
Copyright © 1998 by ASME

Proceedings of DETC’98
1998 ASME Design Engineering Technical Conferences

September 13-16, 1998, Atlanta, Georgia

DETC98/CIE-5705

DECLARATIVE USER-DEFINED FEATURE CLASSES

Rafael Bidarra, Abdelfettah Idri, Alex Noort and Willem F. Bronsvoort
Faculty of Information Technology and Systems

Delft University of Technology
Zuidplantsoen 4, NL-2628 BZ Delft, The Netherlands

Email: (Bidarra/Noort/Bronsvoort)@cs.tudelft.nl

 “Complete support of user-defined features in a design-by-features
system requires that feature classes created by the user become full-
privileged members of the feature collection of the system. That is,
they can be created, deleted and manipulated; they can have
relationships to other features (and these relationships themselves
can be defined too); they can be validated by validation constraints
or rules (and new validation constraints and rules can be defined);
their geometry can be anything that can be described in the
underlying geometric modeling system. Clearly, to create a feature
definition mechanism that covers all these facilities completely is a
challenging task of software engineering (...)”

(Shah, J.J. and Mäntylä, M., 1995
Parametric and Feature-based CAD/CAM;

Concepts, Techniques and Applications,
John Wiley & Sons, p. 265)

ABSTRACT

 Designing mechanical parts using a feature vocabulary is a very effec-
tive and rich paradigm. Its expressive power, however, is severely
limited if the set of feature types available in a feature library is fixed.
It is, therefore, desirable to be able to extend and configure a feature
library according to particular requirements, either of an end-user of a
CAD system or of an application area. These requirements are not
limited to topologic and parametric aspects of a generic feature defini-
tion, but include also validity conditions to be verified for each feature
instance in a model.
 This paper proposes a new declarative scheme for the definition of
feature classes. This scheme provides a unified description of the
shape and validity issues of a feature class, as well as a flexible con-
figuration of the feature class interface. In the definition process, the
various constraint classes available play a central role, whereas an
inheritance mechanism structures the feature library hierarchy. At the
end of the process, validation of the class is performed, in order to
avoid over- and underconstrained specifications. A graphical user
interface supports the whole feature class definition process. Once
defined, a feature class is automatically made available for use in a
feature library of the modeling system.

1. INTRODUCTION

 Many current feature-based modeling systems, both research
prototypes and commercial systems, provide an attractive inter-
face through which the user may create a part model with a
convenient feature vocabulary. This ability, however, is often
hampered by a number of shortcomings:

• sometimes, features only occur at the user interface level
of the system, whereas the internal geometric model only
records the geometry resulting from the operations per-
formed. Such systems are in fact only enhanced geomet-
ric modeling systems, and should not be considered as
full-fledged feature modelers;

• when a feature library provides only a fixed set of feature
types for use in a model, the creation of complex shapes,
often associated with some desired functionality and/or
technological process, may become a rather unnatural
task. Even if this can be achieved by composing several
feature instances, the resulting composed shape can only
be edited, queried and downstream processed in terms of
the elementary instances, because there is no explicit in-
terface defined for the “compound” (e.g. its dimension
parameters). In addition, properties and validity condi-
tions that were conveniently and meaningfully embedded
in each of these elementary features, are of little use for
the “compound” shape generated, if not completely un-
desirable (think, for example, of a cylindrical blind hole
class, requiring the bottom face of the shape to be fully
present on the part model boundary: one would not be
allowed to compose two such instances in order to obtain
a stepped-hole-like shape);

• some systems provide a mechanism to record a sequence
of modeling steps, possibly in a parametrized way. In this
procedural scheme, such macros might later be replayed,

Copyright © 1998 by ASME

in order to create a given “compound feature” in the
model. This suffers from the same drawback just de-
scribed: it is hard to consider such a library of macros as
a real feature library, because it does not offer appropri-
ate validity specification mechanisms;

• on the other hand, it is common experience that using
pre-defined feature libraries with a very large set of fea-
ture classes is not the solution either, because an exhaus-
tive enumeration of all possible feature classes is both
unfeasible and unmanageable. Furthermore, such sets
would vary significantly with the application domain, e.g.
the functional requirements of the designer or the techno-
logical production processes available.

