniques described in the previous chapter,
result in a variety of features. For each different feature type and application
domain, a different set of attributes may be calculated. Also, the attributes may
differ depending on the feature extraction technique used, and depending on
the interest and focus of the investigation.

The different foci of investigation results in a large variety of possible at-
tribute types and collections of attributes. For example, the attributes describ-
ing a vortex feature may include its core and the dimensions of the vortex tube
around the core, but also general attributes like its total volume, the center of
gravity, the average rotational speed, and so on. All these attributes are op-
tional; a selected set can be used to describe the vortex. Moreover, a different
application consists of other types of features described by completely different
sets of attributes.

Irrespective of the large variety of attributes, a need exists for generic tech-
niques for the manipulation and the comparison of features. It should be possi-
ble to calculate with features without knowing their exact contents, i.e. without
concerning ourselves with the underlying physical significance of attributes and
features. The only restriction is that the features are of the same type and contain
equal sets of attributes.

We introduce a generic feature data representation, which is a quantitative rep-
resentation of the feature attributes and which provides a number of functions
and operations for the processing of features. With the feature data representa-
tion, a feature becomes an entity that can be stored, manipulated, compared and
visualized.

This feature data representation requires a carefully designed framework
which is explained in this chapter. The structure of the chapter is as follows.
First, we discuss the motivation and requirements for a feature data representa-
tion. Then, we give a description of the class hierarchy that is implemented for
the representation of features. Finally, we describe the representation of features
in time-dependent data, and the file format that is associated with it.

37

Chapter 3. Feature Data Representation

3.1 Framework for Feature Data

3.1.1 Motivation

A feature data representation must facilitate the further investigation, analysis
and visualization of features. During the feature extraction step, the original
grid data was analyzed and the focus was directed to the interesting features
in these data. Now, we have data describing these interesting features and we
want to investigate these data. For instance to track the features in time and
investigate feature evolution. The correspondence problem can be solved using
the feature data only; the original grid data are not needed for feature compari-
son.

The use of a feature data representation makes the original grid data dis-
pensable because all relevant information about the interesting features in the
grid data is (or at least should be) available in the feature data. For some pur-
poses it may be helpful to revert to the original data, e.g. to find ‘weak’ features
(see Section 6.8). For these purposes, it is essential that we can reproduce the
features. The feature data representation should include information about the
whole process, including parameters, of feature extraction and quantification.

The transformation from grid data to feature data results in a huge reduction
of data size which facilitates the interactive analysis of features. Especially for
time-dependent data this is a tremendous advantage because this type of grid
data are usually very large. It becomes feasible to store a whole time series in
main memory and go back and forth in time in several passes and still remain
interactive. This exploration in time would be unmanageable with the original
raw data. The ability to perform multiple passes is essential for the process of
feature tracking and event detection, as will be discussed in Chapters 6 and 7.

Feature data allows the interactive visualization and exploration of features
in time-dependent data. The icons associated with the features can easily be
displayed in a 3D viewer. The user can interactively browse through the frames,
look at the objects in 3D-space and see their evolution interactively. This has
great advantages compared to the creation of 2D movies where the viewpoint is
predefined and interactive navigation is not possible.

3.1.2 Requirements

A feature data representation has to cope with a dilemma between generaliza-
tion and specialization. Feature data should provide a generic representation
for all types of features, but the behavior of a specific feature should conform
to the underlying physics of the application. Vortices in a flow will behave dif-
ferently from nuclear particles in a magnetic field. We want a framework that
can store both types of data, and still allow certain operations like tracking and
event detection.

38

3.1. Framework for Feature Data

A solution for this dilemma is found in the ‘overloading’ of basic functions
and operations on features. Certain basic functions and operations for the ma-
nipulation of features are defined for every type of feature, but the functions
are overloaded for each specific type in a way that it acts in accordance with
the underlying rules of the application. This will be explained in more detail in
Section 3.2.

The overloading of functions and operations makes the framework flexible.
It is easy to construct a new type of feature by creating a subclass, and overload-
ing its member functions in accordance with the physical rules underlying the
new type. The storage, manipulation, comparison, and visualization of the fea-
ture is acquired immediately. Processes like time tracking and event detection
do not have to be adapted for every new type of feature because they use only
these basic functions and operations. The new type of feature can immediately
be tracked if the basic functions are defined.

3.1.3 Relevant functions and operations

The functions and operations associated with a feature should support a wide
range of manipulations. It must be possible to calculate with features. For in-
stance, to calculate a prediction in time by linear extrapolation:

(FF—F_1) .
(ti—ti1)

where F; is the feature at time step 7, and {; is the time at step i. In order to
perform this extrapolation, we must be able to add and subtract features, and
be able to multiply a feature by a scalar number.

Table 3.1 lists a number of relevant functions and operations on features.
They include general functions for input/output (Read and Write), copying
(Copy), numerical calculation (Subtract, Add, Times, and Divide), and visualiza-
tion (Icon). Other functions are especially created for the feature tracking and
event detection procedures. The Merge function merges a number of features
into one, CorrespondenceFunctions returns a list of correspondence functions
that can be used to compare two features (Section 6.2.1), a number of functions
exist that return a list of event functions for the detection of a particular event
(Chapter 7). In addition to these functions, many other convenient functions
were created for the access of the data within a feature.

Fipi=F+ (tiv1 —ti) (3.1)

This list of functions is adequate for our purpose of feature tracking and event
detection, but new functions and operations may be added when desired.

39

Chapter 3. Feature Data Representation

Function name

Description

Read or write feature data from or to

Read, Write)
ea rl file.
Copy Create a copy of this feature.
Subtract or add the attributes of two
Subtract, Add features. This equals the + and — op-

erators.

Times,Divide

Multiply or divide the feature attributes
by a scalar value. This equals the * and
/ operators.

Icon

Return an iconic geometry for visualiza-
tion.

CorrespondenceFunctions

Returns a list of correspondence func-
tions for the comparison of two fea-
tures.

Returns a list of exit functions for the

ExitFunctions X .
detection of an exit event.
DeathFunctions Retun}s a list of death functions for the
detection of a death event.
tu list of logical i
TopoFunctions Returns a list of topological functions

for the detection of a topological event.

NeighborhoodFunctions

Returns a list of neighborhood func-
tions to establish the neighborhood be-
tween two features.

Merge

Creates a ‘merged’ feature from a num-
ber of features that merge into one.

Table 3.1: Relevant functions and operations that must be defined for a feature,
they include general functions for I/O and copying, numerical operations, a
function for visualization purpose, and specific operations for feature tracking

and event detection.

40

3.2. Class Hierarchy

3.2 Class Hierarchy

The feature data representation is implemented as a C** class-library. The data
structure exploits the concepts of inheritance and overloading of functions from
parent classes to children classes. A child inherits all the characteristics from
its parent, but may overload certain functions to match its own characteristics.
For instance, the parent class Attribute has a virtual function Read that reads
the data from file. Each child derived from Attribute overloads this function
according to its own file-format. Now, we can call the function Read for any
Attribute without knowing the specific type of the child.

The structure of the class hierarchy is designed following the feature extraction
pipeline shown in Figure 2.9.

The attributes are calculated by a calculation method, and it is possible to
use more than one calculation method to obtain attributes describing different
aspects of the feature. Each calculation method results in a group of attributes
that are often closely related to each other. The attributes by themselves pro-
vide information about the feature, but together they provide more informa-
tion. Therefore, the group of attributes resulting from one calculation method
are collected in an attribute set.

As an attribute set, the attributes have a stronger significance than each at-
tribute separately. For instance, an ellipsoid fit consists of three attributes: po-
sition, axis lengths, and axis orientations. The orientation attribute only has a
significant meaning in combination with the axis lengths and the position.

The building blocks of the attribute sets are the attributes. They contain the
basic values describing the characteristics of a feature. There are different data
types for an attribute, e.g. scalar, vector, matrix, string, and index. However,
each type is subdivided into a number of specific types of attributes which gives
a specific meaning to the values. For example, a position attribute is a vector
of three coordinates in 3D space, as a position attribute the three values are
coordinates in space, but as a vector they have no significant meaning,.

With the basic classes of calculation method, attribute set, and attribute, we can
construct the feature data representation describing a feature. The constructor
of a feature has as input the list of calculation methods that were used for quan-
tification. Each calculation method results in an attribute set which holds a set
of specific attributes. We designed a data structure that specifies the subclasses
for each of these basic classes.

3.2.1 Attribute

Figure 3.1 shows the hierarchy of the Attribute classes. The parent is the
Attribute class which provides a number of basic, abstract functions that may

41

Chapter 3. Feature Data Representation

be overloaded by the children. Overloading changes the implementation of
such a function so that it depends on the semantics of the derived class.

Direction

Volume j
| Scalar | Mass |
Data]
—» Position |
—DI Scaling I
—»| Orientation |
—DI Velocity I
fomen
Moments
Skeleton Node |
Vortex Node I

Graph Edge Topo Edge I

Figure 3.1: The hierarchy of the Attribute classes.

The second level in the hierarchy is a number of attribute data types such
as matrix, vector, and scalar attributes. They do not yet have a specific physi-
cal meaning, but provide a general implementation for the storage of the data
and for the implementation of certain member functions. For instance, the class
Vector contains a vector of floats. The member function that reads a vector
from a file is implemented for Vector and does not have to be re-implemented
for its children. The same principle applies for other operations and functions
that may be executed on vectors. In this way, much functionality is passed to
children by inheritance.

At the third level the attributes get a specific physical meaning. Position

42

3.2. Class Hierarchy

contains the three coordinates in space, Volume the volume of the object, and
Skeleton Node a skeleton graph node (see Section 5.4). In this way the values in
the attribute obtain a higher semantic level, instead of being just a set of values.

The hierarchy of attribute classes provides a general implementation for all kind
of attributes. New types of attributes can be easily added by adding a new class
and overloading the specific member functions. The overloading should agree
with the rules that apply for that specific type of attribute.

3.2.2 Attribute set

An attribute set is a set of related attributes that result from a specific calculation
method. For instance, the E11ipsoid atiribute set is related to the ellipsoid fit-
ting calculation method. It consists of three attributes: Position, Scaling, and
Orientation.

Often it is possible to calculate derived attributes from an attribute set. An
example is the volume calculated from the axis lengths in the ellipsoid data:

V= %nrlrzrg (3.2)

This shows that an attribute set may hold more information than what is di-
rectly available. Sometimes it is even possible to derive a complete attribute set
from another attribute set. For instance, the E11ipsoid attribute set can be de-
rived from the variance/covariance matrix stored in the Spatial Distribution
attribute set (see Section 4.1.2).

Figure 3.2 shows the structure of the Attribute Set class hierarchy. Similar
to the Attribute hierarchy, three levels can be recognized: Attribute Set is
the basic, abstract parent class, then some generic children are derived from the
attribute set, and finally a set of specific attribute sets are derived.

For each specific attribute set the functions and operations to calculate with
attributes are defined. These functions include the basic arithmetic operations:
addition, subtraction, multiplication, and division of attribute sets. The rules
that apply for each of these functions depend on the type of the attribute set.
These functions allow the calculation with feature attributes.

Sometimes two types of attribute sets hold the same set of attributes, but
have a different meaning. The meaning of the attributes depend on the cal-
culation method that is the foundation for the attribute set. For instance, the
attributes in the ellipsoid (Position, Scaling, and Orientation) are similar to
the oriented bounding box. Although the attribute types are the same, the set
as a whole has a different meaning and may act differently with certain oper-
ations. It is this functionality that is implemented in the specific subclasses of
Attribute Set.

43

Chapter 3. Feature Data Representation

Data Distribution I

-.[Distribution Spatial Distribution |

Weighted Distribution I

Attribute Set I—-" Graph Extract I—.I Skeleton Graph |

Bounding Box I

‘B Object kit Ellipsoid |

2D Vortex |

Figure 3.2: The hierarchy of the Attribute Set classes.

Each attribute set has a member function Icon that returns an iconic geometry
for visualization purposes. The correct mapping of the attributes on a paramet-
ric iconic object (‘Iconic Mapping’ in the feature extraction pipeline, Figure 2.9)
is achieved by overloading this function. Often a choice can be made between
several possible icon types.

The geometric objects that are returned by Icon are defined in Open Inventor
[Wernecke, 1993]. Open Inventor is a well known 3D Computer Graphics library
based on OpenGL [Woo M. and Neider J. and Davis T. and Shreiner D., 1999]
and that can be accelerated by graphics hardware. In this way, a fast display can
be expected on a workstation with hardware support for OpenGL output.

3.2.3 Calculation method

A calculation method calculates attributes by applying a model to a feature ex-
tracted from the raw data. The result is one specific attribute set that should act
according to the rules underlying the model of the method. The relationship
between attribute set and calculation method is a one-to-one relation. This can
also be seen when we compare Figure 3.3 and Figure 3.2. A Volume Integral
results in a Distribution,an Object Fittingresultsin an Object Fit,and so
on. The Calculation Method class is the ‘method’ equivalent of the ‘data’ class
Attribute Set.

44

3.2. Class Hierarchy

—$» Data Integral

—P» Volume Integral $ Spatial Integral

> Weighted
Integral

Calculation >

Method Graph Extraction ———J» Skeletonization

—P» Box Fitting

—P» Object Fitting P Ellipsoid Fitting

L3 Winding Angle

Figure 3.3: The hierarchy of the Calculation Method classes, which is iso-
morph to the Attribute Set hierarchy of Figure 3.2.

The model underlying the calculation method includes the evolutionary charac-
teristics of a feature. Some calculation methods produce information that allow
certain types of events. For instance, Skeletonization calculates topological
information of a feature, so that topological events may be detected. But this in-
formation is not available when Ellipsoid Fitting is used, so that this event
cannot be detected. The behavior of a feature is determined by the calculation
methods used in the feature extraction step.

Each calculation method is associated with a number of event functions for
each specific type of event (see Chapter 7). If no event function is associated to
this method for a specific event, then that event cannot be detected as far as this
method is concerned. But the event can still be detected if another method does
provide an event function for that type of event.

Because the calculation method and attribute set are related one-to-one, this
also establishes the behavior of the corresponding attribute set. The correspond-
ing attribute set should be implemented in accordance to the specific rules un-
derlying the model of the calculation method.

45

Chapter 3. Feature Data Representation

3.2.4 Feature

The class Feature embodies the feature data representation describing the fea-
ture characteristics. The class hierarchies described above, are used in the fol-
lowing way.

Formally, a feature should include all information that is needed in order
to reproduce it from the original grid data. This includes a reference to the
raw data, and every parameter of the complete process of feature extraction.
However, it is impossible to represent every feature extraction technique since
so many different techniques exist. Here, a Feature is constructed by a list of
calculation methods as input. The methods determine what models are applied
to the feature, and thus they determine the type and the behavior of the feature,
including the detectable events in temporal evolution.

Each calculation method is associated with an attribute set that is also stored
in the Feature. The arithmetic operations performed on the features are actually
performed on these attribute sets because they hold the feature attributes. Fur-
thermore, the feature can be visualized by the icons that are associated to each
attribute set, where the attributes in the attribute set are mapped onto the pa-
rameters of the icon. The user can choose one of the icons in order to investigate
certain attributes.

Next to the calculation methods and the corresponding attribute sets, the
Feature has a FeatureNr and an Objectld. The FeatureNr refers to the index
number in a frame, i.e. the number obtained during clustering. The Objectld
refers to the object identification of the tracked object in time, i.e. Objectld = —1
until the feature is tracked and added to an object path as described in Sec-
tion 6.3.

With this class structure, a feature becomes an entity that can be stored, manip-
ulated, compared and visualized.

3.3 Time-Dependent Feature Data

Features can be extracted from each frame of the time-dependent data, and the
attributes may be stored as feature data. In order to store the complete time
series of feature data, the classes Frame and TimeSet are created.

The class Frame holds the collection of features in a single time step. It holds a
list of Feature objects, a frame number for identification, and the time stamp.
With this class we can store a complete collection of features at a specific time,
and we can manipulate them easily.

The collection of all frames is stored in a class called TimeSet. It holds a
list of frames and information about the original grid data, such as the dimen-
sions, and a system boundary description. TimeSet can keep the complete time-

46

3.3. Time-Dependent Feature Data

dependent feature data in main memory, which allows random order access
operations and multiple pass searching over the frames.

A simple file format has been designed for the time-dependent feature data rep-
resentation. Table 3.2 shows a feature data file with ellipsoid data for each fea-
ture. The data consists of 100 frames, the original grid data was defined on a
grid with dimensions 128 x 128 x 128, and the system boundary is a single rect-
angular box of 128 grid cells in each direction. The real feature attributes are
written after this heading. Frame 1 consists of 28 features, feature 1 has one at-
tribute set, the ellipsoid, and values are given. Then the information is given for
feature 2, and so on, until every feature in every frame is defined.

NrOfFrames: 100
Dimensions: 128 128 128
SystemBounds: 1
Box 0 128
0 128
0 128

Frame 1: 28
Feature 1: 1 Ellipsoid
(x, y, z) (r1, r2, r3) (al, a2, a3)
Feature 2: 1 Ellipsoid
(x, y, 2) (r1, r2, r3) (al, a2, a3)

Frame 2: 31
Feature 1: 1 Ellipsoid

Table 3.2: The file format of the time-dependent feature data representation.

47

Chapter 4

Accuracy of Attribute
Calculation

Feature data can only be used for further analysis if the accuracy and stability of
the calculated attributes has been verified. Attributes are only useful if a certain
precision can be guaranteed. We need to make sure that the attributes give an
accurate description of the characteristics of a feature.

The accuracy and stability of the attributes depend on the method that is
used during the attribute calculation step in the feature extraction pipeline, see
Figure 2.9. The attributes are calculated from a cluster of selected grid points
indicating the region of interest. In general, the accuracy and stability is larger
when the calculation method uses more points in the cluster. For instance, an
average data value is more stable than the maximum of a data value.

The question is: how accurate is the method, and how sensitive is it to small
variations. The problem definition is described in more detail in Section 4.2.

In this chapter, we apply experimental methods to demonstrate the accuracy of
the feature data. The chapter discusses an experimental sensitivity analysis for
the verification of the accuracy and stability of attribute calculation methods.
With this analysis, two calculation methods are tested with respect to different
noise levels, to different grid densities, and to different feature extraction pa-
rameters. In this way, a number of guidelines are derived for working with the
feature extraction method in practice. The work described in this chapter was
also published in [Reinders et al., 1998].

4.1 Attribute Calculation Methods

Attribute calculation determines the attributes to characterize the features. There
are many methods to calculate attributes that also depend on the feature extrac-
tion techniques used. Here, two methods are discussed that are particularly
useful for 3D amorphous features with a certain position and size. The first is
the calculation of volume integrals, and the second is the determination of the
best ellipsoidal fit.

49

Chapter 4. Accuracy of Attribute Calculation

4.1.1 Volume integrals

The volume integral is a generic method that can be used to calculate many dif-
ferent aggregate attributes such as center position, volume, mass, and average
data values. Basically, the volume integral can be approximated by a weighted
sum over the selected points of a cluster. Each point contributes to the result of
the volume integral. Since the volume integral uses all points in the cluster, we
expect that the calculated attributes are accurate and stable.

Volume integrals allow the calculation of global attributes that describe ag-
gregate characteristics of a feature. Examples are the average values and the
variance/covariance matrices of position, data values, and weighted values. If
S is a cluster of selected points, x a position of a point in the cluster, p the density
value at x, v a vector value at x, and v7 the transpose of v, then the following
quantities can be calculated with volume integrals!:

Volume of § (V5) [odS
Center position of S Vls Jo xdS
Second moments of S 1}5— JsxxTds — 1}5- Js ’“151;5 JsxTds
Massof S [5pdS
Center of gravity of S VLS Js pxdS
Averagevof S Vlg JsvdS
Var/cov matrix for v of S 1}5 JswvTds — Vlg Js vds%s fsvlds
Section 5.2 of [van Walsum, 1995] shows how these integrals can be approxi-
mated on curvilinear grids using quadrature rules (see also Section 4.5 of [Press

etal., 1992]). The integral [f(x)dx is approximated by evaluating f(x) at sample
points (abscissae) x1...x,, so that

/s FOodx = Y Wif(x) (1)
i=1

with W; the weight factor for position x;. The type of quadrature determines
the number of samples, the sample positions, and the values for the weights
W;. Each sample has a contribution to the volume integral that depends on the
weight, and the interpolated data value at that point. The interpolated data

IN.B. The second moments of S is equal to the variance/covariance matrix of the point positions,
i.e. the point distribution in space.

50

4.1. Attribute Calculation Methods

value is calculated by tri-linear interpolation. Figure 4.1 shows the four-point
Gauss-Legendre quadrature around a selected point. Other quadrature rules
are the trapezium rule, and the two-point Gauss-Legendre rule.

Figure 4.1: The four-point Gauss-Legendre quadrature for the integration based
on selected points.

Integrals using trapezium rules do not need interpolation of the data, only
the point values are used. Linear functions, like averages, in x, y and z can be
integrated exactly with the trapezium rule. To integrate higher order functions
(such as second moments, variance, and covariance), higher order quadratures
are needed. The higher order quadratures require more computation time, but
are more accurate. The accuracy of the derived attributes depend on the type of
quadrature rule used in the integration method.

4.1.2 Ellipsoid fitting

Like the volume integrals, object fitting is a generic technique for the calculation
of attributes. An object with a limited number of degrees of freedom is fitted
as accurately as possible around the geometry of a cluster of selected points.
Examples of fitted objects are the bounding box, the oriented bounding box,
and the ellipsoid.

Ellipsoid fitting is a well-known method that provides a first order approx-
imation for the geometric shape of an object [Fung, 1965; Haber & McNabb,
1990; Silver et al., 1991]. The number of degrees of freedom is nine: three for the
center point position, three for the axis lengths, and three for the orientations
of the ellipsoid axes. In [Silver ef al., 1991] the ellipsoid attributes were used to
describe the temporal evolution of features in time.

The ellipsoid fit provides a good indication for the global geometry of an

51

Chapter 4. Accuracy of Attribute Calculation

object; position, size, and orientation. The center point position is the average
position of the cluster points. The volume or size of an object can be determined
from the axis lengths (equation 3.2). If the ellipsoid has a high eccentricity, i.e.
one of the axis lengths clearly differentiates from the others, the direction of this
axis provides an indication of orientation.

Ellipsoid attributes can be calculated from the second moments, or the vari-
ance/covariance matrix of a vector data value, see the list of volume integralsz.
The ellipsoid fitting derived from the second moments results in attributes de-
scribing the geometric distribution of the cluster, while the ellipsoidal fitting
derived from the variance/covariance matrix of a vector data value describes
the distribution of that vector data value.

The ellipsoid attributes are obtained by solving the eigenvalue problem for
the second moments or variance/covariance matrix A:

Ax = Ax 4.2)

where x is an eigenvector, and A is the corresponding eigenvalue. If the matrix
A is not degenerate or defective, the solution to this problem will result in three
eigenvalues and eigenvectors. The eigenvectors correspond to the directions of
the three axes of the ellipsoid, while the eigenvalues are proportional to their
lengths. The eigenvalue problem is solved using the Cyclic Jacobi algorithm, an
iterative diagonalization process, see Section 11.1 of [Press et al., 1992].

4.2 Problem Definition

When calculating the attributes, accuracy issues arise. Here, we make an inven-
tory of possible error sources, and their influence on the accuracy and stability
of the attribute calculation.

Errors can be introduced in two ways: errors in the calculation procedure,
and errors in the data values. The calculation procedure introduces errors be-
cause it has to deal with discrete data. The precision of the attributes depend
on the numerical method used for calculation. Errors in the data values result
in small variations in the cluster of selected points. A good attribute calculation
method is insensitive to these variations and results in stable attributes.

421 Accuracy of the procedure

The discrete data is a discontinuous approximation of the continuous space; the
3D space is represented by a finite number of discrete sample points. Numeri-
cal methods, like attribute calculation, have to deal with this discrete data and

2N.B. The calculation of an ellipsoid fit includes the calculation of volume integrals (the average
value and the variance/covariance matrix).

52

4.2. Problem Definition

reconstruct the real data values as accurate as possible. For that purpose they
use procedures like sampling, convergence, and interpolation. The numerical
methods can use linear, or higher order procedures for the calculation of data
values. Higher order procedures are more accurate, but are computationally
more expensive. There is a tradeoff between precision and computational costs.

The accuracy of the attributes depend on the precision with which the calcu-
lation method can calculate the attributes from the discrete data. The precision
depends on the procedure that is used. For instance, the integration procedure
using Trapezium or Gauss-Legendre quadratures, or the diagonalization proce-
dure using the Cyclic Jacobi algorithm. It is important to know the precision of
the procedure and to know when the precision compensates the computational
costs of a higher order procedure.

The precision of a calculation method is also a function of the resolution
of the grid. A dense grid means that the feature consists of a large number
of grid points, which results in more precise attributes. The precision is better
because the calculated attributes are determined from more elementary values.
For example, the average position can be calculated more accurately when a
larger number of grid positions is concerned. It is essential to know the minimal
number of grid points that is required to calculate certain attributes.

4.2.2 Stability of the procedure

The stability of the calculation method is determined by the sensitivity of the
method to small variations in the data values. The variations in the data values
may be caused by noise in the data, missing data, or errors in the data acqui-
sition (the simulation process, or the measurement device). These variations
may change the data at a certain grid point in such a way that the outcome of
the selection criteria is changed. This will especially be true for points where
the data is close to the selection thresholds (‘weak’ data points). Grid points
may be added or removed from the cluster of selected points, thus changing the
attributes of a feature.

Here, we investigate the stability of the procedure with regard to noise. The
presence of noise in data introduces false positives, and false negatives in the
selected points. The effects on the calculated attributes depend on the number
of points in the cluster. Volume integrals are more stable when they are based
on a larger number of points. The stability is better because the average position
of a large cluster changes little when an additional point is included, while the
average position of a small cluster may change considerably when an additional
point is included. The number of points is directly related to the size of the object
and the (local) resolution of the grid.

Besides an error in the attributes, noise may cause the emergence of spurious
features. Small clusters of selected points may appear when noise is added.

53

Chapter 4. Accuracy of Attribute Calculation

The number of significant features should be stable with respect to noise. The
spurious features can be eliminated by choosing the right extraction parameters.

The extraction parameters

The extraction parameters consist of the selection threshold value, the cluster
threshold, and the connected component definition. These can be chosen in
such a way that the effects of noise are reduced.

o The selection threshold T; value (or multiple values) decides whether the
data in a grid point satisfies our selection criterion. It can be set above the
noise level in order to eliminate noise effects, but this will also influence
the resulting feature.

o The cluster threshold T, is the minimum number of points in a cluster; all
clusters with less than T; number of points are discarded. Only large sub-
stantial features remain, and small features resulting from noise are re-
moved. However, we may also remove small but genuine features that
may be significant, e.g. with data values well above the selection thresh-
old.

o The connected component definition can be defined as (provided that we
have data on a structured grid): face-connected (where a point has 6 neigh-
bors), edge-connected (18 neighbors), and vertex-connected (26 neighbors).
This definition is crucial in the clustering stage, since it determines if two
adjacent points are in the same cluster or not. Obviously, face-connected
will result in more and smaller clusters than edge- or vertex-connected.
The connected component in combination with the cluster threshold can
be used as a tool to eliminate noise effects.

