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10.

. Een standaard representatie van topologische informatie in ongestructu-

reerde roosters is wenselijk voor visualisatie-algoritmen.

Geometrische criteria voor het detecteren van wervels zijn principieel be-
ter dan fysische criteria.

. Het vinden van zwakke wervels is een zwak punt van de meeste tech-

nieken voor werveldetectie.

Voor visualisatie van een data-veld moet een deformeerbaar oppervlak
geen interne vervormingsweerstand hebben, maar zich volledig voegen
naar het veld.

Bij kunst is er dikwijls spanning tussen vorm en inhoud, bij visualisatie
is het de kunst om vorm aan de inhoud te geven.

Voor het verkrijgen van nuttige informatie zijn bibliotheken nog steeds
doelmatiger dan het internet.

Intuitieve systemen zouden geen dikke handleidingen moeten hebben.

Mensen die Nederlands willen leren worden niet aangemoedigd door de
neiging van Nederlanders om alles te spreken behalve Nederlands.

Spellingshervormingen leiden eerder tot meer uitspraakfouten dan tot
minder spelfouten.

Van de zon kan men het beste in de schaduw genieten.



—

10.

A standard representation of topological information in unstructured
grids is desirable for visualization algorithms.

. Geometric criteria for vortex detection are in principle better than physi-

cal criteria.

. Detecting weak vortices is a weakness of most vortex detection methods.

For visualization of a data field, a deformable surface should not have
any internal smoothing energy, but it should completely adapt to the
field.

. In art, there is often tension between form and content; in visualization,

it is an art to show content through form.

For obtaining useful information, libraries are still more effective than
the Internet.

Intuitive systems should not require bulky manuals.

. People wishing to learn Dutch are not encouraged by the tendency of the

Dutch to speak anything but Dutch.

. Spelling reforms result in more pronunciation errors rather than fewer

spelling errors.

The sun is best enjoyéd in the shade.
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Chapter 1

Introduction

Salt, bittersalt *

ir havet, och klart och kallt.
Pd djupet multnar mycket,
men havet renar allt.

1.1 Scientific visualization

Scientific visualization could be described as the art of translating numbers into a clear
visual representation, which makes it easier for people to interpret the numbers. Sci-
entific visualization has a long history: an early well-known example dates back from
1861, when Charles Joseph Minard created an ingenious graphical representation of
numerical multidimensional data concerning Napoleon’s unsuccessful campaign to
Russia in 1812-1813. This visualization is shown in Figure 1.1 [Tufte, 1990]. The chart
visualizes the size of Napoleon’s army which is dramatically reduced as the campaign
proceeds through various locations. On the way to Moscow, indicated by the hatched
band, the army size decreases from 422,000 to 100,000. On the way back, indicated
by the solid black band, the army is literally decimated to 10,000. This graph visual-
izes six variables: the army position (longitude and latitude), its size, its direction of
movement, the temperature, and the date.

Before the advent of computers, scientists who conducted experiments also devel-
oped ways of visualizing the results. Many of you may remember from the science
classes in high school that magnetic field lines can be visualized by iron shavings,
which are oriented when a magnet is put under a sheet of paper. A slightly more ad-
vanced way of visualization is the use of aluminium particles released in a flow and
photographed at regular intervals.

In modern times, scientific research and engineering practice increasingly employ
computer simulations and automatic measurements, which result in large amounts
of numbers. Simulations are performed by scientists for modelling complex physical
phenomena, about which they try to get a better understanding. Simulations are also
performed by engineers who want to test and improve their designs, without having
to build costly prototypes or scale models. Measurements are often taken in large
amounts by satellites, which orbit the earth or are sent out to other planets in the solar
system. These computer simulations and measurements produce large amounts of
data, called data sets, typically in the form of numbers. As the power of computers has
steadily increased over the years, this has allowed scientists and engineers to develop

1Salt, bitter salt // is the sea, and clear and cold // In the deep, much decays // but the sea cleans
everything. (Karin Boye: Havet)
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Figure 1.1: Minard’s visualization of Napoleon’s campaign to Russia [Tufte, 1990]

more complex and more accurate models that produce larger and larger data sets,
which have to be visualized.

Therefore, scientific visualization has become necessary for scientists and engi-
neers, in order to obtain insight in the results of their models and measurements. Im-
ages are much better suited for processing by the human visual system, hence the
well-known proverb “One picture says more than a thousand words” (or numbers in this
case).

1.2 Objectives

The research in this thesis describes the development of techniques to assist the sci-
entific user in coping with the large amounts and high complexity of the data, by
providing interactive techniques for exploring the data. What the user is usually in-
terested in, are the characteristic phenomena of the data, so-called features. Examples
of features are vortices, boundary layers, and shock waves. Through these features,
the amount of data and its complexity can be reduced. Therefore, we have developed
techniques which extract features from data sets and visualize them.

One classification for visualization techniques distinguishes between: global tech-
niques, geometric techniques, and feature-based techniques [Post et al., 1999]. Global
techniques render data directly, without deriving curves or polygons first. Global tech-
niques include arrow plots, direct volume rendering, and direct surface rendering. An




1.3. Structure of this thesis

advanced global technique, which uses texture to visualize vector fields, is Spot Noise
[de Leeuw, 1997]. Geometric techniques first extract geometric objects, such as curves, sur-
faces and solids, and then render them for visualization. Examples are streamlines and
stream surfaces. Feature-based techniques first extract features and then visualize them
with any of the previous techniques or with abstract iconic representations. Examples
of the latter are given in [van Walsum et al., 1996].

The focus in this thesis is on geometric techniques, although sometimes we employ
elements from feature-based techniques as well. An important reason is that geome-
tries are easy to perceive and easy to render. This leads to the main objective of this
thesis:

to describe techniques for extracting and visualizing geometries in fluid flow fields.

The application area in this thesis is fluid flows, both hydrodynamic and aerodynamic,
because this area contains a wealth of interesting problems, and because we had access
to experts and resources in that area. Within this field, we concentrated on Computa-
tional Fluid Dynamics (CFD), the field which develops numerical models of fluid flows
and performs flow simulations based upon those models.

1.3 Structure of this thesis

The remainder of this thesis has the following structure. Chapter 2 contains an overview
of related work in geometric techniques, and serves as a framework for placing the
techniques covered in the following chapters into context. Chapter 3 describes parti-
cle tracing, a technique for visualizing velocity fields. Chapter 4 covers techniques for
detecting vortices. Chapter 5 investigates deformable surfaces, a class of geometric ob-
jects that can be used for extracting a range of features which may be well represented
by surfaces. Chapter 6 presents some applications of the techniques to some larger,
‘real-life’ examples. Finally, Chapter 7 contains conclusions and gives directions for
future work.






Chapter 2

Geometry extraction techniques

Bengawan Solo, ... !
Mata airmu dari Solo
terkurung gunung seribu
Air mengalir sampai jauh
akhirnya ke laut.

This chapter reviews related work concerning geometry extraction. The purposes of
this chapter are to show the context of our work and to provide a basis for the discus-
sions in the following chapters.

As stated in Chapter 1, it is possibly to classify visualization techniques as direct
techniques, geometric techniques, and feature-based techniques [Post et al., 1999]. The
focus in this thesis is on geometric techniques, although sometimes we employ ele-
ments from feature-based techniques as well. Geometric techniques produce geome-
tries, which have two important advantages:

e geometries are easy for people to interpret. The visual system of the human
brain is well adapted to recognizing shapes and colour properties of geometries
like surfaces and curves.

s geometries are easy for computers to display. Modern hardware systems of com-
puters are specialized in rendering lines and surfaces with colours and textures,
to create a clear representation.

Several important types of geometries are:

e curves

¢ surfaces

¢ solids

¢ deformable models
Curves are often used to get a global view of the flow field. Surfaces are often used
to get a local view of specific surface features, such as stream surfaces or separation
surfaces. Deformable models are a special type of curves and surfaces, which start
from some initial shape, and grow or shrink towards some target shape of a feature. In
addition, a vortex is not a type of geometry, but a type of feature in fluid flows, which
may be represented by various types of geometries, such as curves and surfaces.

The remainder of this chapter is organized as follows. Section 2.1 gives definitions
of several kinds of data fields and grids. Section 2.2 describes various flow curves,

1S0lo River, ... // Your source is in Solo // confined by a thousand mountains // Your water flows quite
far // and finally into the sea. (Indonesian traditional)
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and Section 2.3 various flow surfaces. Section 2.4 covers deformable models. Finally,
Section 2.5 describes techniques for vortex detection.

2.1 Fields and grids

2.1.1 Fields

A three-dimensional field can be represented analytically by a global function f(z, y, 2),
defined over a bounded spatial domain in R? [Silver et al., 1999]. A unique field value
s at every point (z,y, z) of the domain can be found by evaluation: s = f(z,y, z) ev-
erywhere in the domain. This is usually not the case with the discrete numerical fields
that are more common in science and engineering, where data values are known only
at a finite number of data points. Such discrete fields are usually generated by data
acquisition systems or numerical computer simulations.

Measured data fields can be generated by medical imaging systems, such as com-
puted tomography (CT), magnetic resonance imaging (MRI), or positron emission to-
mography (PET) scanners. Other sources of large measured data fields include remote
sensing systems of satellites, scanning electron microscopes, and seismic and acoustic
sensing for underwater observations. For simplicity, we will assume in the rest of this
thesis that the data fields have been generated by numerical simulations.

Physical models often consist of partial differential equations that cannot be solved
globally and analytically. Therefore, discrete methods such as finite elements, finite
differences, or finite volume methods are often used to numerically solve local equa-
tions. These methods are based on defining a computational grid, consisting of nodes
and cells. Approximated equations are specified, resulting in a system of equations
that can be solved numerically at each grid node or cell.

The domain of a simulation may have two or three spatial dimensions. It may also
be varying in time. The data points (or grid points) thus are 2D (z,y) or 3D (z,y, 2)
coordinate positions. The data fields may contain any combination of scalar quantities
(e.g. pressure, density, or temperature), vector quantities (e.g. force or velocity), or
tensor quantities (e.g. stress or deformation) at each data point. The data values may
be constant in time, or vary as a function of time. Time-dependent fields are important
for highly dynamic phenomena such as fluid flow.

2,1.2 Grids

There are many types of computational grids, depending on the simulation technique,
the domain, and the application [Silver et al., 1999]. A grid consists of nodes and cells.
The nodes are points defined in the simulation domain, and the cells are simple spatial
elements connecting the nodes: triangles or quadrangles in 2D, tetrahedra or hexahe-
dra in 3D. The cells must fill the whole domain, but may not intersect or overlap, and
adjacent cells must have common edges and faces. Grids can be classified according to
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their geometry, their topology, and their cell shape. Three of the most important types
are discussed below.

The simplest type is the uniform grid, also called regular orthogonal, or Cartesian
grid (see Figure 2.1a). This type of grid has a regular geometry and topology: the
nodes are spaced in a regular array, and the cells are all unit cubes. The grid lines
connecting the nodes are straight and orthogonal. Every node can be referenced by
integer indices (3, j, k). Adjacent nodes can be found by incrementing any of the in-
dex vector components. Many operations on this type of grid (such as searching the
grid cell which contains a given point) are very simple, but grid resolution is constant
throughout the domain, and the shape of the domain must be rectangular.
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Figure 2.1: Several grid types: (a) regular orthogonal (Cartesian) grid, (b) structured
curvilinear grid, and (c) unstructured grid

The second type of grid is the structured curvilinear grid (see Figure 2.1b). This type
has a regular topology (the adjacency pattern for each internal node is the same), with
the nodes again referenced by integer indices (3, j, k), and adjacent nodes can be found




Chapter 2. Geometry extraction techniques

by incrementing index values. The cells are usually hexahedra, with a deformed-brick
shape. The geometry of each cell is irregular, and the cell faces are non-planar quadran-
gles. The cell size of a curvilinear grid can be highly variable, and thus the resolution
of the simulation can be higher in areas of strong variation. Also, the curvilinear shape
can be made to conform to the boundary of a curved object, such as an airplane wing.
This type of grid is common in finite volume CFD simulations.

The third type of grid is the unstructured grid, where the topology and geometry
are both irregular. Figure 2.1c shows an example from a finite element application
[van den Broek et al., 1998]. The nodes do not have a fixed adjacency pattern, and
adjacency information cannot be derived from a spatial index, but has to be stored
explicitly. The cells are usually triangles in 2D or tetrahedra in 3D. Cell size can be
varied according to the amount of detail desired, and can be used to model a complex
geometry. Unstructured grids are often used in finite element analysis. Due to the
simple cell geometry, calculations on a single cell are simple.

There are many more variations of grids: staggered grids, hybrid (mixed-type)
grids, multi-block grids, moving grids, and multi-resolution grids. In this thesis, we
will concentrate mainly on the three types described before.

A numerical simulation will generally produce a discrete data field, consisting of
a combination of scalar, vector, or tensor quantities, given at every grid node. These
datasets can be very large, with as many as 10* to 10° nodes, and ten or more variables
defined at every node. This can result in a size of up to hundreds of megabytes for
stationary (time-independent) fields and up to terabytes for time-dependent fields.

2.2 Curves

Curves are usually easy to generate, easy to render, and easy to understand. An im-
portant subclass of curves are flow curves, which are used to visualize flow patterns.
The definitions of several flow curves are listed below [Silver et al., 1999].

e streamline: a tangent curve of a steady velocity field. Tangent curves are defined
as curves that are everywhere tangent to the vector field. A streamline satisfies
the equations: dz/u = dy/v = dz/w, where (u, v, w) are the velocity components
in the z-, y-, and z-direction of the domain.

e pathline: a trajectory curve of a single fluid particle moving in the flow. This curve
is identical to an integral curve obtained by stepwise integration of the velocity
vector field (see Chapter 3 on the generation of pathlines).

o streak line: a line joining the positions at one instant of all particles that have been
released from a single point over a given time interval ty . . . t,.

e time line: a line connecting all particles that have been simultaneously released in
a flow from positions on a straight line, perpendicular to the flow direction. The
straight line moves and deforms with the flow due to local velocity variations.

e vorticity line: a tangent curve of a vorticity vector field, which is the curl of veloc-
ity field: w = V x v.
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e hyperstreamline: a tangent curve of an eigenvector (usually with the largest mag-
nitude) of a tensor field [Delmarcelle & Hesselink, 1993].

In a steady flow (also called stationary or time-independent flow), where the veloc-
ity field is constant in time, pathlines, streamlines, and streak lines are identical [Strid
et al., 1989]. In an unsteady flow (also called instationary or time-dependent flow),
these curves may all be different. Streamlines, vorticity lines, and hyperstreamlines
are mathematical abstractions, but they are all based on the idea of field lines. Many
of these curves have been inspired by experimental visualization [Post & van Walsum,
1993].

Most of the curves are based on the notion of particle advection. They can be gen-
erated in a straightforward way, by integrating the vector field, which results in an
integral curve. Particle tracing is a visualization method which simulates the release
of massless particles, calculates their paths, and then renders them in an animation at
a constant frame rate. Particle tracing is a common way of visualizing the results of
CFD flow simulations; an extension for turbulent flow was introduced in [Hin & Post,
1993; Hin, 1994].

The choice of release points for particles or flow curves is critical. If flow curves
are released too sparsely, or in the wrong regions, important flow features may be
missed. If they are released too densely, cluttering may occur. An important technique
for an even distribution of the lines is described in [Turk & Banks, 1996}. Recently, this
technique was extended to curvilinear grids [Mao et al., 1998].

Effectively rendering 3D curves is much more difficult than rendering 2D curves,
due to occlusion, and the lack of direction information and depth cues. In [Fuhrmann
& Groller, 1998], some solutions are proposed, such as an algorithm for an even distri-
bution of curves, and the use of texture for depth cues.

Our focus in this thesis is on the calculation of pathlines, or particle tracing in spe-
cial grid types: in structured curvilinear grids (see Section 3.2), in o-transformed grids,
which are common in hydrodynamic applications (see Section 3.3), and in unstruc-
tured grids, which are more common in aerodynamics (see Section 3.4).

2.3 Surfaces

Curves are easy to visualize, but they do not carry much spatial information, and are
therefore difficult to locate visually in space [Post & van Walsum, 1993]. Surfaces are
much better for visualization, because lighting and shading are effective cues for per-
ception of 3D shapes by a human observer.

Our focus in this thesis is on the generation of flow surfaces of three kinds. The
first kind is adaptive isosurfaces, which can be used to approximate local isosurfaces
with the desired accuracy specified by the user (see Section 5.5.1). The second kind is
separation surfaces (see Section 5.5.2), which are used to find recirculation zones. The
third kind is vortex tubes (see Section 6.4). For completeness, a brief introduction to
isosurfaces, stream surfaces, and implicit surfaces is given below.
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2.3.1 Isosurfaces

An isosurface is a collection of points (z,y,2) in a scalar field f(z,y, 2) which have
the same field value: f(z,y,z) = C, where C is a constant value called the isovalue.
These points are usually connected by a polygon surface. The classic algorithm to
generate isosurfaces is the marching cubes algorithm described in [Lorensen & Cline,
1987]. Based on this algorithm, many improvements, optimizations, and variations
have been produced, but these do not fall within the scope of this thesis.

While isosurfaces are certainly useful for extracting certain types of features from
data sets, they also have drawbacks. Standard isosurface algorithms work with a
global isovalue, which may lead to surface fragments throughout the entire data set.
This may not always be desirable, when we are only interested in a certain region
of interest. Another drawback is that standard algorithms generate large amounts of
polygons, which has a strong relation to the number of grid cells. Sometimes, this is
reduced afterwards with the use of surface simplification or decimation algorithms, at
the cost of extra processing time. '

A better option would be to prevent too many polygons from being generated in
the first place. Ideally, one would want to start from a coarse surface, and progressively
refine it, when and as long as necessary. This approach has been followed in [Grosso
& Ertl, 1998].

Our deformable surfaces, as described in Section 5.5.1, are also usable for generat-
ing progressive isosurfaces with adaptive precision.

2.3.2 Stream surfaces

The flow curves in 2D data fields, as defined in Section 2.2, can be extended to flow
surfaces in 3D data fields. For stationary vector fields in general, the tangent curve is
extended to a tangent surface, a surface that is everywhere tangent to the vector direc-
tion. For stationary velocity fields, a tangent surface is called a stream surface. As the
velocity direction is everywhere tangent to the stream surface, the velocity component
normal to the surface is everywhere zero. This means that no material flows through a
stream surface, so it can be considered as a separation between two independent flow
zones.

The simplest type of stream surface is a ribbon, or a narrow band. Besides local
flow direction, it can show the local rotation of the flow. Ribbons can be generated
in different ways [Pagendarm & Post, 1997]. First, two adjacent streamlines can be
generated from two seed points placed close together, and constructing a mesh of tri-
angles between them. The width of the ribbon depends on the distance between the
trajectories of both streamlines, and may become large in a strongly divergent area. A
second way is to construct a surface strip of constant width centered around a single
streamline. The orientation of the strip is directly linked to the angular velocity of the
flow, obtained from the vorticity w. From the angular velocity, a rotation angle can
be found by time integration along the streamline [Pagendarm & Walter, 1994]. The
initial orientation is defined at the seed point, and an incremental rotation is applied
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in a local coordinate frame at each point on the streamline. The ribbon is constructed
by weaving a strip of triangles between the points.

Both methods for creating ribbons have advantages [Pagendarm & Post, 1997]. The
first method can show vortical behaviour of the flow, but can also show other effects as
well. For instance, it will also show divergence, through the varying width of the rib-
bon. The second method shows purely local vortical behaviour on the central stream-
line. In both cases, the surface is not an exact stream surface, as the tangency condition
is only true for the constructing streamlines.

A general stream surface can be constructed by generating streamlines from each
of a number of points on an initial line segment or rake. If for all these streamlines a
single constant time step is used, then the lines connecting points of equal time on all
streamlines are time lines. Streamlines and time lines thus make a quadrangular mesh
(see Figure 2.2a), which can be easily divided into triangles for visualization.

streamline

rake time line

(a) Mesh for stream surface, with (b) Divergent flow
streamlines from a rake, and timelines splits a stream sur-
face

Figure 2.2: Stream surface generation

This standard algorithm has some disadvantages. If the flow is strongly divergent,
adjacent streamlines will move too far apart. If there is an object in the flow, the surface
must be split, and this is problematic with the standard algorithm (see Figure 2.2b). Fi-
nally, if there are high velocity gradients in the flow direction, the mesh will be strongly
distorted and unequal-sized and poorly-shaped triangles will result.

To solve these problems, an ‘advancing front’ algorithm has been proposed
[Hultquist, 1992]. The surface is generated in the transverse direction by adding a
strip of triangles to the front. Using adaptive time steps to compensate the gradients
in the flow direction, all points at the front will move forward by about the same dis-
tance. Also, if two adjacent points on the front move too far apart by divergence, a new
streamline is started at the midpoint between them. Conversely, if two points move
too close together, one streamline is terminated. If an object in the flow is detected, the
front can be split, and the two parts can move on separately.

Stream surfaces can also be used to generate streamlines [Kenwright & Mallinson,
1992a]. Two local stream surfaces are determined from dual stream functions defined
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in a grid cell. The intersection curve of these stream surfaces is a streamline segment,
which is approximated by determining the entry and exit points of the streamline seg-
ment in the cell, and connecting these points. A stream line is constructed by tracking
from a starting point through the cells. This technique is very different from the time
stepping integration techniques described in Section 3.1, and has the advantage of con-
forming with the physical law of mass conservation.

2.3.3 Implicit surfaces

Two important approaches to mathematically define curves and surfaces are parametric
and implicit [Bloomenthal, 1997]. The parametric approach defines each of the coordi-
nates as an explicit function of one or more parameters. For a 2D surface in 3D space,
these functions are: x = f;(s,t),y = fy(s,t), and z = f,(s,t), when (s, t) is an ordered
pair of parameters. In the implicit approach, the coordinates (z,y, z) are not given
explicitly, but as the set of points (z,y, 2) : f(z,y,2) = C, where C is some constant.
Then, f(z,y,2) = 0is a surface implicitly defined by f, or an implicit surface, and de-
pending on the form of f, other values of the constant C indicate the distance to the
surface. An example is the spherical surface given by z2 + y% + 22 = 0.