 In order to overcome these drawbacks, declarative schemes,
which separate generic feature specifications from feature
model validation mechanisms, are receiving increasing atten-
tion. In this section, we first survey results of this research that
deal with mechanisms for specification of user-defined features
(UDFs).

Before the first efforts to develop workable UDFs, Dixon et
al. (1990) already commented that “if a powerful and
convenient capability for user-defined features can be provided,
then the library of design-with features can be smaller and the
need for combinatorial power is also reduced”. They consider
this capability to be a very time-consuming, sophisticated and
probably not manageable task for the common user of a CAD
system. Therefore, they suggest that, in the future, CAD system
vendors might be required to deliver hard-coded, customized
feature libraries to individual customers, according to their
specific requirements.

Shah et al. (1994) presented a declarative approach to the
description of feature classes, as an alternative to their previous
procedural proposal, within the ASU Features Testbed (Shah et
al. 1990). A number of primitive geometric constraints are
established on feature geometric entities (e.g. faces and edges),
in order to define the volumetric shape of the UDF, and are
combined in a directed graph. After such a constraint graph
template has been stored in the feature library with the feature
specification, instantiation of a feature is greatly simplified.
From their description, it appears that the explicit geometry
representation prevails over the parametric description of the
feature, which might turn the definition of complex shapes
error-prone and far from accessible for non-specialists. Their
work concentrates on the shape definition aspects of a feature
class, using geometric and algebraic constraints; in particular,
the specification of feature validity issues is not dealt with.

Salomons et al. (1994) focused on interactive definition of
new features during incremental modeling of a part, and on their
representation by conceptual graphs. They propose combining
profile sketching with geometric constraint graph editing, and
manual feature identification on the solid model, in order to
assist the user in the definition and insertion of new features
into the model. A surface representation is used for both
features and the part model. Feature models are stored in a

hybrid scheme, using a database (for modeler independent data)
and modeler files (for geometry-related information), which
favours their intended feature recognition applications. Again,
feature validity aspects of such UDFs are not considered, and
their storage as feature classes in a feature library, for later use,
is not mentioned.

Another, more recent, proposal is that of Hoffmann and
Joan-Arinyo (1998), who explicitly deal with the conceptual
definition of UDF prototypes for a feature library. A distinction
is made between standard features and user-defined features,
the latter consisting of a set of the former. A UDF has a set of
constraints and a set of attributes, aimed at specifying the
overall shape and validity criteria, respectively. Remarkable in
this scheme are the proposed separate treatment of feature
attachments, and the incorporation of topological attributes for
validation, analogous to the semantic constraints first proposed
in (Bidarra and Teixeira 1994) and elaborated in (de Kraker et
al. 1995). The procedural definition of each geometric
component of the UDF, based on sketching profiles, sketching
planes and datum planes, is conceptually very general and
powerful, although rather demanding for elaborate shapes, due
to the low-level details it is based on.

 In short, so far the requirements of complete, flexible and user-
friendly specification of UDFs, quoted at the beginning of this
paper, have only been partially met by current implemented
proposals. The main difficulties and limitations can be summa-
rized as follows:

• new UDFs are defined and used in a model, but are not
stored as new prototypes or classes in a feature library
for later use;

• the mechanisms to define new feature classes focus on
shape aspects, leaving out validity issues;

• the specification of all relevant information needed in a
feature class requires non-intuitive and complicated pro-
cedures, not easily applicable by common, non-
programmer users.

 This paper presents a new declarative scheme for the specifica-
tion of feature classes, which not only overcomes these draw-
backs, but fulfills all the requirements quoted at the beginning.
It has been implemented in the Feature Library Manager of the
SPIFF

1 modeling system, a prototype multiple-view feature-
based modeler developed at Delft University of Technology.
The remainder of the paper is organized as follows. First, an
overview of the proposed scheme is given, building on a sound
understanding of feature semantics (Section 2). This is further
elaborated, distinguishing the feature shape specification issues
(Section 3), the validity specification aspects of the class
(Section 4), and the feature class interface presented to the user
(Section 5). Next, the main functional aspects of the Feature
Library Manager are described (Section 6), and its use is illus-

1 Named after Spaceman Spiff, interplanetary explorer extraordinaire.

Copyright © 1998 by ASME

trated with an application example (Section 7). Finally, we draw
some conclusions (Section 8).