The extraction parameters must be chosen with care, especially in case of
noisy data. Therefore, we will try to establish a number of guidelines for finding
the right settings for the extraction parameters.

Recapulating, the accuracy and stability of the attributes depend on the noise
in the data, on the number of points in a feature, and on the arithmetic method
used for attribute calculation. It is vital to verify the reliability of attribute cal-
culation with respect to these issues.

4.3 Experimental Setup
We use a simulation study to experimentally verify the accuracy of attribute cal-

culation. The simulation study is designed as follows. Synthetic data is gener-
ated with synthetic features, i.e. with known attributes, and with noise that has

54

4.3. Experimental Setup

a known distribution function. This data is used as input in the feature extrac-
tion pipeline. The obtained attributes are compared to the initial settings of the
attributes. The difference between the initial and obtained attributes provides a
measure for the accuracy of the feature extraction method.

The simulation study is performed with different noise levels, with different
grid densities, and with different feature extraction parameters.

4.3.1 Synthetic data

Synthetic data is well-defined data that contains features with known attributes.
The data is defined on a regular grid with a variable density. On the grid points
a scalar field is created that can be controlled as follows. An initial value is given
to every point in the grid, by default the initial value is set to zero, V; = 0.0. On
top of this initial value it is possible to add noise with a certain distribution func-
tion. We used a Gaussian distribution function with zero mean, and a variable
standard deviation (SD); which is generated with an algorithm given by [Press
et al., 1992}].

Features with known attributes are added on top of these initial data val-
ues. The user can specify an ellipsoid with given attributes: center position, axis
lengths, and axis orientations and a data value at the center position of the ellip-
soid (V; = 100.0 by default). Data values are added to every grid point inside
this predefined ellipsoid. The additional value depends on the position of the
grid point inside the ellipsoid. The value decreases linearly from over a line
through the center position to the surface, where the additional value is zero:

_ d(p,s)
Vo =Vex i) (4.3)

with V), the data value added at point p on the line, V. the data value defined at
the center, d(p, s) the distance between point p and the surface, and d(c, s) the
distance between the center and the surface.

Figure 4.2 shows the histogram of the data within an ellipsoid feature. The
background with data V; = 0 is omitted from the histogram and no noise was
added. Most of the points in the feature have a value close to zero and only few
come close to the maximum value of V. = 100. The situation is idealized: we
have one feature with one maximal data value at the center. The feature cannot
be mistaken for one of the ‘noisy features’, and it cannot break up into pieces.
The addition of noise will most strongly affect the feature-points near the
surface of the ellipsoid, because here the data values are small. Still it is possible
to extract the feature as long as the maximum data value of the feature is signif-
icantly higher than the noise data. This is shown in Figure 4.3, where a selection
is made of points with a data value > 2 % SD = 30.0 = T;. The figure shows
the selected points by small cross-marks, and ellipsoids fitted around each clus-
ter with two or more points. One of the ellipsoids is significantly larger than

55

Chapter 4. Accuracy of Attribute Calculation

weaod £]

data value

Figure 4.2: Histograms of the generated synthetic data (without noise) within
one ellipsoidal feature.

the rest, this is the synthetic feature, it can be filtered out by choosing a larger
cluster threshold, thus eliminating all small clusters.

Figure 4.3: Features extracted from synthetic data with noise.

4.3.2 Experiments with the ellipsoid fitting method

This section describes the experiments that have been performed with the el-
lipsoid fitting method. These tests verify the accuracy of the volume integrals
as well, because the ellipsoid calculation method includes the calculation of the

56

4.3. Experimental Setup

average position and the second moments. Similar experiments can be executed
on other attribute calculation methods.

Accuracy experiments

The accuracy of the method is tested by generating synthetic data without noise.
In case of perfect accuracy, the obtained attributes should be exactly equal to the
predefined ones. Errors depend only on the calculation method itself and on the
density of the grid.

Every attribute can be tested separately, i.e. for the ellipsoid fitting method:
center position, axis length, and axis orientation.

- Center position. The error in the detected position is expected to be smaller
than a cell-size, this can be verified by the following experiment. Synthetic data
is generated with a spherical feature with a fixed radius and a position moving
in 50 steps from a corner point of a cell to the center of the cell. Each of the 50
data sets are analyzed by the feature extractor, and the resulting positions are
used for error estimation.

We expect the resulting position to move stepwise through the cell, the steps
are caused by points entering or leaving the moving sphere. This effect is illus-
trated in Figure 4.4. The distance to the diagonal (the real position) divided by
the diagonal length, gives an error measure for the position, relative to the grid-
cell size. The same experiment can be repeated for different grid resolutions, i.e.
a feature with a larger number of selected points.

+ 4+ + + + + +
+ node

4 selected node
< selection changed

+ 4+ + o+t

Figure 4.4: Node selections change when the sphere position moves, causing a
stepwise change of the calculated position attribute.

- Axis length. To determine the accuracy of the axis lengths, synthetic data
is generated containing ellipsoids with fixed orientation and position, and with
the length of one of the axes varying in one direction. Again, the variation is
limited within a cell, and the experiment is repeated for several grid resolutions.
Errors are calculated relatively to the cell size.

57

Chapter 4. Accuracy of Attribute Calculation

- Axis orientation. Synthetic data is generated with ellipsoids with fixed
position and axes ratios with an eccentricity of 3 : 1 : 1, and with varying orien-
tation of the main axis (from 0 to 45 degrees), for several grid resolutions. Errors
are calculated relative to the maximum angle, i.e. 45 degrees.

The results of the experiments described above can be found in Section 4.4.1.

Stability experiments

As discussed in Section 4.2, there are three important parameters in the extrac-
tion procedure: the selection threshold, the cluster threshold and the connected
component definition. The following experiments establish the relationships
between these parameters, and the effects on the extracted attributes.

- The selection threshold value. Noise may introduce spurious clusters if
the selection threshold value is set too low. The following experiment counts
the number of clusters found, as a function of the threshold value, and of the
noise level.

Synthetic data is generated with one feature, and for a number of different
noise levels. Using this data, the number of clusters is monitored while slowly
increasing the selection threshold until only one cluster (the synthetic feature) is
found. The lowest threshold value that results in one feature is called the cut-off
threshold value. It is an important value since it gives us the minimum thresh-
old value that distinguishes the feature from the noise. The cut-off should be as
low as possible, as higher threshold values result in smaller features. Therefore,
the cut-off threshold will be used in further experiments, because it depends not
only on the noise level, but also on the other extraction parameters.

- The cluster threshold. The cluster threshold is a useful parameter, since
small clusters are removed by it. In many cases (especially if noise is involved)
the selection results in single unconnected points that just happen to satisfy the
selection criteria, but are not significant. The cluster threshold is often an ade-
quate remedy to filter out these undesirable features. Therefore, we determine
the cut-off threshold for different noise levels, as a function of the cluster thresh-
old.

- Connected component definition. The connected component definition
will affect the number of clusters found. The face-connected is more strict than
the others, and will result in more and smaller clusters, which amplifies the
effects of the cluster threshold. In order to test this, the cut-off threshold is de-
termined for all three definitions as a function of the cluster threshold, for one
given noise level.

58

4.4. Results for Ellipsoid-Fitting

4.4 Results for Ellipsoid-Fitting

4.4.1 The accuracy of the method

First, the accuracy of the ellipsoid fitting method is established. Figure 4.5 shows
the results of the accuracy tests for the position detection. The center position of
the sphere starts at one corner point of the cell (relative position = 0), and ends
in the center of the cell (relative position = 0.5). The obtained position is plotted
as a function of the input position. It changes discontinuously every time a
point enters or exits the moving sphere, hence a stepwise update of the position
is found. A preliminary experiment showed that results are symmetrical from
0.5 to 1.0.

05

04 1

02 +

Obtained position

0.1 1

0 -+ t ¥ t :
0 01 02 03 04 0.5
Set position

Figure 4.5: Stepwise movement of the position within a cell.

The average distance to the diagonal is considered the error in the position
detection. The error is relative to the grid cell size, an error of 10% means an
error of 10% of the grid cell size. Similar stepwise results are obtained for the
axis lengths and orientation detection. Since the attributes were varied within
cell size, we may conclude that the ellipsoid-fit method detects shifts with a
sub-cell accuracy. .

As may be expected, the accuracy improves when the grid density increases.
Figure 4.6 shows the errors of the ellipsoid attributes as a function of the num-
ber of selected points in the cluster. The figure clearly shows the exponential
decrease of the error with the number of points. The errors are below 7% (of the
grid cell size) when the clusters consist of more than 15 points. We believe this
is acceptable.

59

Chapter 4. Accuracy of Attribute Calculation

16
14 —e— position
\ — & - eccentricity
12 . .
---X--- orientation

10

Error (%)
Qo

Nodes

Figure 4.6: Errors for the ellipsoid attributes obtained by experimental accuracy
tests.

4.4.2 Stability of the method

Now that the accuracy has been assured, the stability of the method with noisy
data is investigated.

First, the number of clusters is determined as a function of the selection thresh-
old value, and as a function of the noise level. Figure 4.7 shows that for low
thresholds a large number of clusters is found. This is an obvious result since
the noise causes many point values to rise above the threshold level. If noise
is added with an SD > 10, the number of clusters first increases with increas-
ing threshold values because many points connect to form a large cluster which
breaks up as the threshold is increased. In the end, a threshold value is found
where only one feature remains. This value is the cut-off threshold: it is the selec-
tion threshold value where the single ‘genuine’ feature remains and all spurious
small features due to noise disappear. The cut-off threshold becomes higher as
the noise level increases.

The cut-off threshold is examined as a function of the noise level and the
cluster threshold. Figure 4.8 shows that the cut-off threshold increases with in-
creasing noise, yet the cut-off threshold remains low for a large cluster thresh-
old. Using a cluster threshold of at least 20 points, it suffices to use a selection
threshold value of 1 % SD in order to eliminate all clusters due to noise. If smaller
features are expected, then a cluster threshold of 5 points in combination with a
selection threshold value of at least 2 * SD sulffices, provided that the threshold
value is significantly smaller than the maximum data value in the feature.

60

4.4. Results for Ellipsoid-Fitting

50 T

45 4 ',‘\ —e—SD=0
[—&-SD=

01 !N --X---SD =10
! ® —&—SD=15

BT o1 XN —-%—-SD=20

ot Y X% Y —-@--SD=25

Number of clusters

Selection theshold values

Figure 4.7: The number of clusters as a function of the selection threshold value
and the noise level.

100 T —-% - - cluster 5
901 —=o— cluster 10 X
--43-- - cluster 20 e
80 + — —A— - cluster 30 ,'/
X
70 + !

Cut-off threshold

SD noise

Figure 4.8: The cut-off threshold value as a function of the noise level and the
cluster threshold.

61

Chapter 4. Accuracy of Attribute Calculation

The next experiment determines the cut-off threshold for the three connected
component definitions, as a function of the cluster threshold, with the noise
level set to SD = 15.0. The result is plotted in Figure 4.9, which shows that the
cut-off threshold drops as the cluster threshold increases, and also that it drops
more sharply if the connected component definition is set to face-connected.
This definition results in more, smaller clusters which are easier to eliminate by
the cluster threshold. Therefore, we prefer to use the face-connected component
definition in case of noisy data.

50

45 -

40 T

35
30 ¢+
25 +
20

Cut-off threshold

15 +
10 +

5 4

0 " : ' ' |
5 10 15 20 25 30
Cluster threshold

Figure 4.9: The cut-off threshold value as a function of the connected component
definition and the cluster threshold.

Finally, the effect of noise on the obtained ellipsoid attributes is investigated
with optimal extraction parameters. Noise with SD = 15.0 is added to the
data, and the face-connected component definition is used in combination with
a cluster threshold of 15 points. In Figure 4.10 errors are plotted as a function of
the selection threshold value.

The figure clearly shows a large error in position for low selection threshold
values. Small selection thresholds lead to many selected points throughout the
complete system, which results in a huge cluster filling up the entire system.
Also, the error increases for high thresholds, caused by the fact that the feature is
small and additional selected points due to noise affect the position significantly.
Between the two extremes the errors are stable, and the results of the method are
relatively insensitive to noise.

62

4.5. Guidelines for Attribute Calculation

100 1
90 T
—e— position
8071 —%— eccentricity
70 1 — -A— - orientation

40 T

Error (%)
g

Y= At —p &
0 10 20 30 10 50 60 70 80
Selection threshold value

Figure 4.10: The errors of the ellipsoid detection of data with noise (SD = 15.0).

4.5 Guidelines for Attribute Calculation

During the execution of the experiments it became clear that much has been
learned about the behavior of the feature extraction method. Therefore, we con-
sider this type of experiments extremely important for the exploration and val-
idation of visualization techniques, and we recommend to do similar studies
with any new visualization method.

In our case, the following guidelines can be given:

e The cluster threshold should be chosen with great care. A low cluster
threshold results in less accurate attributes. A cluster threshold smaller
than 5 points results in errors higher than 20% of the grid cell size. Setting
the cluster threshold higher than 15 points result in safe attributes with an
error below 7% of the grid cell size.

o The cluster threshold is also a powerful tool to eliminate spurious features
due to noise. Large cluster thresholds result in correct feature extraction
even close to the noise level. This is caused by the spatial coherence of
the feature points, while selected points caused by noise are incoherent.
However, setting the cluster threshold too high will eliminate small but
genuine features.

¢ The face-connected component amplifies the effects of the cluster thresh-
old of eliminating spurious small clusters. In case of noisy data, this def-
inition is recommended. If noise is absent, the vertex definition is recom-
mended because it results in larger and more significant features.

63

Chapter 4. Accuracy of Attribute Calculation

o If the noise level and distribution (Gaussian) is known in advance, the
selection threshold should be set at least 1 x SD in combination with a
cluster threshold of 20, and 2 * SD in combination with a cluster threshold
of 5. These combinations guarantee the elimination of all spurious features
due to noise.

¢ The obtained ellipsoid attributes are stable despite the presence of noise.
This means that the ellipsoid attributes are relatively insensitive to noise.

The results of the experiments described in this chapter suggests some interest-
ing further studies:

¢ Small spurious features may be filtered out by morphological operators
like opening and closing. This may enhance the effects of the cluster
threshold.

o Further statistical analysis can be done on the extraction of features be-
low noise level. Besides coherence in space, coherence in time may be ex-
ploited: e.g. if a feature is detected at one time, a prediction can be made
of the feature some time later; this prediction can be used to extract the
new feature. This suggests a predictive approach for feature tracking in
time-dependent data (see Chapter 6).

64

Chapter 5

Skeleton Shape Description

The preceding chapter discussed two methods for attribute calculation: the vol-
ume integrals and the ellipsoid fitting method. Although they result in impor-
tant and useful attribute sets, they do not provide an accurate description of
shape. The volume integrals can provide global measures for geometry, like aver-
age position, position distribution, and total volume. The ellipsoid fit provides
similar information in a more susceptible fashion. It gives a good indication of
position, orientation, and size. However, these attributes are a crude (first order)
approximation of shape.

For certain applications a more accurate description of the shape of a fea-
ture is needed. For instance, the turbulent vortex structures in Section 8.3 are
strongly curved ‘worms’. Figure 5.1 shows an example of one vortex structure.
The segmented region is indicated by an iso-surface, and the ellipsoid attributes
are mapped on an ellipsoid icon. The ellipsoid gives a good indication of posi-
tion and size, but a bad indication of shape and structure of the object. In this
case, a more sophisticated description of the geometry is desirable.

Figure 5.1: An example of a turbulent vortex structure described by an ellip-
soidal fit that results in a bad description of shape.

A good description for the shape of an object is provided by the skeleton, or
Medial Axis Transform (MAT) [Blum, 1967]. The skeleton of an object can be

65

Chapter 5. Skeleton Shape Description

defined as the locus of points that lie at the center relative to the object’s bound-
ary. Thus, the skeleton is a thinner version of a 3D object, which still preserves
the basic topology and geometry. Therefore, it is an efficient and compact shape
descriptor for objects. Skeletons have been used to describe the shape of features
[van Walsum et al., 1996; Gagvani et al., 1998; Puig et al., 2000].

We use the skeleton for the calculation of an attribute set, the skeleton graph,
that describes the shape of a feature with a controlled precision (described in
[Reinders et al., 2000]). Figure 5.2 illustrates the process for determining the
skeleton attributes. Skeletonization determines the voxels! on the skeleton of
the object. These voxels are then connected into a voxel graph representation
with skeleton nodes and edges. Initially, the voxel graph contains all skeleton
voxels, but the number of nodes can be reduced by simplification. The result
is a skeleton graph attribute set with a smaller number of skeleton nodes and
edges that still describes the geometry with a controlled precision.

& ———————— & raw data

Segmentation
I l) - - » binary volume
ostance. Skeletonization
I L--}elr" voxels
Voxel Graph
Construction
—_——mmm - - #» voxel graph
Graph
Simplification
t ——mmme o - » skeleton graph
Shape
Reconstruction
i ________ ® skeleton geometry

Figure 5.2: Pipeline for the calculation of a skeleton graph attribute set.

Together with the skeletonization process the distance transform (DT) can
be calculated for each voxel in the object. The DT is equal to the minimum
distance from the voxel to the surface of the object. It can be used during the

1Since we use a skeletonization algorithm that works on a regular grid with voxels (the 3D equiv-
alent of pixels), we speak of skeleton voxels instead of skeleton points.

66

5.1. Skeletonization

simplification of the voxel graph and during the reconstruction of the shape of
the object. Therefore, it is useful to store the DT information at every skeleton
node in the skeleton graph.

The skeleton graph can be used to approximately reconstruct the 3D shape
of the original object. The skeleton graph is ‘fleshed out’ by wrapping spherical
and conical volumes around the edges and nodes of the graph. The size of these
volumes is determined by the DT data. The result is a simplified geometric
object, which may be used as an iconic representation describing the feature
shape and which provides a more accurate description of shape than the crude
approximation by a fitted ellipsoid.

For the steps of skeletonization and distance transform, we used existing algo-
rithms from the image processing literature. We developed our own algorithms
for the steps of voxel graph construction, graph simplification, and shape recon-
struction.

5.1 Skeletonization

The first step in the skeleton attribute calculation is the skeletonization of the
segmented binary volume. The input is a binary volume that is acquired by
some segmentation process (see for instance Section 2.3.1). The binary volume
tells us if a data point lies inside (TRUE) or outside (FALSE) of the object. Thus,
the input can be the result of the selection step in the feature extraction pipeline
that we normally use (Section 2.4).

Skeletonization should find the data points that lie at the center of the ob-
ject, the skeleton points. Many skeletonization algorithms have been published,
especially in the image processing literature. Most algorithms are only for 2D
data, but some can be extended to 3D or higher dimensions. Roughly, the skele-
tonization algorithms can be classified in two categories:

¢ Topological thinning methods. These methods iteratively remove all so-
called simple points from the surface of the object. These points are points
that will not change the topology of the object when they are removed. The
points that remain after removing all simple points are the skeleton points
that we want to obtain. Examples (in 2D and 3D) of such methods are
the grassfire methods [Xia, 1989; Leymarie & Levine, 1992a] and methods
based on the preservation of the Euler number [Lobregt et al., 1980; Lee
et al., 1994].

¢ Distance transform methods. The skeleton voxels are identified as the
local maxima of the DT. Examples are methods based on ridge following
[Arcelli & Sanniti di Baja, 1985; Arcelli & Sanniti di Baja, 1989; Xia, 1989;
Leymarie & Levine, 1992b]. Another method that uses the DT is presented

67

Chapter 5. Skeleton Shape Description

by [Ogniewicz & Kiibler, 1995], which calculates the skeleton from the
Voronoi diagram of the DT field.

The results of the two types of methods are somewhat different. Topological
thinning preserves the connectivity of the skeleton voxels, while DT-methods in
general do not. Connectivity between skeleton voxels enables us to reach any
skeleton voxel by traversal of neighboring skeleton voxels. For our purposes we
want a method that guarantees the connectivity.

The algorithm we use is a topological thinning algorithm? based on a hit-or-miss
evaluation using sets of masks [Jonker & Vossepoel, 1995]. The mask sets can
be used to manipulate a binary object in several ways, of which skeletonization
is only one. A mask set consists of a number of 3 x 3 x 3 masks with zeroes,
ones and ‘don’t cares’ (only 14 voxels per mask need to be defined because of
symmetry reasons). Each mask indicates a configuration that must remain in the
object. If the 3 x 3 x 3 neighborhood of a voxel matches one of the masks, it is a
skeleton voxel and should remain in the object, otherwise it is removed. Thus,
the object surface is peeled off iteratively until only the skeleton voxels remain.
Figure 5.3 shows an example of a 3D mask set for an 8-connected skeleton.

= §™ "
= B o

O O

8C-erosion single pixel

Figure 5.3: A 3D mask set that results in an 8-connected skeleton.’

ZImplementation kindly made available by the Pattern Recognition group at the Applied Physics
department of Delft University of Technology.

68

5.1. Skeletonization

The characteristics of a skeleton obtained in this way depends on the mask
set used. We have three different mask sets to produce different types of skele-
tons: surface skeletons, line skeletons and point skeletons. Figure 5.4 shows the
three different types of skeletons resulting from the same binary volume. The
mask set that is used, depends on the type of features that we like to describe:
point-type (e.g. critical points), line-type (e.g. vortex cores), or surface-type (e.g.
shock waves). The turbulent vortex structures are objects that have a strongly
curved, tube-like shape. These are line-type features, so here we concentrate on
the line skeletons.

Bl | g

_a-'—""'—' .

c d

Figure 5.4: Skeletonization of a binary volume results in three types of skele-
tons depending on the mask set that is used: a) the binary volume, b) surface
skeleton, c) line skeleton, and d) point skeleton.

Figure 5.5 shows the skeleton voxels obtained after skeletonization. The ob-
ject is the same vortex structure as in Figure 5.1. In the figure, the original seg-
mentation is visualized using a transparent iso-surface, and the skeleton voxels
are visualized with spheres.

The skeleton voxels follow the structure of the object very well; the topology
is well retained. However on the left side, the voxels deviate from the centerline
of the object. There, the object is cut by the boundary of the system, causing
a flat shape that affects the result. Also, the centerline formed by the skeleton
voxels shows wiggles. These are caused by the discrete data representation.

The skeletonization described above is only effective in case of a regular grid
where all cells have an equal size in each direction. Each iteration the algorithm
peels off one layer of cells from all sides of the surface of the object. In case of
an irregular grid the cells on one side of the object may be larger then the cells
on the other side. Thus, the object is peeled off in an a-symmetric fashion and

69

Chapter 5. Skeleton Shape Description

Figure 5.5: The skeleton voxels that result after skeletonization.

the remaining skeleton points will not lie at the geometric center of the object.
However, the topology will still be preserved and therefore the skeleton can be
useful.

5.2 Distance Transform

Although we do not use a skeletonization method that is based on the DT, it is
still useful to calculate the DT. It provides us with distance information; the DT
is the minimal distance from a voxel inside the object to the object’s surface. The
DT can be calculated parallel to the skeletonization process. It is calculated for
every voxel in the binary volume, thus it is also available for the skeleton voxels
obtained by the skeletonization step.

The DT is well known in the field of mathematical morphology and there
are many methods to calculate it [Danielsson, 1980; Borgefors, 1984]. We use
a Chamfer distance transformation, which can be determined by two passes as
described in [Borgefors, 1984]. The basic idea is that the Euclidean distance be-
tween connected neighbors is approximated by weights. Face-connected neigh-
bors get a weight of 10, edge-connected neighbors get a weight of 14, and vertex-
connected neighbors a weight of 17. After, the two passes are performed, the
values are divided by 10, so that the weights approximate distances of /1, /2,
and /3. The result is an approximation of the discrete path length (with wig-
gles). A better approximation of the Euclidean distance may be obtained by
other weights.

70

5.3. Voxel Graph Construction

5.3 Voxel Graph Construction

After the skeleton voxels have been determined, a voxel graph is constructed
by connecting neighboring voxels. In the voxel graph, all skeleton voxels are
nodes, and adjacent voxels are connected by edges. A skeleton node in the graph
contains information about the position of the skeleton voxel, and about the
distance to the surface, i.e. the DT. An edge in the graph has two pointers to
the two skeleton nodes it connects. The voxel graph is a structure that is easy
to manipulate and to analyze. Using the voxel graph, the number of nodes and
edges can be reduced, while preserving the basic structure of the skeleton.

The basic approach for constructing the voxel graph is to traverse all voxels of
the skeleton and to connect neighboring voxels. However, this is not a straight-
forward process. Simply connecting all neighboring skeleton voxels causes prob-
lems as shown in Figure 5.6 a: a ‘zero-loop’ originates at the junction. All three
voxels at the junction have more than two edges and may be classified as a
junction-node (as discussed in Section 5.4.1), while there is in fact only one junc-
tion.

The problem of zero-loops is solved in [Lee et al., 1994] by directly classi-
fying the junction node as it is encountered, and classifying all its neighboring
nodes as regular. However, the resulting junction node will depend on the or-
der of the traversal, which will result in slightly different graphs, as illustrated
in Figure 5.6 b, ¢, and d.

V4

/] /1 N
7

i F

a b)} d

Figure 5.6: Two problems occur when constructing the voxel graph: a zero-loop
originates a), and the junction node depends on the traversal starting point b),
¢), and d).

We solved the problem of zero-loops by assigning a priority ordering to the
connections. In a 3D skeleton, each voxel has 26 neighbors: 6 face-connected,
12 edge-connected, and 8 vertex-connected. We give priority to the connection
with the nearest neighbor. Thus, face-connected neighbors are connected be-
fore edge-connected neighbors and these are connected before vertex-connected
neighbors. In case of a junction, this connection priority will always lead to the
graph shown in Figure 5.6b, which we believe is the most natural solution.

71

Chapter 5. Skeleton Shape Description

5.4 Graph Simplification

After the construction of the voxel graph, the graph can be simplified by remov-
ing redundant nodes. The voxel graph initially contains all skeleton voxels as
nodes, which still may be a large number. We can reduce the number of nodes
and edges while still preserving the topology (structure) and geometry (shape)
of the skeleton. The task of simplification is to determine which nodes should
be kept and which nodes can be removed. There are four reasons for simplifi-
cation: 1) to reduce size, 2) to remove small insignificant wiggles, 3) to extract
topological nodes, and 4) to reconstruct the original shape with simple 3D seg-
ments.

There are two classes of nodes that are significant and that should be re-
tained: topological nodes and geometric nodes. Topological nodes are nodes that
are necessary to preserve the topology, and geometric nodes are necessary to
preserve, to a certain extent, the basic geometric shape of the object. The identifi-
cation of topological nodes and their connectivity results in a topological graph,
while the detection of geometric nodes results in the geometric graph. The final
skeleton graph is a combination of these two graphs.

5.4.1 Topological graph

The topological graph holds the basic structure of the object and can be deter-
mined by finding the topological nodes. The topological nodes are identified by
counting the number of edges connected to a node in the voxel graph:

¢ End node: one edge.
¢ Regular node: two edges.
o Junction node: three or more edges.