Implicit surfaces can be used to generate stream surfaces [van Wijk, 1993]. The
stream surface must satisfy the condition Vf - v = 0, which means that the normal to
the surface (denoted by the gradient V f) is perpendicular to the velocity direction. The
function f is called the stream surface function. The values of f are specified at the inflow
boundaries of the flow area, and for all other grid points the values of f are calculated
numerically. This can be done in two ways: by solving the convection equation, and
by tracing backwards from each grid point to the inflow boundary. A stream surface
is then generated as an isosurface of f. This technique can also be adapted to generate
time surfaces.

There are two problems with implicit surfaces: it is difficult to specify and con-
trol their shape, and it is difficult to sample them uniformly. One solution to these
problems, described in [Witkin & Heckbert, 1994], works by placing particles on the
surface. Constraints are imposed on the surface and the particles for two purposes:
first, it makes the surface follow the particles when they are moved. In this way, the
user can control the shape by interactively moving the particles, and the surface will
adapt its shape. Second, when the constraint is used in the other direction, it makes
the particles follow the surface. In that way, when the surface shape is changed, the
particles, which are floating but restricted to the surface, will evenly redistribute them-
selves over the surface. Note that this is a type of surface consisting of independent
points, not connected by edges and polygon faces.

24 Deformable models

A special class of geometries, which includes both curves and surfaces, is formed by
what we call deformable models, geometries which all have in common that they start
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from some initial shape, and are deformed in an iterative process to some target shape.
This target shape is usually some object in a 2D or 3D image.

The advantage of deformable models is that they allow for the extraction of fea-
tures which cannot be expressed as isosurfaces, but for which optimization criteria are
easy to specify, e.g. curves or surfaces which are located at local gradient maxima. By
utilizing a priori knowledge, deformable models may be given properties which iso-
surfaces do not have. For example, deformable models may be prescribed to have a
certain topology, while the topology of a collection of isosurface polygons is usually
unpredictable.

Basically, there are three types of deformable models: deformable curves, deformable
surfaces, and deformable volumes. Deformable curves are curves in 2D space, deformable
surfaces are surfaces in 3D space, and deformable volumes are solid objects in 3D
space. The essential difference between deformable surfaces and deformable volumes
is that the latter can also represent the internal structure of the domain.

Deformable models have been applied in various areas, such as image process-
ing, medical imaging, and computer graphics. For a good and recent textbook on de-
formable models, which covers applications in these three areas, see [Metaxas, 1997].
For a recent survey of the use of deformable models in medical imaging, see [McIner-
ney & Terzopoulos, 1996].

We have developed a type of deformable surfaces for a totally different application
area: detection of surface features in fluid flows. This will be described in Chapter 5
of this thesis. Since our technique has most in common with deformable curves and
surfaces, the remainder of this section will describe related work on deformable curves
(see Section 2.4.1) and deformable surfaces (see Section 2.4.2).

2.4.1 Deformable curves

Deformable curves were first proposed in [Kass ef al., 1988] for object segmentation
in image processing applications. Typically, the user defines an initial curve, in the
neighbourhood of the target object to be segmented. The user may put constraints on
some points, e.g. by anchoring them to fixed points, or by attaching springs between
different points. Then, a minimization process of the curve energy causes the snake to
be gradually attracted to the contour of the object. Due to their shape and wiggling
behaviour, these curves were called “snakes”.

In [Kass et al., 1988], snakes were defined as “energy-minimizing splines guided by
external constraint forces and influenced by image forces that pull them toward fea-
tures such as lines and edges”. The energy of a snake, which is defined as a parametric
curve with parameter s, is defined in [Kass ef al., 1988] as:

1
Eloge = /0 Eunake (v(5))ds

1
= /0 (Eint(v(8))ds + Eimage(V(8))ds + Eqon(v(8))) ds (2.1)
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where v(s) = (z(s),y(s)) are the positions of the snake elements as a function of the
curve parameter s, Ej,; is the internal spline energy, Eijmqq. is the image energy which
causes a snake to be attracted to images features, and E.,, is the constraint energy
imposed by the user.

The internal energy E;,:, which controls the continuity of a snake, is defined as a
weighted average: Eins = (a(8)|vs(s)|? + B(s)|vss(s)|?)/2. It consists of a first-order
derivative term v,(s) and a second-order derivative term v,,(s). The first term makes
the snake first-order continuous, the second makes it second-order continuous, with
a(s) and f(s) determining the weight of each term. If 5(s) = 0, the snake is second-
order discontinuous.

The image energy Eimag. causes the snake to be attracted to lines, edges, and
(line segment) terminations, and is also defined as a weighted average: Eimqge =
Wiine Eiine + wedgeEedge + Wierm Eterm-

The last term of the snake energy, the constraint energy E.on, allows the user to
fix certain points of a snake to the background, or to connect two points of adjacent
snakes to each other with a spring. If two points have coordinates x; and x;, then
a spring between those two points could add a term —&l|x; — x| to the constraint
energy, where « is the stiffness of the spring.

When all the energy terms have been defined and substituted in the total energy
(2.1), the energy is minimized by a variational calculus approach. This basically means
that new snake positions are calculated as small variations of the old ones, such that
the energy gradually decreases at each iteration, and ultimately is minimized. This
will cause an initial snake defined around an object to shrink and lock onto the actual
object contour.

The snakes article has been the basis for numerous other types of deformable
curves. One further development were the fast active contours described in [Williams
& Shah, 1990]. There are several differences with the original snakes. One difference
is that the calculations are not done in continuous R? space, but on a discrete grid of
pixels, which makes sense for image processing applications. Another difference with
the original snakes is the use of a greedy algorithm to compute new positions of snake
elements. For each of the neighbour pixels of a snake element, the greedy algorithm
calculates the effect of moving that element to that pixel on the new energy of the entire
contour. The algorithm then moves each element to the neighbour pixel which leads
to the lowest energy. One of the advantages of the greedy algorithm is that it works
much faster than variational calculus.

Yet another type of deformable curves is the Discrete Dynamic Contours described in
[Lobregt & Viergever, 1995]. Like previous models, they are based on minimization of
an energy, composed of external energy related to image features, and internal energy
related to local curvature. In this case, the energy is not minimized by variational
calculus or a greedy algorithm, but by means of forces, which are used in Newtonian
motion equations to determine the new positions of the nodes. The force on a node ¢
is given by:

fi= wezfex,l‘; + win,ifin + fdamp,i (22)
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where f.; r, is the radial component (in the direction r;) of an external force, with an
associated weight, f;,, is an internal force, with an associated weight, and faomp,i is a
damping force which increases the stability and ensures termination of the iteration.
From these forces, the acceleration for the nodes is easily derived using the relation
a = f/m, where is m is a constant mass for all nodes. From the acceleration, the
velocity is derived, and using the velocity, the new position p; of anode i is determined
using a numerical integration:

p;(t) + At = p;(t)vi(t)At (2.3)

where At is the time interval between subsequent new positions.

There are several important differences between Discrete Dynamic Contours (DDC)
and previous models.

1. The first difference is that in DDCs, minimization of the energy is done for each
individual node, not globally for the entire contour, hence the name discrete.

2. The second difference is that displacement of the nodes is done only in the radial
direction, or the direction normal to the contour, filtering out any tangential dis-
placement components. This is done for two reasons: tangential displacements
do not contribute to deformation of the model, and tangential displacements
may cause local accumulation of nodes on the contour, which is not desirable.

3. The third important difference is that DDCs perform resampling of the curve
and add new nodes, which can make the final contour much larger than the one
originally defined.

In principle, deformable contours are limited to 2D images, or 2D slices of 3D
data sets. When 3D representations of objects are required, a frequently applied tech-
nique connects contours from several stacked slices by filling the intermediate space
by polygonal tilings.

Our deformable surfaces, as described in Chapter 5 of this thesis, have in com-
mon with the above methods that they are based on a minimization process. They
have in common with the Discrete Dynamic Contours that minimization is done per
node rather than for the entire surface. For the node displacement directions, we have
compared various mechanisms, including a mechanism similar to the above greedy
algorithm, and a mechanism which displaces only in the normal direction.

2.4.2 Deformable surfaces

Deformable surfaces are a logical extension of deformable curves: the 1D curves in 2D
space are extended to 2D surfaces defined in 3D space. Whereas deformable curves
consist of points x(s) on a parametric curve, deformable surfaces are either parametric
surfaces x(u,v), or unstructured triangle meshes, which are less straightforward to
parameterize.

One example of deformable surfaces consisting of unstructured triangular meshes
are the Geometrically Deformed Models (GDMs) described in [Miller, 1990; Miller
et al., 1991]. A GDM utilizes a cost function somewhat similar to the energy of active
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contours. The cost function C;(z,y, 2) for a node i at position (z, y, 2) is defined as:
Ci(zayaz) = aoD(-T,yaZ) +alI(z’y7Z) +a2Ti (24)

where:

e D(z,y,z) is a deformation potential field that drives nodes towards the bound-

ary.

o I (Z, Y, z) is an image term, which tries to stop nodes at the boundary.

o T; is a topology term, which tries to keep neighbouring nodes together.

* ag,a;,az are weighting coefficients.

All costs and weights are nonnegative.

The deformation potential D(z,y, ) is a global scalar field with values based on a
frame of reference, which may e.g. be a point inside the feature to be modelled. The
deformation potential must decrease (or increase) monotonically away from a frame
of reference, and will repel (or attract) the model away from (or towards) its frame
of reference. An example of a localized deformation potential causes each node to be
attracted to a point in the direction of the local surface normal. This is comparable to
the Discrete Dynamic Contours of the previous section.

The image term I(z,y, z) is a scalar field which counterbalances the deformation
potential. It identifies transitions from regions in the field which could be a feature
from regions which are definitely not a feature. By doing so, it creates a local minimum
at boundaries. Operations in image processing that can identify boundaries include
digital gradients [Castleman, 1996], and morphological operators [Serra, 1982]. An
example of an image term is the shifted threshold operator:

0 Image(z,y,2) < T

I(z,y,2) = { Image(z,y,2) =T Image(z,y,z) > T

An image voxel that is part of the object returns the amount it exceeds the object, other
voxels return zero. In effect, nodes will approach the boundary of an object, but will
be prevented from exceeding it.

The topology term T; maintains the topological integrity of the model. This is neces-
sary because the previous two terms are not enough for a proper growth of the model:
if the boundary of an object is incomplete, nodes of an object may ‘leak’ through the
holes, or if the image event detector is noisy, nodes may stop prematurely at an in-
correctly detected boundary. Therefore, the topology term tries to keep neighbouring
nodes together. An example of a topology term is the local curvature at a node. In
[Miller et al., 1991} this is estimated as the ratio between the distance from the node to
the centroid of its neighbours, and the maximum distance of the neighbours:

7 < Ix= Tl

" max(||x; — x||)

where x is the position of the current node %, n is the number of neighbour nodes, and
Xj, X are the positions of the neighbour nodes. Minimizing this function will try to
minimize the curvature by making the neighbour faces of a node coplanar.
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There are several important differences between GDMs and snakes (besides the

number of dimensions), which are related to the deformation mechanism:

e GDMs perform a local cost function minimization, for each individual node,
while snakes perform a global minimization for the entire contour. In this as-
pect, they resemble the Discrete Dynamic Contours described in the previous
section.

¢ GDMs require an image event field I(z, y, z) to be defined, which indicates which
regions of the field may contain features and which regions definitely do not.

Chapter 5 of this thesis describes a type of deformable surfaces which was inspired by
the GDMs. Some similarities are: the use of a cost function and the use of an unstruc-
tured triangle mesh. But there are also important differences between our deformable
surfaces and snakes or GDMs. One difference is that our cost function does not include
an internal smoothing energy or a topology-preserving term. Since our deformable
surfaces are primarily intended for a different application area than GDMs, namely
geometry extraction from fluid flow fields, we have decided not to build an internal
smoothing energy into our surfaces. Another difference is that we have applied a new
numerical scheme which works much faster than the traditional ones.

2.5 Vortices

While curves and surfaces are useful for obtaining an overview of flow patterns, sci-
entists are often interested in specific flow features, such as vortices. In fact, vortices
are among the most important features of fluid flows in many fields of science and
engineering [Banks & Singer, 1994]. In aerodynamics, vortices directly affect the fly-
ing characteristics of airplanes [Kenwright & Haimes, 1997]. In turbomachinery de-
sign, vortices are to be avoided or minimized during design [Roth & Peikert, 1996]. In
oceanography, the evolution of vortices in space and time is important for scientists’
understanding of ocean circulations [Banks & Singer, 1994]. In fundamental flow re-
search, the evolution and interaction of vortices are studied because vortices play an
important role in the development of turbulence. Therefore, detecting and visualizing
vortices is an important topic.

Informally, a vortex may be defined as a swirling flow pattern which will often
behave as a coherent structure over time [Robinson, 1991]. Unfortunately, there is no
formal definition of a vortex, which makes it difficult to detect them. Therefore, vortex
detection methods are often based on heuristic criteria.

Methods for detecting vortices fall into three classes:

* physical methods, which use point-based physical quantities to define vortices as

regions where these quantities have certain value ranges.

e algorithmic methods, which also use physical quantities, but utilize more complex

algorithms for producing geometries.

e geometric methods, which use region-based, geometric properties of streamlines

to detect vortices.
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Many fluid dynamicists have worked on physical methods for vortex detection, based
on observed or theoretical indicators of vortices, i.e. values or ranges of physical quan-
tities associated with the occurrence of vortices. The physical quantities include scalar
quantities, quantities derived from the velocity field, and quantities derived from the
velocity gradient (= rate-of-deformation) tensor (see e.g. [Hunt et al., 1988; Perry &
Chong, 1987; Jeong & Hussain, 1995; Miiller et al., 1998]). Brief overviews and com-
parisons of physical vortex detection criteria are given in [Banks & Singer, 1994] and
[Roth & Peikert, 1996]. Unfortunately, none of the physical criteria turns out to work in
all cases. In Section 4.1, we also show an experimental comparison of several physical
methods.

The second category consists of algorithmic methods, which are also based on physi-
cal quantities, but do not merely select regions where the quantities have certain prop-
erties. The quantities are used for performing more complex operations, such as cal-
culating statistical attributes, or tracking the path of a vortex core. The methods de-
scribed in [Villasenor & Vincent, 1992; Banks & Singer, 1994; Zhu & Moorhead, 1995]
are all two-stage methods for extracting vortices. The first stage extracts the vortex
core, while the second stage determines the ‘boundary’ of a vortex by performing an
outward search starting from the core. These methods differ in the quantities and in the
strategy they use to determine the vortex core and boundary, but the result is always
some tubular structure consisting of closed circular curves connected by polygons.

In [Villasenor & Vincent, 1992] a vortex core is built from line segments, whose
directions are determined by statistical operations. Starting from some seed point,
about 100 random directions are tried. Inside a cylinder with a random direction, the
‘field intensity’ is calculated. To get an estimate of the intensity, the authors choose:
the mean of the lengths of a large number (several hundreds) of field vectors in the
cylinder. The cylinder direction with the largest intensity is taken to be the direction
of the vortex core segment. All these segments then form a vortex core. A vortex
tube is formed by constructing short cylinders of a constant diameter around the core
segments. Obviously, this is a fairly coarse description of the boundary.

In [Banks & Singer, 1994], a vortex core is determined as follows. First, points
of minimum pressure and maximum vorticity magnitude are chosen as seed points.
These seed points are the initial points for a ‘predictor-corrector” integration of the
vorticity field. At each integration step, the integrated vorticity field predicts a posi-
tion, which is corrected by moving to the pressure minimum in a plane perpendicular
to the vorticity direction. In that way, a series of points is found which form the vortex
core. Once the core has been found, closed curves described by splines are used to
determine the vortex boundary. This representation is compact yet allows for a wide
range of contours.

In [Zhu & Moorhead, 1995], a technique was described to extract ocean eddies,
which may be regarded as a specific form of vortices. In contrast to the previous tech-
niques, which were 3D techniques, this is a 2D layered technique, specifically intended
for 2D layered data sets common in hydrodynamic applications (see also [Sadarjoen
et al., 1998b]} and Section 3.3 of this thesis). To find vortex cores, critical points are deter-
mined of the velocity field of a 2D layer. To find vortex boundaries, deformable elliptic
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contours called Simplified Geometric Deformable Models (SGDMs) are laid around
the critical points and expanded. The expansion criterion is determined by maximiz-
ing the angle between the contour tangent and the local velocity direction. In this way,
a set of elliptic contours for each slice is obtained, which are matched to connect those
contours belonging to the same core.

Recently, a third category was developed, the geometric methods, which are inde-
pendent of physical criteria. Typical of these methods is that they only use geometric
properties of flow curves to determine whether a region contains a vortex, without
employing physical quantities.

In [de Leeuw & Post, 1995], an interactive technique was described for detecting
vortices, using a box-shaped region in which sample points were taken. For all the
sample points in the box, a number of properties were calculated, including the curva-
ture centre of the streamline through the sample point. If the box contained a vortex,
the curvature centres would accumulate near a point, otherwise they would be scat-
tered.

In [Portela, 1997], a rigorous mathematical framework was developed to formalize
the intuitively clear concept that a vortex consists of swirling motion around a central
set of points. To define swirling motion, the winding-angle concept from differential
geometry was used. To define a central set of points, closed Jordan curves were used,
which separate the Euclidian plane into the inside and the outside of a vortex. As the
Jordan curves and the Euclidian plane are only defined in 2D, this method is limited
to detecting vortices in 2D.

A simpler, yet effective method is described in [Sadarjoen et 4l., 1998b] and in Sec-
tion 4.5 of this thesis. This method determines the circularity of a streamline or path-
line, by measuring the number of circular windings the line makes. If, in addition, the
end point of the streamline or pathline is close to its starting point, then the line could
be part of a vortex. This method is currently also limited to 2D, but looks promising.
Another advantage is that this method also allows for quantification of vortices, by
calculating numerical attributes of them.

Related to vortices are recirculation zones, which is a frequently-used term indicating
regions of separated flow [Shih & Ho, 1994; Chein, 1990]. Separated flows are of great
importance, not only from a theoretical point of view, but also in engineering applica-
tions, as they occur behind flame holders in combustors, in diffusers, on airfoils, etc.
Because recirculation zones often show similar rotational patterns as vortices, it seems
to make sense to apply similar detection methods for finding the cores of recirculation
zones as for vortex cores.

In this thesis, vortex detection is mainly covered in Chapters 4. Section 4.1 gives a
brief overview of experiments with physical methods, but more attention is given to
the geometric methods, which are described in Sections 4.3 through 4.5. In addition,
Section 5.5.2 of this thesis describes a method for extracting recirculation zones, and
Section 6.4.2 for extracting vortices using deformable surfaces.
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Particle tracing is an important technique for visualization of flow fields resulting from
computational fluid dynamics (CFD) simulations [Hin & Post, 1993]. This technique
visualizes a velocity field by simulating the release of massless particles in the flow,
and calculating their trajectories, or motion paths through the field. A source of com-
plications is the use of irregular grids in CFD simulations, such as curvilinear and
unstructured grids. See Section 2.1.2 for a discussion on grid types.

This chapter first covers the fundamentals of particle tracing in Section 3.1 and then
goes on to describe the specifics for particle tracing in three different types of irregular
grids: structured curvilinear grids in Section 3.2, o-transformed grids in Section 3.3,
and unstructured grids in Section 3.4. Section 3.5 shows some example applications.
Finally, Section 3.6 gives a summary and conclusions.

3.1 Fundamentals of particle tracing

The calculation of a particle trajectory is based on a stepwise numerical integration of
the velocity field, which may be described by an ordinary differential equation [Sadar-
joen et al., 1994]. In stationary, or time-independent velocity fields, the equation is:

i v(x) (3.1)

where x is the position of the particle, ¢ is time, and v(x) the velocity field. In insta-
tionary, or time-dependent velocity fields, the equation is:

((ii—)t( =v(x,t) 3.2)

Throughout this thesis, we assume we have stationary flow fields, unless mentioned
otherwise. The starting position xo of the particle provides the initial condition at

1Sea waves come and go like clouds // The north wind starts blowing with thunder // Around the
tower, all screens have been raised // lying down I look at the rain on 1000 mountains (Zeng Gong)
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initial time to: x(to) = Xo. Subsequent points are calculated as

tit1
x(tipr) = x(t:) + /t T v (3.3)

using a standard numerical integration method, such as Euler, Heun or Runge-Kutta-4.

The solution is a sequence of particle positions (x(to),x(t1),...) at time steps
to,t1,...,tn. For extensive descriptions of the numerical aspects, see e.g. [Buning,
1989; Hamann et al., 1995; Teitzel et al., 1997].

The above is straightforward when the fields are given in analytical form. How-
ever, in scientific visualization, the data is typically given in discrete space, on grids,
as described in Section 2.1.2. The structure of a particle tracing algorithm for uniform
(regular rectangular) grids may be given by the following pseudo code:

find cell containing initial position (point location)
while particle in grid :
determine velocity at current position  (interpolation)

calculate new position (integration)
find cell containing new position (point location)
endwhile

Two important components are point location and interpolation. Point location is the
process of determining for a specified point, in which cell it is located, and what its
relative position in that cell is. In structured grids, these are denoted by the cell indices
(4,7, k) and local offsets (e, 3,7). In uniform rectilinear grids, consisting of cubic cells,
these may be easily determined. Let the grid’s origin be at (o, %o, 2z0) and let the cells
be cubes of size s; then, position (z, y, z) is located in the cell with indices:

_ |z — o] j= Ly—yoJ,k: [z — 20

- b

S s S

and local offsets:

o= frac(z — zo)’ﬂ _ frac(y — yg),,y _ frac(z — zo)

§ s L)

Interpolation is the process of determining a data value at an arbitrary position in
a given cell, using the surrounding grid nodes and the local offsets. In uniform grids,
this is typically done with first-order trilinear interpolation. Let the velocities at the
corner nodes of a cell be denoted by vooo, Vooi, Voo, ---, Vi11. Then, the trilinearly
interpolated value is:

v(a,8,7) = vooo: (1—a)(1~p8)(1 =)+ vieo-a(l-06)(1-7) (34)
+Voor * (1 - a)(l - ﬂ)’}’ + Vior * Ot(]. - ﬂ)’}’
+voio - (1 —a)B(1 =) + viio - af(1 — )
+vour - (1 = @)By + vin - aBy
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In practice,

, hexahedral cells, with curved faces (see also Section 2.1).

grids, consisting of deformed

ir ability to conform to the shape of curved

or complex geometries, such as airplane wings and coast lines. Another advantage
is their regular topological structure, so the cells and data are addressable through in-

An advantage of curvilinear grids is the

dices (i, j, k). A disadvantage of these grids is that algorithms working in them become

more complex, because the cells are no longer cubes. Figure 3.1 shows an example of a

curvilinear grid. More information about this grid and the corresponding data set are

given in Section 3.5.1.
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Figure 3.1: Curvilinear grid of a 3D Backward-Facing Step (see Section 3.5.1)

A strategy often applied in many CFD simulation systems works by transforming

the curvilinear grid to a uniform rectilinear grid in a new domain. The grid and data,
which are typically specified in the ‘normal” domain called physical space, or P-space,

are then transformed to a new domain called computational space, or C-space. The in-

tegration steps are done in C-space, and the resulting positions are transformed back
to P-space. Unfortunately, for particle tracing algorithms, this method often leads to
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a decrease in accuracy and efficiency, as was investigated in detail in [Sadarjoen et al.,
1994; Sadarjoen et al., 1997].