2. WHAT IS A USER-DEFINED FEATURE CLASS ?

 Within the scope of this research, the focus is on form features,
henceforth referred to as features. They are defined as represen-
tations of shape aspects of a physical product that are mappable
to a generic shape and have functional significance. In other
words, each feature has a well-defined meaning or semantics,
expressed through its geometric, topologic, parametric and
functional properties. A feature class is a structured description
of all these properties, defining a template for all instances of a
given feature type. As a whole, such properties specify the va-
lidity conditions that those feature instances should satisfy.
Feature classes are sometimes also referred to as generic fea-
ture definitions.

Feature classes are grouped and stored in feature libraries,
each of which is suited for a particular application. Ideally,
feature libraries should be configurable by domain experts, i.e.
people without special programming skills, but with knowledge
of the requirements, the technology and the criteria of a given
application domain. For this, they need a feature library
configuration system, providing feature class specification and
management facilities. On the other hand, designers, in their
modeling activity, are users of the feature classes available in
the feature library. For this, they use a CAD system, which
performs modeling operations (e.g. create feature instances of
selected classes) and takes care of the validity maintenance of
the feature model. In this paper, we concentrate on the
specification of feature classes and, thus, on a feature library
configuration system such as mentioned above. Issues on
validity maintenance of feature models were dealt with
elsewhere, see for example (Dohmen et al. 1996), and are here,
therefore, left out.

We propose the use of a variety of constraint types on a
given shape, to specify a feature class. In the following sections,
the use of each of these constraint types will be discussed in
some detail; here only a brief description is given:

• attach constraints specify how a feature instance is at-
tached to the model, by coupling some of its faces to
faces of other features already present in the model;

• geometric constraints specify geometric relations, such
as parallelism and distance, between feature faces;

• dimension constraints specify the set of values allowed
for a feature parameter;

• algebraic constraints specify an expression for feature
parameters;

• semantic constraints specify which topological variants
of a feature instance are allowed, by stating the extent to
which its feature faces should be on the model boundary;

• interaction constraints specify whether a given interac-
tion type should be disallowed for a feature instance.

 With the scheme proposed here, all feature classes in a library
use the same vocabulary, and exhibit a similar structure; see
Figure 1. Every feature class can be edited, refined and custom-
ized according to specific requirements. This turns out to be the
same as saying, with Shah and Mäntylä (1995), that UDFs
“become full-privileged members of the feature collection of
the system”.

 The main characteristics of our approach are:

• a full specification of feature semantics, comprising va-
lidity issues at geometric, topologic and functional levels;

• an inheritance mechanism among feature classes, which
makes it trivial to refine and specialize new feature
classes;

• a clear and simple feature class interface, encapsulating
implementation details of the class by means of so-called
interface parameters; and

• an integrated translator, which automatically maps a class
description input by a user to a form suitable for use
within the modeling system.

 The specification schemes for the shape, the validity criteria
and the interface of a feature class are elaborated in the follow-
ing sections.

 Figure 1 - Feature class structure

Copyright © 1998 by ASME

3. FEATURE SHAPE SPECIFICATION

 All constraint types presented above operate either on parame-
ters or on faces of a feature shape. Therefore, the specification
of the parametrized shape is the first necessary step in the crea-
tion of a new feature class.

We use parametrized basic shapes. A basic shape
encapsulates a set of geometric constraints that relate its
parameters to the corresponding shape elements, see (Dohmen
et al. 1996) for details. Currently, three basic shape classes are
available in SPIFF, a rectangular block, a cylinder, and a
trapezoidal block; see Figure 2.

Associated to each feature shape is the notion of feature
nature, indicating whether its feature instances represent
material added to or removed from the model (respectively
additive and subtractive natures).