The end nodes and junction nodes are the nodes that determine the topology
of the object. Thus, the topological graph is created by simply removing the
regular nodes, and connecting the remaining nodes by edges.

The topological graph describes the structure of the object. Figure 5.7 shows
the topological graph in combination with the original segmented object. The
nodes in the graph are shown by spheres and the edges are illustrated by lines.
The figure tells us that we have three end nodes and one junction, and it shows
how these are connected.

However, there is a problem in case of loops. An additional type of topological
node, the loop node, is needed to describe loops in the graph. We define a loop
node as a node in the topological graph that is connected twice by the same
edge, i.e. it has an edge that connects to itself:

o Loop node: has an edge that connects to itself.

72

5.4. Graph Simplification

Figure 5.7: The topological graph that describes the structure of the object.

Figure 5.8 shows a number of situations with loops in the graph. In case of Fig-
ure 5.8a, the removal of all regular nodes will remove all nodes. To overcome
this problem, a loop node is included at an arbitrary location on the loop. In the
topological graph the loop node is connected to itself with an edge. A similar
situation occurs in Figure 5.8b; the junction node is connected to itself. There-
fore, this junction node is classified as a loop node. In the Figures 5.8c and 5.8d,
also a loop exists, but the nodes are not connected to themselves, therefore ail
nodes in the loop remain junction nodes.

0. 0. 0. Q.

Figure 5.8: Loops in the topology of the skeleton.

The number of loops is an important variable in the topological graph, be-
cause it may provide a clue for comparison of two skeletons. The number of
loops can be calculated with the Euler formula:

V-E+F=C-H (5.1)

with V the number of vertices or nodes, E the number of edges and F the num-
ber of faces. C — H form the so-called Euler number, with H the number of holes
in an object and C the number of connected objects in a scene. Because we only

73

Chapter 5. Skeleton Shape Description

work with lines F can be set to F = 0, and because the graph is always a single
object, C can be set to C = 1. Substitution gives the number of loops (holes) in
the graph:

H=1-V+E (5.2)

This equation is used in Section 7.5 for the detection of topological events.

5.4.2 Geometric graph

The topological graph describes the structure of the object very well, but does
not accurately follow the centerline (see Figure 5.7). The geometric graph refines
the edges in the topological graph by inserting geometric nodes.

The underlying model for the geometric graph is that the shape of an object
can be modeled by a truncated cone representation: conical volumes wrapped
around the edges of the graph approximate the object’s volume with controlled
precision. The centerline of the cones should follow the line of skeleton voxels,
and the radius of the cone at points on the centerline should follow the DT at
the corresponding skeleton voxels. Thus, the model includes the centerline and
the profile of the object.

Geometric nodes are key points that are inserted in order to refine the geo-
metric graph. The geometry can vary in two ways: the skeleton line is curved, or
the profile of the object surface varies, i.e. variations in the diameter of the cross-
section. Hence, we distinguish the following two types of geometric nodes:

o Curve nodes: where the skeleton line bends.
e Profile nodes: where the surface profile changes.

The geometric nodes are inserted on the edges of the topological graph. For
each edge the regular nodes, between the two end nodes of the edge, are tra-
versed, and curve or profile nodes are inserted. Insertion of geometric nodes
depends on geometric tests, which will be described below.

Curve nodes

Curve nodes are found by testing the distance between the skeleton voxel node
positions and the line between two end nodes of the corresponding edge in the
skeleton graph. The maximum distance dpay is determined and compared to
a curve threshold T.,,v¢; see Figure 5.9. A curve node is added at the location
of the maximum when dy5x > Teurve. TWo new edges are created and both are
tested recursively. The process terminates when all intermediate voxel nodes
fall within T4 of the corresponding edges.

The curve threshold T;urve provides a measure of precision for the approxi-
mation of the centerline of the original voxel graph. A zero threshold results in

74

5.4. Graph Simplification

new curve-node

threshold (Tcurve) e

end-node

edge

Figure 5.9: Finding the curve nodes recursively.

a geometric graph that is identical to the original voxel graph. When the thresh-
old is very large, no curve nodes are inserted and the topological graph is not
refined.

Profile nodes

Profile nodes are found by comparing the DT at the skeleton nodes to the radius
of the cone wrapped around the edge. The two radii at the two ends of the
cone are equal to the DT of the corresponding nodes, and the profile of the cone
is linear along the edge. However, the DT values of the intermediate skeleton
voxels will differ from this linear profile. The test is similar to the test for finding
the curve nodes. The profile test finds the voxel with the maximum distance
between its DT and the linear profile and tests this distance to a profile threshold
Tprof (see Figure 5.10). A new profile node is inserted when the threshold is
exceeded and the two resulting edges are tested recursively.

Profile Profile

Figure 5.10: Finding the profile nodes recursively: a) first step, and b) second
step.

The threshold is a measure for shape approximation of the original voxel
graph, but this time for the profile of the surface of the object. Again, with a
zero threshold the geometric graph is equal to the voxel graph, and with a very
large threshold the topological graph remains unchanged.

75

Chapter 5. Skeleton Shape Description

The geometric graph is a simplified replica of the voxel graph where the preci-
sion of the reproduction can be controlled with the thresholds Tcurve and Tyrof
(typical values are Teyroe = Tp,o ;= 2.0). Typically, the number of nodes can
be reduced by a factor in the order of 10. The reduction factor depends on the
application (the curvature of the features) and on the chosen thresholds. Fig-
ure 5.11 shows the skeleton voxels by small boxes and the skeleton graph is
shown by spheres connected by lines. The skeleton graph edges closely follow
the centerline of skeleton voxels.

Figure 5.11: The skeleton graph is a good approximation of the voxel graph. The
precision can be controlled by the thresholds Tcurve and Thyof-

Figure 5.12 shows the skeleton graph with nodes shown by spheres that have
a radius equal to the DT. In general, the skeleton graph follows the thickness of
the object well. However, it is less accurate when the object has a flat shape, as in
case of the upward branch. The radii of the spheres seem too small for this part.
The upward branch has a flat shape, with a cross-section that has an elliptical
contour. We assume a circular contour with a radius equal to the DT, which is a
minimal distance to the surface.

5.5 Shape Reconstruction

The shape of the original object can be reconstructed using the skeleton graph.
An approximation can be made by ‘fleshing out’ every edge in the skeleton
graph, i.e. by adding a volume to every edge. One way is to calculate a cubic
Hermite interpolation tube [van Walsum et al., 1996] through each path (from
end node to end node) in the skeleton graph. The interpolation results in a
smooth tube, as shown in Figure 5.13. The thickness of the tube is equal to the
distance information at the nodes. This way, a smooth surface is drawn repre-
senting the feature objects.

76

5.5. Shape Reconstruction

| Figure 5.12: A visualization of the final skeleton graph. The nodes and edges are
shown by spheres and lines, and the surface of the object is shown transparently.

Figure 5.13: Skeleton shape reconstruction using Hermite tube interpolation.

The Hermite tubes provide a smooth reconstruction of the shape, but they
are expensive since they require many polygons to be rendered. This is fine
when the shape reconstruction by itself was our goal, but unfavorable when a
fast display is required, for instance when the evolution in time of the features
is visualized by displaying the shape reconstruction frame by frame.

A less expensive way to visualize the skeletons is the use of simple icons [van Wal-
sum et al., 1996]. Several types of geometric icons can be used to visualize the
edges in the skeleton graph. Figure 5.14 shows a number of icons that visualize
an edge. Figure 5.14a is a combination of two spheres and a truncated cone.
The spheres represent the two skeleton nodes of the edge, and the cone is the
volume fitted to the edge. The radii of the spheres and cone are set according to

77

Chapter 5. Skeleton Shape Description

the DT known at that node.

e

Figure 5.14: Icons that can be used to visualize an edge of the skeleton graph.

Figures 5.14b, ¢, d, and e show more open geometries. This reduces the
effects of cluttering and gives more focus to the topology rather than geometry.
Figure 5.14e does not use the distance information at all and is especially suited
when topology is important.

By drawing all nodes and edges in the skeleton graph, a complete representation
of the skeleton is obtained. Figure 5.15 shows the skeleton graphs obtained for
one frame in the application of the turbulent vortex structures (Section 8.3). Us-
ing the spheres and cone representation for an edge, Figure 5.15a, a solid shape
reconstruction is obtained (this figure is shown in color on the backside of the
cover). Figure 5.15b, ¢, and d show the other, more open iconic representations.

5.6 Accuracy of the Skeleton Attributes

We will now investigate the accuracy of the skeleton attributes in a similar fash-
ion as the accuracy tests in Chapter 4. Here, we test the accuracy of two derived
quantities from the skeleton graph: the average position and total volume of
the skeleton. As a reference we use the position and volume obtained by the
volume integral which proved to be very accurate and stable in Chapter 4.

A number of derived quantities can be calculated from the skeleton graph de-

78

5.6. Accuracy of the Skeleton Attributes

d

Figure 5.15: Iconic visualizations of skeletons using spheres and cones, or more
open iconic representations, a) is shown in color on the backside of the cover.

79

Chapter 5. Skeleton Shape Description

scribing global attributes of the skeleton: the length of the skeleton centerline Ly,
the total skeleton volume Vj;, and the skeleton position of the center of gravity
(COG) Py These quantities are important since they can be used for compari-
son and for tracking, see Section 6.2.1.

80

1. The length of the skeleton centerline Ly can be calculated as a sum of the

edge lengths over all N edges:
N
Ly = Y L (5.3)
i
with
L = |Pi2—Pi

where L; is the distance between the two node positions P; 1 and P; of
edgei.

. The total volume of the skeleton Vy is the sum of the volumes over all

edges and end nodes. The volume of an edge V, is approximated by the
volume of a truncated cone with a top-radius of DT; and a bottom radius
of DT,. The volume of an end node V, is equal to haif the volume of a
sphere (the other half is contained in the cone representing the edge start-
ing from that end node). The volume can be approximated by a sum over
all N edges plus a sum over all M end nodes:

N M

‘/Sk = Z Ve,i + Z Vn']' (5.4)
!]

with

1 2 2

Vei = 3nli(DTf+DT;2DTig + DT?)
2

Vn,]' = §7T(DT,,,])3

where V,; is the volume of edge i, V,, ; is the volume contribution of end
node j, and DT,,,j is the distance transform information at end node j.

. The position of the COG of the skeleton Py is the weighted sum of COG's

over all edges and end nodes. The COG of an edge P, is equal to the COG
of a truncated cone. A halfway factor Hy is calculated that determines
the right position, Hy = 0.5 when DTy = DT,. The skeleton position
is calculated by a sum over all N edges and M end nodes adding their
positions weighted by their volume:

1 N M
Py = Va Y VeiPeit+) Vi iPa (5.5)
S i]

5.6. Accuracy of the Skeleton Attributes

with
P, = Pi1+(Pi2—Pi1)Hy
with
" (1/2 (4DT} +4DT3)'/? - DT1>
f= DT, — DT,

= 0.5 when DT} == DT,

where P, ; is the position of the COG of the edge i, and P, ; is the position
of the end node j.

The first accuracy test uses synthetic data generated by the procedure described
in Section 4.3.1. We have tested the influence of the shape of a feature on the
volume reconstruction of the skeleton graph description of the feature. For this
test, we have generated a number of ellipsoid-shaped features, with different
axis ratios. We can recognize three extreme cases:

1. a’cigar’-shaped ellipsoid (axis R; = R, « R3)
2. a’sphere’-shaped ellipsoid (axis Ry = Ry = R3)
3. a’disc’-shaped ellipsoid (axis Ry = Ry > R3)

We expect that our skeleton graph can accurately represent line-type (cigar) and
point-type (sphere) features, but has problems with surface-type (disc) features.
A synthetic feature is slowly changed from cigar to sphere and from sphere to
disc. At each step, the skeleton graph is determined and the derived volume is
compared to the volume obtained by a volume integral.

Figure 5.16 shows the results of our tests. On the y-axis is the ratio of the
skeleton volume and the integral volume, which should ideally be 1. The x-axis
plots the ratio of the axes:

R1+R;
2R3

In the middle is the sphere, with ratio 1. To the left the ratio is < 1, i.e. the cigar
shape, and to the right the ratio is > 1, i.e. the disc shape.

Our expectations are confirmed: flat objects are not represented very well.
The volume ratio decreases very quickly on the right side of the graph. The left
side of the graph shows that the profile threshold has a significant effect. This
can be explained as follows: the cigar-shaped ellipsoid has a straight centerline
with small DT values at the end nodes, curve nodes will not be inserted, but
one profile node in the middle will have a large effect on the skeleton volume.
Hence, the stepwise behavior of the graph: at each step a new profile node is
inserted.

(5.6)

81

Chapter 5. Skeleton Shape Description

09 — no profile nodes]
-6~ profile tolerance 0.5
—— profile tolerance 2.5
08 F " -8B profile tolerance 5.0 1

0.7F

06

05

Vskel/ Vell

02

01F

10 10°

R, +R)/2* R)
Figure 5.16: The skeleton volume ratio for different axis ratios.

A second test is performed using the turbulent vortex structures application dis-
cussed in Section 8.3. We tested the skeleton attributes with the volume integral
attributes of every vortex structure in the 100 frames. The skeleton graph COG
position has an average distance of 1.4 voxels to the volume inte§1'al position.
This is relatively small compared to the system dimensions of 128°.

The average volume ratio for all features is about 42%. The volume ratio
seems to be an unfavorable fraction, but this is a bit exaggerated because the
volume is proportional to the square of the distance DT. The problem lies in the
fact that the distance DT is the minimal distance from each skeleton point to the
surface of the object. A possible solution to that problem will be discussed in the
next section. For now, we can only conclude that we need to be careful, when
using the skeleton volume attributes for further analysis.

82

5.7. Future Prospects

5.7 Future Prospects

The skeleton graph can provide a good shape reconstruction for line-type fea-
tures like the turbulent vortex example shown before. However, it is also clear
that surface-type features are approximated with lower accuracy. The assump-
tion that the contour is a circle is in general not justified. Moreover, the DT is the
minimal distance to the surface which results in an even worse approximation,
illustrated in Figure 5.17a.

The contour may be approximated better by taking the average distance Dayg
from the contour points to the skeleton node 5.17b, by determining an ellipse fit
around the contour 5.17c, or by sampling the contour along radial lines emanat-
ing from the skeleton node 5.17d. The latter method is similar to the way the
contour of a vortex core is constructed in [Banks & Singer, 1995].

contour

C

Figure 5.17: Contour approximation by a) DT, b) average distance, c) ellipse
fitting, and d) sampling along radial lines.

The three solutions given above provide more precise surface approxima-
tions, however they also require two extra steps. First, the contour in a plane
perpendicular to the skeleton line has to be determined. Second, the contour
has to be approximated. These two steps may involve many calculations and
are thus computationally more expensive.

Another issue for future work is the description of surface-type features, such
as shock waves. Surface-type features may be described using the mask set that
results in a surface skeleton during the skeletonization step, see Figure 5.4b.
The skeleton voxels can be connected by triangles, the result is a polygon
mesh description of the skeleton surface. This surface can be simplified by a

83

Chapter 5. Skeleton Shape Description

surface simplification method [Schroeder et al., 1992; Klein et al., 1996; Cignoni
et al., 1998]. In [Frank & Lang, 1998], a data-dependent component is taken into
account during simplification. The DT can be taken as the data-dependent com-
ponent. In that way the surface is simplified by both the curvature of the triangle
mesh and the distance information stored at each skeleton point. This should
provide controlled precision in a similar fashion as the graph simplification we
use.

84

Chapter 6

Feature Tracking

The preceding two chapters discussed a number of methods for the calculation
of attribute sets that describe certain characteristics of features. These attribute
sets can be stored in the feature data representation. The feature data represen-
tation allows the manipulation of features as individual entities and the features
can be quantitatively compared. Thus, the features can be investigated further,
for instance to investigate their evolution in time.

The feature data representation can be used for the tracking of features in
time-dependent data. Feature tracking is one step in the process of the visualiza-
tion of time-dependent phenomena (see Section 2.5). The process consists of fea-
ture extraction, feature tracking, event detection, and visualization (Figure 2.11).
The sequence as a whole can be described: for each feature a description can be
made of its lifespan, describing its origin, motion, growth, interaction with other
features, and so forth.

This chapter describes an algorithm for the task of feature tracking using fea-
ture data only. The use of a feature data representation has important conse-
quences: the features can be quantitatively compared without using the original
grid data. Now, it is feasible to perform the tracking interactively and in mul-
tiple passes. The chapter also presents ways to visualize the results of feature
tracking, and compares our method to other methods.

6.1 Correspondence Problem

Feature tracking tries to solve the frame-to-frame correspondence problem between
features in successive frames. The correspondence problem originates from the
fact that the feature extraction step is performed independently for every frame.
The features in one frame are not related to the features in the next frame. It is
not yet known if two features in successive frames are actually the same object?
at two different instances of time. Feature tracking tries to solve this correspon-
dence problem.

Feature tracking results in one-to-one correspondences between features in
subsequent frames, i.e. only continuations are detected (see Section 7.2). Here we

1We prefer to speak of an ‘object’ when a feature is tracked and its evolution in time is known.

85

Chapter 6. Feature Tracking

presume that during its lifespan, the object continues to exist without dissipa-
tion or interaction with others. The feature descriptions in every time-step are
stored in an object path describing the continuous evolution of the object. Thus,
tracking allows us to select one object path and visualize the evolution of it.

The continuous object paths are the basis for event detection (Chapter 7):
they can be used to detect certain events such as unusual changes, particular
stages in the evolution, or specific interactions with other features.

When displaying features frame by frame, the eye sees visual correspondence
based on continuity of moving objects, and is very flexible in tracking objects in
time. However, it is difficult to translate this flexibility into an algorithm that
can be used for feature tracking. Chapter 7 of [Ballard & Brown, 1982] describes
a number of heuristics for the visual matching of points in successive images
separated by a small time-interval:

1. Maximum velocity. The motion of a point in the image is limited according
to a maximum velocity.

2. Small velocity change. The velocity of a point in the image changes little
to the next time-step.

3. Common motion. Spatially coherently moving objects often appear in suc-
cessive images as regions of points sharing a ‘common motion’.

4. Consistent match. Two points from one image generally do not match a
single point from another image (exceptions arise from occlusions).

5. Known motion. If a world model can supply information about object
motions, perhaps motions can be derived, predicted, and recognized.

We will try to translate these heuristics to rules used in our feature tracking
algorithm.

The tracking method described here tries to combine the amenities of the meth-
ods described in Section 2.6.2. The method uses continuity of motion to track
paths, and tolerances to allow small deviations.

6.2 Feature Correspondence

The first step in feature tracking is to create a measure for the correspondence
between two features F) and F,. We use the feature data to make a quantitative
comparison. The difference between the attributes in both feature descriptions
is tested with a certain tolerance. The tolerance allows a deviation between the
attributes in F; and F,. The correspondence criteria are similar to the criteria
described in [Samtaney et al., 1994].

86

6.2. Feature Correspondence

6.2.1 Correspondence functions

Each attribute set in the feature data is associated to a number of correspondence
criteria. The criteria depend on the information available in that attribute set.
An ellipsoid fitting attribute set is linked to other correspondence criteria than a
skeleton attribute set. Basically, the criteria have the following format:

func(Fy, F2) < Trync (6.1)

where func(F), F,) is some comparison function that compares an attribute set
in F; with an attribute set of the same type in F,, and T§,,,. is the function tol-
erance. Each type of attribute set can return a list of comparison functions func
that can be tested to a tolerance.

Each correspondence criterion is translated in a correspondence function
Ctunc by equation 6.2. It has the following properties: C func(F1, F2) = 1 when
the attributes in the two features are identical, Cy,,c(F1, F2) = 0 when the devi-
ation is on the limit of the tolerance, and Cg,nc(F1, F2) < 0 when the deviation
exceeds the tolerance.

1 _ func(Br, B)

Cfunc(PLFZ) = Tfunc (6.2)
1 Exact match
= 0 Limit tolerance

< 0 Exceed tolerance

Hence, a correspondence between F; and F; is found when the correspondence
function returns a positive value. Since for one attribute set there may be more
than one correspondence criterion, the possible correspondence functions are
combined into a correspondence factor as described in Section 6.2.2.

The correspondence criteria depend on the information in the attribute set, and
on the different types of attributes in that attribute set. Table 6.1 shows a number
of possible correspondence criteria for basic types of attributes, such as scalar,
vector, and matrix attributes. These criteria are templates for the criteria that can
be used in specific attribute sets. However, each attribute set may add specific
criteria that are only meaningful for that particular attribute set.

Most of the correspondence criteria in Table 6.1 provide a relative measure
for the difference in attribute values. Equation 6.3 expresses the relative differ-
ence between two scalar values relative to the maximum of the two values. It
can be used for several scalar attribute types such as volume, mass, and average
data values. It is an important measure because it is also used as a template
for vector and matrix-type attributes. For instance equations 6.4, 6.5, and 6.8
respectively give the relative distance between two vectors, the relative differ-
ence in vector length and the relative difference of the matrix determinant. The
accompanying tolerance value Ty, is also relative, i.e. a tolerance value of
Tfync = 0.3 indicates that a relative difference of 30% is allowed.

87

Chapter 6. Feature Tracking

Attribute type Correspondence criteria

[S2 — S1]

lar S S e S ¥ I
Scalar max (51, 57)

< Tscalur (6-3)

[V2 — Vq|
< Ty
max([V1[[, [V2[) = "4/

(6.4)

V2]l = [Vl

Vector V max(Vi[, vy = Tl (69
Vi V,

|Vl TVal Tangie (66)

IVa= Vil € Ty (67)

max (det(M), det(M3))

Table 6.1: Possible correspondence criteria for basic types of attributes.

Sometimes the relative difference measure is not an appropriate measure.
For instance, in case of a position attribute P equations 6.4 and 6.5 are meaning-
less because position depends on the coordinate system that is used and thus
max(||Pq]],||P2||) is arbitrary. In this case, it is better to use an absolute mea-
sure like in equation 6.7. The measure is the absolute distance between the two
positions. Hence, the tolerance Tp,s is also absolute and one should take care
to choose a tolerance that makes sense for this particular case, i.e. it depends
on the changes in the motion of the objects, and the spatial dimensions of the
system.

The useful correspondence criteria depend on the application and the meaning
of the attributes that were calculated. For example, suppose V is the average
velocity of the flow in a region of interest in a CFD data set, then equations 6.4,
6.5, and 6.6 are useful correspondence criteria. Equation 6.4 calculates the rela-
tive difference between the two velocity vectors. Equation 6.5 gives the relative
difference in speed. Equation 6.6 uses the in-product of the two normalized
velocity vectors to give a measure for the difference in velocity direction. The

88

6.2. Feature Correspondence

example shows that not all possible correspondence criteria make sense. It de-
pends on the attribute set and on the application which criteria are actually use-
ful. Below we will discuss the correspondence criteria that are associated to the
ellipsoid and skeleton attribute sets.

The correspondence criteria associated to other types of attribute sets may be
derived in a similar fashion as the correspondence criteria associated to the el-
lipsoid and skeleton attribute set. Each type of attribute set returns a number of
criteria that test the information available by that particular attribute set. Thus,
for feature correspondence all relevant information in the attribute sets can be
used.

Ellipsoid correspondence functions

The above correspondence criteria serve as a template for the criteria that are
associated to the ellipsoid fitting attribute set. Ellipsoid data consists of the po-
sition, the three axis lengths, and the three rotational angles. The information
that is held in these attributes concern position, size, and orientation. Hence, the
correspondence criteria listed in Table 6.2 involve these three types of informa-
tion.

Position [P2 = Py < Tpos (6.9)
V2 — V|
Vol |————— < .
olume max (V;, V) = Tovol (6.10)
QOrientation T, 6.11
Ry g ST 61D

Table 6.2: Correspondence criteria associated to the ellipsoid fitting attribute set,
P = position, V = volume, and R = the vector of the main axis.

Equation 6.9 tests the distance between the two center positions of the ellip-
soids. Equation 6.10 tests the relative difference in volume of the two ellipsoids.
Equation 6.11 tests the angle between the main axes of the two ellipsoids. This
test is only meaningful when the main axis is clearly longer than the other two
axes and has a particular significance in the application.

89

Chapter 6. Feature Tracking

Skeleton correspondence functions

The correspondence criteria linked to the skeleton attribute set mainly concern
derived quantities. In Section 5.6, we describe the calculation of a number of
global quantities derived from the skeleton graph: the skeleton position of the
center of gravity P, the skeleton volume V, and the skeleton length L.

The correspondence criteria associated to the skeleton attribute set are listed
in Table 6.3. The tests concerning the global quantities of position and volume
(equations 6.12 and 6.13) are similar to the tests associated to the same quantities
of the ellipsoid attribute set. However, the quantities are calculated differently
and thus the tracking based on these tests may be different.

Position 1P — Pyl < Tpos (6.12)
Vo — W1
Vol 2= "l)
oume max (V1,V,) — Tool (6.13)
L, — Ly
L L —Lal |
ength max (Ll, L2) S liength (6 14)
Topology |TE; — TE;| +
’NLZ - NLI’ < Ttopo (6.15)

Table 6.3: Correspondence criteria associated with the skeleton attribute set,

= position, V = volume, L = length, TE = the number of edges in the
topological graph, and NL = the number of loop nodes according to the Eu-
ler formula, see equation 5.2.

The criteria in equations 6.14 and 6.15 are typical criteria for the skeleton
attribute set. Equation 6.14 tests the skeleton length and equation 6.15 tests the
number of topological differences of the two skeleton graphs. The topology of
two skeletons can also be tested in other ways, but that will be discussed in
Section 7.5.

The correspondence criteria are similar to the criteria of [Samtaney et al., 1994],
however, the present approach is much more powerful. The use of our feature
data representation allows us to choose from many attribute sets and decide
which attributes are relevant for this particular application. The correspondence

90

6.3. Trackiﬁg using Prediction-Verification

criteria related to the attributes are automatically shown in the interface, as il-
lustrated in Section 6.6. While [Samtaney et al., 1994] always use the same set
of attributes and if this set is inadequate, certain tracking procedures must be
rewritten. In our case, we only have to create a new subclass of attribute set,
and write the correspondence functions associated to it. The tracking process
itself does not need to be changed.

6.2.2 Correspondence factor

The correspondence between features F; and F, can be calculated by combining
the correspondence functions into one correspondence factor. The correspondence
factor is calculated as follows:

N‘unc
Y Ci(FL B) W
N unc
W

Corr(F1, F) = (6.16)

where W; is the weight assigned to a particular correspondence function. De-
pending on the relevance of each criterion, the user assigns weights and tol-
erances to each function (Wg,,. = 0 means no evaluation at all). When two
features are tested for correspondence, all correspondence functions with a pos-
itive weight are evaluated and the correspondence factor is returned. This factor
has similar characteristics as equation 6.2, i.e. —oo < Corr(Fy, ;) < 1.0.

Thus, two features can be corresponded by assigning suitable weights and
tolerances for each possible correspondence criterion. The resulting correspon-
dence factor is a measure for the correspondence between the two features. A
positive match between two features is found when the correspondence factor
is positive.