In brief, it turned out that the transformation of the vector field, when done in a
simple way, introduced large errors, but when done in an accurate way, caused an
enormous increase of storage. For an accurate transformation, each vector defined
at a grid node in P-space has to be transformed to eight different vectors in C-space,
depending on which cell the node is considered to be part of. It also turned out that
the transformations from P-space to C-space, and back to P-space again, were more
costly than point location directly in P-space.

Another strategy works by calculating the particle path directly in the curvilinear
grid in the normal domain, P-space. This avoids transformations between the two
domains, although at the expense of more difficult point location. This is the case
because there is no longer a direct relation between the coordinates of a point and the
cell indices. Instead, a search must be performed in several cells, to check which of
them contains the point. In addition, in curvilinear grids it is harder to determine the
local offsets, i.e. the local position inside a cell.

3.2.2 Tetrahedral 5-decomposition

One way to cope with curved cells works by decomposing the hexahedral cells into
tetrahedra. The advantages of tetrahedra is that they are convex and planar, which
facilitates containment tests and face intersection tests.

The simplest and most efficient scheme is to decompose the hexahedral cells into
five tetrahedra, henceforth called the 5-decomposition [Sadarjoen et al., 1994; van Wal-
sum, 1995]. This method was later adopted in [Kenwright & Lane, 1995]. Figure 3.2a
shows a cube which is decomposed into one central tetrahedron and four corner tetra-
hedra. In a structured grid, the decomposition can be done in two orientations. To
guarantee connection of cell faces and to avoid overlapping cells, these two orienta-
tions should be alternated in adjacent cells, as shown in Figure 3.2b.

In tetrahedra, interpolation is typically performed using linear interpolation. Fig-
ure 3.3 shows a tetrahedron ABCD, where «, §,~ denote the local offsets in the tetra-
hedron, with the restriction that o + 8 + v < 1. If v4 is the data value in node A, vp
the data value in node B, etc., then the interpolated value vp in some position P in the
tetrahedron is:

Vp=Vp +Oz(VA - VD) +,B(VB - VD) +’Y(VC - VD)
The local offsets (o, 3,7) may be found by inverting the interpolation of the known
position of P in the tetrahedron:
P = D+a(A-D)+p(B-D)y(C - D) (3.5)
(@, 8,7) (A-D|B-D|C-D)""(P-D) (3.6)

Point location is done as follows: a line is drawn between the previous, known
position and the new, unknown position. Along this line, intersections are calculated

i
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7

(a) one central tetrahedron and (b) Alternating orientations for tetrahedral de-
four corner tetrahedra composition

Figure 3.2: Tetrahedral 5-decomposition of a hexahedral cell

Figure 3.3: Linear interpolation in a tetrahedron

between the line and the faces of the tetrahedra, into which the hexahedral cells are de-
composed. By determining which faces are intersected, it can be determined which ad-
jacent tetrahedra are traversed. For each traversed tetrahedron, a point-in-polyhedron
test is performed, until the line endpoint is in the current tetrahedron, at which point
the unknown cell has been found and the point location is complete. The decomposi-
tion is done on the fly, only for cells traversed, thus avoiding the overhead of a global
tetrahedrization.

-
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3.3 Particle tracing in o-transformed grids

3.3.1 o-transformed grids

Point location using tetrahedral 5-decomposition regularly fails in a specific type of
grids known as o-transformed grids [Sadarjoen, 1994; Sadarjoen et al., 1998a]. In our test
cases, up to 40%(!) of the particles were caught in an infinite loop between two cells, or
stopped completely. Before explaining the cause of these problems, let us first describe
this type of grids.

o-transformed grids are commonly used in hydrodynamic simulations of shallow
waters, such as marine coasts or estuaries. They consist of stacked 2D xy-layers, each
of which is a well-formed quadrangular mesh with curved and approximately orthog-
onal grid lines. Figure 3.4 shows an example. Corresponding nodes in different layers
have identical x,y-coordinates.

Figure 3.4: Horizontal slice of curvilinear o-transformed grid of the Bay of Gdarisk (see
Section 6.2). Data courtesy WL | Delft Hydraulics

In the vertical direction, the grid lines are straight and parallel to the z-axis. o-
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3.3. Particle tracing in o-transformed grids

coordinates are defined relative to the local water elevation ¢ and depth d, as o = Z—;—g.
The top layer, where o = 0, follows the free water surface, which usually only varies
gradually. The bottom layer, where o = —1, follows the sea bed geometry, which typi-
cally has strongly varying depths throughout the model. The layers in between have a
prescribed thickness distribution according to the o-transformation. Figure 3.5 shows
one possible distribution with six layers. Figure 3.6 shows a real-life example, with
a sea bed geometry and a vertical grid slice of the Lith harbour data set, which was
produced at WL | Delft Hydraulics in a simulation as part of the design of a harbour
near Lith [Meijer, 1995].

=0 [ —[1,11%

~— 2

~—~—— (22,22 %

p -

— ]

4 -

— v ]

o=-1

Figure 3.5: Vertical thickness distribution of a six-layer o-transformed grid

In o-transformed grids, a considerable number of cells may be sheared in the verti-
cal direction, because the number of layers is constant while the local depth varies, so
parallel vertical edges often lie at very different depths. The shearing is increased by
the cells typically being very thin in these applications: the model may be hundreds of
kilometers wide yet only tens of meters deep.

If the amount of shearing is high and the cells are very thin, the 5-decomposition
may become degenerate. Whereas in normal cells the orientation of the central tetrahe-
dron is as shown in Figure 3.7a, in strongly sheared cells the orientation of the central
tetrahedron is reversed (‘turned inside out’), as seen in Figure 3.7b. The top faces BEG
and DEG now lie at the bottom, while the bottom faces BDE and BDG lie on top. The
edges BD and GE have crossed each other. This is possible because the central tetrahe-
dron has edges spanning the entire cell.

Let us investigate the process of reversal between the normal and the degenerate
state of the central tetrahedron in more detail. Figure 3.8 shows the same cell as Fig-
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Figure 3.6: Ten-layer o-transformed grid of Lith Harbour, with a river bed geometry
and a vertical grid slice. Data courtesy WL | Delft Hydraulics

ure 3.7, but now the four faces of the center tetrahedron each have a different colour
(grey shade). The subfigures show different degrees of deformation, expressed in the
height h over which edge DH is displaced; A = 0 means no deformation. In Figure 3.8a,
h = 0 and the upper (black and white) faces are on top. In Figure 3.8b, A = 1 and all
four faces are coincident, as the black and white faces are visible but a crossing edge
of the other two faces is also visible. In Figure 3.8¢c, where h = 1.5, the two lower faces
(grey) are on top. The height h for which the central tetrahedron becomes degener-
ate, depends on the decomposition orientation and on the height of the other vertical
edges.

The degenerate 5-decomposition causes two problems. One problem is that par-
ticles get caught in an infinite loop between two tetrahedra. Due to the reversed ori-
entation of the central tetrahedron, the point location algorithm finds a false exit face,
and therefore a false adjacent tetrahedron. As a consequence, the algorithm moves
from a corner tetrahedron to the central tetrahedron, and then returns to the corner
tetrahedron where it came from, instead of proceeding to the next one. In this way, it
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(a) Normal cell (b) Strongly sheared cell

Figure 3.7: (a) normal and (b) reversed orientation of the central tetrahedron BDEG

will continue moving back and forth forever.

Another problem is that the central tetrahedron may overlap with corner tetrahe-
dra, and even with neighbouring cells. As a consequence, a point location algorithm
cannot determine a unique tetrahedron which contains a given point, and fails.

In typical o-transformed grids, the frequency at which these problems occurred,
varied between 4% and 40% of the particles, depending on the data set and particle
source locations. In some cells, the problems might be solved by changing the decom-
position orientation, since the problem is orientation-dependent. But then the problem
would occur in other cells, because the orientation must be chosen globally for the en-
tire grid.

3.3.2 Tetrahedral 6-decomposition

An apparent solution to the point location problems would be to scale or shear a de-
formed cell such that the reversed orientation of the edges and tetrahedra is avoided.
However, scaling or shearing grid cells amounts to applying a computational space
algorithm: the grid is transformed to a different domain, where the cells are regular
and rectangular. We chose not to do this because of the loss of accuracy and efficiency
[Sadarjoen et al., 1997].

A better approach is to use a different tetrahedral decomposition. A systematic
overview of all the possibilities, given in [Albertelli & Crawfis, 1997], shows that a
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(c)h=15

Figure 3.8: Cell with increasing degrees of deformation h

hexahedron can be decomposed into 5, 6, or any even number of tetrahedra between
12 and 24. For reasons of efficiency and storage space, the preferred approach is the
decomposition into 6 tetrahedra, henceforth called the 6-decomposition.

Figure 3.9 shows the 6-decomposition: a hexahedral cell is decomposed into two
three-sided prisms, each of which is decomposed into three tetrahedra. Just like the 5-
decomposition, the 6-decomposition can have two orientations: each face diagonal can
be chosen in two ways, but unlike the 5-decomposition, the 6-decomposition method
does not require the orientations to alternate for adjacent cells.

The main advantage of this 6-decomposition method is that it solves the point lo-
cation problems. There is no longer a central tetrahedron with edges which span the
entire cell and which cross each other when the cell is sheared in the vertical direction.

30




3.3. Particle tracing in o-transformed grids

Figure 3.9: Decomposition of a hexahedron into six tetrahedra (compare Figure 3.2)

Figure 3.10 shows one orientation of a 6-decomposition of a normal cell, and in a
sheared cell comparable to Figure 3.7. One of the prisms (ACDEGH) has been decom-
posed into three tetrahedra: ACDG, ADGH, and AEGH. It can clearly be seen that
the tetrahedra ACDG, ADGH, and AEGH retain their orientations when the prism is
sheared, as the hatched planes AGH and ADG retain their relative positions: none of
the three tetrahedra is turned inside out. It can also be shown that the tetrahedra will
never change their orientations, no matter how large the shearing is, as long as the
edges are only displaced in the vertical direction (as is the case with o-transformed
grids).

Figure 3.11 shows the other orientation of the 6-decomposition of the same cell.
Just like in the previous figure, one of the two prisms (BCDFGH) has been decom-
posed into three tetrahedra. The prism in front of the plane BDFH is decomposed into
the tetrahedron BFGH, which lies on top of the hatched plane BGH, the tetrahedron
BCDG, which lies under the hatched plane BDG, and the tetrahedron BDGH, which
lies in between. Here, it can also be seen that the tetrahedra retain their orientations
when the prism is sheared, since the hatched planes BGH and BDG retain their relative
positions.

The performance of the 6-decomposition is similar to that of the 5-decomposition:
in tests, it was found that the execution speed of both algorithms was practically the
same. In theory, one might expect the 6-decomposition to be slower, because a cell is
decomposed into more tetrahedra. However, in practice it was found that a particle
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(a) Normal cell (b) Sheared cell

Figure 3.10: One orientation of the tetrahedral 6-decomposition; the tetrahedra retain
their relative positions.

(a) Normal cell (b) Sheared cell

Figure 3.11: Other orientation of the tetrahedral 6-decomposition; the tetrahedra retain
their relative positions.
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typically traverses only 3 of the tetrahedra, regardless of which decomposition is being
used.

3.4 Particle tracing in unstructured grids

So far, the grids we have used have been structured grids, which are characterized by
a regular grid topology: in 3D space, the grid always consists of [ x m x n cells, and for
each cell it is known which are the neighbouring cells. In contrast, unstructured grids
have an irregular topology, so it is not known in advance which neighbours a cell has
(see also Section 2.1). While structured grids typically consist of quadrangles in 2D and
hexahedra in 3D, unstructured grids often consist of triangles in 2D and tetrahedra in
3D, although unstructured grids of hexahedra also exist. Figure 3.12 shows an example
of an unstructured grid, used in a Finite Element Analysis of a slice of a human skull
[van den Broek et al., 1998].

N
y
S
b
<\

£

X
<]
I
Y

N

AVA
o
X0
KK
¥
200

YAV

X5
Sl

o]
s

SO

9
7

Vi
5

7 {7
20
Aravy
P
P
RANSK
r Ay
o
N
\/

v,
AV
ot
I\
N
7o
X
W,
KA
XX S h
S B0
QR ALK
PRSI
AVAYA
ANAN
S5
AWV

_
<
K/
S
S
N
\/
é
Q)
g
<)
i

o
=
\ >
</
K5
<
D
’B
3
o
K
IS
N
K
X
15
Vb‘::
X
o
ex
S,
R
S

b

K
2 A\
LRX
AVAY;
NN
o
FaYa!
AN
KK

75
&7
o5
5
%

1
It
%
X
g

KK

NN
i
0
g'

\
S

7%
v
N
N
N
7
A
N
S

K7

[
%%
i
\\/
W\
Q

Q
\.

-gw; >

Figure 3.12: Unstructured grid from Finite Element Analysis

An advantage of unstructured grids is the greater degree of modelling freedom.
A disadvantage of unstructured grids is the greater complexity of certain algorithmic
operations. Especially point location and grid traversal are difficult, because they rely
on a stepwise traversal between neighbouring cells, but information about cell neigh-
bours is not available in these grids.

What is therefore necessary, is the addition of extra adjacency information for each
cell. One way to do this is to derive and store information about cell faces, such that an
algorithm can query the data structure to find the answers to the following questions:

1. which faces belong to a cell?
2. which cells are on either side of a face?

Figure 3.13 shows the standard and additional information that can be added to
handle unstructured grids. The standard information typically consists of a list of
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nodes with their coordinates, and a list of cells with pointers to the nodes they consist
of (cell_.nodes). These relations are depicted in the figure by solid arrows.

#nodes #cells

~ o
So 2/,”
face_nodes 77 cell_faces
S -

. face )

Figure 3.13: Connectivity relations between cells, faces, and nodes in a grid; dashed
lines indicate additional connectivity information.

The additional information consists of a list of faces, with pointers to the nodes
at their corners (face_nodes), and to the two cells sharing that face. Before the lat-
ter can be determined, pointers should first be determined from each cell to its faces
(cell_faces). These three relations are depicted in the figure by dashed arrows.

The number of nodes (#nodes) and number of cells (#cells) depend on the size
of the data set. The number of nodes per cell (cell_nodes), number of faces per cell
(cell_faces), and number of nodes per face (face_nodes) depend on the type of cells the
grid consists of. Some possibilities for this are listed in Table 3.1.

cell type cell faces face_nodes cell_nodes
tetrahedra 4 3 4
hexahedra 6 4 8
4-sided pyramids 5 3or4 5
3-sided prisms 5 3or4 6

Table 3.1: Connectivity relations in various grid types

A library called CNX-11ib was implemented with functions which derive and use
the additional connectivity information needed to handle unstructured grids [van der
Wouden, 1997]. The library supports multiple development environments: AVS-5™,
AVS/Express™, and stand-alone C and C++ applications, and provides a uniform way
of data access regardless of the development environment. Currently, functions are
available for:
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point location
ray traversal
interpolation
gradient calculation
These functions support grids consisting of either tetrahedra or hexahedra, which suf-
fices for most of the unstructured grids currently in use. When needed, more functions
could be added to support other cell types as well.

Figure 3.14 shows the layered architecture of CNX~1ib, and the data flows from
the development environment and to the application.

Application

\ L6: miscellaneous functions /
\ L5: grid functions /
. \ L4: cell functions /
CNX_IIb \ L3: connectivity 7
L2: data access I

\ L1: Connext access 7
ConnExt struct

Data| |Functions

I Development Environment I

Figure 3.14: CNX-1ib architecture

The CNX-11ib consists of a Connext (Connectivity extension) data structure and
a set of C/C++ functions. The Connext data structure contains the derived connec-
tivity data and pointers to the available grid. Deriving this data structure is done in a
preprocessing step, as it is time-consuming, but it only needs to be done once for each
data set, after which the information can be reused in order to save time.

The C/C++ functions have been grouped into levels, in accordance with the lay-
ered architecture:

o Level 1 contains functions to directly access the Connext data structure.
Level 2 contains functions to access the volume data.
Level 3 contains functions to derive and query the Connext data structure.
Level 4 contains functions for operations at the cell level, such as interpolation.
Level 5 contains functions for operations at the grid level, such as point location
and ray traversal.
¢ Level 6 contains miscellaneous functions, such as for gradient calculation.
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3.5 Examples

The techniques described in the previous sections were implemented in three systems:

¢ For particle tracing in curvilinear grids, a stand-alone system called PLANKTON

was developed [Hin, 1994; Sadarjoen et al., 1994] in C and Graphics Library (GL)

by Silicon Graphics. The system handles rectilinear and structured curvilinear
grids of hexahedral cells by applying tetrahedral 5-decomposition.

e For particle tracing in o-transformed grids, a set of AVS/Express modules
called PLANKTON-97 was developed [de Boer, 1998]. The system handles o-
transformed grids of hexahedral cells by applying tetrahedral 6-decomposition
[Sadarjoen et al., 1998a]. As PLANKTON-97 uses AVS/Express components for
the user interface and graphics rendering parts, it is multi-platform: it should
work on all platforms capable of running AVS/Express.

e For particle tracing in unstructured grids, an AVS-5 module was developed
based upon the CNX-1ib library [van der Wouden, 1997]. The system works
with unstructured grids of either tetrahedral or hexahedral cells.

The following sections show applications of the above systems for each type of grid.

3.5.1 A 3D backward-facing step

This section illustrates particle tracing in structured curvilinear grids, using a 3D Back-
ward Facing Step (BFS). This is a model of a channel with a step mounted in it, which
results in a suddenly increased channel width behind the step. Depending on the flow
conditions (e.g. the Reynolds number) and on the step width compared to the channel
width, this may result in flow separation just behind the step, and flow reattachment
further down the channel. The separated flow which occurs just behind the step is
also known as a recirculation zone, because the flow exhibits a recirculating pattern
there. Figure 3.15 shows a scheme of the flow structure in a 2D BFS. The flow structure
in 3D is more complex, because in addition to flow ‘within a 2D slice’, there may be
flow components perpendicular to the slices, so-called 3D components.

inflow main flow

re separation
CIrcU —— N~ » surface
lation

Figure 3.15: 2D Backward-facing step

Many researchers have studied this case, e.g. Chein, who numerically modelled
a laminar flow over a 2D BFS, to make predictions about streamline patterns, veloci-
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ties, vorticities, and separation and reattachment lines [Chein, 1990]. In [Shih & Ho,
1994}, a 3D BFS was studied experimentally, and it was found that the reattachment
positions and the flow characteristics inside the recirculation zone were highly three-
dimensional, depending on the aspect ratio between channel width and step height.

The data set we use here is a 3D BFS calculated in a numerical simulation per-
formed at the Mathematics Dept. of Delft University of Technology, as one of the test
cases for the development of the I1SNaS CFD flow solver [Mynett et al., 1991]. Fig-
ure 3.1 on page 23 shows the 3D curvilinear grid of this data set, which consists of
25 x 37 x 9 nodes; at each node, pressure and three velocity components were calcu-
lated.

The PLANKTON system [Hin, 1994] was used to trace up to 200 time steps of At =
0.1s of ten particles released along a horizontal line in the inflow. The particle trac-
ing algorithm applied here was a physical space algorithm employing tetrahedral 5-
decomposition as described in Section 3.2. This worked without problems, as the grid
of this model was a curvilinear grid without strongly sheared cells.

Next, a custom-made AVS-5 module called render particles was used to ren-
der the particle paths as tubes and animate them. Figure 3.16 shows two frames from
this animation. The paths are coloured with the velocity magnitude. One path, high-
lighted in white, makes a loop through the recirculation zone. This path also shows
the 3D nature of the flow, as its movement is not contained within a 2D slice, but also
moves sideways.

This example shows that the 5-decomposition is an effective method for particle
tracing in structured curvilinear grids.

3.5.2 Lith Harbour

This section illustrates particle tracing in o-transformed grids. The case we use is a
project carried out at WL | Delft Hydraulics which involved the design of a harbour
near Lith by the Maas river [Meijer, 1995]. The harbour is separated from the river
by a thin dam. The geometry of the harbour was to be designed in such a way that
the overall flow in the river was guided smoothly past the entrance, in order to min-
imize siltation and associated dredging of the harbour entrance due to deposition of
river sediment. In evaluating the design alternatives, particle tracing was one of the
techniques used [Mynett et al., 1995].

The data set used from this case is a o-transformed curvilinear grid with 121 x 40 x
10 cells. At the grid nodes, velocity and turbulence intensity are defined. Figure 3.6 on
page 28 showed a 3D view of the grid highlighting the o-transformation. Figure 3.17
shows a 2D horizontal (xy) grid slice consisting of 80 x 39 nodes. The figure also shows
another typical feature of many hydrodynamic grids: land points are not included in
the computational model, which results in a topologically incomplete grid. The units
along the axes are Parisian longitude and latitude coordinates, expressed in meters
from Paris; the extent of the area is approximately 600 x 600 m.