There are two mechanisms to use basic shapes for feature
shape specification, (i) shape inheritance and (ii) shape
composition.

Shape inheritance
Shape inheritance is used if the desired feature shape

matches exactly that of one of the available basic shapes. In this
case, the feature class is made to inherit directly from that basic
shape, thus acquiring all its attributes (e.g. parameters and
faces) and functionality (e.g. initialization and query methods).

The inheritance mechanism allows one to rename any of
the parent shape attributes. In this way, for example, the height

parameter of a block basic shape could be renamed to depth, if
the block is used in a rectangular slot feature class.

Shape composition
If the desired feature shape is not directly available from

any of the basic shapes, shape composition is used. For this,
several basic shape instances, possibly overlapping, are
specified and related, in order to achieve the desired feature
shape. With this constructive sheme, a large domain of shapes is
achieved, not limited to that of linearly swept profile-based
shapes, as in many feature modeling systems. Figure 3 shows
examples of features whose shapes were obtained by combining
instances of block and cylinder basic shapes.

In order to achieve this increased shape complexity, basic
shapes are encapsulated inside the feature shape, as depicted in
Figure 4.

 The shape composition process consists of four steps:

1) Selection of a number of basic shapes. For a stepped blind
hole class, see Figure 5, two cylinder shapes may be cho-
sen, say cylinder1 and cylinder2.

2) Relative positioning and orientation of these shapes, ap-
plying geometric constraints among their faces. For the
stepped blind hole example, this can be achieved with two
constraints:

coaxial(cylinder1.top, cylinder2.top)

coplanar(cylinder1.bottom, cylinder2.top)

 block cylinder trapezoidal block

 Figure 2 - Parametrized basic shapes

 keyshaft rounded pocket rounded through slot

 Figure 3 - Shape composition examples

Copyright © 1998 by ASME

3) Specification of the compound shape parameters, as a
function of the elementary parameters of the basic shapes.
This is achieved by means of algebraic constraints, and
should produce a set of parameters that fully determines
the dimensions of all basic shapes. In the case of the
stepped blind hole class, such a set could be:

TotalDepth = cylinder1.height+cylinder2.height

EntranceDepth = cylinder1.height

EntranceDiameter = 2*cylinder1.radius

BodyDiameter = 2*cylinder2.radius

4) Specification of the faces of the compound shape, defined
in terms of the faces of the basic shapes. These new faces
should provide full coverage of the boundary of the com-
pound shape. Again for the stepped blind hole example,
this could be:

EntranceTop = {cylinder1.top}

EntranceSide = {cylinder1.side}

EntranceBottom = {cylinder1.bottom}

BodySide = {cylinder2.side}

BodyBottom = {cylinder2.bottom}

 As shown in Figure 4, both geometric and algebraic constraints,
as well as the list of basic shapes, are only internally used in the
shape composition process, in order to produce the desired
feature shape. Therefore, the resulting shape has the same inter-
face as in Figure 1, presenting a set of shape elements, a set of
parameters and a nature attribute. These characteristics will be
further elaborated in Section 5.

 Figure 5 - Compound shape for a stepped blind hole class

4. FEATURE VALIDITY SPECIFICATION

 Once the specification of the feature class geometry has been
completed, it is essential to describe under which conditions the
feature instances of that class can be considered valid. Specifi-
cation of feature validity conditions is indispensable to perform
validity maintenance later, during the modeling process. With-
out this, features would be no more than high-level geometric
modeling primitives.

Criteria for specifying validity of features can, for example,
take into account requirements of a technological and functional
character, often dependent on the specific application area.
Therefore, it is advantageous if each of those criteria can be
specified independently and in a flexible way.

Validity conditions can be classified into three categories:
geometric, topologic and functional. These are now elaborated.

Geometric validity specification
A way of constraining the geometry of a feature class, is by

specifying the set of values allowed for a shape parameter.
Examples of such specifications are an enumerated set of values
and a range defined by upper and/or lower bounds. We use
dimension constraints applied on shape parameters. For
instance, the radius parameter of a given through hole class
could be limited to values between 1 and 10.