6.3 Tracking using Prediction-Verification

Now that we have a measure to determine the correspondence between two fea-
ture, we can create a procedure to track features in time. Our tracking algorithm
is based on a simple assumption: features evolve predictably. This implies that
once a path of an object is found, we can make a prediction to the next frame and
search for features in that frame that correspond to the prediction. If a candidate
in the next frame corresponds to the prediction, the candidate is added to the
path and a new prediction is made to the following frame. Thus, a continuous
path can be found by prediction-verification until the path stops or until the last
frame in the time series is reached.

The feature data representation allows the manipulation of features which
makes it easy to calculate an extrapolation that can be used as a prediction. We
calculate a prediction by linear extrapolation using the last two features in the

91

Chapter 6. Feature Tracking

path of an object:
F—-F_
g(f_—_t—_ll%) * (tig1— 4) (6.17)
i i—

where F; is the feature in frame i and ¢; is the time at frame i. When frames are
equidistant in time, this equation becomes trivial. Other (higher order) predic-
tion schemes are possible, but we believe that the gains do not counterbalance
the higher computational costs. Furthermore, the linear extrapolation is in ac-
cordance with the heuristic of small velocity change, Section 6.1: the velocity of
a point in the image changes little to the next time-step.

FEp=FE+

Figure 6.1 illustrates the process of prediction-verification. It shows six matched
features that form the path of an object (dark objects), it shows the prediction at
the end of the path (transparent object), and it shows a candidate feature (light
object). Clearly, the candidate feature corresponds very well to the prediction
and should be added to the path.

Figure 6.1: Visualization of a path (dark objects), its prediction (transparent ob-
ject) and one of the candidates (light object).

6.3.1 Initialization

Yet, a prediction can only be made if a path exists, i.e. an initialization of new
paths is required. The initialization is achieved by assuming a correspondence
between two features in two successive frames. This assumption leads to a pre-
diction that can be compared to all candidates in the third frame. If there is a
candidate in the third frame that corresponds to the prediction, a new path is
created and the path is continued into subsequent frames.

92

6.3. Tracking using Prediction-Verification

The algorithm of the initialization is shown in pseudo-code in Algorithm 1.
It starts new paths from all features in the current frame (frameli]) that have
not been added to a path yet, i.e. the unmatched features. Basically, connections
to all candidates in the next frame (frame[i+1]) are created, the predictions are
calculated and corresponded to the candidates in the third frame (frame[i+2]).
If there is a candidate that corresponds to the prediction, a new path is created
and it is continued into subsequent frames.

Algorithm 1 Initialization, starting new paths from frameli]

InitializePaths (frameli])

for_all (unmatched features in frameli]) {
for_all (candidates in Frame[i+1]) {
assume connection between feature; and candidate; ¢
calculate prediction; ;
for_all (candidates in Frame[i+2]) {
if (Correspondence (prediction; ,,, candidate;) > 0.0)
create new path
ContinuePath (path, frame[i+3])
if (path—length > MinPathLength)
add path to event graph

There are two definitions for a candidate?: 1) all features in the next frame
are candidates, and 2) only unmatched features in the next frame are candidates.
The first option allows multiple solutions for one feature (it may be added to
more than one path), and also requires an exhaustive search (all connections
to the next frame are tested every time). The second choice limits the search
because the number of candidates decreases when more paths are found, but it
also removes a feature as possibility once a feature has been added to a path,
i.e. the tracking solution depends on the order in which the features are tested.
Section 6.3.2 describes a procedure that solves this problem by starting with
strict tolerances and subsequent relaxation of tolerances in later passes.

A new path is created when a candidate in the third frame corresponds to
the prediction. However, a match in the third frame could have been found
coincidentally. Therefore, an additional test on the resulting path is performed

2Although in practice we always use unmatched features as candidates, we prefer to speak of
candidates instead of unmatched features because the other definition is always an option to use.

93

Chapter 6. Feature Tracking

to ensure authenticity: the path length must be larger than a given minimal path
length (normally we take 4 or 5 frames). If the path length is larger than this
minimal path length, we are confident that the path is genuine and we accept it
by adding it to the event graph (discussed in Section 6.4).

The search for continuous paths may lead to multiple paths sharing the same
feature in two ways: 1) multiple candidates correspond to the prediction and
each leads to a new path, and 2) a candidate was already added to another
path. This happens especially if the tolerances are relaxed. In case of multiple
correspondences the path with the best confidence index gets the advantage. The
confidence index of a complete path is calculated as follows:

C
Conf(path) = 1- e~ (6.18)
Ne
withCy = E Corr;

where N, is the number of correspondences in the path, and 7 is a growth factor
(which is set equal to the minimal path length). The confidence index increases
as the length of the path increases, which is convenient since, intuitively, our
confidence in a path increases for longer paths. The confidence index is used
when a choice has to be made between two paths sharing the same feature.

The worst case complexity of the initialization is of order O(nm?), with n the
number of frames and m the number of features per frame which is usually
much less than 100. It should be noted that the number of unmatched features
from which a new path is started, decreases rapidly once a number of paths are
found.

6.3.2 Multiple passes

Notice that the prediction-verification algorithm also works in the negative time-
direction. Hence, we can search for continuous paths in two directions: in the
forward and in the backward time-direction. This may result in new solutions,
because forward and backward predictions are different. Therefore, it is useful
to go back and forth through the frames in several passes. This process remains
interactive because we use only the feature data. Interactive passes would not
have been feasible if we had used the original grid data.

When a new pass is started with an existing tracking solution, the existing
paths are tested first because they may be extended. There are two ways to
extend a path. First, paths may be joined; if two paths start and end in successive
frames, the two paths may be each other’s continuation. Second, a path may be
extended with candidates in the next frame. Before new paths are initialized, we
have to check these extensions of paths first. Thus, an existing correspondence
solution can be extended in multiple passes.

94

6.4. The Event Graph

This also allows multiple passes with changed tracking parameters, for instance
with different tolerances. Experience shows that good tracking results are ob-
tained when tracking continuations is done in multiple (forward-and-backward)
passes with linearly increasing tolerances. First, start with strict tolerances find-
ing the obvious paths, and then relax the tolerances for each successive pass
finding the more indistinct paths. With this scheme we can safely use the un-
matched features as candidates, without being concerned about the order in
which features are tested.

The user-interface (Section 6.6) offers the possibility to indicate the number
of iterations in which the tolerances are increased. For each iteration the tracking
process is repeated in forward and backward direction with the same tolerances
until no new correspondences are found. Then, the next iteration is started with
increased tolerances, until the tolerances reach the values that were provided by
the user.

6.4 The Event Graph

[Samtaney et al., 1994] proposed to use a relational graph, the Directed Acyclic

Graph (DAG), to store the relations between corresponding features. We adopted
the idea of using a relational graph, however we extended the DAG represen-

tation in such a fashion that it holds both the path-information and the frame-

information, i.e. it provides possibilities to walk through the graph in both lon-

gitudinal and transverse direction (this will become clear later in this section).

We call the extended DAG representation of the tracking results the correspon-

dence graph or event graph®.

The event graph representation is organized as follows. The building blocks
of the graph are the nodes and edges, representing the features and their cor-
respondences. Each node represents a feature in a certain frame and an edge
indicates the correspondence between two features. Each edge has two pointers
to the connected nodes. A node has a pointer to the Feature data of the feature
in question, a feature number, a frame number, a list of incoming edges, and
a list of outgoing edges. Thus, each feature in the data set is represented by a
node, and each correspondence found by the tracking process is represented by
an edge.

The path of an object is simply a collection of nodes and edges that are con-
nected, and thus relate to the same object. The object id is set equal to the num-
ber of paths found so far, and every feature in the path gets this object id. The
object path also holds information about the begin and end nodes of the path.
Thus, one can run through the path frame by frame starting from a begin node
and ending at an end node.

350 far, the name correspondence graph seems more appropriate, but the name event graph is
used considering the event detection step, explained in Chapter 7.

95

Chapter 6. Feature Tracking

Supplementary to the object path information, each frame is represented by
a level in the graph. Each graph level holds a pointer to the Frame data; i.e.
the collection of feature data in that frame. Also, for every feature in the frame
it holds a list of nodes pointing to the feature?, a list of unmatched features, a
list of begin nodes, and a list of end nodes. Thus, we can easily run through
the nodes in one frame and find all unmatched features, begin nodes, and end
nodes in that frame.

The event graph representation holds both the object path and the graph
level information. This provides us with full flexibility for handling the feature
tracking results. We can ask a level to give all the nodes pointing to a certain
feature and then find the paths that hold these nodes. Consequently, we can
run through the graph in two directions: longitudinally by using the object path
information, and transversely by using the graph level information.

6.5 Visualization of Time-Dependent Data

The last step in the visualization of time-dependent data (Figure 2.11) is the dis-
play itself. The tracking results should be displayed in a clear and meaningful
fashion.

We use a combination of two viewers: the Feature Viewer and the Graph
Viewer, which can be shown simultaneously. The feature viewer visualizes the
features in 3D-space using iconic visualization techniques. The icons give an
impression of the attribute values of a feature. The graph viewer visualizes the
event graph in an abstract 2D representation. We believe that the combination of
the two viewers provides an excellent way to visualize time-dependent data. It
helps the user to understand relations between corresponding features, to view
feature evolution, and to explore the time-dependent data.

6.5.1 Graph viewer

The graph viewer shows the event graph in an abstract 2D representation, show-
ing the relationships between corresponding features. It is similar to the DAG-
visualization in Figure 2.14, used in [Samtaney et al., 1994], however with more
utilities. In the graph viewer the features are represented by nodes and the cor-
respondences between features by connecting lines (edges) between the nodes.
The frames are plotted horizontally and the features are plotted vertically: (x, y)
= (FrameNTr, FeatureNr). The space between nodes is fixed, which results in a
clear distinction between the individual features.

Figure 6.2 shows two different views of the same event graph: the graph
drawn normally with the feature number on the y-axis (here the features are

“In case of multiple correspondences, the number of nodes pointing to a certain feature can be
larger then one. It is essential to know when this happens.

96

6.5. Visualization of Time-Dependent Data

sorted by size), and the graph drawn with minimal edge crossings which sepa-
rates the paths more clearly. It is also possible to relate the vertical axis propor-
tionally to a data value of one of the attributes of the feature (for instance size),
which shows the attribute profile as a function of time.

n
QL
]
=
R
~
L
s

Frames

Features

b

Figure 6.2: Two visualizations of the same event graph: a) the event graph
drawn normally, and b) the event graph drawn with minimal edge crossings.

Colors are used to distinguish the different object paths in the graph. Unmatched
features are shown in grey, while all feature nodes in the same path are shown
with the same color.

6.5.2 Feature viewer

The feature viewer visualizes the features in 3D-space using iconic visualization
techniques [van Walsum et al., 1996]. The parameters of the icons are directly
related to attribute values of a feature. Thus, the user can view the evolution
of the attributes of the objects by animating the icons. A player was created
to browse through the frames and to allow exploration of the time-dependent

97

Chapter 6. Feature Tracking

evolution of features in 3D. Figure 6.3 shows the player displaying one frame.

Figure 6.3: The frame player for browsing through the frames using the feature
viewer.

6.5.3 Combination of two views

The linked combination of the graph viewer and the feature viewer is a powerful
tool to explore time-dependent data. The same colors for features are used in
both viewers which creates a direct link between nodes in the graph viewer and
features in the feature viewer. Also, when a node is selected in the graph, the
corresponding feature icon is shown in the feature viewer, and vice versa.

Figure 6.4 (shown in color on the backside of the cover) shows one step dur-
ing the tracking process. The direct correlation between the two viewers pro-
vides a strong, interactive tool for visualizing and exploring time-dependent
data. The viewers provide an overall visualization of time-dependent data,
which facilitates the recognition of certain patterns in the evolution of the fea-
tures. Also, they provide means for selective visualization of paths, nodes, and
frames. The user can view additional information by selecting one particular
path, frame, node, or edge.

6.6 Tracking User-Interface
Figure 6.5 shows the control panel that is presented to the user when the track-

ing process is started. With this control panel, we can set tracking parameters,
start the tracking process, and view the intermediate and final results.

98

6.6. Tracking User-Interface

Features

Figure 6.4: One step in the tracking of features showing the path (red objects),
the prediction (transparent object), and a number of candidate features (blue
objects), figure is shown in color on the backside of the cover.

The event options (top left) include the tracking of continuations, as well
as the detection of other events. Below the event tracking specification, the
viewing mode can be selected. The tracking process can be performed auto-
matically, semi-automatically, and in stepwise control. In the stepwise and the
semi-automatic mode, the user can examine correspondences in the two viewers
and interactively steer the tracking by changing tracking parameters. Figure 6.4
shows one step in the tracking process.

Then, there are the controls for setting the correspondence functions. This
part of the user-interface is built up depending on the attribute sets in the feature
data. Here, the feature data consists of skeleton and ellipsoid data. The user
can specify the tolerances and weights for every correspondence function, thus

99

Chapter 6. Feature Tracking

Track event: Continuation options
il Continuations Remove matched features?
SplitMerge events P ves ¢ No
events
: Sop Tracking direction:
Topological events
Opological eve & FORWARD @ BACKWARD
Viewing mode:
Minimal path length:

& STEP € SEMI @ AUTO & NONE

Correspondence functions

Skeleton position

Skeleton topology:

Tolerance: — Weight: -
Ellipsoid position:

| Yolerance:

Figure 6.5: The tracking control panel, where tolerances, weights, and tracking
parameters are defined.

deciding which criteria are relevant. It is possible to track continuations based
on the skeleton data first, and then additionally track continuations based on
the ellipsoid data.

On the right side of the control panel the parameters of the tracking process
can be controlled. We can choose the definition for a candidate, the tracking
direction, the minimal path length, and the number of iterations. Also, here the
buttons are shown that control the tracking process when the viewing mode is
set to stepwise, or semi-automatic.

The buttons (on the bottom-left) are used to start the tracking process, trigger

the change of parameters, reset the event graph, and close the tracking control
panel.

100

6.7. Comparison to other Tracking Methods

6.7 Comparison to other Tracking Methods

In Section 2.6.2 three methods for feature tracking were discussed in more de-
tail; attribute tracking by [Samtaney et al., 1994], volume tracking by [Silver &
Wang, 1997], and greedy exchange tracking by [Sethi et al., 1994]. Here, we will
compare these methods to our tracking approach.

6.7.1 Attribute tracking

Attribute tracking by [Samtaney et al., 1994] uses only the attributes of features
to find their evolution. The correspondence criteria are similar to the criteria
described above. However, the attribute set is simply a fixed set of attributes. If
an attribute is not calculated because it is not relevant for this specific feature,
it is simply not given any value, but it does exist in the data structure. Our
approach with the feature data representation is much more generic.

The tracking method is entirely performed on a two-frame basis. The fea-
tures in frame i are corresponded to the closest (in position) features in frame
i + 1. The underlying assumption is that the time between successive frames
is small (the sampling frequency is high enough to capture object motion and
evolution) and thus the object positions do not change much.

This two-frame approach has two disadvantages. First, it lacks sense of con-
tinuity of motion; information about previous motion of the objects is not used
in tracking. This may lead to incoherent paths, for instance when two feature
paths cross each other, see Figure 6.6. Second, the algorithm cannot track fast
moving objects because their positions in two successive frames are not ‘close’ to
each other. Also, this eliminates the possibility of adaptive temporal sampling
(the removal of frames as discussed in Section 6.8), because the assumption of
small time-intervals is not satisfied.

Figure 6.6: The tracking of two paths that cross each other may lead to incoher-
ent paths. The coherent paths are indicated by the dashed line.

101

Chapter 6. Feature Tracking

6.7.2 Volume tracking

Volume tracking by [Silver & Wang, 1997; Silver & Wang, 1998; Silver & Wang,
1999] uses a representation for the segmented volume of the features (an octree
representation in the earlier work, and a linked-list representation in later work)
in order to determine overlap (in space) between features in successive frames.
The overlap test results in a number of features in the next frame that are tested
for correspondence. Correspondence is established by testing the attributes of
the features with the same criteria as in [Samtaney et al., 1994]. Thus, the algo-
rithms are similar, but overlap replaces the proximity criterion.

The advantage of the overlap test is that corresponding features most likely
overlap, while their position may not be close to each other. Chapter 5 showed
that average position may be a misleading attribute for features with a certain
shape. The average position of the turbulent vortex structure (Section 8.3) could
even be outside the object’s geometric shape. In this application, spatial overlap
provides a much better indication for correspondence than proximity in posi-
tion, resulting in better tracking solutions.

The disadvantage of the overlap test is that it is memory consuming. For
each feature a binary volume representation needs to be saved. Although the
volume representation consumes less memory than the binary grid representa-
tion, it still needs far more memory than the attribute representations. On the
other hand, it provides an accurate description of the feature’s spatial extent and
shape (even better than the skeleton graph representation).

Besides the memory consumption, it suffers from the same disadvantages as
the attribute tracking. It is based on a two frames correspondence and therefore
lacks sense of continuity of motion. And fast moving small features may be
missed because they do not overlap. Therefore, the assumption of small time-
intervals is still needed. The advantage of the method is that it is robust and
relatively fast compared to direct visualization of the raw data.

We obtained tracking results for a CFD application with turbulent vortex struc-
tures using the volume tracking®. The results were transformed to our feature
data and event graph representations, so that we could compare the results of
the two algorithms. This comparison is described in Section 8.3.2. The most
important conclusion is that the two graphs were 91% in agreement with each
other. This shows that tracking results are comparable even with two different
tracking methods.

5Data courtesy to D. Silver and X. Wang of Rutgers University.

102

6.7. Comparison to other Tracking Methods

6.7.3 Greedy exchange tracking

The greedy exchange method by [Sethi et al., 1994] can be used to track tokens
in a k-dimensional property space. It employs directional coherence and speed
coherence, resulting in smooth trajectories (paths) corresponding to the prefer-
ences of the human visual system for continuity of motion. However, it uses the
attributes as individual parameters in a k-dimensional property space where
attributes are not related to each other and have no additional significance.

As the name greedy exchange suggests, the method requires a large number
of operations because it uses an optimization process. The algorithm basically
searches for the maximum motion smoothness over all trajectories. The algo-
rithm starts by creating initial trajectories by connecting the closest tokens in
property space. Then tokens are exchanged iteratively in a systematic fashion
until the maximum smoothness is found. Tokens are only exchanged if they
lie within a certain maximum distance dy;,x in property space. This means not
every possible trajectory is tested, but still the number of tested possibilities is
large.

We implemented the greedy exchange tracking method in such a way that it
could work with our feature data representation. The position and volume in-
formation in the ellipsoid attribute set are mapped on the axes of a 4-dimensional
property space. Thus, we were able to track features with the greedy exchange
method and compare the results to our prediction-verification method.

Comparison experiments, which are described by [Vrolijk, 2000], were done
on a number of applications. One of the applications is the flow past a tapered
cylinder discussed in Section 8.4. Tracking was performed on the features by
both methods in order to find the tracking parameters that lead to the best cor-
respondence between the two methods. With the best choice of parameters we
could find a graph correspondence of 86%. This is a little lower than the results
from the volume tracking, but it is still in reasonable agreement with each other.

The performance of both methods is tested by measuring the time needed to
complete the track as a function of the number of frames. Tracking is performed
on a selection of frames from the complete time series on an SGI Octane with
one 225 MHz R10000 processor and 256 Mb of memory. Figure 6.7 shows the
results of the tests.

The figure shows that the greedy exchange method from [Sethi ef al., 1994]
needs more computation time than our prediction-verification method [Rein-
ders et al., 1999a]. The complexity of the greedy exchange has a quadratic be-
havior which is caused by the number of trajectories that increases with the
number of frames. Clearly, the times of the prediction-verification technique
show a linear increase with the number of frames. This is a huge advantage of
our algorithm compared to the greedy exchange method.

103

Chapter 6. Feature Tracking

250 «
- - - Reinders
—&— Sethi
200 4
fg 150 4
z
%)
g
= 100 -

Nr of frames

Figure 6.7: The time needed for the algorithms to complete the track as a func-
tion of the number of frames.

6.8 Future Prospects

Although, the current (linear) prediction scheme is in accordance with the heuris-
tic of small velocity change, it is easy to adapt our tracking algorithm to other
prediction schemes. For instance, a prediction scheme based on a second-order
extrapolation, or the incorporation of a-priori knowledge, e.g. the mainstream
of a flow. This may lead to more accurate predictions depending on the conti-
nuity of motion. A disadvantage is the increase of complexity with the order of
prediction.

The sampling of the frames does not necessarily have to be equidistant in time; it
is possible to apply temporal refinement. The tracking process is not influenced
by this because the prediction-verification scheme is independent of the time
between frames; see equation 6.17. The time between frames may be varied ac-
cording to the variance of the data in time. Turbulent time-periods may require
a dense sampling in time, while periods with less turbulence can be simulated
with a sparse sampling, i.e. similar to local (spatial) refinement of the grid.

Temporal refinement may increase the efficiency of the analysis of evolution-
ary phenomena. Currently, time-dependent numerical simulations often calcu-
late far too many time steps in order to obtain a certain accuracy. Often, 90%
of the data sets is thrown away because they consume too much disk space and
they are not necessary for the analysis of evolutionary phenomena.

104

O

6.8. Future Prospects

With feature tracking, it is possible to automatically recognize the episodes
in the time series where interesting phenomena happen. It should be possible to
restart the simulation from a key-frame at the beginning of such a period and to
calculate new time steps with a denser sampling in time. Thus, we can focus on
a small time-interval and investigate the evolving phenomena in more detail.
Perhaps it is even possible to focus on the evolution of one feature in a small
period in time in a limited range in space, i.e. to refine both in space and in
time.

The tracking results can also be used to detect ‘weak’ features in the data. Weak
features are features that are weak with respect to the selection criteria that the
data should satisfy. The data values at the grid nodes lie close to the selection
threshold and it is doubtful if such a feature is detected or not. In order to im-
prove the detection, we can use the prediction to the next frame. The prediction
tells us where the weak feature can be found and assists us in finding the right
selection criteria for detecting this feature. In this fashion, there is a direct cou-
pling between the tracking process and the feature extraction step.

The visualization in two views is usable during the tracking process; new cor-
respondences can be found by visual inspection (user-guided tracking). The
linked combination of the graph viewer and the feature viewer is a powerful
tool to explore correspondences. It should be possible to tentatively create a
connection between two nodes in the event graph graph editing, view the two
features in the feature viewer, and verify the correspondence visually and quan-
titatively.

105

Chapter 7

Event Detection

Feature tracking solved the one-to-one correspondence problem between fea-
tures in subsequent frames, resulting in continuous paths of objects. The fea-
tures in the path hold the data describing the characteristics of the object in each
frame. The evolution of an object can be investigated by studying the feature
attributes of the features in the path. For each object a description can be made
of its lifespan, describing its origin, motion, growth, decay, and so forth.

The investigation of the evolution of an object automatically focuses on sig-
nificant evolving phenomena: events. An event can be defined as any develop-
ment in the evolution of a feature that is significant. Examples of events are:
unusual changes in the attributes, particular stages in the life cycle of a feature,
specific interactions with other features, or periodic patterns in the evolution.
The events can be interpreted as temporal features in the evolution of features.
It raises the level of abstraction to yet another higher level; from data describing
the characteristics of features to data describing the evolution of features.

Event detection tries to detect these events in an algorithmic, automated fashion.
The different types of events depend on the physical phenomena underlying the
dynamics of the feature. For instance, some features may not be able to merge,
but collide when they meet, or the boundary of the system may be closed so that
entry and exit events (Section 7.3.2) are impossible. Each different type of event
is translated into criteria that are tested by an algorithm. The criteria should be
based on the underlying physics of that event.

This chapter discusses event detection based on the feature data representa-
tion and the feature tracking procedure as discussed in Chapter 6. The chapter
describes the different types of events that we can detect, the underlying criteria,
the detection algorithm, and the visualization of these events.

7.1 Different Types of Events

There exist many different types of events depending on the application, the
type of features, and on the user’s interest. [Samtaney ef al., 1994] introduced a
number of evolutionary events: continuation, creation, dissipation, bifurcation,
and amalgamation. Figure 7.1 shows a schematic representation of these events.
With some imagination, we can think of many other types of events (a number

107

Chapter 7. Event Detection

of them is discussed in Section 7.8). It is impossible to create a generic method
to detect any type of event because the criteria differ too much and the detec-
tion process is different. Therefore, we provide a number of events that can be
detected. The user can select one or more depending on the application and his
interest.

\ bifurcation \

|
\/
/

continuation /
amalgamation

&}
|

) 14
y ‘ 58
dissipation creation

Figure 7.1: Tracking interactions: continuation, creation, dissipation, bifurca-
tion, and amalgamation, [Samtaney et al., 1994].

Currently, our event detection system recognizes the following events’:

¢ Continuation. One-to-one correspondence found between two features in
subsequent frames. The feature continues without dissipating or interact-
ing with other features.

!Compare the terminology to [Samtaney et al., 1994): Continuation, Creation = Birth, Dissipa-
tion = Death, Bifurcation = Split, and Amalgamation = Merge.

108

7.2. Continuations

¢ Birth/Death. A feature at the start or at the end of a path decreases in size
and dissipates. The related event is called birth or death, depending on
the direction of time.

o Entry/Exit. A feature at the start or the end of a path moves through an
open boundary of the system (see Section 7.3) and disappears. The related
event is called entry or exit, depending on the direction of time.

e Split/Merge. Two or more features merge and continue as one, or one
feature splits and continues as two or more. The related event is called
merge or split, depending on the direction of time.

e Topo-Loop. The topology of a feature changes: a loop appears or disap-
pears. The number of loops in the topological graph changes.

¢ Topo-Junction. The topology of a feature changes: a junction appears or
disappears. The number of edges in the topological graph changes.

¢ Unresolved. If none of the above events can give an explanation, the fea-
ture event is unresolved.

Note that most events come in pairs because they are each other’s reverse in
time. This means that a split can be found by testing the criteria for a merge in
the reverse time-direction.

Our event detection system detects the events described above by a prediction-
verification scheme, similar to the way the features were tracked in Chapter 6.
Thus, again the assumption is that features evolve predictably. Each event that
can be detected has its own criteria for prediction-verification.

The criteria for a specific event are tested by certain event functions. Each
attribute set (see Section 3.2.2) in the feature data representation is associated
with a number of functions for each specific type of event. If there are no func-
tions associated to the attribute set for a certain event, then that event cannot be
detected as far as this attribute set is concerned.

Below we will discuss each different type of event. Per event we explain the
underling criteria, the event functions, and the detection algorithm.

7.2 Continuations

Continuations may be considered as non-events, they are the result of the fea-
ture tracking process described in Chapter 6. However, this step is necessary
before the real event detection can take place. Continuation detection may have
to be repeated after the event detection results in new correspondences. For in-
stance, when two paths merge into an unmatched feature, this leads to a new

109

Chapter 7. Event Detection

ending of a path, which may be continued into the next frame. The result of
the tracking algorithm is a number of continuous paths that can be used for the
detection of real events.