As PLANKTON requires that the grid be a full array of I x m x n points, additional
dummy points had to be specified, which results in the grid slice shown in Figure 3.18.
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(a) frame 25

(b) frame 200

Figure 3.16: Two frames of a particle path animation in a 3D backward-facing step. The
white particle path, which goes through the recirculation zone, shows the 3D nature of
the flow.
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Figure 3.17: Lith Harbour 2D horizontal grid slice. Data courtesy WL | Delft Hy-
draulics

First, PLANKTON was used to release particles in the upstream part of the river,
which is in the upper right in Figure 3.17 and in the harbour, which is in the lower left
of the figure. Trajectories were calculated using up to 201 time steps of At = 50s.

An OpenInventor™ application, developed for [Reinders et al., 1999], was used to
render the particles as shaded spheres, as well as the river floor geometry. Figures 3.19
and 3.20 show four frames of an animation consisting of 201 frames. Figure 3.19a
shows the initial positions of the particles, and the bottom geometry. Here, the view
is approximately from the north west, with the harbour being in the upper half of
the figure, and the Maas river in the lower half. The river and the harbour are sep-
arated by a thin dam. Figure 3.19b shows animation frame 15, where it can be seen
that the particles in the river have a much higher velocity than those in the harbour.
Figure 3.20a shows frame 22, where some particles in the river have already left the
domain. Finally, in Figure 3.20b, only particles in the harbour are left.

The render particles AVS module was again used to render the particle paths
as tubes, resulting in Figure 3.21. The cover of this thesis shows a colour version of
this figure.

The particle paths in Figure 3.21 clearly show the flow patterns in the river and
in the harbour. From the shape of the particle paths, it can be seen that the harbour
contains a recirculation zone. From the length and the colours of the paths, it can be
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Figure 3.18: Lith Harbour; 2D horizontal grid slice with additional dummy points

seen that the velocities in the recirculation zone are much lower than in the river.

In another experiment, particles were only released in the upstream part of the
river. In this case, PLANKTON, which relies on the 5-decomposition, experienced
problems with 14% of the particles, caused by strongly sheared cells [de Boer, 1998],
[Sadarjoen et al., 1998a]. In contrast, PLANKTON-97 experienced no problems, as the
6-decomposition proved to be insensitive to strongly sheared cells.

Figure 3.22 shows two frames of a PLANKTON-97 animation, where the particles
have been rendered as arrows, coloured with the velocity magnitude. The particles
clearly show the velocity profile, as the particles near the river bed are slower than the
particles near the water surface.
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(a) Frame 0

(b) Frame 15

Figure 3.19: Lith Harbour; frames 0 and 15 of a PLANKTON animation
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(a) Frame 22

.
Tl

(b) Frame 201

Figure 3.20: Lith Harbour; frames 22 and 201 of a PLANKTON animation
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Figure 3.21: Lith Harbour; particle paths calculated with PLANKTON, rendered with
AVS-5
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Figure 3.22: Lith Harbour; two frames of a PLANKTON-97 animation




3.6. Conclusions

3.5.3 A bluntfin

This section illustrates particle tracing in unstructured grids. The case we use is an
unstructured Blunt Fin data set as provided with AVS-5 [AVS, 1993]. This data sets
models the flow near the air-intake of a hypersonic aircraft. The data set is defined on
an unstructured grid of 640 nodes and 441 hexahedral cells, with each node containing
the following quantities: density, x-, y-, and z-momentum, and stagnation. Figure 3.23
shows the grid.

Figure 3.23: Blunt Fin; unstructured hexahedral grid

. An AVS-5 module called avs_cnx_s1ine was developed which uses the CNX-1ib
library for data on unstructured grids [van der Wouden, 1997]. With this module, we
released particles from a vertical rake and calculated their paths. Figure 3.24 shows
these particle paths. A comparison with particle paths calculated by the AVS-5 built-
in module shows some slight differences. These are caused by different interpolation
methods. AVS-5 uses the value of the nearest-neighbour, while CNX-lib uses linear
interpolation of corner node values.

This example demonstrates that the development of the CNX-11b library for un-
structured grids was successful, which enabled particle tracing in unstructured grids,
but the library may also be used for the development of other visualization techniques
on unstructured grids.

3.6 Conclusions

In this chapter, we have described techniques for particle tracing in various kinds of
grids: structured curvilinear grids, o-transformed grids, and unstructured grids. Each
of these grids poses different requirements for a particle tracing algorithm.

For particle tracing in structured curvilinear grids, which consist of hexahedra, the
cells can be decomposed into five tetrahedra. For particle tracing in o-transformed

45



Chapter 3. Particle Tracing

Figure 3.24: Blunt fin with particle paths released from a rake

grids, this 5-decomposition cannot cope with the problems of strongly sheared cells in
the vertical direction. In that case, a 6-decomposition should be used. This decompo-
sition does not entail greater computational costs.

For particle tracing in unstructured grids, extra connectivity information must be
added to enable the particle tracing algorithm to traverse the grid. This connectivity
information comprises a list of cell faces and the cells that share them, such that cell
neighbours may be found. Although deriving this information is computationally ex-
pensive, it needs only be done once for each dataset, after which it can be reused in
all visualizations. In this context, a standard representation for adjacency information
would be useful.

Finally, we have shown examples of particle tracing in each grid type, using hydro-
dynamic datasets.
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Vortex detection
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Vortices are important features in many types of flow research, and they are studied
for theoretical and practical purposes. In fundamental flow research, the evolution of
vortices is of great importance. In engineering applications, such as machinery design
and hydraulics, vortices can either be desirable or undesirable, and designs are opti-
mized to prevent or to promote the occurrence of vortices. Visualization of vortices is
therefore important for understanding the underlying phenomena, and also for sim-
ulating and modifying designs. Previous applications of vortex detection and visual-
ization have been described in oceanography [Zhu & Moorhead, 1995], aerodynamics
[Kenwright & Haimes, 1997], and turbomachinery design [Roth & Peikert, 1996].

Informally, a vortex is defined as a swirling flow pattern which will often behave
as a coherent structure in time-dependent flows. In [Robinson, 1991], it was described
as:

“A vortex exists when instantaneous streamlines mapped onto a plane normal to
the vortex core exhibit a roughly circular or spiral pattern, when viewed from a
frame of reference moving with the center of the vortex core.”

A formal definition of a vortex cannot be given. Although in fluid dynamics research,
several criteria have been developed for their detection, the essential characteristics
are hard to formalize, and none of the existing criteria is entirely satisfactory [Banks &
Singer, 1994; Roth & Peikert, 1996].

This chapter presents vortex detection criteria of two types: physical criteria and
geometric criteria. Physical criteria are covered in Section 4.1. One special type of
physical criteria, critical points, is covered in Section 4.2. Next, two examples of a
geometric criteria are described: one is based on curvature centres, for which the ba-
sic principles are described in Section 4.3, and for which enhancements are given in
Section 4.4. Another one, described in Section 4.5, is based on the circular shape of
streamlines. Finally, Section 4.6 summarizes the findings and gives some conclusions.

"How mighty the Western Hua Mountain stands tall! // The Yellow River comes like a thread from
the horizon // The Yellow River hits the mountains for 10,000 miles // Vortices spinning about their axes
thunder through Qin. (Li Bai)
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4.1 Physical vortex detection criteria

The first category of vortex detection criteria is based on physical quantities that can
be determined at any point of a flow field. These criteria consist of a physical quantity
and a range, e.g. Q > 0 for some quantity Q. The criteria are based on assumptions
about the characteristics of the flow patterns in an infinitely small zone around a point.
The quantities are usually scalars, although they are sometimes derived from vector
or tensor quantities, such as velocity and quantities derived from the velocity. With
these quantities, different kinds of criteria may be derived. This section gives a few
examples, but does not intend to be complete or exhaustive. Other brief surveys may
be found in [Banks & Singer, 1994; Roth & Peikert, 1996; Portela, 1997]. For a compre-
hensive text book on fluid mechanics, see [Batchelor, 1967-1994].

4.1.1 Criteria descriptions

One frequently used criterion for detecting vortices is low pressure. In a free flow with-
out obstacles, a pressure gradient with low pressure at a vortex core can drive the
rotational motion. Unfortunately, in flows governed by large pressure gradients, due
to obstacles or walls, these pressure gradients will dominate the much smaller pres-
sure gradients associated with vortices or rotational motion. In [Portela, 1997], it is
even shown that there are vortices that have a pressure maximum at the vortex core. So
this criterion is not always sufficient.

Another group of criteria used for identifying vortices is derived from the velocity
field. An important criterion is high vorticity magnitude. Vorticity is a vector quantity
defined as the curl of the velocity field: w = V x v. Since vorticity is proportional
to the angular velocity of a fluid particle, it is easy to draw the conclusion that where
there is a vortex, there is rotation, so the vorticity magnitude should be high. However,
the opposite is not always true: the presence of high vorticity does not guarantee the
presence of a vortex. The simplest example is a shear flow, where there is high vorticity
at every point, yet there are no vortices. Another criterion derived from the velocity
field is high normalized helicity (Hy), a scalar quantity defined as Hn = [3{gy7 [Buning,
1989]. This may also be regarded as the cosine of the angle between the velocity and
the vorticity. H, reaches its maximum when v is parallel to w. This is supposed to
occur at vortex cores, but sometimes the helicity criterion fails to detect part of the
vortex core [Banks & Singer, 1994].

Yet other criteria, which are also derived from the velocity field, use the properties
of the velocity gradient, or rate-of-deformation tensor Vv. In particular, complex or
imaginary eigenvalues of this tensor indicate rotational movement. In [Chong et al.,
1990}, the authors suggest a definition of vortex cores as regions where Vv has complex
eigenvalues, so that the gradient tensor is dominated by the rotation component. In
[Helman & Hesselink, 1991], a special case is used, by not checking for complex eigen-
values of Vv at all (grid) points of the field, but only around critical points, i.e. where
v = 0. However, in many flows resulting from simulations there are much fewer crit-
ical points than vortices [Roth & Peikert, 1996], or they are at different locations than
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the vortices [Banks & Singer, 1994]. In [Jeong & Hussain, 1995], vortices are defined as
regions where A, < 0. Here, ) is defined as the second-largest eigenvalue of the ten-
sor §?+ 0% where S = 1(Vv+(Vv)T) and Q = (Vv —(Vv)T) are the symmetric and
anti-symmetric parts of the velocity-gradient tensor Vv. This criterion is based upon
the Navier-Stokes equations, and boils down to finding those regions of low pressure
which are caused only by swirling motion, rather than by strain or viscosity. How-
ever, since it is also based on pressure, this criterion has the same drawbacks as the
low-pressure criterion.

Since single scalar quantities have often not proven satisfactory, some researchers
have tried combinations of multiple scalar criteria. In [Hunt et al., 1988], a combined
criterion was used of low pressure and a positive second invariant of Vv, while [Banks
& Singet, 1994] used a criterion of low pressure and high vorticity magnitude. How-
ever, the latter only used this criterion as a heuristic method to find seed points, for
applying a more algorithmic method for tracking vortex cores. These purely algorith-
mic methods also include the algorithm proposed in [Villasenor & Vincent, 1992] (see
Section 2.5).

4.1.2 Example

We now show some examples of physical criteria applied to a single data set. The
goal is to verify how well the physical criteria are able to detect this pattern. The data
set we use is the result of a simulation performed at the NASA-Ames Research Cen-
ter of a laminar flow past a tapered cylinder [Jespersen & Levit, 1991]. This tapered
cylinder has a variable radius along the length axis, which influences the vortex shed-
ding frequency along the cylinder. The grid used is a structured, cylindrical grid with
64 x 64 x 32 nodes, each of which contains density, z,y, z-momentum, and stagnation.
The simulation is time-dependent, but we use only one time step.

Figure 4.1 shows a global view of the data set, with the cylinder in the centre, the
bottom plane of the cylindrical grid, and a rectangular zy-plane at z = 16, in which
streamlines are released. The cylinder is located at the origin and has a radius of ap-
proximately r = 0.5.

Figure 4.2a shows a slice at z = 18, coloured with pressure. The arrow plot of the
vector field shows a vortex behind the ‘lower half’ of the cylinder. It can be seen that
the global pressure minima are located close to the cylinder surface, on the top and
bottom sides (near (z,y) = (0,%0.5), although there are no vortices there. There is
also a region of slightly lower pressure, which partly corresponds to the shape of the
vortex to be found, but not completely. Therefore, pressure is not a sufficient quantity
for detecting this vortex.

Figure 4.2b shows the same slice coloured with vorticity magnitude w. It can be
seen that the maxima of the vorticity magnitude are located near the cylinder sur-
face again. There are also regions with lower values which have shapes similar to the
Von Karman vortices well-known from fluid dynamics [Batchelor, 1967-1994]. How-
ever, these vorticity regions correspond even less with the vortex shape than the pres-
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Figure 4.1: Global view of the flow past tap,ered cylinder, with the cylinder, the bottom
grid slice, and a streamline plane. The flow is from left to right.

sure region. Therefore, vorticity magnitude is also not a satisfactory quantity for de-
tecting this vortex.

Figure 4.3a (see also Colour Plate 1) shows the slice coloured with normalized he-
licity H,,. High values of H,, are located in numerous regions. It can be seen that there
is a local maximum at the location of the vortex core. So in this case, high normalized
helicity could be a suitable criterion for finding the core of this vortex, although further
selection would be necessary to filter out spurious maxima not belonging to vortices.

To find the boundary of this vortex, we would like to use a contour line of a slightly
lower value of the normalized helicity. Unfortunately, the contour lines of the helicity
field in the region around the vortex core do not correspond to the streamlines in that
region. Therefore, this criterion would not be suitable for detecting the boundary of
this vortex.

Figure 4.3b (see also Colour Plate 2) shows the slice coloured with Ay, and white
contour lines of A\ = 0. The points where Ay < 0, which according to the criterion
should constitute vortices, are inside these curves. It can be seen that the shape of
these curves is also similar to Von Karmdn vortices. One of the large curves, the one in
the lower half of the image, indeed contains the vortex as indicated by the arrow plot.
Unfortunately, the other large A\, = 0 curve, in the upper half of the image, does not
correspond to any vortex in the arrow plot at all. So, the A, criterion is suitable as a
pre-selection technique, but extra verification is necessary.

This example illustrates how physical criteria often fail to locate vortices. In some
cases, certain criteria give an indication of where vortices are located, but they seldom
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(b)!

Figure 4.3: Tapered cylinder slice coloured with (a) normalized helicity (b) A2. On the
white curves, Ay = 0.
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(b)

Figure 4.2: Tapered cylinder slice coloured with pressure (top) and vorticity magnitude
(bottom).
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correspond exactly with vortices seen in the arrow plots. None of the criteria works in
all cases and extra verification is always necessary. We attribute this weakness to the
fact that these criteria are based on point samples, while vortices are obviously regional
phenomena. Apparently, it is not possible to extend the properties of infinitesimal
regions to larger regions.

4.2 Critical points for vortex detection

It has been reported that vortex cores can be located by calculating critical points of
the velocity field, i.e. points of zero velocity [Kenwright & Haimes, 1997], [Zhu &
Moorhead, 1995]. Spiralling or circular flow is then indicated by complex eigenvalues
of the velocity gradient tensor at the critical points. We have investigated this, too.

Critical points in 2D can be calculated as follows. Given a quadrilateral cell con-
sisting of four nodes where the velocity x-components u are (ugo, uo1, u10, u11) and the
velocity y-components are (voo, 01,10, v11). Then, the interpolated velocity at point
(a, B) is given by:

u(a, ﬂ) = (1 - a)(l — Bugo + a(l - ﬂ)ulo + 6(1 - a)u01 + afuq; (4.1)
v(a,ﬂ) = (1 - Ol)(l - ,6)'000 + a(l - ﬂ)’l}lo -+ ﬂ(]. — a)v01 + a,B’Uu (42)

We want to determine the coordinates (a, 8) where u(a, 8) = v(e, 8) = 0. Regrouping
the above terms for a and 3, and requiring both velocity-components to be zero, we
obtain:

ugo + (u10 — uoo)a + (vor — ugo)B + (uoo + u11 — w10 —ug)af = 0  (4.3)
voo + (V10 — voo)a + (Vo1 — voo)B + (voo + vi1 —vi0 —vo1)af = 0  (4.4)

or, by substituting letters for the coefficients:

K+La+MB+NaB = 0 (4.5)
P+Qa+RB+SaB = 0 (4.6)
from which it follows that:
a=—(K+MB)/(L+ NpB) 4.7)
B=—(P+Qa)/(R+ Sa) (4.8)

By substituting (4.7) in (4.8), we obtain:
(NR+MS)B*+(NP+LR-KS—-MQ)8+(LP-KQ)=0 (4.9)

This gives at most two solutions for 3, from which « can be obtained through back-
substitution in (4.7). The real solutions for which 0 < a, 8 < 1 are valid critical points.

Then, the presence of a vortex core may be indicated by the type of eigenvalues
of the velocity gradient Vv at the critical points. If the eigenvalues are complex, this
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indicates rotational or spiralling flow around the critical point [Helman & Hesselink,
1991].

However, there are a few caveats: just like the physical quantities of Section 4.1,
this vortex detection method is based on samples in an infinitesimal region (in which
the velocity gradient is calculated). Therefore, it might not work well in regions with
large vortices. Also, since the critical points are defined as points of zero velocity, they
are sensitive to noise: adding a small constant to the entire field moves the location of
all the critical points. Thirdly, this method does not allow to calculate vortex attributes,
as opposed to the winding-angle method described in Section 4.5.

4.3 The curvature centre method

This section describes a geometric method for vortex detection in 2D. Geometric methods
are exclusively based on the geometric properties of flow curves, not on any physical
quantities. More specifically, they try to detect vortices by looking for loops in flow
curves. While there is no generally accepted formal definition of a vortex, it is gener-
ally agreed upon that vortices consist of more or less circular flow patterns, reflected
in circular flow curves.

4.3.1 Method description

The curvature centre method works by sampling the field at many points, typically
at all grid nodes. For each sample point, the curvature centre is determined, which is
the centre of the osculating circle of the streamline through that point [Farin, 1990]. In
vortical regions of the field, characterized by (almost) circular pathlines, the curvature
centres should accumulate in a small area [de Leeuw & Post, 1995]. Figure 4.4a shows
an example of how the samples taken on a perfectly circular streamline all project to
the same curvature centre. In non-vortical regions of the field, characterized by non-
circular pathlines, the curvature centres will be randomly scattered, as in Figure 4.4b.

(@)

Figure 4.4: (a) Circular streamline with coinciding curvature centres ¢ and (b) Non-
circular streamline with scattered curvature centres.

By calculating curvature centres for many sample points, we obtain a set of curva-
ture centre points, which are accumulated into a new grid. The number of curvature
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centres in each cell constitutes a new scalar field which we call the Curvature Centre
Density (CCD) field. Vortex cores could then be located in cells with high values of the
CCD field.

* ° . Y e

Figure 4.5: Curvature centre points are accumulated into a new grid, resulting in the
Curvature Centre Density (CCD) scalar field.

The computational details for calculating curvature centres are as follows. For a
position p, the curvature centre ¢(p) is determined by adding to that position the prin-
cipal normal N to the streamline scaled by the radius of the curvature « at that position
[Farin, 1990]:

clp)=p+ % (4.10)

N

K

It can be shown that
simplified to:

is equivalent to the centripetal acceleration a., so (4.10) can be

¢(p) =p +a (4.11)

which is more practical, because the centripetal acceleration can be determined as the
directional derivative of v:
a,=(Vv)-v (4.12)

Each curvature centre in the CCD field has an associated weight factor w which is the
velocity magnitude |v| (see Section 4.4 for other weight factors).

So far, this method has concentrated on detecting vortex cores. Usually, we are also
interested in vortex boundaries. One way to detect the vortex boundaries could be
based on so-called basins of the highest peaks of the CCD field. A basin is defined as the
neighbourhood of a vortex core where the streamlines, or velocity vectors, contribute
to that core. This is the case when the curvature centres of those streamlines are part of
that core. A basin can be determined by calculating the curvature centre for each grid
node of the velocity field, and checking if the centre is part of a high peak (vortex core)
in the CCD field. If it does, then the grid node is part of the basin of that vortex. Which
peaks are considered high is defined using a user-specified threshold value. In this
way, a Boolean field is obtained which tells for each grid node whether it belongs to
a strong vortex. However, it does not tell which grid nodes belong to which vortices.
For this purpose, a clustering algorithm can be applied, to recognize a limited number
of vortex basins and associate the closest points of the Boolean field with them.
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4.3.2 Example

As an example, we use a data set calculated in a numerical simulation of the surface
layer of the Pacific Ocean [Zhu & Moorhead, 1995]. The simulation employs the US
Navy layered ocean model, a tool used by the Naval Oceanographic and Atmospheric
Research Laboratory to assist in ocean prediction. The data set is defined on a uniform
grid of 117 x 84 nodes, at each of which a 2D velocity vector is defined, and an array
to specify dry (land) points. For more information on this simulation, see Section 6.1.
Figure 4.6 shows the global flow patterns using streamlines released from every grid
point.

Figure 4.6: Pacific Ocean with streamlines

Figure 4.7 shows the curvature centre density field derived from the velocity data.
The 2D scalar field has been rendered as a height field, to make the peaks easier to
identify.

Figure 4.8 shows the CCD field combined with streamlines, to show how well the
peaks in the CCD field correspond to rotational patterns in the streamlines. The CCD
field has been thresholded to find the peaks where CCD > 0.3 max(CCD). See also
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Figure 4.7: Pacific Ocean with CCD field

the bottom image on the back cover where the streamlines have been coloured with
the velocity magnitude.

While the peaks of the CCD field correspond to the vortex cores, the basins of the
CCD field correspond to the vortex boundaries. Figure 4.9 shows the basins contribut-
ing to the same CCD peaks as in the previous figure (CCD > 0.3 max(CCD)).