Feature shapes can also be geometrically constrained by
means of explicit relations among their parameters. These
relations can be simple equalities between two parameters (e.g.
between width and length of a square section passage feature)
or, in general, an algebraic expression involving two or more
parameters and constants. For this, we use algebraic
constraints, similar to those used for shape composition in the
previous section.

Topologic validity specification
The specification of a feature shape, as described in

Section 3, yields a set of shape faces that provide full coverage
of the boundary of a volumetric feature. However, for most
features, not all faces are meant to effectively contribute to the
boundary of the modeled part, but some faces, instead, have a

 Figure 4 - Internal structure of shape composition

TotalDepth

EntranceDiameter

EntranceDepth

BodyDiameter

Copyright © 1998 by ASME

closure role, delimiting the feature volume without contributing
to the model boundary. The specification of these properties is
called topologic validity specification.

To specify the topologic validity of a feature class, we
propose the use of semantic constraints on each shape face.
Semantic constraints are of two types: onBoundary, which
means the shape face should be present on the model boundary,
and notOnBoundary, which means the shape face should not be
present on the model boundary. Furthermore, both types of
semantic constraints are parametrized, stating whether the
presence or absence on the model boundary is completely or
only partly required. An example of this is a blind hole class for
which the top face has a notOnBoundary(completely)
constraint, the side face has an onBoundary(partly) constraint,
and the bottom face has an onBoundary (completely) constraint.

Functional validity specification
Geometric and topologic validity specifications alone, as

described above, are unable to fully describe several other
functional aspects that are inherent to a feature class as well.
These are better described in terms of the feature volume or
feature boundary as a whole, and therefore require a higher-
level specification, not directly based on shape parameters or
elements. An example of this is the requirement that every
feature instance should somehow contribute to the shape of the
part model. Sometimes, the functionality of a feature class is
constrained by technological issues, such as clearance or tool
entrance faces.

Such functional requirements can be violated by feature
interactions caused during incremental editing of the model.
Feature interactions are modifications of the shape aspects
represented by a feature that affect its functional meaning; see
(Bidarra and Bronsvoort 1996) for a taxonomy.

We propose the use of interaction constraints in a generic
feature definition in order to indicate that a particular
interaction type is not allowed for its instances (Bidarra et al.
1997). Examples of these are the requirement that a subtractive
feature instance should not become a closed void inside the
model (no closure interaction), and the requirement that it
should somehow contribute to the shape of the part model (no
absorption interaction).

5. FEATURE CLASS INTERFACE SPECIFICATION

 An advantage of the scheme presented so far is that during the
specification of a feature class, control can be provided on
which components are made public, i.e. accessible to the user of
the modeling system when manipulating its feature instances,
and which should be kept private inside the feature class. The
latter have either an internal role, e.g. in supporting the shape
specification as described in Section 3, or a fully specified
character, in the sense that all parameters they require to be
initalized have already been specified in the class. An example
of the latter is a dimension constraint stating that the parameter
width of a slot class should have a value greater than 3 mm:

such a constraint is always initialized on parameter width and
with value 3, requiring no user input at feature instantiation
stage.

On the other hand, several feature constraints and
parameters —the so-called feature interface parameters— may
require some user-supplied data to be provided at feature
instantiation stage, as depicted in Figure 1. These components
constitute the feature class interface. The specification of the
feature class interface determines how each of its instances will
be presented to the user of the modeling system and, thus, how
the user will be able to interact with it.

Essential in the feature class interface is the positioning and
orientation scheme, which is specified by means of attach and
geometric constraints, as depicted in Figure 1.

An attach constraint of a feature couples one of its faces
with another user-supplied feature face, to be chosen among
those of the features already present in the model. Attach
constraints can be regarded as a special kind of coplanar
geometric constraints that take into account the natures of the
two features involved in order to determine the appropriate
normal orientations (Dohmen et al. 1996).