The event function that is needed to detect continuations is the correspon-
dence function C func described by equation 6.2. Each attribute set is associated
to a number of these functions as was described in Section 6.2.1. The corre-
spondence functions have the following properties: Cy,,(Fi, F2) = 1 when the
attributes in the two features are identical, Cf,,,.(F1, F;) = 0 when the deviation
is on the limit of the tolerance, and Cy,,c(F;, F2) < 0 when the deviation exceeds
the tolerance.

Figure 6.2a shows the result after tracking the continuations. It shows only
continuous paths, the objects continue without interaction with others, or other
events.

7.3 Terminal Events

After continuous paths have been found, the end nodes of the paths can be
explained by terminal events, i.e. birth/death or entry/exit. Each end node of a
path in both directions of time can be tested to satisfy the criteria for a specific
terminal event. These criteria are as follows.

7.3.1 Birth/Death event

The physical rules for a birth or a death can be defined as follows: a feature at
the start or at the end of a path decreases in size and disappears. The related
event is a birth or death, depending on the time-direction. Thus, for a death
two requirements must be satisfied on the end feature E,,; (frame i) and the
prediction feature F,, (frame i + 1):

1. The size at the end of a path must decrease. This is a test on the difference
in size (volume or mass) between the prediction Vyrea and the end node
Vend:

Vpred < Vend (7.1)

2. The size of the prediction must be small. If size of the prediction is neg-
ative, the death event was expected and the death event function Dfunc
should return a factor of 1.0. Otherwise, the volume of the prediction is
tested relative to the volume of the end node:

Vpred / Vend

7.2
Tvol ()

Dfunc (Vpred: Vend) =1=

The same tolerance T,,; can be used as in the volume tests for the contin-
uations.

110

7.3. Terminal Events

Thus, the death functions have as input the prediction and the end feature in
the path and return the following values:

1 when Vy,eq <0

Dfunc (Vpredr Vend) = Voaf Vs (7.3)
1 - 25— when V,,y >0

vol
The values of the death functions are combined into one death factor C 4,4y, simi-

lar to the correspondence factor in equation 6.16, i.e. the functions are weighted.
A death is detected when the death factor is positive: Cyqp, > 0.0.

A birth is found as the reverse detection of a death: the death criteria are simply
tested in the reverse time-direction. An example is shown in Figure 7.2. It shows
the path as opaque objects and the prediction at the end of the path is shown
transparently. The criteria for a birth are satisfied because the path stops (in
reverse direction) and 1) the growth in size is negative, and 2) the prediction is
small.

&
L ®

Features

—
12 8 4 8 8 T 8 3 10 f1 12 18 W 15 1% 17 ¥ 19 2

Frames

Figure 7.2: The detection of a birth event is performed in the reverse time-
direction. The path is shown as opaque objects, and the prediction at the end of
the path is shown transparently.

11

Chapter 7. Event Detection

7.3.2 Entry/Exit event

The physical rules for an entry or an exit can be defined as follows: a feature at
the start or at the end of a path moves through an open boundary of the system
and disappears. The related event is called entry or exit, depending on the time-
direction. An ‘open boundary’ is a system boundary where features may move
through. Some domains have open boundaries, for instance a flow through a
pipe has an inlet and an outlet. The inlet and the outlet are open boundaries,
but the wall of the pipe in between is a solid wall, and therefore is a closed
boundary.

Based on these physical rules we can formulate two requirements for an exit that
must be satisfied. It is sufficient if these requirements satisfy for just one open
part of the system boundary. The requirements involve the end feature F,,4, the
prediction feature F,4, and the open parts of the system boundary Sp,gs:

1. The object must move towards an open boundary. This can be tested by
the position of the end node P, the position of the prediction Py, the
boundary position Py,,4s, and boundary normal Ny, 4, that is directed
outward of the system:

"Ppred = Ppounas|l < | Pena — Poounasll
A (7.4)
(Ppred - Pend) ‘Npounds = 0.0

where ||Ppreq — Ppounas/| = 0 when the position of the prediction is outside
the system boundary.

2. The position of the prediction must be beyond or near the open boundary.
If the position is beyond the boundary, the exit event is expected and the
exit function Ef,,,c should return a factor of 1.0. Otherwise the position of
the prediction is tested against the position of the boundary:

” Ppred = Prounds ”

7.5
Tyor (7.5)

Efunc (Ppredr Pbounds) =1-

Again, a similar tolerance T,y can be used as in the position test for con-
Agaln, p %

tinuations. This tolerance can be imagined as a zone with a thickness of

Tpos along the open boundaries were entries and exits are accepted.

The input of the exit functions are the prediction, the end feature in the path,
and the system boundary. The functions should return, given the requirements

112

7.3. Terminal Events

above, a factor with the following properties:

1 when P, is beyond
EfunC (Ppred/ Phaunds) = the boundary (7.6)
1— ”Ppred'anunds” otherwise
Tpos

The values of the exit functions are combined into one exit factor C,j; by weight-
ing the results of the exit functions. An exit is detected when the exit factor is
positive: C,yj > 0.0.

An entry is found as the reverse detection of an exit: the exit criteria are simply
tested in the reverse time-direction. An example is shown in Figure 7.3. It shows
the path as opaque objects, the prediction at the end of the path is shown trans-
parently, and the system boundaries are also shown. The criteria for an entry
are satisfied because the path stops and 1) the velocity is directed outward, and
2) the prediction lies clearly outside the system boundary.

Features

2 3 4 1" s 17 18 13 2

Fram

Figure 7.3: The detection of an entry event is performed in the reverse time-
direction. The path is shown as opaque objects, and the prediction at the end of
the path is shown transparently.

113

Chapter 7. Event Detection

Since the death-test is essentially a volume test and the exit-test is essentially
a position test, both tests can be used simultaneously. The test with the high-
est result is taken. If both tests give equal values, the preference of the user
determines the terminal event. It is also possible to test each terminal event
separately. Figure 7.4 shows the result after the detection of terminal events
is executed. It shows that some of the end nodes of paths are explained by a
birth/death or entry/exit events. The icons used are shown more clearly in Sec-
tion 7.7.

/o]
Q
S
=
S
)
L
&

Figure 7.4: The resulting event graph after the detection of terminal events: a
number of the path endings is explained.

7.4 Interaction Events

The evolution of features may be influenced by the presence of other features.
Features may attract or repel each other, they may fluidly merge with each other,
or they may bounce. The way features interact depends on the application and
the type of features involved. Sometimes, the question is how the features in-
teract, or whether a particular interaction occurs. Most of the time the user
probably has some idea what will happen when two features meet.

The interaction of features depends very much on the underlying physical
model. For instance, when features are diffuse (such as clouds) they will prob-
ably merge, and when they are solid objects they may bounce. Depending on
these scenarios we can make a model to calculate the predictions for the next
time-step. When features are expected to merge, the model should tell us how
the attributes are combined. The prediction can then be tested with candidates
in the next frame using normal correspondence functions. Here, we will discuss
only the split/merge interaction of features.

114

7.4. Interaction Events

7.4.1 Split/Merge event

The merge event can be defined as follows: two or more features approach each
other, they merge and continue as one. The split event is the reverse of a merge:
one feature splits and continues as two or more. When two objects merge, the
result is an object with mass (or volume) equal to the combined masses (or vol-
umes) and a position equal to the weighted positions weighted by the mass
(or volume). This model for feature interaction is the underlying model for a
split/merge event. Other behavior could also be modeled, leading to different
types of interaction event.

Basically, the merge event is detected as follows: the predictions of two or
more merging features are ‘merged’ into a single prediction. This prediction
is tested with a candidate in the next frame with the normal correspondence
functions. The merged prediction is calculated according to the model described
above, it will be explained in more detail later in this section.

Possible scenarios for a merge

Starting from the result of the feature tracking process we can recognize three
possible scenarios of how a merge may occur. Figure 7.5 illustrates these three
scenarios:

1. Two or more paths end in frame i and merge into one unmatched feature
in frame i + 1.

2. Two or more paths end in frame i and merge into one start of a new path
in frame i + 1.

3. One path end in frame i and merges into one continuous path.

These three scenarios should be tested in this order, because the first two scenar-
ios solve more unresolved connections than the last scenario. The first two are
only possible if more than one path ends in the current frame, while the third
scenario needs only one path ending in that frame.

If more than two paths end in frame i, all possible combinations of end nodes
are tested to the unmatched features (scenario 1), or the start nodes (scenario
2) in the next frame. We accept only the combination with the best (positive)
correspondence. In case of scenario 3, the end node of the path is tested one-by-
one to every continuous path. The merge with the path that results in the best
correspondence is accepted only if the local correspondence improves.

The number of tests for merge events can become substantial. In order to
limit this number we only test features for a merge if they are close to each
other. It is useless to test a merge between features that lie far away from each
other, this can only lead to false positives.

115

Chapter 7. Event Detection

[
-
ﬁ..~
..
1 .
"
"
.
o——0
>—e
....
2
[Y
.
“‘
G“
" S
-
>
“
3 *
-
.0
.Q
L -@ L 4 9

Figure 7.5: Schematic representation of the three possible merge scenarios. The
dotted lines indicate the possible connections that need to be tested.

Neighborhood criteria

We use neighborhood criteria to decide which features are candidates for a
merge. Only combinations are made of end nodes that have a prediction in
the neighborhood of the candidate (scenarios 1 and 2). Also, an end node can
only merge into continuous paths (scenario 3) that are in the neighborhood of
the prediction of the end node in question. The neighborhood criteria test if two
features are close to each other in position.

The neighborhood criteria are tested by neighborhood functions that are as-
sociated to each attribute set. The neighborhood functions are similar to the
event functions, only they do not detect an event but only establish closeness. If
an attribute set contains position information, it can be used to establish neigh-
borhood. Table 7.1 shows the neighborhood functions associated with the ellip-
soid and skeleton attribute sets.

For the ellipsoid the neighborhood criterion tests the distance between the
two center positions of the ellipsoids. It is equal to the position test of the cor-
respondence criteria of the ellipsoid. There are three different neighborhood
criteria associated to the skeleton attribute set. The first tests the distance in
the position of the center of gravity, the second determines the minimal node-
to-edge distance min (Dy_.) between the two skeleton graphs, and the third
determines the minimal edge-to-edge distance min (D,_.).

For each of the neighborhood functions shown in Table 7.1 we have to assign
weights and tolerances. Then, the neighborhood factor is calculated similar to
the correspondence factor, by weighting the contributions of each criterion. The

116

7.4. Interaction Events

Ellipsoid P2 — Pq|| < Tpos (7.7)
[Py —Pyf| < Tpos (7.8)

Skeleton min (Dp—e) < Tpos (7.9)
min (D,—,) < Tpos (7.10)

Table 7.1: The neighborhood criteria associated with the ellipsoid and skeleton
attribute sets, min (D, _.) is the minimal node-to-edge distance, and min (D, _,)
is the minimal edge-to-edge distance.

tolerance values can be set similar to the values given for the correspondence
factor.

Figure 7.6 shows two time steps with a merge between two features. Figure 7.6a
and b show the skeletons, and c and d show the ellipsoids. The distance between
the positions of the ellipsoids is large, while the distance between the skeleton
graphs is small. The skeleton neighborhood criteria in equations 7.9 and 7.10 are
likely to satisfy easier (with a smaller tolerance) than the ellipsoid neighborhood
criterion. This is also shown in Table 7.2 which shows the minimal tolerance Tpos
that finds the merge for each of the four neighborhood criteria?.

Neighborhood criterion | Minimal tolerance Tpos
Ellipsoid position 40.8
Skeleton COG 36.8
Skeleton node-to-edge 0.6
Skeleton edge-to-edge 0.4

Table 7.2: The minimal tolerance for which the merge in Figure 7.6 was found
for each neighborhood criterion.

The minimal tolerance for the neighborhood criteria that use the graph in-
formation are clearly much smaller than for the criteria that use the distance in
position. Thus, with the skeleton attribute set we find the merge events with
much smaller tolerances, reducing the chances of false positives.

2N.B. The position tolerance Tpos is an absolute tolerance, it is not a relative measure. Hence, they
can be compared for each criterion.

117

Chapter 7. Event Detection

d

Figure 7.6: For line-type features, the skeleton attribute set provides better
neighborhood criteria than the ellipsoid attribute set. This is important for the
detection of merge events.

Calculating a merged prediction

Yet, we have to merge a number of predictions into one prediction that is tested
with the candidate. The merged prediction is calculated based on the rules for
a split/merge mentioned above. Volume and mass attributes are added and
position is weighted by volume (or mass, if volume is not available). This is in
accordance with physical laws such as conservation of mass. Table 7.3 shows the
merge functions of the ellipsoid and skeleton attribute sets. The merge functions
of each possible attribute set are defined in a similar fashion.

118

7.4. Interaction Events

| Attribute Set | Attribute | Merge functions]
Ellipsoid Position Prerge = LiPiVi (7.11)
Vi
33V,

AXeS Rmerge = —4/3;7.[' 1 (712)
Orientation Aperge = 0 (7.13)
Skeleton Volume Vinerge = E Vi (7.14)

I3

.. ;P V;

Position COG Prerge = Zii {/’ . (7.15)
Length Lmerge = E Li (7.16)

i
Graph Gmergc - ZGE (7-17)

]

1
) " Nodes; +) _ Edges;
i i

Table 7.3: The merge functions for the ellipsoid and skeleton attribute sets.
These functions are used to calculate a merged prediction.

Algorithm for merge detection

With the neighborhood criteria and the calculation of a merged feature, we can
test the three scenarios for a merge. The algorithm tests for all frames 7 the three
scenarios as follows:

1. For each unmatched feature in frame i + 1 we find the ends with a predic-
tion in the neighborhood of the unmatched feature. All possible combina-
tions of these ends are tested for a merge.

2. For each unexplained start of a path in frame i + 1 we find the remaining
unexplained ends with a prediction in the neighborhood of the start. All

possible combinations of these ends are tested for a merge.

119

Chapter 7. Event Detection

3. The remaining unexplained ends in frame i are tested to merge with a
continuous path that lies in the neighborhood of the prediction of the end.

Thus, for every frame in the time series the unexplained ends may be explained
by a merge event.

Figure 7.7 shows one step in the detection of a merge with scenario 2. Two
ending paths merge into the start of a new path. The figure shows the two
ending paths and the start of the new path as opaque objects, and the merged
prediction is shown transparently. Clearly, the start of the new path corresponds
very well to the merged prediction. The final result after split/merge detection
is shown in Figure 7.8.

]

7
[

—
E::..Hﬂ.
S

=~

2 3 4 5 B

Frames

Figure 7.7: The detection of a merge event between two ending paths and a
starting path. The paths are shown as opaque objects and the merged prediction
is shown transparently.

120

7.5. Topological Events

- »

v
L
—
-
+—
9]
b
L

Figure 7.8: The resulting event graph after the detection of split/merge events.

7.5 Topological Events

When skeleton data is available, we have information about the topology of the
features which can be used to detect topological events. A topological event can
be defined as a change in the topology of a feature. Thus, the topological events
may be put in the category of ‘unusual changes’ in the attributes of a feature.
The feature continues, but something significant happens to the attribute values.

A change in topology of an object can be detected by running over the path of
the object and testing the topology of successive features in the path. A change
in the topology can be detected by the following criteria:

1. Counting the number of topological nodes in the skeleton graph. The
number of end nodes, junction node, and loop nodes should be equal in
two successive features F; and F,, if the topology did not change:

#endq, = #end,
N
Ttunc (F1, F2) = § #junction; = #junction; (7.18)
A
#loopy, = #loop;

If Trunc (F1, F2) is false, it is certain a topological event occurred. However,
the opposite is not true. In that case, we need additional tests.

2. Counting the edge-types in the topological graph. An edge-type is de-
termined by the type of nodes it is connecting. Edges in the topological

121

Chapter 7. Event Detection

graph may connect two end nodes (end-end), an end node to a junction
node (end-junction), a junction node to a junction node (junction-junction),
etcetera. If the topology of two skeleton graph is not different, per edge-
type the count should be the same:

(#(end — end), = #(end — end),
;#\(end — junction)y = #(end — junction),
Ttunc (F1, F2) = :#\(end —loop)1 = #(end — loop),
;\(junction — loop)y = #(junction — loop),
{ ;\(junction — junction), = #(junction — junction),

(7.19)
Again, if Ty, (F1, F2) is false, it is certain a topological event occurred.
However, the opposite is not true. In that case, we need additional tests.

3. Running recursively over the edges. If one runs over the edges of the
skeleton graph, the order in which the edge-types appear should be equal
in both graphs if the topology is the same.

The first two tests are very fast. If one of them is not satisfied we know a topol-
ogy event is apparent and we need not to test the third.

With the above criteria we can test if the topology of the object changed between
two successive frames. If the topology changes we can use the Euler formula to
characterize the change further. Section 5.4.1 showed that the number of loops
can be determined by:

H=1-V+E (7.20)

with V' the number of vertices or nodes, E the number of edges, and H the
number of holes in the topological graph. If H is different, then a topo-loop
event is detected. If H is equal but E is different, then a topo-junction event is
detected.

7.5.1 Topo-loop event

A topo-loop event can be detected by counting the number of holes in the topo-
logical graph of the features in successive frames. The number of holes is deter-
mined by the Euler formula in equation 7.20. Figure 7.9 shows an object in three
successive frames. A loop is present in the second frame, but not in the other
frames. This means a topo-loop event is detected.

122

7.6. Unresolved

Fia Ve
Y

C

Figure 7.9: The detection of a topo-loop event. The topology of the object
changes over three successive frames, the middle frame shows a loop.

7.5.2 Topo-junction event

A topo-junction event can be detected by counting the number of edges in the

‘ ;

i]

topological graph of the features in successive frames. Figure 7.10 shows an
object in two successive frames. A junction is present in the first frame, but not
in the second frame. Hence, a topo-junction event is detected.
7.6 Unresolved
Unresolved are all features of which the evolution is not explained in one or both
time-directions. For instance, an unexplained ending of a path is unresolved
although a correspondence is found in one direction. An unmatched feature
has no correspondence in either direction and is double unresolved.

Unresolved feature events result from the failure to find a correspondence.

This may be caused by a variety of reasons:

¢ The object may have been missed during the feature extraction phase, so
the object does not exist in this frame. This happens when features are
weak; i.e. either the data lies close to the selection threshold, or the num-
ber of selected nodes in the cluster is close to the cluster threshold. This

123

Chapter 7. Event Detection

Figure 7.10: The detection of a topo-junction event. The topology of the object
changes between two successive frames, a junction disappears.

may cause the object to flash on and off. We call this effect ‘popping’, and
results in features that cannot be tracked by our method.

e The tracking tolerances may be too strict, they should be increased. How-
ever, this may also give rise to false correspondences that should not have
been detected. The tolerances cannot be raised too much, as the risk of
finding unwanted correspondences (false positives) will become too high.

e The time-sampling was too sparse. The objects change too much between
successive frames, i.e. their behavior becomes unpredictable. The objects
should exist for at least the minimal path length before participating in an
event.

e The particular event cannot be detected yet. The event detection method
should be extended with a new event detection algorithm.

We may put a lot of effort to solve these problems, but a number of features and
events will always remain unresolved.

Using the number of unresolved features, we can calculate a solving percentage
Pyo1ped for the event graph:

2thrs - Nunres

Psorved = 2N, x 100% (7.21)
rs

where N firs is the total number of features over all frames, and Nypres is the
number of unresolved events. The number of features is multiplied by two, be-
cause each feature has to be corresponded in two time directions. Furthermore,
the unresolved end points of paths at the first and the last frames of the time se-
ries are not counted as unresolved. In a sense these are the temporal equivalents

124

7.7. Visualization of Events

of the spatial Entry/Exit events: they leave the time-interval. Thus, they do not
count as unresolved and do not influence the solving percentage.

7.7 Visualization of Events

The event graph is a good way to visualize the events, because it visualizes the
relations between features in successive frames. A merge can be easily detected
as a node with more than one incoming edge, and a split has more than one
outgoing edge. However, an event is not always characterized by the number
of incoming and outgoing edges. In order to enhance the visualization of events
the nodes in the graph are drawn with icons related to the specific type of event
happening to the underlying feature.

Figure 7.11 shows the icons and the related event for all types of events that
we can detect. The icons are clear, intuitive, and easy to distinguish. By visu-
alizing the continuations as relatively small squares, the focus is automatically
directed towards the special events.

Continuation
Unresolved
Entry

Exit

Birth

Death

Merge

Split

Merge and Split

Topo Junction

IIII!IIE*.-

Topo Loop

Figure 7.11: Icons used to visualize the different events.
Figures 6.2 and 7.4 showed intermediate results of the feature tracking and

event detection process that lead to the final result shown in Figure 7.8. This re-
sult can also be drawn in a fashion that clearly distinguishes the different paths,

125

Chapter 7. Event Detection

by minimizing the number of edge crossings in the graph (Figure 7.12).

72]
Q
o
-
—
qe!
Q
&

Frames

Figure 7.12: The final event graph drawn with minimal edge crossings.

7.8 Future Prospects

In the future we can extend the list of possible events by a number of new event
types:
¢ Bounce. Two features collide and bounce. For example, two bouncing
balls.

¢ Transition. A transition occurs from one type of feature to another type of
feature (or several other types). For example, regions with high shear are
thought to precede the turbulent vortex structures (of Section 8.3).

¢ Popping or Flashing on and off. A feature pops or flashes on/off. It is
present for just one frame, or it disappears for just one frame. The latter
can be detected by creating a prediction to frame i + 2 and test candidates

in that frame.

o Periodic patterns. The attributes of an object behave in a periodic pattern,
or the lifespan of objects behaves in a periodic patterns. For example, the
Von Karman vortices in the wake of a cylinder (see Section 8.4).

For each new type of event a number of rules should be translated to specific
event functions that can be tested.

126

7.8. Future Prospects

The visualization of events can be enhanced. It is possible to show the nodes
where a certain event occurs, i.e. event querying. We ask the event graph to
highlight all the merge events, or topo-loop events. Furthermore, the occurrence
of many splits and merges may result in a path that connects many nodes in the
event graph. Since all these nodes have the same object id, they will have the
same color. In this case it may be useful to have the option to draw the branches
in the path with different colors.

127

Chapter 8

Applications

The applications serve to show the usability and performance of the visualiza-
tion techniques described in this thesis. They show that feature-based visualiza-
tion is effective for the analysis of large data sets, such as time-dependent data
sets. The visualization of features and the analysis of their evolution, helps in
gaining more insights in the physics of the application. Moreover, the applica-
tions are a good benchmark for the performance of the techniques.

The techniques are applied to four different cases:

¢ Data from the Pioneer Venus OCPP

o Synthetic scalar data

e CFD-data with turbulent vortex structures
o CFD-data of a flow past a tapered cylinder

The following sections describe for each application: the background, the data,
the techniques applied, and the results.

8.1 Pioneer Venus OCPP

The first application concerns the data from the Pioneer Venus Orbiter that cir-
cled in orbit around the planet Venus for almost twelve years. Among the 17
instruments aboard was the Orbiter Cloud Photo Polarimeter, or OCPP. The in-
strument measured the intensity and polarization of sunlight reflected by the
atmosphere. Unpolarized sunlight is absorbed and scattered by cloud particles,
the intensity and polarization characteristics of the reflected light depend on the
structure of the atmosphere.

The principal objective of the Pioneer investigation was to determine the
properties of the clouds and haze, including the vertical and horizontal distribu-
tion of the particles, cloud particle size and refractive index. Also, the variations
in cloud morphology and the nature of the cloud motions were investigated.
Various studies ([Rossow et al., 1980; Rossow et al., 1990; Toigo et al., 1994; Smith
& Gierasch, 1996]) showed that clouds move with an average global circulation
periodicity of 4.5 days.

129

Chapter 8. Applications

The OCPP data is difficult to access and interpret. A first problem arises from
the fact that the data is measured, and contains noise and gaps; it needs to be
preprocessed (re-sampled and filtered) before it can be visualized. A second
problem is that the data set is large and complex. It consists of many irregular
samples in time, with for each sample a number of quantities which depend
very much on the measurement conditions. As a result, it is difficult to find
interesting features such as clouds.

Considering the large amount and the complexity of the data, data interpre-
tation and visualization techniques are essential. We have created a number of
tools for the access and preprocessing of the OCPP data. With these tools, we can
browse through the data, and interactively explore the data in search of inter-
esting phenomena. Furthermore, we can use the feature extraction techniques
to automatically extract cloud features. The goal of the visualizations is to find
a series of consecutive time samples with clouds that move consistently, and
use these to verify the global circulation periodicity of 4.5 days. The research
described here was also published in [Reinders et al., 1997].

8.1.1 The OCPP data

The orbiter, rotating around its axis, measured the data in scan lines across the
surface as illustrated in Figure 8.1a. During every scan line one of the four dif-
ferent wavelengths (270, 365, 550 and 935nm) of the scattered sunlight is mea-
sured. Thus, the surface is scanned by about 50 scan lines for every wavelength.
One measurement of the planet surface is called a map. The 2Gb of data from the
OCPP is organized in 4000 of these maps that contain collections of 2D spherical
coordinates (the radius is assumed to be fixed) and the measured quantities of
the scattered light.

terminator day limb

intensity equator
b symmetry meridian

a

Figure 8.1: Diagrams of Venus and the Pioneer Venus Orbiter, a) scanning over
the surface and b) measurement situation.

130

8.1. Pioneer Venus OCPP

The measured properties of the reflected light are: the intensity I, the degree
of linear polarization |P| and the direction of polarization x relative to the local
scattering plane. From this data, we can calculate the Stokes parameters I, Q,
U, and V. Furthermore, the positions of the scan points, the sub-solar point
and the sub-orbiter point are given in spherical coordinates. The coordinate
system is fixed in space, with the positive x-axis pointing in the direction of the
constellation Aries, i.e. it does not rotate with Venus.

In Figure 8.1b a diagram of the situation is given as seen from the orbiter’s
point of view. In this figure O is the sub-orbiter point and S is the sub-solar point.
The visible hemisphere has as its center at point O, while the illuminated hemi-
sphere has point S as its center. These two hemispheres overlap in a symmetric
segment on the planet’s surface, bounded at one side by the day limb and at the
other side by the terminator. The meridian which cuts the overlapping segment
into equal halves is called the symmetry meridian. The line through O and S is
called the intensity equator. Both are important symmetry axes [Hovenier, 1970].

The local scattering geometry (Figure 8.2) is determined by the positions of
the sun and the orbiter: g is the cosine of the angle between the incoming
light and the normal, y is the cosine of the angle between the outgoing light
and the normal, the azimuth angle ¢ — ¢y is the angle between the plane of
incidence and the plane of reflection and the phase angle 6 is the angle between
the incoming and outgoing direction of light.

normal

direction of
outgoing light

arccos [
direction of

i ing light

incoming lig arccos 1

horizontal plane

T CLLELEEE R X

Figure 8.2: Local scattering geometry.