From these figures, a number of problems become clear. The curvature centre density
field has:
1. false peaks: many peaks do not correspond to vortices (‘false positives’)
2. missing peaks: some obvious vortices do not show up as peaks (‘false nega-
tives’).
3. low peaks: the number of samples per peak is too low.
4. noise: the difference in peak height between vortices and non-vortices is too
small (low signal/noise ratio).
Another problem, which is not visible from the figure, is the sensitivity of the result
to the cell size in the output grid. Depending on the cell size, certain peaks may ap-
pear or disappear. This is a discretization effect, related to the low number of samples
(problem 3). These problems call for enhancements to the basic technique, which will
be covered in the next section.
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Figure 4.8: Pacific Ocean with streamlines and peaks of CC'D > 0.3 max(CCD)

Figure 4.9: Pacific Ocean with basins of CC'D > 0.3 max(CCD)
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4.4 The enhanced curvature centre method

The curvature centre method as described in the previous section suffers from a num-
ber of problems. Possible solutions to these problems are:
1. thresholding: selecting only values higher than a given threshold may filter out
unwanted low peaks.
2. filtering: applying a low-pass filter to the field may eliminate noisy peaks.
3. supersampling;: increasing the number of samples may enhance the true peaks,
while leaving the false peaks low.
4. signed weights: expressing the rotation direction as a sign may eliminate pseudo-
vortices caused by streamlines rotating in opposite directions.
5. other weights: by default, curvature centres are weighted by the velocity magni-
tude. Including other factors in the weight may give different peaks.
These are described below.

4.4.1 Enhancements

1. Thresholding may be applied to alleviate the problem of too many peaks in the
density field. The threshold operator discards those points in the CCD field which are
lower than a certain threshold value. The challenge is to find a good threshold value
which clearly distinguishes the true peaks from the false peaks.

2. An alternative to thresholding is filtering. A low-pass filter may be applied to
smooth the field by filtering out noise. We could use a standard Gaussian filter with
varying kernel sizes, depending on how much smoothing we want to perform. Al-
though the goal of filtering is the same as that of thresholding, i.e. to find the highest
peaks in the field, the approach is different. Whereas thresholding only selects data,
filtering changes data.

3. Supersampling may be applied to alleviate the problem that the peaks are too low,
resulting from a low sampling rate. By specifying a supersampling rate of r, instead
of taking only the values at the grid points, 7 samples are taken per grid cell in each
direction, which is r? samples per 2D cell.

4. Signed weights may be used to eliminate ‘pseudo-vortices’. These are pairs of
pathlines having a common curvature centre, but flowing in opposite directions (see
Figure 4.10). If rotation directions are not taken into account, this may lead to false
peaks.

Pseudo-vortices may be eliminated by using signed weights: if a streamline is rotat-
ing in one direction, say counterclockwise, a positive weight is added to the curvature
centre field; if it is rotating in the other direction, a negative weight is added. This
results in a CCD field with positive peaks for vortices with counterclockwise rotation,
negative peaks for vortices with clockwise rotation, and no peaks for pseudo-vortices,
because weights with opposite signs cancel out.

In 2D, the rotation direction may be determined by looking at the cross product of
the velocity v and the centripetal acceleration a: s = (v x a.). In 2D, this cross prod-
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N

Ny

Figure 4.10: Pseudo-vortices, caused by streamlines having common curvature centre

uct is a scalar, with s < 0 indicating clockwise rotation, and s > 0 counterclockwise
rotation.

5. other weights: There are many possible choices for the weight w used in calculat-
ing the curvature centre density. The weight was initially chosen to be w = 1, in other
words, every curvature centre was given the same weight. When this turned out to
give inconclusive results, the weight was changed to the velocity magnitude |v/|.

Other choices for the weight w may take into account not only the velocity mag-
nitude |v|, but also the distance r between the streamline point p and the curvature
centre C. The rationale for considering the velocity magnitude, is that strong vortices
should give proportionally higher peaks than weak vortices. This would lead to a
factor of |v| in the weight w. The rationale for considering the distance, is that the
influence of a rotating streamline (rotating mass) on a vortex core should decrease as
it lies farther from the core (at distance r). This would lead to a factor of 1 /r in the
weight w. This leads to the weights listed in Table 4.1.

take into account: [v|

T no | yes
no 1 [v|
yes 1/r | |v|/r

Table 4.1: Various weighting schemes

4.4.2 Example

We use the same example as in the previous section to examine the effect of the pro-
posed enhancements.

1. The effect of thresholding is as expected. Higher values of the threshold value
filter out more peaks and leave fewer peaks, lower values leave more peaks. Un-
fortunately, it was difficult to find a good threshold level which clearly distinguishes
between true and false peaks. Therefore, thresholding did not give sufficient improve-
ment.

2. The effect of filtering using a Gaussian filter of various kernel sizes is shown in
Figure 4.11. It can clearly be seen that filtering has little effect for the smaller filter sizes,

60




4.4. The enhanced curvature centre method

as many false peaks remain present after filtering. Filtering has too much effect for the
larger filter sizes, as not only the false peaks are smoothed out, but also the true peaks.

(a) filter size 0 (b) filter size 3

(c) filter size 5 (d) filter size 9

Figure 4.11: CCD field filtered with various filter sizes

3./4. The effects of the next two enhancements, supersampling and signed weights,
turned out to be negligible, and are not shown here.

5. The effect of other weighting schemes is shown in Figure 4.12. We see that the uni-
form weighting scheme w = 1 is worst, because there are many high peaks, with no
distinction between real and false peaks. We also see that the schemes that contain a
factor |v| are better than the ones that do not, and that the schemes that contain factor
1/r are also better than the ones that do not. Therefore, it is logical that w = |v|/r is the
best choice, which can also be seen in the figure. Apparently, both the velocity mag-
nitude and the distance to the vortex core should be taken into account in the weight
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w. Unfortunately, this scheme is only relatively good, compared to the others. In the
absolute sense, even the best scheme still does not make a clear distinction between
vortices and “background”, which is what we want.

@w=1 b w=1/r

© vl dw=|v|/r

Figure 4.12: Pacific Ocean with density field with various weighting schemes

4.4.3 Discussion

Some of the enhancements in this section give a slight improvement over the basic
technique. The main problem of the curvature centre method seems to be that it is
sensitive to not perfectly circular streamlines. If the streamlines are not perfectly cir-
cular but elliptic, this has a large influence on the CCD field. Elliptic shapes are often
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caused by shear flow or interacting vortices. This is illustrated by two analytical flows:
a circular and an elliptic flow.

circular flow

The ideal test case for the curvature centres method is a circular flow. Since the stream-
lines are perfect concentric circles, all the curvature centres should coincide. Let the
velocity field v(z,y) = (v (z,y),vy(z,y)) of the circular flow be defined by

v(z,y) = (y,—a:) (413)

Figure 4.13a depicts streamlines of this velocity field. The centripetal acceleration
a.(z,y) = (az,ay) is given by

ov ov
a.(z,y) = Ve + vya—y (4.14)

y( _(_)1 ) —w< (1) ) =(-2,-y) (4.15)

which results in the curvature centre c(p):

c(p)=ptac=(z,y)+(-z,-y) =0 (4.16)
which proves that for perfect, circular streamlines, the curvature centres coincide in
the origin (0,0), as Figure 4.13b shows.
elliptic flow

In the case that the streamlines are not perfect circles, but deformed to ellipses, the
velocity field is given by:
v(z,y) = (—ay, bz) (4.17)

with a,b > 0 and a # b. Figure 4.13c shows an example witha = 2,5 = 1.
Then, the centripetal acceleration a, = (a.,ay) is given by

(4.18)

( ‘Oa ) 4.19)
= () =-a(7) (420)

which results in the curvature centres c(p):

c(p) =p +a; = (z,y) - ab(z,y) = (1 - ab)(z,y) (.21

ac(z) y) = VYzgT
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Figure 4.13: In circular flow (top), there is a peak in the CCD field. In elliptic flow
(bottom), the peak in the CCD field is spread out.

Figure 4.13d shows the curvature centre density field for this flow. It can be seen
that the peak is spread out into a flatter cross-like shape. This is a serious problem,
because it means that streamlines which are not perfectly circular will not lead to high
peaks in the curvature centre density field, even though they could be part of vortices.

It can be concluded that some of the enhancements in this section give a slight im-
provement over the basic technique, but not enough. In the next section, we examine
a very different type of geometric technique.

4.5 The winding-angle method

The curvature centre methods described in the previous sections are not satisfactory,
because they depend too much on the perfect circularity of flow curves. This section
describes another geometric method, which does not rely on the exact shape of a flow
curve, but on its rotation direction: the curve must make a loop. We call this method
the winding-angle method [Sadarjoen et al., 1998b; Sadarjoen & Post, 1999a].

Basically, the winding-angle method keeps track of the change of direction along
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the curve, based on a winding-angle concept. This is a simpler version of the winding-
angle used in [Portela, 1997].

4.5.1 Method description

The method first selects curves (streamlines or pathlines) which make a winding (loop-
ing) motion in one direction, i.e. clockwise or counter-clockwise. The speed or the exact
shape of the curve is not important, only the looping shape. Next, the selected stream-
lines are used for determining numeric vortex attributes. These numeric attributes can
either be used for further analysis, or they can be visualized using icons.

One advantage of this method is that it can detect vortices consisting of streamlines
that are not perfect circles, but e.g. elliptical. Another advantage is that this technique
is not only a visual, qualitative selection technique, but also a quantitative feature ex-
traction technique. A limitation is that the method currently only works in 2D.

The vortex extraction process consists of the following stages:

¢ selection
¢ clustering
¢ quantification
e visualization mapping
The first stage, selection, selects those streamlines that have:
1. ahigh winding-angle
2. an end point close to the starting point

We define the winding-angle of a streamline as the cumulative change of direction of
the streamline segments. Let S; be a 2D streamline, consisting of points F; ; and line
segments (P, ;,P; j+1), and let Z(P; -1, Pij, Pij+1)) denote the angle between line
segments (P, j_1, P; ;) and (P, ;, P; j+1). Then, the winding-angle a,, ; of streamline S;
is given by:
N-1
Dy = Z Z(Pi,j_l,Pi’j,Pi,jq.l) (422)
j=2

This is illustrated in Figure 4.14. We use signed angles, with a positive sign for a
counterclockwise rotation, and a negative sign for a clockwise rotation. Obviously,
aw,i; = +27 for a fully closed curve; lower values may be used to find winding stream-
lines which do not make a full revolution.

The definition of a ‘high’ winding-angle depends on the case. In cases where all
the streamlines have at least one full winding, a threshold of 27 can be applied. In
other cases, when there are many slowly rotating vortices, a threshold of 1.57 may be
sufficient.
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Py Oy =01 + 0 —03+0g + ..
Figure 4.14: The winding-angle a,, is the sum of the angles between the edges.

The definition of ‘close’ uses both an absolute and a relative distance between the
initial and the final point of the pathline. The relative distance is defined in terms of
the estimated radius r.s:, which is determined as the average distance between all the
points and their geometric mean.

The purpose of clustering is to group those streamlines together which belong to
the same vortex. Rather than clustering streamlines, it is easier to cluster points. To
this end, each streamline is mapped to a point by determining the centre point, or ge-
ometric mean, of all the sample points on that streamline. These centre points are then
clustered as follows. The first cluster is formed by the first point. For each subsequent
point, it is determined which previous cluster lies closest. If the point is not within a
predetermined radius of all the existing clusters, it constitutes a new cluster. In this
way, the selected streamlines are combined into a distinct number of groups. Stream-
lines of the same group are deemed to rotate around the same core, and to be part of
the same vortex.

Once the streamlines have been clustered, quantification of the vortices is performed
by calculating numeric attributes of the corresponding streamline clusters. We approx-
imate the shape of the vortices by ellipses. Fitting an ellipse to a set of points is done by
calculating statistical attributes, such as mean, variance, and covariance, of the points
[van Walsum et al., 1996; Reinders et al., 1997]. In addition, we calculate specific vortex
attributes, such as rotation direction and angular velocity. We denote the number of
points on a streamline S; as |S;|, a cluster of streamlines as Cy = {Sk,1,Sk,2, .- -}, where
Sk, is streamline #! in cluster #k, the number of streamlines in that cluster as |Cy|, and
all the points on all the streamlines in it as ¥(Cj). Now, we can calculate the following
attributes for each vortex:

e streamline centre: Si = ]SL[ZLSJ P;;

o cluster centre: Cr = ﬁZE'{'(S’k,z)
¢ cluster covariance: My, = cov(¥(Cy))

o ellipse axis lengths: Ay = eig(Myg)

o ellipse axis directions: d; = eigvec(My)
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e vortex rotation direction: di = sign(auy,k)
b 1 [Chl
o vortex angular velocity: Wg = TC_,.TEZI=1 Qw

Visualization of the vortices can be accomplished by mapping their attributes to icons:
the first three attributes are mapped to an ellipse. The angular velocity is visualized
by adding wheel spokes to the ellipse, the number of which is made proportional to
the angular velocity: fast rotation is suggested by many spokes, slow rotation by few.
Finally, the rotation direction of a vortex is visualized by arrow heads.

4.5.2 Example

To test this method, we use the same flow past the tapered cylinder as in Section 4.1.
First, we apply the winding-angle method to select streamlines from six slices in var-
ious z-planes, to show varying patterns. The selection criteria are: oy, > 1.57 and
dmuw,abs < 0.5.

Next, we apply clustering with maximum cluster radius 0.5, and quantification,
which results in the numeric attributes listed in Table 4.2. This table reveals that for z <
18, there is only one counterclockwise vortex, for 18 < z < 20, there are two vortices,
one clockwise and one counterclockwise, and for z = 21, the counterclockwise vortex
has disappeared, leaving only a large clockwise vortex.

z-plane | #vortices | max Acw | maxAcow
16 1 - 0.5305
17 1 - 0.5832
18 1 0.6216 0.2076
19 2 0.8446 0.4968
20 2 1.1138 0.6117
21 1 - 0.9370

Table 4.2: Statistics of the vortices in the flow past a tapered cylinder.

Figure 4.15 shows the visualization of these vortices. Grey streamlines show the
global flow patterns, with the flow going from left to right past the cylinder, which is
drawn as a semi-circle on the left. Selected streamlines are drawn in black. The ellipses
approximate the shape and size of the vortices, with arrows indicating the rotation
direction, and the number of spokes indicating the rotation speed (vortex strength):
more spokes indicate faster rotation.

The middle image on the back cover shows a slightly different visualization of
Figure 4.15e (z = 20), with different ellipse icons. These do not have the varying
number of spokes, but the colour indicates the rotation direction: the red ellipse shows
counterclockwise rotation, the green one clockwise rotation.

This example shows that this method produces better results than the physical cri-
teria or the curvature centre method. One advantage is that it finds rotating structures
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Figure 4.15: Flow past a tapered cylinder in different z-planes: (a) : z = 16,(b) : z =
17,(c) : 2 =18,(d) : 2 =19,(e) : 2 = 20,(f) : 2 = 21
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which are not perfectly circular. Another important advantage is that it allows for
quantification of vortices by calculating numerical attributes. The third major advan-
tage of this method is that it also finds weak vortices, characterized by slow rotational
movement. This will be shown in more detail in another application in Section 6.2.5.

4.6 Conclusions

We have shown examples of physical criteria and geometric criteria for vortex detec-
tion. Physical, point-based criteria are of limited use, because there does not seem to
exist a generally accepted criterion, which works in all cases. An important drawback
of physical criteria is that they usually do not detect weak vortices, because they often
involve the velocity magnitude or another strength factor, directly or indirectly.

In principle, geometric, region-based criteria are better, because they correspond to
the intuitive visual notion of a vortex, and because they are based on the properties
of a whole region, such as a streamline or a number of streamlines. The curvature
centre method performs well in finding (nearly) perfectly circular vortices, but it does
not find elliptical and weak vortices. Possible enhancements to the curvature centre
method have been investigated, but did not give a satisfactory result either.

The winding-angle method is much better, because it can detect not only non-
circular but also weak vortices. Another important advantage is that it allows for
quantification of vortices.

Chapter 6 will show more comprehensive examples of data sets to which these
vortex detection criteria are applied. '
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Chapter 5

Deformable surfaces

“In nova fért animis mutdtas dicere formas cSrpora !

A deformable surface is a surface which grows from an initial shape to the shape of
some feature in a data set, in order to detect that feature. The initial shape is a polyg-
onal surface mesh, and growing is accomplished by displacing the nodes, based on
the minimization of an energy or cost function for all nodes of the polygonal surface.
When the polygons of the mesh become too large for an accurate approximation of the
feature shape, the mesh may be refined. Then, deformation is continued, until some
desired precision has been reached [Sadarjoen & Post, 1997; Sadarjoen & Post, 1999b].

Much other work has been done on deformable curves and surfaces, as was sur-
veyed in Section 2.4. However, while traditional deformable curves and surfaces are
usually intended for object detection in 2D or 3D images, our deformable surfaces
have been specially intended for extracting features from 3D flow fields, in particular
features which are locally continuous and can be well represented by surfaces.

This chapter first gives a definition of deformable surfaces and a description of
their usage in Section 5.1. Section 5.2 describes how deformable surfaces are initial-
ized. Then, Sections 5.3 and 5.4 discuss the mechanisms for surface deformation and
surface refinement, respectively. Section 5.5 gives some example applications. Finally,
in Section 5.6 a summary and conclusions are given.

5.1 Surface definition and usage

A deformable surface may be defined as a surface which starts from an initial shape
and undergoes a deformation process to end in a final shape which approximates a
feature in a data set. A deformable surface is typically defined as a polygon surface
consisting of nodes, edges, and faces. The faces are usually triangles. By displacing
the nodes, the surface is deformed.

A deformable surface may have a 1D, 2D, or 3D topology, where a 1D topology
corresponds to a generalized cylindrical surface, a 2D topology to a planar surface,
and a 3D topology to a spherical surface. Each triangular face has a normal, which
in the 1D and 3D topologies point outward. At the nodes, normals are defined as the
average of the normals of the adjacent faces.

My soul drives me to speak of bodies who have changed into new shapes. (Ovidius, Metamorphoses I,
1-2)
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The general procedure for surface deformation is as follows. A surface is locally
deformed by displacing the nodes, using a node displacement criterion to govern the
fitting of the surface to the data field. Our deformable surfaces are typically defined
as small objects, which are made to grow by a deformation criterion. Whenever faces
become too large, it may become necessary to refine them for a better shape approxi-
mation.

This procedure is illustrated in 2D in Figure 5.1. A contour line is shown, which
is the feature to be extracted. Inside, a small initial deformable surface is positioned.
After N deformation steps (N > 1), the surface is still too coarse, so it is refined,
creating new faces and nodes. Then, deformation starts again, until a desired level of
accuracy has been reached.

Deform N x
—>

Figure 5.1: Overview of the deformation process. After N deformation steps, the sur-
face is refined, and then deformed again.

Before we can apply the above procedure, some preparation steps are necessary.
The complete process of using deformable surfaces consists of four stages: region selec-
tion, initial surface creation, surface deformation, and surface refinement. These stages can
be represented by the pipeline shown in Figure 5.2.

In the first stage, a region is selected where the feature is assumed to be. In the next
stage, an initial surface is created, based on the characteristics of the intended feature.
In the third stage, the surface is actually deformed to approximate the intended feature
from the data field. This may require several iterations, hence the loop back. In the
fourth stage, the surface is refined. After this, it may be necessary to go back to the
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Region Selection selection
criterion
Surfape Initial Surface Creation
Creation
Surface
Deformation
Surface Deformation deformation
criterion
Surface Refinement

Figure 5.2: Overview of the complete process of using deformable surfaces

deformation when the desired accuracy has not been reached yet.

In three of these stages, the user can exert control by specifying application-specific
criteria. In the first stage, a region selection criterion is used to determine the region
where the centre of the initial surface should be located. In the surface deformation
stage, a deformation criterion is used to steer the deformation process. In the surface
refinement stage, refinement criteria and thresholds may be specified.

To implement this pipeline, we have developed a set of AVS-5 modules called
GARIS. This acronym, which is also the Indonesian word for ‘line’, stands for Generic
Adaptively Refinable Iterative Surfaces. The system contains modules for initial sur-
face creation, surface deformation, surface refinement, and for interfacing with region
selection modules. For the region selection, we have used existing modules developed
by Van Walsum [van Walsum & Post, 1994; van Walsum et al., 1996].

This pipeline is described in the following sections. Section 5.2 covers the initial
surface creation stage, using region selection. Then, Sections 5.3 and 5.4 discuss the
mechanisms for surface deformation and surface refinement.

5.2 Initial surface creation

Before surfaces may be deformed, first an initial surface must be created. An initial
surface is determined by several parameters, the most important of which are shape
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type, position, size, and orientation. The parameters of the initial surface must be
related to those of the desired feature, as the final shape of the surface is determined
through deformation of the initial surface.

Parameters may be determined manually or semi-automatically. In manual param-
eter determination, the user exploits experience and knowledge about the data and
features in it, for determining the type, size, and position of the initial deformable sur-
face. For this purpose, the GARIS system provides sphere, icosahedron, cube, plane,
and cylinder primitives. The cube and icosahedron are rough approximations of a
sphere; the other types should be self-explanatory.

The parameters may be determined semi-automatically through a method we have
developed, where the user first manually specifies a selection criterion, after which the
system automatically selects a region, calculates a fitted ellipsoid, derives the appro-
priate type (1D, 2D, or 3D) of deformable surface, and determines its position and scale
parameters. This method is described next.

Starting from an input data set, a region of interest is selected using the selection
techniques presented in [van Walsum & Post, 1994]. A region selection criterion is repre-
sented in a simple but powerful language, which allows users to formulate a selection
criterion as a Boolean expression, and to select from the grid all nodes that satisfy the
selection criterion. The criterion may use all raw data quantities, but also new quan-
tities derived from the raw data, such as gradients. The Boolean expression may also
contain logical combinations (and, or) or scalar thresholds on these quantities. The
result is a selected subset of the grid nodes.

As an example, we select regions where the centripetal acceleration of a normalized
velocity field exceeds a user specified threshold 6:

v v
a=— -V|[-—]>6
I (HVH)

Figure 5.3 shows the expressions in the selection language to perform this selection. All
expressions are evaluated at all nodes of the input grid. Each line except the last has the
form field a= arithmetic expression, which calculates a new field variable using an arith-
metic expression containing field variables. The last line has the form select_out
b= Boolean expression, which creates a Boolean field that specifies for each node of the
field whether it satisfies the Boolean expression. This Boolean field is generated as out-
put data. The example also shows some built-in functions. The len function returns
the length of a vector quantity, the grad function returns the gradient of a scalar or
vector quantity, and the mvm function performs a matrix-vector multiplication. More
information may be found in [van Walsum, 1995].