Geometric constraints position and orient a feature relative
to (faces of) other features already present in the model, by
fixing its remaining degrees of freedom. For this, a geometric
constraint couples one of the feature faces with a user-supplied
feature face in the model, possibly with some additional
numeric parameter(s). For instance, to position a through slot, a
distanceFaceFace constraint might be used, which requires an
external reference feature face and a distance value.

Some shape parameters may be determined implicitly from
the attach information, e.g. the depth of a through hole or the
length of a through slot. All other shape parameters need a user-
supplied value at feature instantiation stage, and are therefore
also included in the feature class interface.

Feature validation constraints may also take part in the
interface of a feature class, when some of their parameters are
left unspecified until the creation of a specific feature instance.
Examples of this are user-supplied data aimed at (i) initializing
the bounds of an interval of a dimension constraint, (ii)
determining whether an onBoundary semantic constraint should
be configured as partly or completely, or (iii) setting the
constant proportionality factor between two shape parameters in
an algebraic constraint.

In the SPIFF system, all interface parameters have a name,
which will be used later to designate them at the user interface,
when the feature is instantiated or modified. Furthermore, each
interface parameter can be configured as fixed or editable,
meaning that its value can only be set at instantiation stage, or
that it can also be modified later, when editing the feature.

Finally, it is possible to declare some interface parameters
as switchable. This means that, whenever desired during the
modeling session, they can be deactivated, and therefore not
taken into account in the validation process. While this
possibility is not likely to be used for most feature validity
constraints, it is convenient for shape parameters and for

Copyright © 1998 by ASME

positioning geometric constraints. In this way, they may be
overruled by additional geometric constraints explicitly created
later between their features. As an example of this, consider the
fixture part in Figure 6. Although the two through holes may
have been positioned independently, each one using a different
pair of reference model faces (e.g. the block front and top
faces), it might be desirable to keep them aligned. This can be
achieved by switching off the positioning geometric constraints
of one of them, and replacing these by a coaxial constraint
between the two entrance faces of the two through holes.

6. THE FEATURE LIBRARY MANAGER

 The Feature Library Manager comprises a Feature Class Man-
ager and a Graphical User Interface (Idri 1998), as depicted in
Figure 7. The Feature Class Manager in turn comprises a Parser
and a Generator to process Class Models. Through the Graphi-
cal User Interface, the user may create a new feature class, or
modify an existing one.

When a new feature class is created from the outset, the
Feature Class Manager incrementally builds the Class Model, as
the user follows the steps outlined in Sections 3 to 5.
Alternatively, existing feature classes can be used as a basis for
the new class. Two cases are then distinguished.

In the first case, the new feature class inherits from a single
feature class. Therefore, the new class gets the same shape and
validity conditions as its parent. Its specification can then be

completed by defining additional validity conditions and a new
interface (see Sections 4 and 5). An example of this is the
creation of a square passage class based on a rectangular
passage class, by just adding an algebraic constraint that
specifies its length and width parameters to be equal.

In the second case, the new feature class is composed from
multiple existing feature classes. Here, the positioning
constraints of the component classes are used to compose the
shape of the new class, instead of explicitly building it with
additional constraints, as when the class is defined from the
outset. An advantage of using other feature classes to compose
(the shape of) a new class is that both components with additive
and components with subtractive natures can be used. Further
specification steps are similar to those used for building classes
from the outset, as outlined in Sections 4 and 5.

When an existing feature class is selected to be modified, it
is read by the Feature Class Manager, and parsed in order to
build its Class Model. After that, the class can be interactively
modified by the user, through the Graphical User Interface.

After a feature class has been fully specified, it is stored in
the feature library, by means of the Generator. This translates
the class model into a class in LOOKS, an object-oriented
imperative programming language (Peeters 1993). SPIFF

contains a LOOKS interpreter, into which feature libraries are
loaded and, thus, made available in the modeling system.
Eventually, the Feature Library Manager validates a feature
class just specified, in order to avoid over- and
underconstrained specifications. This is done by creating a
prototype feature instance, and checking it with the solver of the
modeling system (Noort 1997).

The Graphical User Interface of the Feature Library
Manager will be illustrated with the example of the next section.