Table 8.1 gives an overview of the data. The scattering properties are impor-
tant because they differ for each map, and may have a large effect on the mea-
sured quantities. For instance, the polarization degree depends on the phase

131

Chapter 8. Applications

angle, causing the data range in |P| to be considerably different between two
successive maps. Furthermore, the time between two maps varies considerably;
there are periods of months without any measurements.

wavelength 270 | 365 | 550 | 935 |
data I [Pl | x
position longitude latitude

scattering properties | 1 U 0 | ¢—¢o
Stokes parameters I Q u \4

Table 8.1: Overview of the data measured by the Pioneer Venus OCPP.

It will be clear that the OCPP data is complex and hard to interpret. Therefore,
it is important to be able to browse through the data, select specific maps, wave-
lengths and data quantities. We created special routines to read the OCPP data
from disk, and access any desired quantity.

The following paragraphs discuss a number of preprocessing techniques that
are needed before the data can be visualized. Some of the descriptions are very
detailed, and may be hard to comprehend. While the preprocessing techniques
are supplementary, and not really essential to understand the extraction and
tracking of cloud features, the reader is free to skip to Section 8.1.2 at any time.

Re-sampling

Since the data was measured in scan lines at non-uniform intervals, it is deliv-
ered as scattered data. In order to obtain the data on a regular grid, the data
is re-sampled. This is achieved by a nearest-neighbor interpolation algorithm
as illustrated in Figure 8.3. The area around each grid point is divided into a
number of sectors. For each sector the nearest raw data point, within a certain
search radius, is determined. If for all sectors the nearest neighbor is found, the
interpolation takes place by weighting over these points by the inverse of their
distance.

Experience shows that a good choice for the number of sectors is three or
four. The search radius may not be too small: this means loss of data when the
distance between raw data points is larger. However, too large means searching
in a large area, which means more computation time, while the effects are small.
Experience shows that a good choice for the search radius is two or three times
the average distance between the raw data points.

After re-sampling, the data is defined on a regular grid, which has the ad-
vantage that it can be visualized more easily, and that filtering techniques can
be applied. Moreover, the feature extraction techniques discussed in this thesis
can only be applied to structured data sets.

132

8.1. Pioneer Venus OCPP

* * * * *
search radius

* * * * * *
* * k : *
* * * *
* x * * *
* * * *
* * * * *

% = measurement point

Figure 8.3: Re-sampling the raw OCPP data to a regular grid.

Limb darkening correction

When the intensity data is investigated, it becomes apparent that the intensity
decreases near the limbs. This effect is called limb darkening, and is caused by the
geometry of the planet. A spherical object reflects the light with a certain attenu-
ation: the intensity is strongest in the middle and weaker near the edges. This is
visible in the brightness distribution at wavelength A = 550nm, see Figure 8.4.
For the higher wavelengths (550 and 935nm) scattering by gas molecules is less
significant; therefore the influence of atmospheric properties on the intensity is
small. However, the limb darkening also affects these lower wavelengths. This
causes features near the limbs to be blurred or even become invisible.

The features near the limbs can be enhanced by a correction for the limb
darkening effect based on Lambert’s law. This law is based on the assump-
tion that the light is reflected with equal intensity in all directions (perfectly
diffuse reflection). This leads to the following correction procedure ([Rossow
et al., 1980]).

First, a disk integrated scaling factor I, is calculated:

I =Y (Y pon] ™ (8.1)

where I}, is the raw intensity field at point n. Then, the appropriate zenith angle
is subtracted from the raw intensity I":
In = I, — Lapion (8.2)

where IS is the correction field at point n. Thus, the corrected intensities are
an indication of intrinsic brightness deviations from the mean brightness over

133

Chapter 8. Applications

Day: 11 MAR 1979, Time: 14:52:39

Figure 8.4: The limb darkening effect: the brightness distribution at wavelength
A = 550nm.

the disk. They can have positive or negative values, corresponding to relatively
bright or dark features. This correction can be performed on the raw intensity
data (i.e. before the re-sampling step).

8.1.2 Visualization of the OCPP data

A color map presentation of the data can be given in two ways. Since the data
is available in spherical coordinates, with a constant radius, it can be presented
as a 2D map. The longitude ranges from —180 to 180 degrees, and the latitude
ranges from —90 to 90 degrees. However, the data will be horizontally stretched
near the poles, which also deforms feature patterns. This can be avoided by
projecting the data on a sphere.

Figure 8.5 presents both representations. The colors indicate the values of
the scalar data. The time and date of the measurement are shown in the header.
The positions of the sub orbiter and sub solar point are marked by o and * re-
spectively, and the two symmetry axes are visualized by lines.

The correction of the intensity data for the limb darkening effect enhances
the intensity patterns. A better distinction can be made between dark and light

134

8.1. Pioneer Venus OCPP

Dag: 11 MAR 1979, Time: 14:52:39
Bay: 11 NAR 1979, Time: 14:52:39 (1at)

Qﬂ*“

1734
1731

1301

1298

866

433

-90 i ' g
b =180 -90 o a0 180 (lon)

a
Figure 8.5: Two types of data presentation, day 169, A = 365nm, a) in cartesian
coordinates and b) in spherical coordinates.

features. The browser can be used to search significant patterns or features in
the data by visual inspection. These features can then be detected automatically
and visualized as described in the next section.

8.1.3 Tracking OCPP cloud features
Cloud features

The features extracted from the OCPP data are cloud formations seen in the
intensity and in the degree of polarization. These cloud features can be extracted
by the feature extraction pipeline discussed in Section 2.4 which uses a selection
criterion.

We want a selection criterion that is invariant for different maps. Generally
speaking, a cloud feature is defined as a deviation from the average value. A
region with values below the surrounding is a ‘dark’ feature and a region with
higher values is a ‘light’ feature. Obviously, statistical parameters such as the
mean or the standard deviation (SD) are useful. If the distribution of the data is
Gaussian, two thirds of the data values lie within one SD and 95% lies within
2 SD’s from the mean. In both cases the criterion for selection is invariant for
different maps.

Here, another advantage of the limb darkening correction arises: the cor-
rection creates approximately a Gaussian distribution. The relatively dark fea-
tures have negative values and the bright features have positive values. The
expression below selects dark cloud features with a deviation of 1 SD from the
corrected intensity field, labeled 1365, at wavelength A = 365nm. The selection
expression is as follows:

ranged = (I365- avg(I365)) / sd(I365)
threshold = 1.0
select = ranged < -threshold

135

Chapter 8. Applications

The simplest way to visualize the position and the size of a cloud feature is
with a 2D ellipse icon. A 2D ellipse is described by an attribute set of five param-
eters. In Figure 8.6 a selection is made from intensity data with a wavelength
A = 365nm. The intensity data is corrected and the selection is made by the
expression described above, i.e. dark features are extracted. The selected points
are marked by small white crosses and the ellipses visualize the cloud features.

Day: 11 MAR 1979, Time: 14:52:39

+
E
+
4
..’
4

4

.QA
+
+
i

Ry A

s
-k

Figure 8.6: Iconic representation of the selected cloud features by ellipse fitting.

Cloud tracking

Next, we want to find a series of maps with coherently moving cloud features.
We first make a rough selection from all maps. The following two restrictions
are applied: the time between two successive images must be less than 12 hours
and the phase angle & must be less than 80°. The first restriction is based on
the expected speed of motion (4.5 days circulation), and the size of the visible
part. Half the planet’s surface is visible and this part becomes smaller with
increasing phase angle; therefore the second criterion is introduced. These two
criteria reduce the number of useful maps to a small number of series of maps.

136

8.1. Pioneer Venus OCPP

The remaining maps are then explored for coherently moving features using
the browser. Intensity and polarization data may show different features, so
both types of data are explored. Correspondence between two cloud features in
two frames is established manually, based on the following criteria:

e Position.
The feature in the second frame must be at the position expected from the
position and velocity (known in advance) of the feature in the first frame.

¢ Volume (or surface area).
The two features must have approximately the same size.

Note that these are the basic feature attributes, also used for algorithmic tracking
(see Section 6.2). The velocity of the cloud features can be estimated from the
center positions and the time interval between two frames.

The series shown in Figure 8.7 is an example of a series with coherently moving
features. It covers about 28 hours and the phase angle varies between 63.2 <
6 < 68.8. Since the phase angle is almost constant, the threshold can be taken as
an absolute value. The selection is based on the polarization degree: |P| > 3.0.
In the figure six frames are shown in which features move from right to left. In
the first three frames two features are visible. Based on consistency of motion
we can say that the left feature moves out of the image and that only the right
feature is still apparent in the fourth frame, until it almost disappears in frame
SI1X.

In Figure 8.8 the longitude and the latitude of the second feature are plot-
ted as a function of the time. In about 28.5 hours the feature has moved from
longitude = 91.9 to 12.5 degrees. During this period the latitude was almost
constant. This means that the global circulation time is about 5.4 days. How-
ever, a part of the feature was outside the measurement area in the beginning
and at the end of the series. This affects the position of the center point and the
approximation of the circulation velocity. Without using the first and last posi-
tion, the new result is a circulation time of 4.4 days. This result is very well in
agreement with the expected average of 4.5 days. This supports the conclusion
that the extracted feature is a real moving cloud formation.

The lessons learned from the Pioneer OCCP application are that it is important
to be able to browse through the data, and to be able to explore the data in search
of interesting features. This is true especially for inaccessible and complex data
like the OCPP data. With the tools described here, we have a browser that can
read the raw data, select a specific map, wavelength, and data quantity, and
view it with user-defined color maps in one of the projections.

The combination of visual inspection and automatic feature extraction is a
powerful tool to explore the OCPP data. We were able to reproduce the global

137

Chapter 8. Applications

Day: 7 NOU 1979, Tiwe: 14:34:42 Doy: 7 NOU 1979, Time: 19:43:58

Dey: 7 NOU 1978, Time: 10:01:51

0 90 o 90 i 90
(a)t=0h (b)t=45h ©t=97h
Bay: 8 NOU 1878, Tine: 00:12:22 Day: 8 NDU 1979, Time: 10:04:06 Dey: 6 NOU 1979, Time: 14:36:17

d)t=142h ()t=240h (Ht=285h

Figure 8.7: Determination of circulation velocity by means of feature tracking,
day 507 — 512, |P| data, A = 365nm.

138

8.2. Synthetic Data

100
90
80 1
70 H
60 1
50+
40 4
304
20 A
103*—

0 i 5 Xy

0 5 10 15 20 25 30
time (hours)

—e—longitude
—¥—latitude

degrees

Figure 8.8: Movement of the center point of the cloud feature.

circulation periodicity clouds in 4.5 days. The example of cloud tracking con-
sists of only two features in six frames which can be easily tracked manually.
However, when tens of features in hundreds of frames are involved, it would
be impossible to perform the tracking manually. This illustrates the need for
automatic feature tracking.

8.2 Synthetic Data

In Chapter 4 we used synthetic data to verify the accuracy of the attribute cal-
culation method. Here, we use the synthetic data to verify the results of the
tracking procedures. This is done for two reasons: to test if the tracking algo-
rithms find the right correspondences, and to test the performance.

Synthetic data contains known features with adjustable properties; we can
generate data with features with known attributes, correspondences, and events.
The feature tracking and event detection procedures should find the exact cor-
respondences that we specified. Moreover, we can control the number of frames
and the number of features per frame, which is used to test the performance of
the tracking algorithm.

8.2.1 Algorithmic tests

First, we generated synthetic data with known feature evolutions in order to
test the feature tracking and event detection algorithms. The a priori knowl-

139

Chapter 8. Applications

edge of feature evolutions is important and useful, because in real applications
the exact correspondences are unknown. Normally, there is no objective way
to determine the correctness of a correspondence, as temporal coherence is the
only basis for correspondence. However, with synthetic data we can investi-
gate the correctness of the outcome, and we can investigate the behavior of the
algorithms with respect to the tracking parameters.

Synthetic data is generated by defining feature attributes at certain key-frames.
The generator interpolates the feature attributes linearly between these key-
frames. Then, the feature data is transformed to scalar grid data (as described
in Section 4.3.1), that can be used as input for feature extraction. The resulting
synthetic feature data contains features with attributes that are slightly different
from the linear interpolation in the generator. Otherwise, tracking with a linear
prediction scheme would be trivial.

We have generated a synthetic feature data set that has 20 frames with 80
features in total; each feature is described by an ellipsoidal fit. It is a good data
set to test the tracking algorithms, because it is simple and contains all types of
events. Figures 8.9 through 8.11 show the tracking results after tracking the dif-
ferent types of events. For each step we calculated the solved percentage P;yjy0q
of the graph (see equation 7.21).

Figure 8.9 is the result after tracking the continuations. The event graph shows
paths with only single correspondences, no correspondences exist with multiple
edges. Also, there is no explanation for the ending of paths: the nodes at the end
of paths are unresolved, hence the graph is solved for 93% and not 100%.

70}
Q
i
-
e
<
QL
L

Figure 8.9: The tracking results after tracking continuations.

Figure 8.10 is the result after detecting the terminal events. A number of
path endings were explained by a terminal event. However, there still remains

140

8.2. Synthetic Data

a number of unresolved nodes, hence the graph is now solved for 96%.

d

(5]

QL

=

— B il
= <

(¢D]

X

Frames

Figure 8.10: The tracking result after detecting terminal events.

Figure 8.11 is the result after detecting the split/merge events. Now there
are nodes with multiple connections at the places where a split/merge event
was found. Especially feature 4 in frame 16 is a special case: the incoming event
is a merge and the outgoing event is a split, the object merges and splits over
one frame. This is in accordance with the correspondences that were known
in advance, i.e. two objects moving through each other. The graph still has
unresolved nodes, however these are all at the first or the last frame of the time
series, and do not count as unresolved. Hence, the graph is solved for 100% and
is exactly in accordance with the known correspondences.

Features

Figure 8.11: The final tracking result after detecting split/ merge events.

141

Chapter 8. Applications

Figure 8.12 shows the event graph with minimal crossings. It is the same
graph as in Figure 8.11, but now the vertical position of the nodes is not related
to the feature number, but the paths are drawn one by one. The individual paths
are easily recognizable. When the number of features per frame becomes large,
the graph is easier to understand.

7s)
QL
ot
=
St
<
L
|

7 s

Frames

Figure 8.12: The final tracking result shown with minimal crossings.

8.2.2 Performance tests

Next, we vary the number of frames and the number of features per frame in
order to test the performance of the feature tracking procedure. In Section 6.3.1,
we argued that the complexity is linear with the number of frames and quadratic
with the number of features per frame. We measured the user-time on an SGI
Onyx with one 75 MHz R8000 processor and 256Mb of memory. The synthetic
feature data in these experiments are generated without the intermediate step
of grid data. They are the result of linear interpolation between features in key-
frames, i.e. the tracking is trivial, and the tracking results are always correct.

Number of features per frame

We generated feature data with varying number of features per frame. The num-
ber of frames is 100 and the features are quantified by ellipsoid attribute sets.
The number of features per frame is varied between 2 and 50 and the data only
includes continuations, no feature interactions like split/merge. The tracking
procedure is performed automatically in 4 iterations with increasing tolerances.

Figure 8.13 shows the user-time as a function of the number of features per
frame. The complexity is O(N}?trs), however the profile does not immediately

increase very much.

142

8.2. Synthetic Data

30 1

25

20 1

15 1

Time (sec)

10 1

Nr of features per frame

Figure 8.13: The performance of the tracking procedure as a function of the
number of features per frame.

Number of frames

We generated feature data with a varying number of frames and with a fixed
number of features per frame (15). The number of frames is varied from 50 to
1000 and the tracking procedure is performed automatically in 4 iterations with
linearly increasing tolerances.

Figure 8.14 shows the user-time as a function of the number of frames. The
complexity is almost linear (it increases a little at the end). Also, the times are
small: < 3 minutes for a considerable number of 1000 frames and features (15
features per frame).

70 7
60 1
50
40

30 1

Time (sec)

20 1

10 1

0

0 200 400 600 800 1000

Nr of frames

Figure 8.14: The performance of the tracking procedure as a function of the
number of frames.

143

Chapter 8. Applications

The lessons we learned from this application are that the algorithms for feature
tracking and event detection work and find the intended results. The generation
of synthetic data is a good tool to create simple data sets in order to test new
algorithms. Also, the performance tests proofed the complexity to be linear with
the number of frames, and quadratic with the number of features per frame.
This is in accordance with our expectations.

8.3 Turbulent Vortex Structures

The next application is a CFD simulation with turbulent vortex structures. The
vortex structures are line-type features with a strongly curved, tube-like shape,
the so-called ‘worms’. Our skeleton attribute calculation method is well suited
for the description of these worms. Therefore, we used this application to test
the skeleton attribute calculation. Furthermore, the data set consists of 100
frames with a large and strongly varying number of features per frame. It is a
good test case for our feature tracking and event detection procedures. Finally,
we are able to compare our tracking results to the results obtained by [Silver &
Wang, 1997].

The data consists of one hundred time-steps with vorticity magnitude calculated
at a 1283 resolution. We obtained the original grid data as well as a tracked
feature data set with the position, volume, and mass of the vortex structures!.
Vorticity w can be calculated from the flow velocity v as follows:

w=Vxv (8.3)

Regions with high vorticity magnitude ||w|| indicate the presence of vortex struc-
tures.

The turbulent vortex structures can easily be selected with a selection thresh-
old Ty: ||w|| > Ts . After some exploration, we choose a selection threshold of
T, = 5.5. For each selected cluster we calculated two sets of attributes: the
ellipsoid and the skeleton attribute set. We found a total of 4248 features in
100 frames, and stored the feature data representation in a file that has a size of
958Kb.

8.3.1 Skeleton shape reconstruction

Figure 8.15a shows the iso-surface of the selected regions in one frame. The
figure shows that the shapes of the worms are strongly curved, so that ellip-
soid fitting will provide a poor approximation of the shape®. Large parts of

!Data courtesy D. Silver and X. Wang of Rutgers University, see [Silver & Wang, 1997].
25till, the ellipsoid attributes are important because they provide accurate and stable global in-
formation of features, such as position and volume.

144

8.3. Turbulent Vortex Structures

the worms fall outside the ellipsoids, as shown in Figure 8.15b. A more so-
phisticated method is desirable to describe the shape. For that purpose, we use
skeleton attribute calculation, described in Chapter 5.

\

\

i
resentation, which can be simplified (Tcyree = 2 and Tprof = 2) until a small
number of nodes and edges remain, Figure 8.16¢. This skeleton graph is fleshed
out in order to reconstruct the original shape, Figure 8.16d.

The final result of the shape reconstruction seems to be sufficiently accurate.

Figure 8.17 shows the shape reconstruction created by a Hermite tube interpo-
lation (same as Figure 8.16d) together with the surface of the segmented object
(same as Figure 8.16a) shown transparently. The figure shows that the skele-
tons give a good impression of the structure of the vortices. The topology of the
objects is reconstructed very well.
Section 5.6 showed that the skeleton approximation is inaccurate for flat shaped

Figure 8.15: The strongly curved shape of the ‘worms’ are badly approximated
by the ellipsoid fittings.

Figure 8.16 shows the different stages in the process of skeleton attribute calcu-
lation and shape reconstruction. First, a segmentation is made by selecting the
grid nodes where the data satisfies our selection criterion, Figure 8.16a. Then,
the skeleton voxels are determined by the skeletonization thinning algorithm,
Figure 8.16b. These skeleton voxels are connected into a skeleton graph rep-

objects. Some of the vortex structures in Figure 8.17 are flat-shaped by nature,
others are flat-shaped because they are cut by the system boundary. In both
cases, the skeleton volume (equation 5.4) and the skeleton center of gravity
(equation 5.5) will be inaccurate because the distance to the surface, the DT,
is always the minimal distance.

The ellipsoid attributes, which were calculated by volume integrals, pro-
vide an accurate measure for global attributes such as position and volume (see

145

Chapter 8. Applications

Figure 8.16: Four stages in the skeleton attribute calculation process: a) selection,
b) skeletonization, c) graph simplification, and d) shape reconstruction.

Chapter 4). Therefore, we use these attributes to test the accuracy of the skeleton
attributes. We compared the skeleton position and volume to the position and
volume of the ellipsoid attributes.

The average distance between the ellipsoid position and skeleton position
is ||Pger — Pet|l = 1.40 voxel. This is relatively small compared to the system
dimensions of 1283 voxels. The average volume ratio Vy,/ V. = 0.42, i.e. the
skeleton volume is only a fraction of 42% of the ellipsoid volume. This fraction
seems unexpectedly low, but the volume depends quadratically on the diameter
of the skeleton segments. Assuming the lengths of the segments are accurate,
the diameter is under-estimated by 65%.

The problem with the skeleton volume arises from the fact that we use the
DT as a measure for the thickness of the tubes. Possible solutions to that problem
were discussed in Section 5.7. For the moment, we can only conclude that we

146

8.3. Turbulent Vortex Structures

Figure 8.17: The shape reconstruction using a hermite tube interpolation to-
gether with the surface of the object shown transparently, figure is shown in
color on the backside of the cover.

need to be careful, when using the skeleton volume attributes for tracking. We
suggest to use volume integral quantities for tracking purposes, since they have
proven to be very accurate and stable.

8.3.2 Tracking and event detection

We used the skeleton and ellipsoid attributes to track the vortex structures in the
100 frames. The average number of features per frame is relatively large: 42.5
features per frame. Also, this number varies strongly between the frames, see
Figure 8.18. This means that this case study is a challenge for our tracking and
event detection system. The high number of features per frame is critical for the
initialization of new paths. And the strong variation in this number indicates

147

Chapter 8. Applications

that features evolve quickly, i.e. their lifetime is short, and they often participate
in interactions. This means that feature paths may not satisfy the minimal path
length criterion and many features may be left unmatched.

60 1 T T T A T T L L)
50 .
@
E
[«
&
5 40f 7
]
o
-
g
3
Z 3ot b
20 1] N 1] 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Frame number

Figure 8.18: The number of features in the turbulent vortex application as a
function of time.

Tracking with different correspondence functions

Section 8.3.1 showed that skeleton position and volume may be less suitable
for tracking purposes. Here we test that hypothesis by comparing the tracking
results using different correspondence functions. We perform feature tracking
based on the volume integral attributes, the skeleton attributes, and the combi-
nation of both.

There are several event functions associated to both the skeleton and the el-
lipsoid attribute sets. This means that there are several possibilities to calculate
the correspondence between two features. The user has to decide which corre-
spondence function he wants to use and what tolerance and weight they should
have. The available correspondence functions associated to the skeleton and
ellipsoid attribute set were defined in Section 6.2.1.

In this case, we used combinations of the functions related to the ellipsoid
position P,;; and volume V;, and to the skeleton position P, volume Vg,
and length Ly, Table 8.2 lists these functions together with their tolerances.
The weights are taken equal for each function. Some of these functions are
meaningless unless they are used in combination with another; e.g. a volume

148

8.3. Turbulent Vortex Structures

test is useless without a position test. Therefore, the number of sensible combi-
nations is limited. We tested five combinations:

1 P+ Vo
Porer + Vikel
Poer + Viker + Lskel

Pt + Verr + Pager + Viger

AT R R

lJell + Vcll + Pskel + Vskel + Lskel

The correspondence factor resulting from each combination is calculated by
equation 6.16.

Function | Tolerance
P.; 15.0
Vel 0.5

| 15.0
Vskel 0.5
Lskel 0.5

Table 8.2: The used correspondence functions with their tolerance.

We tracked the turbulent vortex structures with each of these five combina-
tions of correspondence functions, and compared the results. Tracking is done
automatically with increasing tolerances and a minimal path length parame-
ter set to four frames. The tolerances are increased in ten iterations until they
reach the tolerances listed in Table 8.2. Then a final iteration is performed with
the minimal path length set to three in order to find short paths of objects that
evolve too quickly, but are consistent over three frames. We can safely do this at
the end of the iterations.

Figure 8.19 shows, for each combination of correspondence functions, the
percentage solved of the event graph (equation 7.21) as a function of the num-
ber of iterations. Clearly, P,;; + V,j; give better results than P, + V.. The
reason is that Py, + Vir uses derived attributes which may be less accurate
(especially Vgy,). Also, the addition of the Lg, function does not provide better
results because it imposes an additional constraint, while the combination with
ellipsoid functions improves the result. This shows the strength of the ellipsoid
attribute data for calculating the correspondence between two features.

Event detection

The skeleton attributes do not give better results in feature tracking, but they are
profitable for event detection. They allow the detection of topological events,

149

Chapter 8. Applications

1 T T L] L} T
09} 4
0.8F 4
0.7 E
0.6} E
-]
g —©— Pen+V
= osk ell+Vell A
(g 5 —B8— Pskel+Vskel
® —%— Pskel+Vskel+Lskel
04F —O— Pell+Velt +Pskel+Vskel .
~A— Pel+Vell +Pskel+Vskel+Lskel
03F .
0.2F 4
01F 4
0] 1 1 i 1 1
0 2 4 6 8 10 12

Number of iterations

Figure 8.19: The percentage solved versus the number of iterations.

and they are beneficial for the detection of the split/merge event. Section 7.4.1
showed that skeleton data is preferred over ellipsoid data for determining a
‘neighborhood’ between two features. Therefore, split/ merge events can best be
found by using the skeleton data for the neighborhood criteria and the ellipsoid
data for the correspondence criteria.

We detected the split/merge events by using the edge-to-edge distance be-
tween two skeletons with a tolerance of T._¢y—. = 5.0. The correspondence is
determined by the combination of P,; + V,j; with tolerances as listed in Table 8.2.
We found 38 split and 23 merge events.

Then, we detected terminal events and topological events. For entry/exit
events we used P,; and for birth/death events we used V,; as the criteria. Topo-
logical events were detected by the criteria described in Section 7.5. We found
82 entry, 83 exit, 75 birth, 99 death, 196 topo-junction, and 5 topo-loop events.
The statistics of the final tracking results are listed in Table 8.3. The event graph
is solved for 97.5%, which is a very good result.

The evolution of the turbulent vortex structures can be visualized using the

150

8.3. Turbulent Vortex Structures

graph count event count
solved 97.5% continuation | 3860
frames 100 birth 75
features 4248 death 99
paths 181 entry 82
unmatched 86 exit 83
split 38
merge 23
topo junction | 196
topo loop 5
unresolved 524

Table 8.3: Statistics of the tracking and event detection results of the turbulent
vortex structures application.

different skeleton icons as illustrated in Figure 5.15, or using the ellipsoid icons®.

Comparison between two tracking methods

Next to the original grid data, we also acquired feature data with the follow-
ing feature attributes: position P, volume V, and mass M. Furthermore, we ac-
quired the tracking results obtained with the volume tracking method described
in [Silver & Wang, 1996] which is briefly described in Section 6.7.2. In the fol-
lowing discussion, the solution obtained by this method is referred to as Silver.
Since we only have position, volume, and mass, we visualize the features by
spheres that show position and volume of the vortex structures.

The Silver data was transformed into our feature data and event graph rep-
resentation, so that we can compare the results to our tracking method. Unfor-
tunately, we were unable to reproduce the feature selections from the original
grid data, because the exact feature extraction parameters were unknown. As
a result, the tracking has to be performed on the position, volume, and mass
attributes only.