When a region has been selected, we calculate the center, variance, and covariance
of the selected nodes, as these statistical attributes define an ellipsoid {[van Walsum
et al., 1996]. The centre position (z,y, z), lengths (I1,13,13) of the main ellipsoid axes,
and the three rotation angles (a, 3,7) of the ellipsoid axes are used to characterize the
shape of the selected region.

The shape of a region can now be classified as 1D, 2D, or 3D, where a 1D shape
corresponds to a cylindrical shape, a 2D shape to a planar surface, and a 3D shape to a
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normvelo a= velo/len(velo)

velograd a= grad(normvelo)
normaccel a= mvm(velograd, normvelo)
select_out b= normaccel > thresh

Figure 5.3: Selection of a region where a, > 6

spherical volume. The shape of an ellipsoid is based on the ratios of the lengths of the
axes I, Iy, and I3. If the axis lengths are all in the same order, the region is classified
as 3D, for which the ellipsoid itself may be directly used as the initial object. If one
axis is small, and the other two axes are large, the ellipsoid is a flat, disc-shaped object.
The region may then be classified as 2D, and the initial surface type chosen is a planar
surface, fitted to the two long axes of the ellipsoid. If only one axis is large, and the
two others are small, the ellipsoid is a long and thin object. The region is then classified
as 1D, and the corresponding initial surface type is a (generalized) cylinder, with the
axis fitted to the long axis of the ellipsoid, and an elliptic cross section of which the
dimensions are based on the other axes.

This method of shape initialization has the limitation that it can only create objects
based on straight lines, such as planar surfaces. To create good approximations of
curved regions, such as banana-shaped regions, skeleton extraction algorithms could
be used, but we have not implemented this. However, for our purposes, the ellipsoid
fitting proved to be useful.

After the initial surface has been created, it is placed at the center of the selected re-
gion. The position, dimensions, and orientation of the initial surfaces are derived from
the centre position, lengths, and orientations of the ellipsoid axes. Other parameters
can be chosen by the user, such as the polygon mesh resolution, or colour mapping on
the surface. Then, it can be deformed to its final shape. The deformation process is
described in the next section.

5.3 Surface deformation

This section discusses the mechanisms and criteria for node displacement. Algorithm 1
shows the basic algorithm for surface deformation. Here, n is a node, C(n) the cost
function at a node n, C(f) the cost function at the centre of a face f, f* a marked
face, and ¢ a threshold for the cost function C. R(f) is a refinement criterion with a
threshold 6.

Two important components of this algorithm are the displace-nodes() and refine()
functions. The refine() function is covered extensively in Section 5.4. Algorithm 2 gives
the pseudo-code for the displace_nodes() function, where x,, is the position of a node n,
x}, a possible new position, d; the step direction, and X the step size. This function is
described in detail in the remainder of this section.
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Algorithm 1 Surface deformation

repeat
repeat
displace nodes() (see Algorithm 2)
until |C(n)| < ¢ for all nodes n.

fr=0
for all faces f do
if R(f) > 6 then
f* = f*Umark_face (f)
f* = f*U markmneighbours (f)
fi
od
for all marked faces f* do
refine (f*)
od
until |C(f)| < € for all faces f

Algorithm 2 The displace_nodes() function

for all nodes n do
if |C(n)| > ¢ then

for i € num_directions do
d; := determ_step_direction ()
A := determ_step_size ()
Xp i =Xp+A-d;
if C(x},) < C(x,) then

Xn := X}, (move node)

fi

od

od
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5.3.1 Node displacement

Node displacement is guided by a deformation criterion, which uses a cost function C
based on the physical quantities given in the data set. These quantities may be scalars,
vectors, or a combination. The criterion tries to minimize the value of C up to a speci-
fied tolerance ¢.

Our cost function is comparable to the energy of the original snakes [Kass et al.,
1988], which is defined as Eio; = Eimg + Eint + Econ (see also Section 2.4.1). The total
energy is composed of an image energy E;m,, caused by features in the image, an in-
ternal energy Ey:, giving the snake internal smoothness and stiffness, and a constraint
energy E..n, imposed by the user, e.g. to make certain points fixed (see Section 2.4.1
for a more detailed desription). Both the snake energy and our cost function are to be
minimized during the iteration process. However, our cost function does not contain
an “internal energy” term. The reason is that we want our surfaces to be completely
guided by the data field, and not by any autonomous smoothness constraint. For the
same reason, our cost function does not incorporate a constraint energy term.

Our cost function is also comparable to the one used in the Geometrically De-
formed Models (GDMs) [Miller et al., 1991], which is defined as C(z,y, 2) = D(z,y, 2)+
I(z,y,z) + Ti, where D represents a deformation potential, I an image term which
identifies ‘feature events’, and T a topology-preserving term (see also Section 2.4.2).
But our function does not contain an image term, because that presumes too detailed
a-priori knowledge of the feature to be extracted. The T-term is comparable to the
internal energy E;n; of the snakes.

The simplest example of a cost function C(x,) = Q(x,) — T evaluates the scalar
field quantity @ at position x, of a surface node, and determines the difference with
a target value T. More complex cost functions use vector quantities, such as velocity
or vorticity, which could e.g. be used to determine the angle between the local field
vector and the local surface normal: Z(v,n). If v L n at all points of the surface, we
have a stream surface.

Cost functions can be any function of quantities derived from the field values (e.g.
gradients, vector operators, statistical attributes), and they may be combined with log-
ical operators (and, or). Other examples of cost functions are given in Section 5.5 and
Section 6.4.2.

However complex the deformation criteria and corresponding cost function may
be, the result is always a node displacement step, which has two characteristics: a step
direction d and a step size A.

The step direction d may be determined in three ways:

1. perform a random search in several directions

2. follow the negative cost function gradient

3. follow the surface normal
1. The random search method considers several candidate directions d;, e.g. in the
direction of the principal coordinate axes and combinations thereof, and chooses the
one that leads to the lowest cost function value. This method is often applied in 2D
deformable contour applications, where all (4-connected or 8-connected) neighbours
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of a pixel are examined, and the neighbour is chosen which has the lowest energy or
cost function (see also Section 2.4.1). In 3D, this corresponds to 6, 18, or 26 directions
which are tried.

Unfortunately, in the 3D case this method did not turn out to work well. The de-
formable surface has too much freedom, so the surface nodes individually choose the
shortest path to the positions where the cost function C(n) is minimal, which does not
lead to uniform growth in all directions. This is aggravated by the fact that nodes are
displaced over larger distances in 3D continuous space, rather than in 2D image space.
This is illustrated by Figure 5.4, which shows an elliptic contour line in a scalar field
and a deformable surface, projected 2D for simplicity. Rather than growing more or
less uniformly in all directions, as shown in Figure 5.4a, the nodes on the deformable
surface move along the shortest paths to the elliptic target contour, as shown in Fig-
ure 5.4b. which is not uniformly in all directions.

(b) actual behaviour

Figure 5.4: Determining the step direction by searching in many directions causes
nodes to follow the shortest path, leading to undesired behaviour.

2. The cost function gradient method considers only one direction, the direction of
the negative gradient of the cost function. This option was inspired by the so-called
Steepest Descent methods well-known from optimization theory, which are efficient
ways to find the minimum of a function defined on multidimensional domains [Press
et al., 1992], Sections 10.5 — 10.6). Unfortunately, this method did not turn out to work
well with surfaces consisting of multiple nodes. The results are very similar to those
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5.3. Surface deformation

of the random-search method, although this method is faster, because only a single
direction is examined rather than multiple directions.

3.

The surface normal method also considers only one direction, the direction of

the local surface normal, regardless of the local field gradient. This method turned out
to work best, because it made the surface grow uniformly in all directions.

The step size A may be determined in two ways: make the step size proportional to a
local property, or perform a local search along a line.

The first way to determine the step size makes the step size proportional to some local
property. A node is then displaced in multiple small steps, as illustrated in Figure 5.5.
Hence, this method will be called the multi-step method.

» ' »
Deform Deform

Figure 5.5: In the multi-step method, surface points are displaced by small steps at a

time.

The local properties on which the step size can be based include:

1.

grid cell size. This makes the step size proportional to the local grid cell size,
usually as some fraction of the size of the local cell containing the node. This is
applicable in curvilinear grids. The aim is to visit at least one or several points
within each cell, in order not to miss important features in the data.

face size. This makes the step size proportional to the surface face size. The ra-
tionale is that at the end, when the faces have been refined several times, a small
step size will prevent nodes from stepping too far (beyond the target surface).
cost function. This makes the step size proportional to the value of the cost func-
tion C(x,). Initially, when C is highest, large steps are acceptable, but when the
deformation progresses and C' decreases, small steps will again prevent nodes
from stepping too far.

The multi-step method suffers from two problems:

slow iteration: typically, it requires many (tens to hundreds) of iterations for
the surface to reach its final state. This is typical of many deformable contour
methods.

local minima: a surface sometimes does not (completely) reach its intended final
state, because it gets caught in a local minimum. This is also a common problem
for many other deformable contour or surface methods.

79




Chapter 5. Deformable surfaces

We have developed a fast and more robust alternative for the multi-step method,
which is described in the next section.

5.3.2 Fast node displacement

The multi-step methods described above determine a large number of new positions
X}, :=Xp + A - d;, in search of the position where C is minimal.

Another, more efficient way to determine the step size uses a so-called line search:
an efficient search along a line for the point where the cost function becomes zero:

C(%pn +Ad;) =0

and move the node directly to that position, as illustrated in Figure 5.6. Hence, this
method will be called the single-step method.

y
Deform %/ O
Al *<" /

Figure 5.6: In the single-step method, surface points are placed on the target surface in
one step.

The single-step method has two advantages: one is a considerable increase in speed
of the iteration. Whereas deformable contour methods typically require tens or hun-
dreds of steps to reach their desired shape, the single-step method requires only sev-
eral steps. This will be illustrated later in the examples in Section 5.5. Another advan-
tage is that the problems of local minima are usually solved.

To find the root of the cost function C, we use the Regula Falsi, also known as the
False Method [Press et al., 1992]. This method finds a root of a 1D function by suc-
cessive interpolation between two ‘brackets’ where the function values have opposite
signs, as illustrated in Figure 5.7.

While the standard literature assumes that the brackets are known in advance, this
is not the case when using deformable surfaces. For the left bracket A;, the current
position of the surface node can be taken. However, the right bracket still has to be
determined. Our solution is to estimate the right bracket A, by performing one step
with the Newton-Raphson method. Essentially, this extrapolates the tangent in A;. If
the interval given by the left and right brackets does not contain the root, it may be
extended as often as necessary. Once the brackets have been determined, the root is
estimated by interpolation (points A1, Az, and Az in Figure 5.7), and the interval is
successively reduced until the root has been approximated with the desired accuracy.
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5.4. Surface refinement

Figure 5.7: Root-finding using Regula Falsi between brackets A; and A, yields succes-
sive approximations of the root: Ay, A2, As, ...

Both the multi-step and the single-step methods have their advantages and disad-
vantages. The multi-step method has the disadvantage that it is slower and more sen-
sitive to local minima. Figure 5.8a shows how a node is moved over small consecutive
distances A; and ), but then the node gets stuck in a local minimum of the cost func-
tion C(Az). From that point, all the points in a small neighbourhood (A; — AX, A2+ AX)
keep the node in the local minimum.

In contrast, the single-step method has the advantages that it is much faster and
less sensitive to local minima. Figure 5.8b shows that the local minima are skipped,
when an initial guess is taken for the right bracket of the Regula Falsi method (the
extrapolation from C(0)). However, the line-search has the disadvantage that it gives
nodes a much greater freedom to move over larger distances in one step. This free-
dom, combined with the complete independence of adjacent nodes, may lead to er-
ratic behaviour of nodes, and unpredictable surface shapes, when nodes are moved
with (very) different step sizes. In addition, the estimation of the right bracket with
the Newton-Raphson method is sensitive in regions of high gradients (field deriva-
tives), because it depends on a single gradient direction at A,.

5.4 Surface refinement

When the faces of a deformable polygonal surface become too large, such that the
surface no longer approximates the feature very well, the surface can be refined, so
as to improve the approximation of the feature to be extracted. This section discusses
criteria and mechanisms for refinement.
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X1 A’Z \

(a) multi-step method (b) single-step method

Figure 5.8: The multi-step method gets caught in a local minimum A; of the cost func-
tion, while the single-step method jumps over local minima.

5.4.1 Refinement criteria

First of all, we can distinguish between global and local refinement. In global refine-
ment, all faces of the surface are refined. This is straightforward, but costly both in
terms of efficiency and storage requirements. In local, or adaptive refinement, only
those faces f are refined for which a refinement criterion R(f), based on quantities dis-
cussed below, exceeds a specified threshold 6: R(f) > 6. This threshold 8 is a relative
threshold (between 0 and 1) specified by the user.
We have investigated refinement criteria based upon the following quantities:

1. face size

2. local curvature

3. cost function C(f)

4. estimated distance
A refinement criterion based on the first quantity marks the largest faces of the de-
formable surface. The motivation is that it is undesirable to have large faces, because
they may fail to follow the curvature of the target feature.

Therefore, a refinement criterion based on the second quantity marks faces where
the local curvature is highest. However, the goal is not to minimize the curvature
over the entire surface, as in other applications. The goal here is to obtain the best
approximation of a feature in the field. Therefore, the cost function is a better base for
the refinement criterion.

A refinement criterion based on the third quantity marks those faces that have a
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5.4. Surface refinement

high cost function C(f) at their centres. The scalar cost function for a face is evalu-
ated at the face midpoint as the average of the cost function values at the nodes. The
rationale is that these faces are far from the target surface. This turned out not to work
completely as expected: sometimes there are faces whose cost function is large, but
which are physically close to the target surface. This occurs when there are locally
high gradients.

The last refinement criterion marks those faces that have a high distance to the
target surface, which is estimated by

()

IVl

This criterion gives the best results, in the sense that the best shape approximation of
features was obtained. This success could be explained from the fact that it uses the
best measure for deviation of the deformable surface from the target surface.

5.4.2 Refinement mechanisms

There are several mechanisms for surface refinement. We assume that the surface is
represented as a triangle mesh, and that the refinement criterion has marked some of
the triangles for refinement.

One class of mechanisms to perform mesh refinement, which we have implemented,
is described in [Rivara, 1991] and [Mitchell, 1991]. Both authors describe methods
which rely on bisection of a triangle at its longest edge, where a new node is added.
This may lead to a so-called hanging node in an adjacent triangle, which then becomes
inconsistent: one of its edges has 3 nodes instead of 2. In [Rivara, 1991], this is solved
by applying the bisection to the adjacent triangle, and repeat this as long as necessary
until the new node coincides with the first hanging node. This is done using a recur-
sive procedure. Figure 5.9 illustrates how first the marked face ABC is bisected, along
the (dashed) longest edge. This creates a new midpoint node P. As face ABD is now
inconsistent, this triangle is then bisected along longest edge AD, which creates new
node Q. Finally, ABQ is bisected, with the new midpoint node coinciding with node P.

In contrast, the method described in [Mitchell, 1991] tries to prevent hanging nodes
from being created at all, by refining only pairs of triangles which are so-called compat-
ibly divisible. This means that they either share a longest edge, or one of them is part of
the boundary. In the first case, the two triangles can be refined as a pair; in the second
case, the two triangles can be refined after a single bisection of the boundary triangle.

See Figure 5.10 for an example, where the marked face ACE has to be refined. As its
longest edge CE is not the longest edge of its neighbour triangle CDE, the two triangles
are not compatibly divisible. Since CDE is part of the boundary, after a single bisection
into CDG and CEG, the new triangle CEG now shares its longest edge with ACE, and
the two can be refined as a pair.

This method claims to be more efficient than Rivara’s. However, this method also
uses a recursive procedure to find two compatibly divisible triangles first.
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b D D

Figure 5.9: Rivara’s method: first bisects the marked face ABC, then face ABD, and
finally face ABQ. The longest edges are dashed.

F E F E
G
A —_— A G
B C D B C D

Figure 5.10: Mitchell’s method only refines pairs of triangles that are ‘compatibly di-
visible’, to prevent inconsistent triangles from occurring.

When we implemented these schemes in GARIS, the problem of cycles occurred. In
recursively marking the adjacent triangles, the algorithm encountered the same trian-
gle where it started, which resulted in an infinite recursion. This was probably caused
by equilateral triangles; in accordance with the original algorithm, the longest edge
was chosen as the refinement edge, which is of course ambiguous in equilateral trian-
gles. A solution to this ambiguity problem does not seem trivial.

Another refinement mechanism we have implemented is the one described by
[Miller, 1990}, and illustrated in Figure 5.11. A marked face (hatched in the figure) is
refined into four triangles, and the adjacent faces, where hanging nodes would occur,
are bisected into two triangles.

Care must be taken when faces are adjacent to more than one marked face, as
shown in Figure 5.12. Here, the two faces would cause different bisection directions in
their respective adjacent faces. This is solved by not bisecting such a face, but refining
it into four faces as well, as if it had also been marked.
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Figure 5.11: Miller’s method refines the marked face into four faces and bisects the
adjacent faces.

N

Figure 5.12: A face adjacent to multiple marked faces is not bisected, but refined into
four triangles.

5.5 Examples

Next, we show two example applications of deformable surfaces. In Section 5.5.1, we
show a local isosurface approximation which uses fewer triangles than a standard iso-
surface algorithm. Then, in Section 5.5.2, we show an application with more complex
criteria, the extraction of a recirculation zone.

5.5.1 Extracting local isosurfaces

To illustrate the usage of the technique, deformable surfaces are used to approximate
local isosurfaces in a 3D Backward-Facing Step (BFS) (see also Section 3.5.1).

Figure 5.13a shows a local isosurface of an arbitrary scalar quantity in this data set,
in this case the x-component of the velocity vector. This isosurface was generated by
the standard isosurface AVS-5 module to serve as a reference. Figure 5.13b shows
a deformable surface in its initial shape, in this case an icosahedron as a rough ap-
proximation of a sphere. It has been manually positioned near a local maximum of the
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scalar field. In this figure, the reference isosurface has been rendered as dots.

=

(a) reference isosurface (b) initial deformable surface

Figure 5.13: Approximation of an isosurface by a deformable surface in a 3D
Backward-Facing Step

This deformable surface is now iterated with a simple displacement criterion, where
the cost function is the difference between the local scalar field value and the target
isolevel: C(x) = f(x) — T. The displacement step direction is taken in the direction
of the surface normal. The step size is determined in two ways: with the multi-step
method and with the more efficient single-step line search method. Refinement is done
with a criterion based on the estimated distance to the target surface, as described in
Section 5.4: R(f) = d > 0.6 max(d).

Figure 5.14a shows the shape of the deformable surface after 17 iteration steps with
the multi-step method. This is the number of deformation steps before the first refine-
ment step (in this particular case). Figure 5.14b shows the deformable surface after 48
iteration steps and 4 refinement steps. The surface now consists of 2520 faces. In order
to show the surface refinement, the face edges have also been drawn.

In contrast, Figure 5.15a shows the shape of the deformable surface after one iter-
ation step with the single-step method. The surface nodes already lie on the reference
surface, and are ready to be refined. Figure 5.15b shows the final shape of the surface
after only 4 iterations and 4 refinement steps. The surface now consists of 1720 faces.

Figure 5.16 shows the final deformable surfaces without the edges rendered, to
allow for the best comparison with the reference isosurface. It can be seen that the
surfaces approximate the reference surface of Figure 5.13a quite well; the single-step
method even slightly better than the multi-step method, even though the latter consists
of more faces.

An advantage over regular isosurfaces is that the deformable surfaces consist of
fewer triangles: 1720 and 2520 for the multi-step and single-step deformable surfaces,
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(a) shape after 17 iterations (b) shape after 48 iterations

Figure 5.14: Approximation of the isosurface using the multi-step method

(a) shape after 1 iteration (b) shape after 4 iterations

Figure 5.15: Approximation of the isosurface using the single-step method
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(a) final shape with multi-step method (b) final shape with single-step method

Figure 5.16: Approximation of the isosurface using the multi-step method

respectively, versus 4450 for the regular isosurface.

5.5.2 Extracting recirculation zones

In the 3D Backward-Facing step, we now try to extract the recirculation zone, as shown
in Figure 3.15 in Section 3.5.1.

Our method of extracting recirculation zones consists of two steps: the first step
uses a selection criterion to find the centre of the zone and to position the initial de-
formable surface. The second step uses a deformation criterion to find the separating
surface between the recirculation zone and the main stream zone.

Following the scheme in Figure 5.2, first region selection and surface creation are per-
formed to create an initial deformable surface. The criterion used to select a region of
interest is H, > 0.6, with H, being the normalized helicity as defined in Section 4.1.

H, =

Figure 5.17 shows how this can be expressed in the selection language. The structure
is similar to that of Figure 5.3. In addition to the select_out b= function, there is
a field out a= function, which sends the computed quantity to an output port of
the AVS module. The rot () function returns the rotation (curl) of a vector quantity,
the dot () function returns the dot product of two vectors, and the fabs () function
returns the absolute value of a floating point quantity.

Through the selected regions, an ellipsoid is fitted, of which the statistical attributes
mean, variance, and covariance define an ellipsoid. Figure 5.18 shows a combined
view of the selected nodes rendered as cross marks, and the fitted ellipsoid. From
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velorot a= rot(velo)

velohd a= dot(velo,velorot)

velohdn a= velohd/ (len(velo)*len(velorot))
select_out b= fabs(velohdn) > 0.6
field_out a= fabs(velohdn)

Figure 5.17: Calculation of normalized helicity

the ratios of the ellipsoid axes, an initial deformable surface is derived, which is the
cylinder shown in Figure 5.19.

Figure 5.18: Selected nodes and fitted ellipsoid

See also Colour Plate 3, which shows a combined view of Figures 5.18 and 5.19,
with the selected nodes and the deformable surface. The deformable surface is coloured
with the cost function C(x,) normalized between 0.0 and 1.0, with red indicating the
highest, and blue the lowest value.

This initial surface is deformed using a criterion with a cost function based on a
high gradient of the velocity magnitude, g(x) = ||V(||v(x)|})|I:

C(x) = max(g) - g(x)

This cost function proved to be suitable for detecting the recirculation zone with a
deformable surface, because it exhibits a ‘valley’ in the region separating the recircula-
tion zone and the main stream. So, by minimizing this cost function, the initial surface
deforms to a separating surface.
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Figure 5.19: Initial deformable surface

Figure 5.20 shows the final surface of the recirculation zone after one iteration with
the single-step iteration method. No subsequent refinement steps were necessary, as
the initial resolution was chosen high enough.