7. APPLICATION EXAMPLE

 This section describes the use of the Feature Library Manager
for the specification of a rounded blind slot feature class; see
Figure 8.

To describe the shape for a rounded blind slot, we specify
two basic shapes: block b and cylinder c. These are then
positioned relative to each other according to the following
scheme:

 Figure 6 - Aligning features by switching off positioning
geometric constraints

 Figure 7 - Architecture of the Feature Library Manager

 Figure 8 - Example of a rounded blind slot feature instance

coaxial(hole1.top,hole2.top)

Copyright © 1998 by ASME

1) Align the two shapes vertically and give them the same
height, by making their top and bottom faces coplanar,
with coplanar geometric constraints; see Figure 9 (a):

alignTop(b.top, c.top)

alignBot(b.bottom, c.bottom)

2) Make the diameter of the cylinder equal to the width of the
block, with an algebraic constraint; see Figure 9 (b):

b.width = 2 * c.radius

3) Position the cylinder at the middle of the back face of the
block, with two distPointFace geometric constraints; see
Figure 9 (c):

cylinderDist1(c.top, b.right, c.radius)

cylinderDist2(c.top, b.back, 0)

 The rounded blind slot interface parameters are then defined in
terms of the basic shapes’ parameters, with the algebraic con-
straints; see Figure 9 (d):

length = b.length + c.radius

width = b.width

depth = b.height

 Analogously, the rounded blind slot interface faces are defined
in terms of the basic shapes’ faces as follows:

top = {b.top, c.top}

bottom = {b.bottom, c.bottom}

front = {b.front}

back = {c.side}

left = {b.left}

right = {b.right}

 The rounded blind slot needs two attach constraints, on the top
and front faces, each of them requiring a user-supplied refer-
ence face:

attachTop(top, modelFace1)

attachFront(front, modelFace2)

 Finally, the position becomes fully specified with a distFace-
Face geometric constraint setting the user-supplied distance

between one of the rounded blind slot side faces and a user-
supplied reference face:

position(left, modelFace3, distance)

 Several validity conditions can now be specified for the
rounded blind slot feature class, e.g.:

1) To preserve the desired feature shape properties, the block
should be prevented from degenerating (that would be the
case if the length of the rounded blind slot was smaller
than the cylinder radius); similarly, the rounded blind slot
width and depth should be restricted to positive values.
This is achieved by setting lower bounds for these parame-
ters, with dimension constraints:

dimensionLength(length, c.radius)

dimensionWidth(width, 0)

dimensionDepth(depth, 0)

2) Faces top and front of the rounded blind slot should not be
on the model boundary, whereas each of the remaining
faces should have some contribution to the model bound-
ary. For this, the following semantic constraints can be
used:

notOnBoundary(top, completely)

notOnBoundary(front, completely)

onBoundary(left, partly)

onBoundary(right, partly)

onBoundary(back, partly)

onBoundary(bottom, partly)

3) Closure and absorption interactions could be disallowed
for rounded blind slot instances, by including the respec-
tive interaction constraints in the class specification.

 The final specification of the rounded blind slot feature class is
shown in Figure 10.

8. CONCLUSIONS

 Current schemes for defining new feature classes are very lim-
ited, mainly due to either excessive low-level input require-
ments, or incomplete specification of feature validity.

 (a) (b) (c) (d)

 Figure 9 - Shape specification for the rounded blind slot class

Copyright © 1998 by ASME

The declarative scheme presented in this paper overcomes
these drawbacks, providing a very flexible mechanism for the
specification of feature classes. It supports a wide range of
shapes. Full specification of validity conditions at geometric,
topologic and functional levels is possible by means of a variety
of constraint types. This approach has been implemented in a
Feature Library Manager, which provides a graphical user
interface and thus requires no programming skills.

Feature classes created in this way have a simple interface,
facilitating the creation and manipulation of feature instances
during the modeling process.