The features were tracked for continuations with the parameters shown in
Table 8.4, the weights are taken equal for each function. The tolerances were
increased in four iterations with a minimal path length of 4, additionally one
iterations is performed with a minimal path length of 3. Then, the split/merge
events are detected with the neighborhood tolerance for position N set to 30
(twice the normal position tolerance). Finally, terminal events are detected,
where we give priority to the entry/exit events. The resulting event graph is
referred to as Reinders, and can be compared to the event graph of Silver.

3We created animations that can be found on the CD enclosed with this thesis or via the web:
http://www.cg.its.tudelft.nl/SciVis/Tracking.

151

Chapter 8. Applications

Figure 8.20: Turbulent vortex structures visualized by spheres which indicate
the global position and volume of the structures.

Function | Tolerance
P 15.0

1% 0.5

M 0.5

Ny 30

Table 8.4: The used event functions with their tolerance.

The two graphs can be compared by counting the number of edges that are
identical and the number of edges that are different. The result is a graph corre-
spondence factor C¢ between two graphs G; and G;:
N (G1NG2)
Ce (G1,Gr) = o= 8.4
(1@ = N6 Ue) &4
where N¢(G1 () G;) is the number of edges that are present in both graphs, and
Ne(G1 U Gz) is the number of edges that are present in either one graph or the
other.

The comparison of the two graphs results in a graph correspondence of
Cg(Reinders, Silver) = 91.0%. There are 4565 coinciding edges, 295 edges in
Reinders but not in Silver, and 158 edges in Silver not in Reinders. So, the two
graphs are 100 x 4565/(295 + 158 + 4565) = 91.0% in agreement with each

152

8.3. Turbulent Vortex Structures

other. Table 8.5 shows the event counts for both results. The number of un-
matched features is 159 in Reinders against 256 in Silver. Note that the number
of exit and death events from Reinders should be added to make a fair compar-
ison with the number of exit events from Silver. Reinders finds more continua-
tions but less events.

Silver | Reinders
solved 95.1% 96.6%

unmatched 257 159

paths 164 126

continuation | 4431 4501
birth 205 58
entry n/a 85

death 256 117
exit n/a 68
split 142 105
merge 75 71
unresolved 502 345

Table 8.5: A statistical comparison of the two tracking methods by counting the
number of events.

Silver finds more paths, but a number of paths have a length of two frames,
with just two nodes and one edge. This is possible because the tracking is based
on a two-frame algorithm. The three-frame prediction-verification scheme of
Reinders results in paths with a length of at least three frames. The two frame-
basis seems advantageous for detecting short, but possibly fragmented paths,
while the three-frame coherence rules result in longer paths. Hence, the number
of paths for Silver is larger than the number of paths for Reinders, while the
number of continuations is smaller.

The large number of unmatched features by Silver suggests that tracking can
be improved. Tracking by overlap misses the fast-moving, small features, while
these features can be tracked by Reinders. Perhaps it is possible to enhance the
method of Silver by a prediction-verification scheme.

The number of split/merge events is larger in case of Silver. This can be ex-
plained by the neighborhood criteria. Silver uses an octree representation of the
features that can easily detect neighborhood by overlap, where neighborhood
detection by the position attribute only may fail. The strongly curved shapes of
the ‘worms’ are better described by a skeleton attribute set. Unfortunately, we
were unable to calculate these attributes.

The difference between the two graphs can also be visualized in the graph viewer.
Figure 8.21 shows the similarities and differences between the two graphs. Iden-

153

Chapter 8. Applications

tical edges are shown by continuous lines, edges in Reinders not in Silver are
shown by dashed lines, and edges in Silver not in Reinders are shown by dotted
lines. With this tool we can examine the corresponding and deviating connec-
tions and investigate the differences between the two methods.

) /

2 3 4 5 6 7 8 9§ 1011 12 13 14 15 16 17 18 19 20 21 22 23 2¢ 25 26 27 28 29 %

Features

s,
1

Frames

Figure 8.21: The comparison between two graphs, the continuous lines indicate
edges in both graphs, the dashed lines are edges in the first (Reinders) and not
in the second (Silver), and the dotted lines are edges in the second not in the
first.

The application of the turbulent vortex structures shows that skeleton attributes
are useful in applications were structure is important. Also, the skeletons are
useful in the detection of events; they allow the detection of topological events,
and they help in the detection of split/merge events. However, they are less
suitable for feature tracking than ellipsoid attributes, because the derived at-
tributes of position and volume are less accurate.

The feature tracking and event detection algorithms produce very good re-
sults. The event graph can be solved for 97.5% and 96.6%, despite the large and
strongly varying number of features per frame. The results are very well (91.0%)
in accordance with results obtained by a different tracking procedure. The dif-
ferences may be explained, however there is no objective way to determine the
correctness the two solutions.

154

8.4. Flow Past a Tapered Cylinder

8.4 Flow Past a Tapered Cylinder

This application is a CFD simulation of an unsteady 3D flow past a tapered
cylinder, as described in [Jespersen & Levit, 1991]. The geometry of the ta-
pered cylinder (see Figure 8.22) results in interesting 3D flow phenomena in the
wake of the cylinder. Behind the cylinder unsteady vortex shedding becomes
apparent. The vortices break away alternating from the left and right side of
the cylinder, and have an alternating clockwise and counterclockwise rotational
direction. The vortex shedding frequency f depends, among other things, on
the diameter of the cylinder d which is a function of the z-coordinate.

i e

inflow
j

P

Figure 8.22: A sketch of the geometry of the tapered cylinder (taper is greatly
exaggerated), taper ratio = (dg — dq)/H.

We obtained the time-dependent data* of a flow past a tapered cylinder
with a taper ratio of 0.01. The data is defined on a structured, cylindrical grid
with 64 x 64 x 32 nodes, each of which contains density d, x, y, z-momentum
(xm,ym,zm), and stagnation st. The complete data set has thousands of time-
steps from which we used 400, from ¢ = 12000 to { = 16000 with an increment
of 10. Each time-step is stored in a file that is 2.6 Mb large, ergo the size of the
total data set we obtained is over 1.0 Gb.

Figure 8.23 shows a close-up visualization of the flow in the wake of the cylin-
der. The figure uses standard visualization techniques, like streamlines and col-
ored slices, as well as feature extraction techniques; the ellipsoid icons indicate
regions with high enthalpy (discussed later). The streamlines and colored slice
give a nice impression of flow phenomena, however they are limited. First of all,
they are two dimensional while the flow is three dimensional. Second, they do

*Data courtesy NASA-Ames Research Center:
http://www.nas.nasa.gov/Research/Datasets/datasets.html.

155

Chapter 8. Applications

not give a quantification of phenomena. Third, the creation of this visualization
is slow; it takes several minutes, so interactive exploration is not feasible.

Figure 8.23: Visualization of the flow past a tapered cylinder. It shows stream-
lines, the colors indicate the value of enthalpy, and regions with high enthalpy
are indicated by ellipsoid icons.

8.4.1 Tracking

First, we track regions with high enthalpy. The enthalpy % can be calculated
from the available data values d, xm, ym, zm, and st by the following equations:

- L
h = Pl (8.5)
with
p = (r=1) (st - % (xm2 +ym® + zmz)) (8.6)

where p is the pressure and 7 is the constant Gamma which is by default set to
7 = 1.4. Enthalpy can be interpreted as a ‘potential for heat”. High values for

156

8.4. Flow Past a Tapered Cylinder

enthalpy indicate that there is a local exchange of heat or energy. It is known
that turbulent regions in a flow have a high exchange of energy, so regions with
high enthalpy may indicate turbulence.

The regions with high enthalpy are selected by the selection expression:
h > —0.6997. An ellipsoidal fit is calculated for each region and the attributes
are stored in a feature data file with a total size of 476 Kb. This illustrates the
data reduction that can be obtained by the extraction of features: from > 1.0 Gb
to 476 Kb. While it is unfeasible to explore all the data by standard visual-
ization, now the user can easily browse through the frames, and explore the
time-dependent features in search of temporal phenomena.

An artifact is immediately visible when viewing the event graph: there are de-
fects in the frames. Figure 8.24 shows part of the event graph. Clearly something
is wrong in frame 34; only one feature is found in this frame. When we examine
the original flow data of the corresponding frame, it becomes clear that some-
thing is wrong with the stagnation data values. We do not know exactly what
went wrong with the numerical calculations, but the selection criterion results in
one big feature that occupies the entire space. After further examination of the
event graph, we find defects in the data at four different frames. We removed
these frames from the feature data because they disturb the tracking process.

127 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Figure 8.24: Clearly, frame 34 shows a defect in the data.

The remaining 396 frames were tracked automatically with increasing toler-
ances. We find a total of 4121 features (i.e. an average of 10.4 features per frame)
that are highly interacting features in the wake of the cylinder. Figure 8.25 shows
frame 300 in the feature viewer>.

5 An animation can be found on the CD enclosed with this thesis or via the web:
http://wuw.cg.its.tudelft.nl/SciVis/Tracking.

157

Chapter 8. Applications

count
solved 91.3%
frames 396
features 4121
unmatched 201
paths 219
continuations | 3571
births 101
deaths 64
splits 28
merges 36
unresolved 718

Table 8.6: Statistics of the enthalpy-features in the flow past a tapered cylinder.

Figure 8.25: The features in frame 300 of the flow past a tapered cylinder.

This application shows that feature tracking and event detection is still inter-
active even for a relatively large number of frames. The user can easily experi-
ment with the tracking parameters in order to tune the tolerances and weights
of the correspondence functions for this specific application.

8.4.2 Vortex detection

This data set of a flow past a tapered cylinder was also used as a case study
for the winding angle vortex detection method, which was briefly described in

158

8.4. Flow Past a Tapered Cylinder

Section 2.3.2. The winding angle of streamlines can be used to extract and detect
vortex geometry in a 2D plane [Sadarjoen & Post, 1999; Sadarjoen & Post, 2000].

Figure 8.26 shows an example of the result obtained by this method. Stream-
lines are generated in a plane perpendicular to the axis of the tapered cylinder.
In the wake of the cylinder a number of streamlines describe a circular path;
their winding angle satisfies the selection criteria. Two clusters of streamlines
are identified and for each cluster a number of attributes is calculated. The at-
tributes are the 2D ellipse fitting parameters (position, two axes lengths, and an
angle for orientation), and the rotational speed and direction. These attributes
can be stored as an attribute set in our feature data representation. Finally, the
attributes are mapped onto a 2D ellipse icon indicating the position and size of
the vortices.

Figure 8.26: Flow past a tapered cylinder, with streamlines, vortices determined
by the winding angle method, and a slice colored with A,. (Image courtesy Ari
Sadarjoen.)

The winding angle method is essentially a two dimensional method; the
winding angle can only be determined in a plane which should be chosen ap-
proximately perpendicular to the vortex core. [Sadarjoen & Post, 2000] showed
that the vortices in slices perpendicular to the cylinder evolve consistently in
time and therefore can be tracked. It is fairly easy to automatically track the 2D
winding angle vortices in one slice over time with our tracking algorithm®. The
result is that, in this slice, vortices appear alternating on the left and right side of
the cylinder, and have alternating a clockwise and counterclockwise rotational
direction. This is exactly in accordance with our expectations.

6 An animation with 400 frames can be on the CD enclosed with this thesis, or via:
http://www.cg.its.tudelft.nl/SciVis/Tracking.

159

Chapter 8. Applications

However, our tracking algorithm can do more: it can be used to transform the
2D vortices to 3D vortices by tracking in the z-direction (parallel with the cylin-
der, see Figure 8.27). For one time step we can determine the 2D vortices at a
number of slices with a different z-coordinate. The tracking algorithm can then
be used to determine correspondences between vortices in the different slices.
Once we have established these correspondences, we have obtained 3D vortices
at one particular instance of time.

Figure 8.27: Tracking 2D winding angle vortices in space (z-direction) in order
to obtain 3D vortices at one instance of time.

160

8.4. Flow Past a Tapered Cylinder

We generated streamlines in 31 slices with an increasing z-coordinate value
from the bottom to the top of the cylinder (with 150 streamlines per slice). For
each slice we extracted the 2D vortices with the winding angle method and
stored the attributes as a frame in our feature data hierarchy. Thus, we ob-
tained feature data with 31 frames with 2D vortex features, where each frame
corresponds to a slice at the next z-level. This feature data can be tracked auto-
matically by our tracking method.

Figure 8.27 shows one step during the feature tracking in space. Figure 8.27a
shows the 2D vortices at different slices in the feature viewer. The vortex at-
tributes are mapped onto icons with an ellipse shape, where the number of
spokes indicate the rotational speed and the curve of the spokes indicates the
rotational direction (the current vortex rotates clockwise). The figure shows one
path of 2D vortices, the prediction at the end of the path, and two candidates
in the next frame (slice). This is also shown in the event graph in Figure 8.27b,
which also shows that at most two vortices are found per 2D slice, while in 3D
space approximately 6 vortices exist at one instance.

The tracking in the z-direction results in a number of paths, each of which
represents a vortex feature in 3D. Each path in the event graph is transformed to
an attribute set with a graph representation of the 3D vortices: the vortex graph.
This vortex graph is similar to the skeleton graph attribute set; it consists of
nodes connected by edges. However, in this case the nodes hold 2D vortex data
instead of skeleton node data. The vortex graph can be visualized by connecting
the center point positions of the 2D vortices by lines according to the graph
edges, see Figure 8.28. This line illustrates the approximate vortex core and
the ellipse shaped icons show the vortex geometry. Thus, the 2D vortices are
transformed to 3D vortex features by tracking in space.

The 3D vortices resulting from the tracking in space are features at one instance
of time which in turn can be tracked in time. We repeated the process described
above for 100 frames (generating a total of 100 x 31 x 150 = 465.000 stream-
lines) and tracked the 3D vortex graphs in time. The correspondence functions
associated to the vortex graph are similar to the correspondence functions of the
skeleton graph (see Section 6.2.1). They are based on aggregate attributes such
as the position of the center of gravity, the total volume, and the average rota-
tional speed. Also, the graph topology can be taken into account, but we did not
find any branches or loops in the vortex graphs.

The result of tracking the 3D vortices in time is remarkable: the vortices
move from the top to the bottom”. They originate at the top of the cylinder and
slowly move downward until they dissipate at the bottom. This is remarkable
because the streamlines all show an upward motion which can expected because
the size of the tapered cylinder is smallest at the top. Another remarkable phe-

7 An animation is available on the CD-ROM enclosed with this thesis, or via:
http://www.cg.its.tudelft.nl/SciVis/Tracking.

161

Chapter 8. Applications

Figure 8.28: The 3D vortex graph obtained by tracking 2D vortices in space,
figure is shown in color on the backside of the cover.

nomenon in the evolution is that the vortices seem to become ‘weak’ somewhere
in the middle of the cylinder. The vortices become short (spanning less slices)
and tend to show strange curves. The third vortex from the top in Figure 8.28
seems to be in this state.

The application of the flow past a tapered cylinder shows that tracking can be
performed both in time and in space. Thus, we can transform 2D features to
3D features to (4D) events. Also, the application shows that tracking helps in
finding artifacts such as defective frames.

162

Chapter 9

Conclusions and Future Work

9.1 Conclusions

This thesis covers two major directions of research in feature-based visualiza-
tion: the quantification of features and the analysis of feature evolution in time-
dependent data.

With respect to feature quantification, this thesis presents a new representa-
tion for feature data, an analysis of the accuracy of attribute calculation methods,
and a method for the calculation of skeleton shape attributes.

With respect to the analysis of feature evolution, this thesis discusses the
tracking of features in time, the detection of events in the evolution of the fea-
tures, and the visualization of time-dependent phenomena.

9.1.1 Feature quantification

Chapter 3 provides a concept for a feature data representation. This representa-
tion allows the storage, manipulation, and visualization of features. A library of
C** -classes was developed that implements this concept. The transformation
from a grid data representation to a feature data representation means a huge
data reduction, as was illustrated by the applications of the turbulent vortex
structures, Section 8.3, and the tapered cylinder, Section 8.4. This data reduction
allows the interactive visualization and exploration of large data sets.

The class hierarchy is highly flexible; it allows all the operations on features
that we need for the remainder of the research, and new classes of attributes
are easily implemented. This is illustrated by the application described in Sec-
tion 8.4.2 concerning the tracking of vortices. We needed to implement only two
new classes for an attribute set representation: the 2D winding angle vortex at-
tribute set and the 3D vortex graph attribute set. With these two representations
we could track the 2D vortices in the z-direction, and the 3D vortices in time.
The tracking process itself needed no alterations.

Chapter 4 describes an experimental approach for the analysis of the accuracy
of attribute calculation methods. The accuracy of two calculation methods was
investigated: the volume integrals, and the ellipsoid fitting method. Both turned
out to be very accurate and stable with respect to noise.

163

Chapter 9. Conclusions and Future Work

While performing the experiments it became clear that much can be learned
about the behavior of the feature extraction method. Therefore, we consider this
type of experiments extremely important for the exploration and validation of
visualization techniques, and we recommend to do similar studies with any new
visualization method. A number of guidelines could be given for the feature
extraction process that we use.

Chapter 5 presents a method for the calculation of attributes that describe the
shape of a feature by means of skeletons. The skeleton attribute set provides a
better description of shape compared to the crude ellipsoid fittings. The preci-
sion of the skeleton shape description can be controlled by two parameters: the
curve threshold Tcurre and the profile threshold T, ¢. Naturally, a more precise
description leads to less data reduction, but still the data reduction is significant.

The skeleton attribute set is used to create a shape reconstruction of the orig-
inal shape. The skeleton attributes proved to be a reasonable quantification for
the ‘worms’ that were found in the application of the turbulent vortex struc-
tures in Section 8.3.1. The application also showed that flat-shaped features are
described less accurately. The reason is that the DT provides a minimal distance
to the surface. In these cases, other descriptions for the cross-section may be
useful. Nevertheless, the skeletons can be used for a reconstruction of the shape
for tube-like features that have a circular cross-section.

The skeleton attributes proved to be useful in the process of event detection
because they provide a topological description. New types of events are possi-
ble: the topological events. We can detect the occurrences of loops and changes
in the number of junctions. Additionally, the skeletons provide a better detec-
tion of split/merge events. The neighborhood criterion can be determined more
accurately, so that the tolerances in the correspondence tests can remain strict
which results in less false-positives.

9.1.2 Feature evolution analysis

The extraction and quantification of features allows us to analyze the evolution
of the features in time-dependent data. Features can be extracted and character-
ized in each frame, and the resulting attributes can be represented by our feature
data representation. Using this representation we can track features in time and
investigate their evolution.

Chapter 6 illustrates the tracking of features in time. Features are tracked based
on a prediction-verification scheme which leads to smoothly evolving, contin-
uous paths. The correspondences between features is obtained by attribute-
correspondence, additional (grid) information is unnecessary. This is a huge
advantage; the use of the feature data representation makes it possible to inter-
actively explore the time-dependent phenomena, which is virtually impossible
when grid data is used.

164

9.1. Conclusions

The user can interactively change tracking parameters, such as the tolerances
and weights of the correspondence functions, and investigate the effects on the
tracking results. It is feasible to perform the tracking in multiple (forward-and-
backward) passes because the feature data representation is small in size. Ex-
perience shows that the best tracking results are obtained when we linearly in-
crease the tolerances in a number of successive iterations. The tracking process
will first find the obvious paths, and then the more indistinct paths.

The result of the feature tracking step is a number of continuous paths, where
each path represents the motion and evolution of one object. Each feature in the
path represents the instantaneous characteristics of that object. The evolution
of the object’s attributes can be visualized by displaying the sequence of feature
attributes in the path.

Chapter 7 shows the automatic detection of significant events in the evolu-
tion of objects. Currently, the following events can be detected: continuation,
birth/death, entry/exit, split/ merge, and topological loop /junction events. Dif-
ferent types of events may be added in the future.

Event detection raises the level of abstraction to a yet higher level because
it focuses on the important stages in the evolution of features. Uninteresting
frames where no events occur may be skipped, or the user can jump to a frame
where a particular event occurs and investigate the participating features in
close detail. Thus, it is possible to create a compilation of the complete time
series with only interesting episodes. This is similar to the summary of a soccer
match with just the goals and other highlights of the match.

The applications show that we are able to explain over 90% of every possible
connection in the event graph. Of course this result depends on the tolerances
that were chosen; it is possible to solve the graph for 100% by increasing the
tolerances to infinity. However, this will result in many false-positives which are
undesirable. Therefore, it is essential to check the tracking results if they make
sense. We did that for every application by careful visual inspection, as there are
no objective criteria to verify the tracking results (except for the synthetic data
sets).

Sections 6.5 and 7.7 describe the visualization of feature evolutions by means of
a linked combination of two viewers: the feature viewer and the graph viewer.
The feature viewer shows the features in 3D space, and the graph viewer shows
the event graph.

The linked combination of the two viewers is a powerful tool for the explo-
ration of time-dependent data. The two visualizations can be used during the
tracking process in order to show intermediate results. Also, the two viewers
are used for visual playback of the complete time series, selected paths, and se-
lected time segments. Furthermore, event querying is possible: highlight only a
particular type of event. Thus, we can analyze the results of the feature tracking
and the event detection process.

165

Chapter 9. Conclusions and Future Work

The use of feature tracking, event detection, and visualization is a powerful tool
for the analysis of feature evolution in time-dependent data. We believe that
feature-based visualization is the only practical way to visually analyze large
data sets, such as time-dependent data sets.

9.2 Future Work

Of course, future work includes the extension of currently available techniques.
The work may be focused on the extraction and representation of new types
of features, and the calculation of different types of attribute sets. The feature
tracking procedure can be refined, or the detection of new types of events may
be included. A discussion of such future work has been given in each corre-
sponding chapter as future prospects. Here, we will indicate some more general
long-term research topics.

9.2.1 Adaptive temporal refinement

Adaptive temporal refinement would be an important addition to the current
feature tracking and event detection process. The sampling of the frames does
not necessarily have to be equidistant in time. The tracking process already
supports this because the prediction-verification scheme is independent of the
time between frames, as the extrapolation already has a variable time base.

The time between frames may be varied in accordance with the variance of
the data in time. Turbulent periods require a denser sampling in time, while
periods with less turbulence can be simulated with a sparse sampling. This is
similar to local (spatial) refinement of the grid. Currently, time-dependent nu-
merical simulations often calculate many time steps in order to obtain a certain
accuracy, only small part of the calculated frames is saved. Often, 90% of the
data sets is discarded because they consume too much disk space, and they are
not necessary for the analysis of evolutionary phenomena.

With feature tracking, it is possible to automatically recognize the episodes
in the time series where interesting phenomena occur. It should be possible to
restart the simulation from a key-frame at the beginning of such an episode,
and to calculate new time steps with a denser sampling in time, and save more
frames for analysis. Thus, we can focus on a small time-interval, and investigate
the evolving phenomena in more detail. It is even possible to focus on the evo-
lution of one feature in a small range in space, in a small period in time, i.e. to
focus both in space and in time.

9.2.2 Distributed computing

Distributed computing is also an important addition to the current system. Cur-
rently, the numerical simulations are performed on super-computers, and the

166

9.2. Future Work

resulting grid data is transported to the visualization workstation where the
steps of feature extraction, feature tracking, event detection, and visualization
are performed.

The process can be distributed in a better way, so that computationally in-
tensive steps are performed on the super computer. It should be possible to
perform the first part of simulation, feature extraction, and feature quantifica-
tion on the super computer, and then transport the feature data representation
to the visualization workstation where the features can be visualized and inves-
tigated.

A practical problem that needs to be solved is the implementation of stand-
alone routines for the feature extraction procedures. Currently, these procedures
are implemented in the AVS visualization software package. Effort should be
put in creating a stand-alone implementation of these procedures.

9.2.3 Computational steering

Once we have improved the distribution, it should be possible to perform com-
putational steering. The user is able to change model parameters, perform the
simulation and feature extraction steps remotely on a super computer, and an-
alyze the resulting feature data on the local workstation. Model parameters
include the parameters of the numerical simulation, and the feature extraction
parameters. These parameters can be changed on the super computer, while the
tracking parameters can be changed interactively on the visualization worksta-
tion.

Future work should focus on the relations between simulation parameters,
feature extraction parameters, and feature visualization. Visualizations need
to be shown while running the simulation on the background. Based on the
visualizations the user may decide to change parameters and start-up new sim-
ulations. It is necessary to know our way back from the visualization to the
input parameters of the simulation, and to the feature extraction parameters.
This process of investigation can be controlled using a computational steering
environment [Mulder et al., 1999].

Although the research described in this thesis provides new tools and insights

in the feature-based visualization of large data sets, there still remain many chal-
lenging ideas and visions for future research.

167

Bibliography

Adams, R., & Bischof, L. 1994. Seeded Region Growing. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 16(6), 641-646.

Adiv, G. 1985. Determining 3D Motion and Structure from Optical Flows Gener-
ated by several Moving Objects. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 7, 384—401.

Arcelli, C., & Sanniti di Baja, G. 1985. A Width-Independent Fast Thinning Algo-
rithm. IEEE Trans. on Pattern Analysis and Machine Intelligence, 7(4), 463-474.

Arcelli, C., & Sanniti di Baja, G. 1989. A One-Pass Two-Operation Process to De-
tect the Skeletal Pixels on the 4-Distance Transform. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 11(4), 411-414.

Arnaud, Y., Debois, M., & Maizi, J. 1992. Automatic Tracking and Characteriza-
tion of African Convective Systems on Meteosat Pictures. J. of Appl. Meteo-
rology, 31(May), 443-453.

Atkins, M.S., & Mackiewich, B.T. 1998. Fully Automatic Segmentation of the
Brain in MRI. IEEE Trans. Medical Imaging, 17(1), 98-107.

Ballard, D.H., & Brown, C.M. 1982. Computer Vision. Prentice-Hall.

Banks, D.C., & Singer, B.A. 1995. A Predictor-Corrector Technique for Visualiz-
ing Unsteady Flow. IEEE Trans. on Visualization and Computer Graphics, 1(2),
151-163.

Bartz, D., Straier, W., Skalej, M., & Welte, D. 1999. Interactive Exploration of
Extra- and Intracranial Blood Vessels. Pages 398-392 of: Ebert, D., Gross,
M., & Hamann, B. (eds), Proc. IEEE Visualization '99.

Batra, RK., & Hesselink, L. 1999 (oct). Feature Comparisons of 3D Vector Fields
using Earth Mover’s Distance. Pages 105-111 of: Ebert, D., Gross, M., &
Hamann, B. (eds), Proc. IEEE Visualization '99.

169

Bibliography

Becker, J., & Rumpf, M. 1998. Visualization of Time-Dependent Velocity Fields
by Texture Transport. Pages 91-101 of: Bartz, D. (ed), Visualization in Scien-
tific Computing '98. Springer Verlag.

Bezdek, J.C., Hall, L.O., & Clark, L.P. 1993. Review of MR Segmentation Images
using Pattern Recognition. Medical Physics, 20(4), 1033-1048.

Blum, H. 1967. A Transformation for Extracting new Descriptors of Shape. In:
Wathen-Dunn, W. (ed), Models for the Perception of Speech and Visual Form.
MIT Press.

Borgefors, G. 1984. Distance Transformations in Arbitrary Dimensions. Com-
puter Vision, Graphics, and Image Processing, 27(3), 321-345.