The horse shoe shape of the lowest part of the surface is comparable to the sep-
aration / reattachment lines seen in other analyses of the BFS, such as the 0.0 con-
tour on the floor (behind the step) in Figure 5.21. This figure shows contours of the
streamwise velocity component, where the 0.0 contour is a separation line between
flow going downstream, with a positive streamwise velocity, and the reversed flow
going into the recirculation zone, with a negative streamwise velocity component (see
also Figure 3.15).

Colour Plate 4 shows the same figure in colour, where the deformable surface has
been coloured with the cost function. The uniform blue colour (cost function C(f) ~
0. clearly shows that the upper part of the surface approximates the target surface
quite well. The lower part of the surface has expanded as far as it could, but the
grid boundary prevents the surface from expanding any further, so it is not blue. The
surface consists of 240 triangles and takes 3.2 s to generate on an SGI Indy workstation,
which makes it suitable for use as an interactive tool.

Another more comprehensive example of the use of deformable surfaces will be
shown in Section 6.4.
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Figure 5.20: Final deformable surface approximating the recirculation zone

Figure 5.21: Contours of streamwise (y-)velocity
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5.6 Conclusions

In this chapter, we have shown techniques and applications of deformable surfaces.
We have described mechanisms for surface deformation and surface mesh refinement.
For surface deformation, two schemes have been investigated. One is based on tradi-
tional methods applied in deformable contour / surface techniques. In addition, we
developed an improvement which works by taking much larger steps. For surface re-
finement, we have investigated several schemes. Two schemes are based on recursive
bisection of triangles. Another scheme is based on a single-step refinement into four
or two triangles. Finally, we have shown examples of the use of deformable surfaces
for extracting local isosurfaces and recirculation zones in a 3D backward-facing step.
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This chapter presents four applications, in which actual CFD simulations are analysed
and visualized using the techniques described in the previous chapters. This is done
with two goals in mind. One goal is to illustrate how the techniques can be applied
and how they perform. When several alternative techniques are available for the same
purpose, we will make a comparison. Another goal is to show which insight in the un-
derlying physical phenomena can be gained by applying the visualization techniques.

The techniques from the previous chapters: particle tracing, vortex detection, and
deformable surfaces may be applied with the following purposes. Particle tracing may
be used to get an overview of the flow patterns in the flow field, by releasing particles
in all the nodes of a grid slice. Then, vortex detection techniques may be used to find
vortices in a more directed manner. Finally, deformable surfaces may be applied for
detecting surfaces, in particular separating surfaces.
These techniques are applied to cases resulting from flow simulations of:

o the Pacific Ocean

o the Bay of Gdarisk

o turbulence in a cylindrical pipe

s a Delta-Wing aircraft
The following sections in this chapter describe for each case: the background, the data
set, the applied techniques, the results, and a summary.

6.1 The Pacific Ocean

The first application concerns a numerical simulation of the Pacific Ocean [Zhu &
Moorhead, 1995]. The simulation employs the US Navy layered ocean model, a tool
used by the Naval Oceanographic and Atmospheric Research Laboratory to assist in
ocean prediction. Horizontally, the model covers the area from 110°E to 78°W. Verti-
cally, the model consists of six layers. The simulation models a period of four years,

The Great River approaches from 10,000 mountains // The power of the mountains flows east with the
River // The Clock Mountain seems like a dragon turning west // Backed by the storm wind, it breaks the
high waves. (Gao Qi)
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with a resolution of 3.05 days between time steps. The goal was to investigate the mi-
gration and interaction of ocean eddies over time and space, which is important for
oceanographers to understand ocean circulations. The grid used is a rectilinear 2D
grid of 468 x 336 nodes. At each node, a 2D velocity vector is given, and a Boolean in-
dicating whether the node is located in the flow area or a land point, where the velocity
is zero. This allows arbitrary coast geometries to be modelled.

We use one time step of this data set, and a subregion covering the west coast of
North-America, ranging from 170°W to 110°W and from 35°N to 62°N, which includes
Alaska in the northwest, and the Lower California peninsula in the southeast. This
corresponds to an area of approximately 6500 km %3000 km. Of the 3D grid, we use
the surface layer in a 1:4 scaled-down version with 117 x 84 nodes.

6.1.1 Streamlines

To visualize the global stream patterns, we use streamlines. Since the grid in this data
set is rectilinear, streamline calculation is straightforward, and does not require any
special algorithms such as the ones discussed in Chapter 3.

Streamlines are released from every other grid point. The step size and the number
of the steps for the integration of the streamlines must be chosen carefully. The step
size should be chosen as small as possible to achieve the highest accuracy, and the
number of steps should be as high as possible to ensure that paths are long enough,
particularly in regions of low velocity magnitude. Here, we use 127 time steps of
constant size At = 2s; these optimum values were determined empirically.

Figure 6.1 shows the resulting visualization of the global flow patterns using stream-
lines. It can be seen that there are many vortices.

6.1.2 Vortex detection with scalar criteria

To see how well scalar quantities indicate the presence of vortices, we use some of the
quantities mentioned in Section 4.1. From the velocity field, we derive the vorticity w,
and ), the second-largest eigenvalue of Vv. As the data sets are 2D, we use the 2D
versions of these quantities: in 2D, w is a scalar quantity, and the velocity gradient Vv
has only two eigenvalues, but the A, < 0 criterion can be used in the same way as in
3D.

Figure 6.2 shows the vorticity and A; scalar fields as height fields. To make the
peaks easier to discern, each point has been coloured with its height. Note that for
the ), field, we visualize —A;, since we are interested in regions where X, has a large
negative value. As these regions would become valleys in the height field, which are
harder to see than peaks, we use the negated quantity.

It can be seen that the vorticity field fails to make a sufficiently clear distinction be-
tween the vortices and the “background”, because it contains too many (false) peaks.
Apparently, high vorticity is not only caused by vortices. The A; field does make a
clear distinction between the vortices and the background, but it contains too few
peaks. Apparently, not all vortices “create enough A;”. This case shows that these
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Figure 6.1: Pacific Ocean; streamlines

scalar quantities are not good indicators of vortices, because the quantities are point-
based (see Section 4.1), while vortices are regional phenomena.

6.1.3 Vortex detection with critical points

We have also calculated critical points for finding vortex centres. Figure 6.3 shows
the critical points in the same data set, with different symbols for the various types.
Unfortunately, the figure shows many more critical points than obvious vortices, in-
cluding many false positives. So, unfortunately, there does not seem to be a one-to-one
correspondence.

6.1.4 Vortex detection with curvature centres

The results of applying the curvature centre method and the enhanced curvature
method were shown in Sections 4.3 and 4.4, and will not be discussed any further
in this chapter.
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(a) Vorticity

(b) A2

Figure 6.2: Pacific Ocean; scalar criteria for vortex detection
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Figure 6.3: Pacific Ocean; critical points indicating vortex cores. ‘0’ are centres, ‘@’ are
foci, ‘+" are nodes, and ‘x” are saddle points.

6.1.5 Vortex detection with the winding-angle method

As an alternative to the curvature centre method, we apply the winding-angle method
described in Section 4.5 to the streamlines in Figure 6.1. The selection criteria were:
minimum winding-angle a,, = 1.5, maximum absolute distance dmaz,abs = 5 grid
nodes, and maximum relative distance dmaz,rei = 3 - Test, Where 7eg is the estimated
radius (see Section 4.5.1).

Once streamlines have been selected, they are clustered (see Section 4.5. Stream-
lines of the same cluster are considered to belong to the same vortex. In this case, we
use a cluster radius of 3 grid cells. Clustering the selected streamlines also allows for
quantification of the vortices, by calculating numerical attributes, some of which are
listed in Table 6.1.

Figure 6.4 shows how ellipses can visualize the numerical attributes of the vortices.
The ellipses show the approximate size and shape of the vortices, and the ellipse axes,
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Number of clusters 64
Number of CW vortices 29
Number of CCW vortices | 35
Min. radius [grid cells] 0.044105
Max. radius [grid cells] 4.604711
Min. w[s™] 0.037644
Max. w{s™1] 0.271305

Table 6.1: Pacific Ocean; numerical vortex attributes

drawn in dashed lines, show the orientation of the vortices. The number of spokes
indicates the strength of the vortices: the higher the number of spokes, the faster the
rotation. Arrow heads show the rotation direction.

It is clear that this method produces the best results so far, since it detects both slow
vortices and elongated vortices, which remain undetected by the scalar criteria and by
the curvature centre methods.

A minor drawback is that this method does not detect extremely weak vortices,
which have very short pathlines. There is a minimum length for the pathlines before
they can be detected by this method. Usually, this is not a problem, and all the vor-
tices are detected. But when too many weak vortices remain undetected, the pathline
lengths can be increased, by increasing the number of integration time steps (or the
step size, but this usually decreases the accuracy).

This application has shown results of vortex detection with physical criteria and
with the winding-angle method. The physical criteria turned out to be moderately
useful; the winding-angle was much better and allowed for quantification of the vor-
tices.
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Figure 6.4: Pacific Ocean; vortices visualized by ellipses
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6.2 The Bay of Gdarisk

This application concerns a simulation performed at WL | Delft Hydraulics of the Bay
of Gdarisk, a coastal area of 192 x 107 km in northern Poland, using TRISULA their
in-house developed software [Trisula User Guide, 1993]. This simulation was studied
earlier by Hin for visualization of turbulence using particles [Hin & Post, 1993; Hin,
1994]. The flow in this model is driven by wind and an inflow of the Wista (Vistula)
river which enters the bay from the south.

The model is defined on a curvilinear grid of 43 x 28 x 20 nodes, which is in fact
a o-transformed grid consisting of 20 layers of 43 x 28 nodes. For a description of -
transformed grids, see Section 3.3.1. Figure 6.5 shows two views of the grid: (a) a top
view of a horizontal grid slice, and (b) a side view with the sea bed and a vertical grid
slice. At each grid node, the simulation has computed a velocity vector v, an eddy
diffusivity scalar E, which represents turbulence intensity, and its gradient VE.

6.2.1 Particle tracing

We apply particle tracing to visualize the global flow patterns in a horizontal 2D slice at
the centre of the grid (k = 9). To obtain a good impression of the global flow patterns,
particle sources are located at every grid node, and particles are traced for up to 100
time steps of At = 400s.

Figure 6.6 shows the resulting particle paths in white, to focus on the shape of the
patterns: a number of distinct vortical regions are clearly visible, and some of them
are very non-circular. Colour Plate 5 shows the same particle paths coloured with the
velocity magnitude. Red indicates high values, and blue low values. The figure shows
that some vortices are much slower than others, something which can also be seen in
particle animations. In addition, some vortices are quite elongated. Both factors will
have an impact on the suitability of the curvature centre method, as will be shown in
Section 6.2.4.

Figures 6.7 and 6.8 show four frames of a 200-frame particle animation made with
PLANKTON. The particles are rendered as lines, scaled and coloured with the velocity
magnitude. In addition, the sea floor geometry is rendered for orientation purposes.
This geometry has been enlarged in the z-direction by a factor 250, as in [Hin, 1994].
The animation smoothly interpolates the view over all frames between the initial and
final view points specified by the user. Initially, the view is from the east; later the view
is rotated towards the northeast.

6.2.2 Vortex detection with scalar criteria

To see how well physical quantities indicate the presence of vortices, we use some of
the quantities described in Section 4.1. From the velocity field, we derive vorticity w,
normalized helicity H,, and second-largest eigenvalue of Vv: ;. These quantities are
mapped onto the same horizontal slice as in Figure 6.6, which resulfs in Figures 6.9
and 6.10.
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6.2. The Bay of Gdarisk

(a) Top view of a horizontal grid slice

(b) Side view from the northwest of the sea bed and a vertical grid slice

Figure 6.5: Bay of Gdarisk; computational grid

101



Chapter 6. Applications

Figure 6.6: Bay of Gdarisk; flow pattern in horizontal grid slice

In these figures, we try to recognize the large obvious vortices from Figure 6.6,
which serves as a reference figure. It can be seen that vorticity magnitude does not give
any clue whatsoever as to where any vortices are located. The only maximum is in a
small area close to the outflow of the Wisla river, hardly recognizable. The normalized
helicity has many more peaks, but they do not bear a close resemblance to the vortices
in the reference figure. Figure 6.10 shows the slice coloured with A, and white iso-lines
of Ay = 0, inside of which Ay < 0. The figure shows that A, also has a small number of
high peaks, and that some of the A, < 0 regions seem to correspond to some vortices,
but it is not a perfect correspondence. In conclusion, the scalar quantities do not give
a satisfactory indication of where the vortices are located, especially the slow vortices.

6.2.3 Vortex detection with critical points

We have also calculated critical points in order to find vortex cores. Figure 6.11 shows
the critical points in the same data set, with different symbols for the various types.
The figure shows that most of the vortices have been captured, but not all of them:
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(a) Frame 0

(b) Frame 40

Figure 6.7: Bay of Gdarisk; frames 0 and 40 of a PLANKTON animation
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(a) Frame 80

(b) Frame 120

Figure 6.8: Bay of Gdarisk; frames 80 and 120 of a PLANKTON animation
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0.000 0.042

(a) Vorticity magnitude

0.000 1.000

(b) Normalized helicity

Figure 6.9: Bay of Gdarisk; horizontal slice coloured with w and H,
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Figure 6.10: Bay of Gdansk; horizontal slice coloured with A;. White lines indicate
A2 =0.

e.g. the vortex near (340, 6120) has no focus but a node critical point, without any
rotational component. Also, some elongated vortices have multiple critical points,
e.g. the one near (385, 6085) where the critical points are outside the intuitive rotation
center. So, unfortunately, there is no one-to-one correspondence between critical points
and vortices, which makes this method less suitable as the only method for finding
vortex cores.

6.2.4 Vortex detection with curvature centres

Alternatively, we can apply geometric techniques for vortex detection, starting with
the curvature centre technique described in Section 4.3. Figure 6.12 shows the cur-
vature centre density (CCD) field as a coloured height field, along with the land ge-
ometry. The colour of the height field indicates the scalar value, to make it easier to
distinguish the peaks.

The results are unsatisfactory, but in a different way than in the previous applica-
tion. Here, the main problem is not too many false peaks, but too few; especially the
slow vortices are notably absent.

The main causes are probably that those vortices are too slow and too elongated.
Another cause could be that the curvilinear grid used in this data set causes the sam-
pling density to be non-uniform throughout the grid. As the current implementation is
limited to sampling at the grid nodes, the sampling density is lower in regions where
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Figure 6.11: Critical points in the Bay of Gdansk. ‘o’ are centres, ‘@’ are foci, '+ are
nodes, and ‘x’ are saddle points.

the grid has larger cells, and vice versa. This could be compensated by making the
sampling density inversely proportional to the local cell size, or by a complete resam-
pling on a uniform grid. Yet, even with a uniformly spaced sampling, it still seems
unlikely that the slow vortices will be captured, because the velocity magnitude is a
dominant factor in the weight calculation (see Section 4.4).

In this case, applying the enhancements to the curvature centre technique sug-
gested in Section 4.4 does not seem to be very useful. Thresholding can only reduce the
number of peaks, not add any of the missing peaks. Filtering and supersampling only
reduce the noise, which is not the main problem here, and of the alternative weighting
schemes, the best alternative (w = |v|/r) was used.
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Figure 6.12: Bay of Gdanisk; height field of the curvature centre density

6.2.5 Vortex detection with the winding-angle method

As an alternative to the curvature centre method, we apply the winding-angle method
(see Section 4.5) to the particle paths in Figure 6.6. As these particle paths are not long
enough for the slowest vortices to make a sufficiently long loop, it is necessary to in-
crease the number of time steps before applying the winding-angle method. Therefore,
a maximum of 200 time steps of At = 400s are calculated for each particle.

Then, particle paths are selected which satisfy the following criteria: winding-angle
@y > 1.57, absolute distance dmaz,qs > 15 km, and relative distance dpaz ret 2> 3+ Test-

Next, the selected particle paths are clustered into vortices, by clustering their cen-
tre points. Particle paths of the same cluster are considered to belong to the same
vortex.

Next, we perform quantification of the vortices, by calculating numerical attributes
for them, some of which are listed in Table 6.2. Notice the differences between the
largest and the smallest vortex (approximately a factor 20), and between the fastest and
the slowest one (approximately a factor 15). There does not seem to be any correlation
between the size and the rotation speed of the vortices.

Figure 6.13 shows how the numerical attributes are mapped to ellipse icons. The
ellipses visualize the approximate size, shape, orientation, rotation speed, and rotation
direction of the vortices. The ellipse axes are drawn in dashed lines, and the number
of spokes indicates the strength of each vortex: the higher the number of spokes, the
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I Number of clusters 15
Number of CW vortices 5
Number of CCW vortices | 10

Min. radius [km] 0.991
Max. radius [km] 21.2
Min. w(s™?] 5.381075
Max. w[s™!] 8.9310*

Table 6.2: Some numerical attributes of the vortices in the Bay of Gdarisk.

faster the rotation. Arrow heads indicate the rotation direction. See also Colour Plate 6,
where the rotation direction is also encoded in the colour of the ellipses: red ellipses
rotate counterclockwise, green ellipses rotate clockwise.

This case has shown the use of particle tracing and vortex detection algorithms.
The winding-angle method has again turned out to be better than the curvature centre
method.

6.3 A transitional pipe flow

The application in this section concerns a direct numerical simulation (DNS) of a
Poiseuille flow in a cylindrical pipe performed at the Laboratory for Aero- and Hydro-
dynamics at Delft University of Technology. Serving as a tool to explore the laminar-
turbulent transition in pipe flow, the DNS tracks the spatial evolution of some local
disturbance introduced from a wall area near the inflow [Ma et al., 1998]. The distur-
bance, which is in the form of periodic suctioning/blowing (PSB), causes prominent
streamwise vortex pairs to form, evolve, and break down. This process play an impor-
tant role in the final transition to turbulent flow.

The simulation was performed on a 3D cylindrical grid containing 65 x 17 x 53
nodes, which corresponds to a physical size of —~1.57 < z < 14.57,0 < r < 1, and
0 < 6 < 2w, if (x,r,0) are cylindrical coordinates. The x-coordinates are expressed
as multiples of 7 for convenience in the numerical code. Atz = 0, the disturbance
is imposed. For the visualization of the vortices, we only use the parts between 0 <
z < 5. The following quantities were calculated at each node: 3D velocity v, vorticity
magnitude w, total pressure p, the second largest eigenvalue of the velocity gradient
Az, its second invariant @), and its discriminant A. More information on the physical
background of this simulation may be found in [Ma et al., 1998]. In this application,
we use particle tracing and several vortex detection techniques.

6.3.1 Particle tracing

To visualize the global stream pattern, we apply particle tracing. We select nodes in
a transverse plane at ¢ = 27 as the initial points of the particles, and trace in both
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Figure 6.13: Bay of Gdarisk; vortices approximated by ellipses

directions. Since there is an extremely strong streamwise component, we do not use
the physical velocity v, but the disturbance velocity v’ which is obtained by subtract-
ing the mean velocity profile v/ = v — ¥. Even so, there is still a strong streamwise
component left.

Figure 6.14a shows a side view of the resulting particle paths, rendered as solid
tubes. As a depth cue, a part of the cylinder wall with the corresponding grid layer is
shown. In this view, no vortical patterns are clearly visible, due to the strong stream-
wise component.

Figure 6.14b shows a better view, which in this case is a perspective view perpen-
dicular to the cylinder axis. The perspective view clearly shows two vortex pairs,
which are at an angle with the cylinder axis, both in the upper and lower half of the
cylinder.

These figures show that this data set contains vortices which are not parallel to
one of the natural coordinate axes. This makes it a little more difficult to apply 2D
geometric vortex detection techniques, although the velocity field can still be projected
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(a)

(b)

Figure 6.14: Side view (a) and front view (b) of pipe flow with particle traces released
from slice z = 2.
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onto the x-, y-, or z-plane by just selecting two of the coordinates. This is shown in the
following section.

6.3.2 Vortex detection with the winding-angle method

We have applied the winding-angle technique described in Section 4.5 to this case.
Although the vortices are not completely perpendicular to the plane, the method still
gives satisfactory results (see also [Sadarjoen et al., 1998b]).

-Figure 6.15 shows an example, where streamlines were selected with a,, > 1.37
and daba,maz =2.

o8-
06
04

o2F

0.2

-0af

08}
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Figure 6.15: Pipe flow with selected streamlines

6.3.3 Vortex detection with scalar criteria

To see how well scalar quantities represent the vortices, which could be observed in
the particle paths, we examine several scalar quantities. This is done below by using
2D transverse slices and 3D isosurfaces.

Figure 6.16 shows a transverse slice at z = 27 coloured with four different quanti-
ties: pressure p, vorticity w, second-largest eigenvalue of Vv: ),, and second invariant
of Vv: Q. Particle paths released from the slice are shown for visual verification. See
also Colour Plate 7 for a colour version of Figure 6.16a.

The figure shows that low pressure and high vorticity w are not good vortex indi-
cators in this case, because they have no maxima where the vortices actually are, but
near the cylinder axis (pressure), and near the walls (vorticity). The latter could be
attributed to the no-slip condition which holds at the walls. In contrast, highly neg-
ative ); indicates the presence of vortices very well, as does highly positive second
invariant Q. Q is almost equivalent to — Ay, but a little smoother.

3D views of the same quantities are shown in Figures 6.17-6.19 which depict iso-
surfaces of w, A2, and Q. These figures confirm the observations in 2D that w does
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(@p (b)w

(9) Az (C)

Figure 6.16: Pipe flow with particle paths and slices coloured with various scalar quan-
tities

not represent the vortices very well. Areas of highly negative ; and high Q seen to
correspond to the vortices very well, with () being a little smoother than A,.
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Figure 6.18: isosurface of highly negative A;




6.3. A transitional pipe flow

Figure 6.19: isosurface of high Q
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6.3.4 Vortex detection with selective and iconic techniques

In order to verify the assumption that the vortices are represented by any of the previ-
ous scalar criteria, we trace particles in just those areas that satisfy these criteria. The
problem of finding the initial points is solved by using the selection techniques devel-
oped by Van Walsum [van Walsum & Post, 1994]. These techniques allow the user to
select grid nodes in a data set, where the data satisfies a certain condition. Here, the
selection criterion is Q > 0.8 - Qq.- From these nodes, it is possible to start particle
tracing in both the forward and backward directions. A result is shown in Figure 6.20.