ACKNOWLEDGMENTS

 Rafael Bidarra’s work is supported by the Praxis XXI Program
of the Portuguese Foundation for Scientific and Technological
Research (FCT).
 Thanks to the Department of Mathematics and Computer Sci-
ence of Eindhoven University of Technology for providing the
LOOKS interpreter software.
 Thanks to Maurice Dohmen and Klaas Jan de Kraker for im-
plementing the LOOKS support for simple feature classes.

REFERENCES
Bidarra, R. and Bronsvoort, W.F. (1996) “Towards

classification and automatic detection of feature
interactions”. In: Roller, D., editor, Proceedings of the
29th International Symposium on Automotive Technology
and Automation, Automotive Automation, Croydon,
England, pp. 99-108.

Bidarra, R., Dohmen, M. and Bronsvoort, W.F. (1997)
“Automatic detection of interactions in feature models”.
In: CD-ROM Proceedings of the ASME 1997 Computers
in Engineering Conference, ASME, New York.

Bidarra, R. and Teixeira, J.C. (1994) “A semantic framework
for flexible feature validity specification and assessment”.
In: Ishii, K., Bannister, K. and Crawford, R., editors,
Proceedings of the ASME 1994 Computers in Engineering
Conference, ASME, New York, Vol. 1, pp. 151-158.

Dixon, J.R., Libardi, E.C. and Nielsen, E.H. (1990)
“Unresolved research issues in development of design-
with-features systems”. In: Wozny, M.J., Turner, J.U. and
Preiss, K., editors, Geometric Modeling for Product
Engineering, Elsevier Science Publishers, B.V. (North-
Holland), Amsterdam, pp. 183-196.

 Figure 10 - Final specification for the rounded blind slot class

Copyright © 1998 by ASME

Dohmen, M., de Kraker, K.J. and Bronsvoort, W.F. (1996)
“Feature validation in a multiple-view modeling system”.
In: McCarthy, J.M., editor, CD-ROM Proceedings of the
ASME 1996 Computers in Engineering Conference,
ASME, New York.

Idri, A. (1998) “User-Defined Object-Oriented Features”.
Master’s Thesis, Delft University of Technology, The
Netherlands.

de Kraker, K.J., Dohmen, M. and Bronsvoort, W.F. (1995)
“Multiple-way feature conversion to support concurrent
engineering”. In: Hoffmann, C. and Rossignac, J., editors,
Proceedings of the Third Symposium on Solid Modeling
and Applications, ACM Press, New York, pp. 105-114.

Hoffmann, C. and Joan-Arinyo, R. (1998) “On user-defined
features”. To be published in: Computer-Aided Design.

Noort, A. (1997) “Solving over-constrained geometric models”.
Master’s Thesis, Delft University of Technology, The
Netherlands.

Peeters, E.A.J. (1993) “Design and implementation of an
object-oriented, interactive animation system”. In:
Mingins, C., Haebich, W., Potter, J. and Meyer, B.,
editors, Technology of Object-Oriented Languages and
Systems, TOOLS 12 & 9, Prentice Hall, Englewood Cliffs,
pp. 255-267.

Salomons, O.W., Slooten, F. van, Jonker, H.G., van Houten,
F.J.A.M. and Kals, H.J.J. (1994) “Interactive feature
definition”. In: Soenen, R. and Olling, G., editors,
Proceedings IFIP WG 5.3 International Conference on
Feature Modelling and Recognition in Advanced
CAD/CAM Systems, Vol. 1, pp. 181-200.

Shah, J.J., Rogers, M.T., Sreevalsan, P., Hsiao, D. and Mathew,
A. (1990) “The ASU Features Testbed: an overview”. In:
Proceedings of the ASME 1990 Computers in Engineering
Conference, ASME, New York, Vol. 1, pp. 233-241.

Shah, J.J., Ali, A. and Rogers, M.T. (1994) “Investigation of
declarative feature modeling”. In: Ishii, K., Bannister, K.
and Crawford, R., editors, Proceedings of the ASME 1994
Computers in Engineering Conference, ASME, New
York, Vol. 1, pp. 1-11.

Shah, J.J. and Mäntylä, M., (1995), “Parametric and Feature-
based CAD/CAM; Concepts, Techniques and
Applications”, John Wiley & Sons, New York.