Boykov, Y., & Jolly, M-P. 2000. Interactive Organ Segmentation using Graph
Cuts. Pages 276285 of: Delp, S.L., DiGioia, A.M., & Jaramaz, B. (eds), Medi-
cal Image Computing and Computer-Assisted Intervention - Proc. MICCAI 2000.
Lecture Notes in Computer Science. Pittsburgh, PA, USA: Springer.

de Bruin, PW., Vos, EM., Vossepoel, A.M., Post, EH., de Blok, S.B., & Aarden,
AWJM. 1999. Supporting Hysteroscopic Surgery by 3D Imaging, Mod-
elling and Visualization. Pages 150-157 of: Boasson, M., Kaandorp, J.A.,
Tonino, J.LEM., & Vosselman, M.G. (eds), Proc. ASCI '99. Advanced School
for Computing and Imaging.

Castleman, K.R. 1996. Digital Immage Processing. Prentice-Hall.

Cignoni, P.,, Montani, C., & Scopigno, R. 1998. A Comparison of Mesh Simplifi-
cation Algorithms. Computers & Graphics, 22.

Cohen, L. 1991. On Active Contour Models and Balloons. Computer Vision,
Graphics, and Image Processing: Image Understanding, 53(2), 211-218.

Danielsson, P. E. 1980. Euclidean Distance Mapping. Computer Graphics and
Image Processing, 14, 227-248.

Delmarcelle, T., & Hesselink, L. 1992. Visualization of Second Order Tensor
Fields and Matrix Data. Pages 316-323 of: Kaufman, A. E., & Nielson, G.M.
{(eds), Proc. IEEE Visualization '92.

Frank, K., & Lang, U. 1998. Data-Dependent Surface Simplification. Pages 3-12
of: Bartz, D. (ed), Visualization in Scientific Computing '98. Springer Verlag.

Fung, Y.C. 1965. Foundations of Solid Mechanics. Englewood Cliffs: Prentice Hall.

Gagvani, N., Kenchammana-Hosekote, D., & Silver, D. 1998. Volume Animation
using the Skeleton Tree. Pages 47-53 of: Lorensen, W., & Yagel, R. (eds), Proc.
IEEE Symp. on Volume Visualization.

170

Bibliography

Gibson, S. 1998. Constrained Elastic Surfacenets: Generating Smooth Surfaces
from Binary Sampled Data. Pages 888-898 of: Medical Image Computing and
Computer-Assisted Intervention - Proc. MICCAI '98.

Globus, A., Levit, C., & Lasinski, T. 1991. A Tool for Visualizing the Topology of
Three-Dimensional Vector Fields. Pages 33—40 of: Nielson, G.M., & Rosen-
blum, L. (eds), Proc. IEEE Visualization "91.

in den Haak, M.D., Spoelder, HJ.W., & Groen, EC.A. 1992. Matching of Images
by Using Automatically Selected regions of Interest. Pages 2740 of: Dietz,
J.L.G. (ed), Proc. CSN "92.

Haber, R. B., & McNabb, D. A. 1990. Visualization Idioms: A Conceptual Model
for Scientific Visualization Systems. Pages 75-93 of: Nielson, G. M., Shriver,
B. D., & Rosenblum, L. (eds), Visualization in Scientific Computing. 1EEE
Computer Society Press.

Haimes, R., & Kenwright, D. 1999. On the Velocity Gradient Tensor and Fluid
Feature Extraction. In: Proc. of the 14th AIAA Computational Fluid Dynam-
ics Conference. American Institute of Aeronautics and Astronautics. AIAA
paper 99-3291.

Helman,].L., & Hesselink, L. 1989. Representation and Display of Vector Field
Topology in Fluid Flow Data Sets. IEEE Computer, 22(8), 27-36.

Helman, J.L., & Hesselink, L. 1990. Surface Representations of Two- and Three-
Dimensional Separated Flows. Pages 6-13 of: Proc. IEEE Visualization "90.

Helman, J.L., & Hesselink, L. 1991. Visualization of Vector Field Topology in
Fluid Flows. IEEE Computer Graphics and Applications, 11(3), 36—46.

Henze, C. 1998. Feature Detection in Linked Derived Spaces. Pages 87-94 of:
Ebert, D., Hagen, H., & Rushmeier, H. (eds), Proc. IEEE Visualization '98.

Hildreth, E.C. 1984. Computations Underlying the Measurement of Visual Mo-
tion. Artificial Intelligence, 309-354.

Hovenier,].W. 1970. Principles of Symmetry for Polarization Studies of Planets.
Astron. & Astrophys., 7(1), 86-91.

Jespersen, D.C., & Levit, C. 1991 (January). Numerical Simulation of Flow Past a
Tapered Cylinder. Tech. rept. AIAA 91-0751. NASA Ames Research Center,
Reno, NV. 29th AIAA Aerospace Sciences Meeting and Exhibit.

Jonker, P. P, & Vossepoel, A. M. 1995. On Skeletonization Algorithms for 2, 3,..
N Dimensional Images. Pages 71-80 of. Dori, D., & Bruckstein, A. (eds),
Proc. Shape, Structure and Pattern Recognition '94. Nahariya, Israel: World
Scientific Singapore.

171

Bibliography

Kalivas, D.S., & Sawchuk, A.A. 1991. A Region Matching Motion Estimation
Algorithm. Computer Vision, Graphics, and Image Processing: Image Under-
standing, 54(2), 275-288.

Kass, M., Witkin, A., & Terzopoulos, D. 1988. Snakes: Active Contour Models.
Int. J. of Computer Vision, 1(4), 321-331.

Kenwright, D.N. 1998. Automatic Detection of Open and Closed Separation and
Attachment Lines. Pages 151-158 of: Ebert, D., Hagen, H., & Rushmeier, H.
(eds), Proc. IEEE Visualization '98.

Kenwright, D.N. 1999. Automatic Flow Feature Detection Techniques for Tera-
Scale Data Analysis. In: Banks, D.C., Kenwright, D.N., Post, EH., & Silver,
D. (eds), IEEE Visualization ‘99, Tutorial 6, Feature Extraction and Visualization
of Time-Dependent Flow Fields.

Kenwright, D.N., & Haimes, R. 1997. Vortex Identification - Applications in
Aerodynamics: A Case Study. Pages 413-416 of: Yagel, R., & Hagen, H.
(eds), Proc. IEEE Visualization '97.

Klein, R., Liebich, G., & Straier, W. 1996. Mesh Reduction with Error Control.
Pages 311-318 of: Yagel, R. (ed), Proc. IEEE Visualization ’96.

Lavin, Y., Levi, Y., & Hesselink, L. 1997. Singularities in Nonuniform Tensor
Fields. Pages 59-66 of: Yagel, R., & Hagen, H. (eds), Proc. IEEE Visualiza-
tion *97.

Lavin, Y., Batra, R., & Hesselink, L. 1998. Feature Comparison of Vector Fields
using the Earth Mover’s Distance. Pages 103-110 of: Ebert, D., Hagen, H., &
Rushmeier, H. (eds), Proc. IEEE Visualization '98.

Lee, T. C., Kashyap, R. L., & Chu, C. N. 1994. Building Skeleton Models via 3-D
Medial Surface/Axis Thinning Algorithms. Computer Vision, Graphics, and
Image Processing: Graphical Models and Image Processing, 56(6), 462—478.

de Leeuw, W.C., & van Liere, R. 1999. Collapsing Flow Topology using Area
Metrics. Pages 349-354 of: Ebert, D., Gross, M., & Hamann, B. (eds), Proc.
IEEE Visualization '99.

Lelieveldt, B.PF. 1999. Anatomical Models in Cardiovascular Image Analysis. Ph.D.
thesis, Universiteit Leiden.

Leymarie, F, & Levine, M. D. 1992a. Simulating the Grassfire Transform us-
ing an Active Contour Model. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 14(1), 56-75.

Leymarie, F, & Levine, M. D. 1992b. Tracking Deformable Objects in the Plane
Using an Active Contour Model. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 15(6), 617-634.

172

Bibliography

Lobregt, S., Verbeek, P. W., & Groen, F. C. A. 1980. Three-Dimensional Skele-
tonization: Principle and Algorithm. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 2(1), 75-77.

Lorensen, W.E., & Cline, H.E. 1987. Marching Cubes: a high resolution 3D sur-
face construction algorithm. Computer Graphics, 21(4), 163-169.

Lovely, D., & Haimes, R. 1999. Shock Detection from Computational Fluid Dy-
namics Results. In: Proc. of the 14th AIAA Computational Fluid Dynamics Con-
ference. American Institute of Aeronautics and Astronautics. AIAA paper
99-3285. :

Ma, K-L., van Rosendale, |., & Vermeer, W. 1996. 3D Shock Wave Visualization
on Unstructured Grids. Pages 8§7-94 of: Yagel, R., & Nielson, G.M. (eds),
Proc. IEEE Symp. on Volume Visualization '96.

McInerney, T., & Terzopoulos, D. 1996. Deformable Models in Medical Image
Analysis: a survey. Medical Image Analysis, 1(2), 91-108.

Mulder, J.D., van Wijk,].J., & van Liere, R. 1999. A Survey of Computational
Steering Environments. Future Generation Computer Systems, 15(1), 119-129.

Nakajima, S., Atsumi, H., Bhalerao, A., Jolesz, F., Kikinis, R., Yoshimine, T., Mo-
riarty, T., & Stieg, P. 1997. Computer-assisted Surgical Planning for Cere-
brovascular Neurosurgery. Neurosurgery, 41, 403-409.

Ogniewicz, R. L., & Kiibler, O. 1995. Hierarchic Voronoi Skeletons. Pattern Recog-
nition, 28(3), 343-359.

Pagendarm, H.G., & Seitz, B. 1993. An Algorithm for Detection and Visualiza-
tion of Discontinuities in Scientific Data Fields Applied to Flow Data with
Shock Waves. Pages 161-177 of: Palamidese, P. (ed), Scientific Visualization:
Advanced Software Techniques. Ellis Horwood Limited.

Pagendarm, H.G., & Walter, B. 1994. Feature Detection from Vector Quantities
in a Numerically Simulated Hypersonic Flow Field in Combination with
Experimental Flow Visualization. Pages 117-123 of: Bergeron, R.D., & Kauf-
man, A.E. (eds), Proc. IEEE Visualization '94.

Peikert, R., & Roth, M. 1999. The ‘Parallel Vectors’ Operator - A Vector Field
Visualization Primitive. Pages 263-270 of: Ebert, D., Gross, M., & Hamann,
B. (eds), Proc. IEEE Visualization '99.

Portela, L.M. 1997. On the Identification and Classification of Vortices. Ph.D. thesis,
Stanford University, School of Mechanical Engineering.

Post, FH., de Leeuw, W.C., Sadarjoen, I.A., Reinders, F., & van Walsum, T. 1999.
Global, Geometric, and Feature-Based Techniques for Vector Field Visual-
ization. Future Generation Computer Systems, 15(1), 87-98.

173

Bibliography

Press, W.H., Teukolsky, S.A., Vetterling, W.T., & Flannery, B.P. 1992. Numerical
Recipes in C: The Art of Scientific Computing. Second edn. Cambridge Univer-
sity Press.

Puig, A., Tost, D., & Navazo, I. 2000. Hybrid Model for Vascular tree Structures.
Pages 125-135 of: de Leeuw, W., & van Liere, R. (eds), Data Visualization
2000. Springer Verlag.

Reinders, F,, Post, FH., & Spoelder, H.].W. 1997. Feature Extraction from Pioneer
Venus OCPP Data. Pages 85-94 of: Lefer, W., & Grave, M. (eds), Visualization
in Scientific Computing '97. Springer Verlag.

Reinders, E, Spoelder, H.].W., & Post, FH. 1998. Experiments on the Accuracy
of Feature Extraction. Pages 49-58 of: Bartz, D. (ed), Visualization in Scientific
Computing '98. Springer Verlag.

Reinders, F., Post, EH., & Spoelder, H.J.W. 1999a. Attribute-Based Feature Track-
ing. Pages 63-72 of: Groller, E., Loffelmann, H., & Ribarsky, W. (eds), Data
Visualization '99. Springer Verlag.

Reinders, F, Post, EH., & Spoelder, HJ.W. 1999b. Visualization of Time-
Dependent Data using Feature Tracking. Pages 150-157 of: Boasson, M.,
Kaandorp, J.A., Tonino, J.EM., & Vosselman, M.G. (eds), Proc. ASCI '99.
Advanced School for Computing and Imaging.

Reinders, E, Jacobson, M.E.D., & Post, EH. 2000. Skeleton Graph Generation for
Feature Shape Description. Pages 73-82 of: de Leeuw, W., & van Liere, R.
(eds), Data Visualization 2000. Springer Verlag.

Reinders, F, Post, FH., & Spoelder, HJ.W. 2001. Visualization of Time-
Dependent Data using Feature Tracking and Event Detection. The Visual
Computer. Accepted for publication.

Robinson, S.K. 1991. The Kinematics of Turbulent Boundary Layer Structure. NASA
Ames Research Center. NASA Technical Memorandum, no. 103859. Chap.
9: Vortices and their identification, pages 199-213.

Rossow, W.B., Genio, A.D. Del, Limaye, S.S., Travis, L.D., & Stone, P.H. 1980.
Cloud Morphology and Motions from Pioneer Venus Images. J. of Geophys.
Res., 85(13), 8107-8128.

Rossow, W.B., Genio, A.D. Del, & Eichler, T. 1990. Cloud-Tracked Winds from
Pioneer Venus OCPP Images.]. of Atmos. Sci., 47(17), 2053-2082.

Roth, M., & Peikert, R. 1996. Flow Visualization for Turbomachinery Design.
Pages 381-384 of: Yagel, R., & Nielson, G.M. (eds), Proc. IEEE Visualiza-
tion '96.

174

Bibliography

Sadarjoen, LA., & Post, EH. 1999. Geometric Methods for Vortex Extraction.
Pages 53-62 of: Groller, E., Loffelmann, H., & Ribarsky, W. (eds), Data Visu-
alization '99. Springer Verlag.

Sadarjoen, L.A., & Post, FH. 2000. Detection, Quantification, and Tracking of
Vorties using Streamline Geometry. Computers & Graphics, 24, 333-341.

Salari, V., & Sethi, LK. 1990. Feature Point Correspondence in the Presence of
Occlusion. IEEE Trans. on Pattern Analysis and Machine Intelligence, 12(1),
87-91.

: Samtaney, R., Silver, D., Zabusky, N., & Cao, J. 1993 (Aug.). Feature Tracking and
! Visualization. CAIP Technical Report TR-17S. Rudgers University.

l Samtaney, R,, Silver, D., Zabusky, N., & Cao, J. 1994. Visualizing Features and
Tracking Their Evolution. IEEE Computer, 27(7), 20-27.

Scheuermann, G., Hagen, H., Kruger, H., Menzel, M., & Rockwood, A. 1997.
Visualization of Higher Order Singularities in Vector Fields. Pages 67-74 of:
Yagel, R., & Hagen, H. (eds), Proc. IEEE Visualization '97.

Schroeder, WJ., Zarge, J.A., & Lorensen, WE. 1992 (July). Decimation of Tri-
angle Meshes. Pages 65-70 of: Catmull, E.E. (ed), Computer Graphics (Proc.
SIGGRAPH '92), vol. 26.

Sethi, LK., & Jain, R. 1987. Finding Trajectories of Feature Points in a Monocular
Image Sequence. IEEE Trans. on Pattern Analysis and Machine Intelligence,
9(1), 56-73.

Sethi, LK., Patel, N.V., & Yoo, J.H. 1994. A General Approach for Token Corre-
spondence. Pattern Recognition, 27(12), 1775~1786.

Silver, D., & Wang, X. 1996. Volume Tracking. Pages 157-164 of: Yagel, R., &
Nielson, G.M. (eds), Proc. IEEE Visualization '96.

Silver, D., & Wang, X. 1997. Tracking and Visualizing Turbulent 3D Features.
IEEE Trans. on Visualization and Computer Graphics, 3(2).

Silver, D., & Wang, X. 1998. Tracking Scalar Features in Unstructured DataSets.
Pages 79-86 of: Ebert, D., Hagen, H., & Rushmeier, H. (eds), Proc. IEEE Vi-
sualization '98.

Silver, D., & Wang, X. 1999. Visualizing Evolving Scalar Phenomena. Future
Generation Computer Systems, 15(1), 99-108.

Silver, D., & Zabusky, N.J. 1993. Quantifying Visualizations for Reduced Mod-
eling in Nonlinear Science: Extracting Structures from Data Sets. J. of Visual
Communication and Image Presentation, 4(1), 46-61.

175

Bibliography

Silver, D., Zabusky, N/J., Fernandez, V., Gao, M., & Samtaney, R. 1991. El-
lipsoidal Quantification of Evolving Phenomena. Pages 573-588 of: Pa-
trikalakis, N.M. (ed), Scientific Visualization of Natural Phenomena. Springer
Verlag.

Smith, M.D., & Gierasch, PJ. 1996. Global-scale Winds at the Venus Cloud-top
Inferred from Cloud Streak Orientation. Icarus, 123, 313-323.

Sujudi, D., & Haimes, R. 1995. Identification of Swirling Flow in 3-D Vector Fields.
Tech. rept. AIAA-95-1715. American Institute of Aeronautics and Astronau-
tics, Inc., Washington, DC.

Toigo, A.D., Gierasch, PJ.,, & Smith, M.D. 1994. High-resolution Cloud Feature
Tracking on Venus by Galileo. Icarus, 109, 318-336.

Vrolijk, B. 2000 (Feb.). Feature Tracking met behulp van Greedy Exchange. Task
report. Delft University of Technology. Written in the dutch language.

van Walsum, T. 1995. Selective Visualization on Curvilinear Grids. Ph.D. thesis,
Delft University of Technology, The Netherlands.

van Walsum, T., Post, EH., Silver, D., & Post, EJ. 1996. Feature Extraction and
Iconic Visualization. IEEE Trans. on Visualization and Computer Graphics, 2(2),
111-119.

Weigle, C., & Banks, D.C. 1998. Extracting Iso-valued Features in 4-dimensional
Scalar Fields. Pages 103-110 of: Lorensen, B., & Yagel, R. (eds), Proc. IEEE
Symp. on Volume Visualization ‘98.

Wernecke, J. 1993. The Inventor Mentor: Programming Object-Oriented 3D Graphics
with Open Inventor. Addison-Wesley Publishing Company. Open Inventor
Architecture Group.

Woo M. and Neider J. and Davis T. and Shreiner D. 1999. OpenGL Programming
Guide: The Official Guide to Learning OpenGL. Third edn. Addison-Wesley
Publishing Company. Open Inventor Architecture Group.

Xia, Y. 1989. Skeletonization via Realization of the Fire Front’s Propagation and
Extinction in Digital Binary Shapes. IEEE Trans. on Pattern Recognition and
Machine Intelligence, 11(10), 1076-1086.

Xu, X.W. 1996. Image Feature Analysis for Computer-aided Diagnosis: Detec-
tion of Right and Left Hemidiaphragm Edges and Delineation of Lung Field
in Chest Radiograms. Medical Physics, 23(9), 1613-1624.

176

Summary

This thesis focuses on feature-based visualization of time-dependent data sets
with the goal of gaining insight in the evolving phenomena. This is achieved by
the following four steps:

1. Feature Extraction. Extract the features in the data for each time-step
(frame) and describe the characteristics of the features by calculating a
number of attribute sets.

2. Feature Tracking. Track features by solving the frame-to-frame correspon-
dence problem between features, using the attributes calculated in the first
step.

3. Event Detection. Detect certain events in life-cycle of a feature, such as
unusual changes, particular stages in the evolution of a feature, or specific
interactions between features.

4. Visualization. Visualize the evolution of features interactively in a player,
show the relations between features in successive frames, and highlight
particular events.

Chapter 2 contains a survey of related work in the field of feature-based
visualization. It illustrates the starting point of the research and serves as a
foundation for the rest of the thesis.

The first part of this thesis focuses on the extraction and quantification of fea-
tures.

Chapter 3 introduces a concept for the representation of feature data. The
feature data representation stores the feature attributes and provides a number
of functions and operations for the manipulation and comparison of features.
This representation signifies a huge data reduction and is ideal for the analysis
of time-dependent phenomena.

Chapter 4 addresses accuracy issues. The accuracy and stability of attribute
calculation methods is verified, so that the feature attributes can be trusted and
used for further analysis. The accuracy, and stability with respect to noise is

177

Summary

verified using an experimental approach with synthetic data. In this way, we
verified the accuracy of two attribute calculation methods: the volume integrals,
and the ellipsoid fitting method.

Chapter 5 provides a new attribute calculation method describing the geo-
metric shape of features by a skeleton description. Using the skeleton and the
distance transform of a feature, a skeleton graph representation is calculated
that describes the shape of the feature with a controlled precision. The skeleton
graph can then be used to approximate the surface of the original shape.

The second part of this thesis focuses on the analysis of feature evolution.

Chapter 6 discusses the tracking of features in time using the feature data
representation only, i.e. without using the original grid data. Each type of
attribute set is associated to a number of correspondence functions that can
be used to compare two features. Using these correspondence functions, the
features are tracked based on a prediction-verification scheme which leads to
smoothly evolving, continuous paths describing the evolution of objects.

Chapter 7 shows the detection of significant events in the evolution of ob-
jects. The following events can be detected: continuation, birth/death, en-
try/exit, split/merge, and topological loop/junction events. Again, the events
are recognized using the feature data representation only. Each attribute set is
associated to a number of event functions that test the criteria for a particular
event.

Sections 6.5 and 7.7 describes the visualization of feature evolution by means
of a linked combination of two viewers: the feature viewer and the graph viewer.
The feature viewer shows the features in 3D space by iconic representations. The
graph viewer shows the event graph which is the result of the feature tracking
and event detection stage. With these viewers the user can interactively investi-
gate the tracking results, and analyze the evolution of the features.

178

Samenvatting

Dit proefschrift richt zich op feature-gebaseerde visualisatie van tijdsafhanke-
lijke datasets met het doel om inzicht te krijgen in evoluerende verschijnselen.
Dit wordt bereikt met de volgende vier stappen:

1. Feature Extraction. Detecteer de features in de data van elke tijdstap
(frame) en beschrijf de karakteristieken van de features door de bereke-
ning van een aantal sets van attributen.

2. Feature Tracking. Volg de features in tijd door het frame-to-frame cor-
respondentie probleem tussen features op te lossen. Hierbij wordt enkel
gebruik gemaakt van de attributen die in de eerste stap zijn berekend.

3. Event Detection. Detecteer bepaalde gebeurtenissen (events) in de levens-
loop van features, zoals ongebruikelijke veranderingen, bepaalde fasen in
de ontwikkeling van een feature, of specifieke interacties tussen features.

4. Visualization. Visualiseer de ontwikkeling van features interactief in een
speler, laat de relaties tussen features in opeenvolgende frames zien en leg
de nadruk op bepaalde events.

Hoofdstuk 2 geeft een overzicht van verwant werk in het gebied van feature-
gebaseerde visualisatie. Dit hoofdstuk illustreert de uitgangspositie van het on-
derzoek en vormt de basis voor de rest van het proefschrift.

Het eerste gedeelte van dit proefschrift richt zich op de extractie en quantificatie
van features.

Hoofdstuk 3 introduceert een concept voor de representatie van feature data.
De feature data representatie maakt het mogelijk om de feature attributen op te
slaan en geeft een aantal functies en operaties waarmee features kunnen worden
gemanipuleerd en vergeleken. Bovendien houdt de representatie een grote data
reductie in, waardoor deze ideaal is voor het analyseren van tijdsafhankelijke
fenomenen.

Hoofdstuk 4 behandelt nauwkeurigheidszaken. De nauwkeurigheid en sta-
biliteit van attribuut bepaling is geverifieerd zodat de attributen kunnen worden

179

Samenvatting

vertrouwd bij verdere analyses. De nauwkeurigheid en stabiliteit in aanwezig-
heid van ruis is bepaald met behulp van een experimentele aanpak die gebruik
maakt van synthetische data. Op deze wijze is de nauwkeurigheid van twee
attribuut berekenings methoden, de volume integralen en de ellipsoide fitting
methode, geverifieerd.

Hoofdstuk 5 behandelt een nieuwe manier van attribuut berekening die de
geometrische vorm van features bepaalt met behulp van skelet informatie. Een
skelet graaf representatie, die de vorm van een feature beschrijft met een gecon-
troleerde precisie, kan worden bepaald met behulp van het skelet en de distance
transform van een feature. Deze graaf kan vervolgens gebruikt worden om het
oppervlak van de oorspronkelijke vorm te benaderen.

Het tweede gedeelte van het proefschrift richt zich op de analyse van feature
evolutie in tijd.

Hoofdstuk 6 beschrijft het volgen van de features in de tijd, waarbij alleen
gebruik gemaakt wordt van de feature data representatie, i.e. de originele roos-
ter data wordt niet gebruikt. Met elk type attribuut set wordt een aantal corre-
spondentie functies verbonden die gebruikt kunnen worden om twee features te
vergelijken. Met behulp van deze correspondentie functies kunnen de features
worden getrackt gebaseerd op een predictie-verificatie schema die resulteert in
glad verlopende, continuerende paden die de evolutie van objecten beschrijven.

Hoofdstuk 7 laat de detectie zien van betekenisvolle events in de evolutie
van de objecten. De volgende typen events kunnen worden herkend: voortzet-
ting, geboorte/dood, inkomen/ uitgaan, splitsen/samenvloeien en topologische
lus/knooppunt events. Deze events kunnen wederom herkend worden met en-
kel de hulp van de feature data representatie. Elke attribuut set is verbonden
met een aantal event functies die de criteria voor een specifiek event testen.

De paragrafen 6.5 en 7.7 beschrijven de visualisatie van de feature evolu-
ties met behulp van een combinatie van twee gerelateerde viewers: de feature
viewer en de graaf viewer. De feature viewer laat de features zien in de 3D
ruimte met behulp van iconische representaties. De graaf viewer laat de event
graaf zien die resulteert bij het feature tracking en event detectie proces. De
gebruiker kan met deze twee viewers de resultaten van de tracking interactief
bekijken en onderzoeken; zo kan de evolutie van de features worden geanaly-
seerd.

180

Curriculum Vitae

Freek Reinders was born on the 24" of April 1970 in Emmeloord, Noordoost-
polder, The Netherlands. In 1989, he received his VWO diploma at the Chris-
telijke Scholen Gemeenschap in Emmeloord. He received his engineer’s degree
in Applied Physics in 1995 for a project carried out at the Biomagnetic Centre at
the University of Twente in Enschede. The subject of his graduation work was
the simulation of brain signals (EEG and MEG) using the finite-element method.

In March 1996, he started his PhD research project in the Computer Graphics
& CAD/CAM group of Delft University of Technology. The main topic of the
research project involved scientific visualization, in particular the feature-based
visualization of time-dependent data sets.

Since February 2001, he works at Medis, Medical Imaging Systems, in Lei-
den. The focus of his work is directed to the 3D visualization of MR Angiogra-

phy.

181

(\‘.0555 W
s
WA
P-L.-ll

LN
(v,