Figure 6.20: Selective streamlines

In order to compare the particle paths with the vortical regions indicated by high
Q, Figure 6.21 shows an image of these streamlines combined with semi-transparent
isosurfaces of a Q = 0.8 - @0z See also Colour Plate 8 for a colour version.

These regions of selected points can also be used to apply iconic visualization and
feature extraction techniques. Figure 6.22 shows an example, where ellipsoid icons
have been fitted through the selected grid nodes where @ > 0.8 - Qmq.. This figure
clearly shows that the vortex pairs are at an angle with the cylinder axis. The angles
could be determined from the eigenvector directions of the ellipsoids. See the top
image on the back cover for a colour version.
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Figure 6.21: Selective streamlines and isosurfaces of Q

Figure 6.22: Selective streamlines and ellipoid icons
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6.4 The Delta-Wing aircraft

The data set used here is the Delta-Wing data set made available by NASA Ames Re-
search Center. It models the flow around a Delta-Wing aircraft at a 40 degrees angle of
attack [Ekaterinis & Schiff, 1990]. The features in this data set include vortices on one
side of the wing. The original files contain the following quantities: density, momen-
tum, and stagnation, which are defined on a 56 x 54 x 70 structured curvilinear grid. In
this application, we use particle tracing, vortex detection techniques, and deformable
surfaces.

6.4.1 Particle tracing

\ ‘\\\

\ \\ f

(a) Projected to the xz-plane (b) Best view on vortex

Figure 6.23: Delta-Wing with particle traces

The figures show that the vortices are not parallel with any of the natural axes, or
even to any of the %, j, and k-planes in computational space. This makes it difficult to
apply one of the 2D vortex detection techniques. Therefore, we apply a 3D approach
for vortex extraction, namely deformable surfaces (see Chapter 5).

6.4.2 Vortex detection using deformable surfaces

As in Section 6.3.1, the visualization with particle tracing has shown that the vortices
in this data set are not aligned with one of the natural coordinate axes. In this case,
we may apply deformable surfaces (see Chapter 5, as they have the advantage that
they are inherently 3D, rather than limited to 2D projections. To detect vortices, the
deformable surface technique can be applied with two types of deformation criteria:
scalar criteria and vector criteria.
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Deformable surfaces with scalar criteria

The extraction of vortex tubes proceeds in two steps: the first step uses a selection
criterion to find the vortex core, which is then used to initialize a deformable surface.
The second step uses a deformation criterion to find the outer surface of the vortex
tube. For both steps, we can distinguish two types of criteria: scalar criteria and vector
criteria. The first type will be covered in the current section, the other in the next
section.

In accordance with the scheme in Section 5.1, the following steps were performed:

¢ Region selection: the quantity used here is pressure p. The selection criterion
is minimal pressure, p < c - min(p), where ¢ is a user-definable parameter. The
result is shown in Figure 6.24a, where the selected points are again shown as
cross marks.

o Initial Surface Creation: in the selected regions, integral attributes are calculated,
which results in the ellipsoid shown in Figure 6.24b. The ratios of the ellipsoid
axes result in a 1D object, the cylinder shown in Figure 6.24c.

¢ Surface deformation: for the deformation stage, again p is used. The result is
therefore a local isosurface of p.

Figure 6.24d shows the resulting vortex tube after one iteration with the single-step
step size determination method. It consists of 180 triangles. This surface takes 3.1 s to
generate on an SGI Indy, which makes it suitable for use as an interactive tool.

Deformable surfaces with vector criteria

We also used other criteria, based on additional (vector) quantities, to extract the vortex
tube from the same data set. Again following the scheme in Section 5.1, these steps
were performed:

¢ Region Selection: the vortex tube extraction now uses additional physical quan-
tities, which have been derived from the original quantities in the data set: the
vorticity vector field w and its magnitude |w|. These were also used in [Banks &
Singer, 1994; Villasenor & Vincent, 1992]. The criterion used for the initialization
is: low pressure and high vorticity magnitude: p < ¢;-min(p) and w > ¢p -max(w)
where ¢; and c; are user-definable parameters.

e Initial Surface Creation: in the selected region, integral attributes are calculated
which result in an ellipsoid. The ratios of the ellipsoid axes result in a 1D object,
the cylinder shown in Figure 6.26a. The colour indicates cost function, where red
is highest and blue is lowest.

o Surface Deformation: the deformation criterion uses the angle between the vor-
ticity vector w. at the vortex core and the vorticity vector ws at a node n of the
deformable surface: a = /(ws, wc). Figure 6.25 shows that a = 0 at the core.

The algorithm makes the surface grow in the direction where this o = 90°, or as

high as possible but lower than 90°. Since the cost function is defined as cos e, and
0 £ a £90°, minimizing the cost function maximizes the angle:

C(xn) = cos(£(ws,we)) 6.1
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(b) Selected nodes and fitted ellipsoid

(a) Selected nodes

(d) Final vortex tube

(c) Initial vortex tube

extraction of a vortex tube with scalar deformation criteria

4

Figure 6.24: Delta-Wing

Figure 6.25: Delta-Wing; vortex-finding with vector criteria
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Chapter 7

Conclusions and future work

Starkt, evigt och starkt !
iir vigornas vildiga tdg,
och stark av det eviga havet
var mjuk forginglig vdg.

The preceding chapters in this thesis describe techniques for extracting and visualizing
features, i.e. interesting and characteristic phenomena in a data set, using geometries,
which are curves, surfaces and solids. Three types of techniques have been covered:
particle tracing, vortex detection, and deformable surfaces. In this chapter, we draw
conclusions and give directions for future research.

7.1 Conclusions

Particle tracing

In Chapter 3, we described particle tracing, a technique to visualize velocity fields by
simulating the release of massless particles and calculating their trajectories. We con-
centrated on particle tracing in various types of special grids: structured curvilinear
grids, o-transformed grids, and unstructured grids. In these grids, point location, the
process of finding which grid cell contains a given point, is more difficult.

In structured curvilinear grids consisting of hexahedral cells, decomposition of the
cells into 5 tetrahedra usually works well. In o-transformed grids, a frequently used
type of grid in hydrodynamic applications, the 5-decomposition often fails. In that
case, applying a different decomposition, viz. into 6 tetrahedra, has proven to be a
robust alternative. In unstructured grids consisting of hexahedral or tetrahedral cells,
it is only possible to perform particle tracing after the addition of connectivity infor-
mation, because it is not included. For this purpose, a library called CNX-1ib was
developed.

It can be concluded from the examples in Chapter 3 and from the applications in
Chapter 6, that particle tracing is now possible in these special grid types. Particle trac-
ing was found to be a useful technique for exploring velocity fields, both when used

lStrong, eternal and strong // is the huge row of the waves // and strong due to the eternal sea // was
the soft and fleeting wave. (Karin Boye: Havet)
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globally and selectively. When used globally, it gives a good overview of the data, e.g.
by releasing particles at every grid node of a grid slice. If globally releasing particles
leads to too many streamlines and cluttering, techniques such as in [Turk & Banks,
1996; Mao et al., 1998] may be used to distribute them uniformly. When particle trac-
ing is used selectively, selection techniques are used to select grid nodes which satisfy
a certain criterion, and particles or stream lines are released only there. This prevents
cluttering and leads to a clearer view of the data. In both cases, particle tracing may be
used as a ‘reference’ technique for verifying the results of vortex extraction techniques.

Vortex detection

In Chapter 4, vortex detection was described. Two types of vortex detection criteria
were covered, physical criteria and geometric criteria.

Physical criteria are based on physical quantities evaluated at many points in the
flow field, or in infinitesimal regions around these points. Examples are low pressure,
high vorticity and high helicity. Physical criteria often turned out to be unreliable,
because they are based on point samples, while vortices are regional phenomena.

Geometric criteria are based on the shape properties of 2D flow curves, typically
projected stream lines or path lines. Two types of geometric vortex detection methods
were given.

The first method, called the Curvature Center Density (CCD) method, determines
the curvature centre for all points in a grid node, by calculating the centre of the os-
culating circle of the streamline through that node. Regions having a high density
of curvature centres are assumed to contain vortices. Unfortunately, the results of
this method turned out to be disappointing, due to its sensitivity to imperfect circu-
lar shapes of streamlines and to the magnitude of the velocity. As a result, deformed
vortices and weak vortices were usually not found.

The other method, called the winding-angle method, basically counts the number
of loops made by a flow curve. The method does not depend on the exact shape of the
curve nor on the velocity magnitude, as long as a loop is made. In addition, it allows
for quantification of the detected vortices. Numeric attributes can be determined, and
mapped to ellipses, which approximate the shape, size, and orientation of the vortices,
and which can also be used to visualize the strength of a vortex. This method gave
much better results than the CCD method.

It can be concluded that geometric criteria for vortex detection are better in some
cases than physical criteria; especially the winding-angle method is capable of detect-
ing non-circular and weak (slowly rotating) vortices not found by physical criteria.

Deformable surfaces

In Chapter 5, we described deformable surfaces, surfaces which start from some ini-
tial shape and are deformed to the shape of a feature. We described mechanisms for
initializing, deforming, and refining deformable surfaces.
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An initial surface is created by first selecting grid nodes in a region of interest,
and fitting an ellipsoid to the selected nodes. The shape of the ellipsoid is then used
to determine the initial surface. Surface deformation is accomplished by displacing
the nodes in an iterative way. We used two mechanisms for this: firstly, a multi-step
method, which displaces the nodes over small distances at a time, and requires many
iteration steps for the growth. Secondly, a single-step method, which displaces nodes
over large distances, and requires only one iteration step for the growth. For surface
refinement, several mechanisms were investigated, based on subdivision of faces into
two or four triangles. We have shown three example applications of deformable sur-
faces: extracting local isosurfaces, extracting recirculation zones, and extracting vor-
tices.

The examples in Chapters 5 and 6 have demonstrated that deformable surfaces are
a useful and generic tool for extracting features that cannot always be defined using
a global scalar field, like vortex tubes and recirculation zones. Another advantage is
that they are capable of using scalar and vector criteria.

7.2 Future work

Future work on particle tracing could include research on algorithms which work on
yet other types of grids. Higher-accuracy integration and interpolation schemes com-
bined with physically-based particle tracing methods [Kenwright & Mallinson, 1992b]
could allow for even more accurate visualizations. When an extremely large number of
particles is used, acceleration could be obtained by optimization, e.g. by using caching
mechanisms for point location, or by parallelization.

Future work on vortex detection includes the extension and generalization of the
winding-angle technique to 3D. As the winding-angle is only defined in relation to a
(projection) plane, one of the challenges in 3D will be to find a global projection plane,
or if possible, a locally varying projection plane at each sample point of the 3D curve.
This is especially a challenge when there is a strong forward velocity component.

In the curvature centre method for vortex detection, a clustering technique could
be applied to detect vortex basins, by recognizing a limited number of vortex cores
and associating nearby points with them.

The computational costs of the winding-angle method could be reduced by releas-
ing streamlines not globally, but locally in regions which are pre-selected using physi-
cal criteria. However, a condition for this to work, is that the pre-selection criteria must
give a superset of the actual vortices, as the winding-angle technique can only reduce
the set.

Regarding deformable surfaces, there are several themes for future work: the single-
step method could be improved to become less sensitive to non-monotonic fields with
high gradients, by implementing step size control to prevent nodes from jumping in all
directions. To this end, progress coordination of adjacent nodes could also be useful.
The idea is that for each node, we keep track of how much ‘progress’ it has made since
the deformation started. Also, it is estimated how much progress would be made if a
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node would be displaced over a certain distance. Then, if at some instance, a node has
made significantly more progress than its neighbours, its movement could be ‘frozen’
in one or more subsequent steps, so the neighbours would get a chance to ‘synchro-
nize’,

Currently, our deformable surfaces have a fixed topology. More flexible types of
surfaces worth investigating would be topologically adaptable surfaces, capable of
splitting and merging, as described in [Metaxas, 1997], and surfaces consisting of only
points, not connected by polygons, such as the ones described in [Witkin & Heckbert,
1994].

Also, more complex optimization schemes could be investigated, such as simulated
annealing and dynamic programming. Last but not least, it will be interesting to find
more application-specific selection and deformation criteria for using deformable sur-
faces to extract other kinds of features. These are not necessarily limited to fluid flows;
fractures in soil mechanics might also be a potential application area for deformable
surfaces. To achieve the best results, new criteria should be.developed in collaboration
with experts from the relevant fields.
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Colour Plates

Colour Plate 1: Flow past a tapered cylinder, with velocity vectors and a slice coloured
with normalized helicity. (See also Fig. 4.3a on p. 52.)

Colour Plate 2: Flow past a tapered cylinder, with velocity vectors and a slice coloured
with A2. The white curves indicate A, = 0. (See also Fig. 4.3b on p. 52.)
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Colour Plates

C / C_max

Colour Plate 3: Backward-facing step with selected nodes and an initial deformable
surface coloured with the relative cost function. (See also Figs. 5.18-5.19 on pp. 89-90.)

C / C_max

Colour Plate 4: Deformable surface approximating a recirculation zone. (See also
Fig.5.20 on p. 91.)
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Colour Plates

Colour Plate 5: Bay of Gdarisk with the global flow patterns visualized by streamlines
in a horizontal grid slice. Colour indicates velocity magnitude. (See also Fig. 6.6 on
p- 102.)

Colour Plate 6: Bay of Gdarisk with vortices approximated by ellipses. Red ellipses are
clockwise, green ellipses counterclockwise vortices. (See also Fig. 6.13 on p. 110.)
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Colour Plates

Colour Plate 7: Pipe flow with particle paths and a slice coloured with pressure. (See
also Fig. 6.16a on p. 113.)

Colour Plate 8: Pipe flow with semi-transparent isosurfaces approximating vortices
and selective streamlines through the regions. (See also Fig. 6.21 on p. 117.)
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Summary

This thesis describes the extraction and visualization of geometries in fluid flows, with
the goal of gaining insight into important features of the flow. Geometries are curves,
surfaces, and volumes, which have the advantage that they can be easily perceived by
the human visual system, and efficiently rendered by computers.

Chapter 2 contains a survey of related work in the field of geometric techniques.
This serves as a framework for placing the techniques covered in the following chap-
ters into context.

Chapter 3 covers ‘particle tracing’, a technique which simulates massless particles
transported by a flow. By calculating and visualizing the particle paths, information
is obtained about the flow features. Complications are caused by the use of grids with
irregularly formed cells, or with irregular topologies. In such grids, point location
(determining which cell contains a certain particle) is a problem. This chapter describes
particle tracing techniques for curvilinear grids, for so-called o-transformed grids, and
for unstructured grids. In curvilinear grids consisting of hexahedral cells, the problem
can be solved by decomposing the cells into 5 tetrahedra. In o-transformed grids,
where the cells are often strongly deformed, this method is inadequate. This can be
solved by decomposing the cells into 6 tetrahedra. In unstructured grids, the cells
are often tetrahedra, but extra connectivity information must be added to solve the
point location problem. Once this information has been derived, particle tracing in
unstructured grids is well possible.

Chapter 4 covers techniques for detecting vortices, an important class of flow fea-
tures. These techniques may employ two types of criteria: physical criteria and geo-
metric criteria. The first category is based on physical quantities, such as pressure and
vorticity. It has turned out that these criteria do not detect all vortices; especially weak
vortices, characterized by low velocities, are often missed. The second category, which
uses geometric criteria, is only based upon shape properties of flow curves, such as
particle paths. It is assumed that vortices are characterized by rotational movement,
which leads to circular particle paths. In this category, two methods have been devel-
oped and evaluated: one method is based on the curvature centres of curves, another
on their winding-angles. It turns out that the curvature centre method is quite sen-
sitive to not perfectly circular vortices, in which case it does not detect them. The
winding-angle method often does find weak and non-circular vortices. In addition,
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Summary

this method offers the capability of quantifying vortices by calculating numerical at-
tributes of them.

Chapter 5 covers deformable surfaces. These are surfaces which start from a given
initial shape, and are deformed to a target shape in a number of iteration steps. The
target shape corresponds to a feature to be extracted from the flow. Deformation is
accomplished by displacing points of the surface. Therefore, two important aspects
of the deformation are determination of the step direction and of the step size. For
determining the step direction, several alternatives have been investigated and com-
pared. For determining the step size, a new method has been developed, which brings
about a significant acceleration compared to existing methods. When a surface be-
comes too large and too coarse, it is necessary to refine it. Several methods for surface
refinement described in the literature have been investigated and implemented. The
chapter concludes with three applications of deformable surfaces: the extraction of
local isosurfaces, recirculation zones, and vortices.

In Chapter 6, the techniques described in the preceding chapters are applied to four
comprehensive cases: simulations of the Pacific Ocean and of the Bay of Gdarisk, of a
pipe flow in transition between laminar and turbulent flow, and of the flow around
a Delta Wing aircraft. In each case, several techniques are applied, and when several
techniques are available for the same purpose, they are compared.
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Samenvatting

Dit proefschrift beschrijft de extractie en visualisatie van geometrieén in vloeistofstro-
mingen, met het doel inzicht te krijgen in belangrijke verschijnselen in de stroming.
Geometrieén zijn krommen, oppervlakken en volumes, welke als voordeel hebben dat
ze goed waar te nemen zijn door het menselijk waarnemingssyteem en efficiént weer
te geven zijn door computers.

Hoofdstuk 2 geeft een overzicht van verwant werk op het gebied van geometrische
technieken voor visualisatie. Dit dient om de in de latere hoofdstukken behandelde
technieken te kunnen plaatsen en te motiveren ten op zichte van verwant onderzoek.

Hoofdstuk 3 behandelt ‘particle tracing’, een techniek waarmee deeltjes gesimu-
leerd worden die zich door een stroming bewegen. Door de deeltjesbanen te bereke-
nen en te visualiseren, wordt informatie verkregen over de verschijnselen in de stro-
ming. Complicaties worden veroorzaakt door het gebruik van roosters met onregel-
matig gevormde cellen of met een onregelmatige topologie. Hierdoor is de plaats-
bepaling van deeltjes een probleem. Het hoofdstuk beschrijft particle tracing tech-
nieken voor kromlijnige roosters, voor zogenaamde o-getransformeerde roosters en
voor ongestructureerde roosters. Bij kromlijnige roosters die uit zesvlakkige cellen
bestaan, kan het probleem opgelost worden door de cellen in 5 tetraéders op te de-
len. Bij o-getransformeerde roosters, waarin cellen vaak sterk vervormd zijn, schiet
deze methode tekort en is opdelen van de cellen in 6 tetraéders een oplossing. Bij
ongestructureerde roosters zijn de cellen vaak al tetraéders, maar moet extra connec-
tiviteitsinformatie toegevoegd worden om het plaatsbepalingsprobleem op te lossen.
Wanneer deze informatie is bepaald, is particle tracing in ongestructureerde roosters
goed mogelijk.

Hoofdstuk 4 behandelt technieken voor het detecteren van wervels, één van de
belangrijkste stromingsverschijnselen. Deze technieken kunnen gebruik maken van
twee soorten criteria: fysische criteria en geometrische criteria. De eerste categorie
is gebaseerd op fysische grootheden, zoals druk en vorticiteit. Het is gebleken dat
deze criteria lang niet alle wervels detecteren; vooral zwakke wervels, die gekenmerkt
worden door lage snelheden, worden vaak gemist. De tweede categorie, die gebruik
maakt van geometrische criteria, is uitsluitend gebaseerd op vormeigenschappen van
stromingskrommen, zoals stroomlijnen of deeltjesbanen. Er wordt aangenomen dat
wervels gekenmerkt worden door een rondgaande beweging, wat zich uit in lussen
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in deeltjesbanen. In deze categorie zijn twee methoden ontwikkeld en geévalueerd:
één methode gebaseerd op krommingsmiddelpunten (‘curvature centres’) en één ge-
baseerd op windingshoeken (‘winding-angles’) van krommen. Het blijkt dat de cur-
vature centre methode erg gevoelig is voor niet volmaakt cirkelvormige deeltjesbanen
en in dergelijke gevallen geen wervels vindt. De winding-angle methode vindt zowel
zwakke als niet-cirkelvormige wervels vaak wel. Bovendien biedt deze methode de
mogelijkheid om wervels te quantificeren door numerieke attributen ervan te bereke-
nen.

Hoofdstuk 5 behandelt deformeerbare oppervlakken. Dit zijn oppervlakken die
vanuit een gegeven beginvorm in meerdere stappen vervormd worden tot een be-
paalde doelvorm. In de regel begint een oppervlak klein en groeit het naar deze doel-
vorm toe. De doelvorm komt overeen met een te vinden verschijnsel in de stroming.
Vervorming komt tot stand door punten van het oppervlak te verplaatsen, in een be-
paalde richting en in een bepaalde afstand. Twee belangrijke aspecten van het vervor-
men van oppervlakken zijn daarom: het bepalen van de staprichting en van de stap-
grootte. Voor het bepalen van de staprichting zijn verschillende alternatieven onder-
zocht en vergeleken. Voor het bepalen van de stapgrootte is een nieuwe methode ont-
wikkeld, die een aanzienlijke snelheidsverbetering met zich meebrengt ten opzichte
van de gebruikelijke methoden. Wanneer een oppervlak te groot en te grof wordt,
vanwege te grote driehoekjes, is het nodig om het te verfijnen. Voor het verfijnen van
oppervlakken zijn enkele in de literatuur beschreven mogelijkheden onderzocht en
geimplementeerd. Het hoofdstuk sluit af met drie toepassingen van deformeerbare
oppervlakken: het extraheren van locale iso-oppervlakken, recirculatiezones en wer-
vels.

In hoofdstuk 6 worden de in de voorgaande hoofdstukken behandelde technieken
toegepast op vier uitgebreidere gevallen: simulaties van de Stille Oceaan en de Baai
van Gdarnsk, van een pijpstroming die overgaat van laminair naar turbulent en van
een stroming rond een Delta-vleugel-vliegtuig. Voor ieder geval worden verscheidene
technieken toegepast en wanneer voor een bepaald doel meerdere technieken beschik-
baar zijn, worden zij met elkaar vergeleken.
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