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ABSTRACT

Feature-based modeling is being given an increasing
significance in the development of computer-aided design
environments, due to its expressive power in capturing various
aspects of designer intent. Integrity problems arise, however,
when the specification of complex shapes requires several features
to overlap or interact. In this paper we address the problem of
form feature behavior representation for such situations,
developing a semantic model that captures the actual contribution
of each feature in the overall model shape. Within this semantic
framework it becomes possible to establish naturally and flexibly
the desired validity conditions for each feature class, enhancing a
modeling system with the ability for permanently monitoring each
feature's conformity with that original specification.

1. INTRODUCTION

Feature-based modeling promises an enormous potential
improvement for the next generation of CAD systems, providing a
high-level building block suitable for raising the so-called level of
intelligent assistance they are expected to integrate. These are
required to incorporate powerful reasoning mechanisms that
further automate the task of creating and analyzing product
designs. Form feature technology provides the ability to associate
engineering significance to certain generic shapes intentionally
introduced in the product model by the designer (Shah, 1991a).

Although considerable progress is being achieved in setting up
the fundamentals of form feature concept and role (Pratt, 1988)
(Shah, 1991b), as well as in developing for them suitable
representation schemes and specific application prototypes (Luby
et al.,, 1986), (van Emmerik and Jansen, 1989), (Shah et al.,
1990), there is still a great deal to be done before real world, often
complex shaped, products can be fully modeled in an integrated
feature-based modeling environment (Bronsvoort and Jansen,
1993).

One of the most difficult issues faced by current design by
features research, as noted by Dixon et al. (1990), is the ability to

cope with complex and combined shapes, that directly express
some more elaborated functionality intended by the designer.
These are often modeled by means of overlapping form features,
that are intentionally inserted to produce feature interaction
phenomena (Pratt, 1987). Serious problems with explosive
combinatorial possibilities disallow any extensive expansion of
the modeling system's feature libraries; therefore, provision
should be made in these systems to incorporate reasoning
mechanisms that promptly recognize such situations and validate
features involved in them (Bidarra and Teixeira, 1993a).

In this paper we are mainly concerned with presenting a
semantic framework that captures the actual behavior of form
features involved in arbitrary interactions. We first extend the
definition of interaction among form features, introducing some
basic concepts useful in this generalization (Section 2). A
conceptual scheme for the representation of feature behavior is
then presented, based on the notion of semantic entities, which
provides a two-level structure for an object's form feature
semantic model (Section 3). We then elaborate on the
specification of feature validity conditions, based on the logical
composition of a particular kind of constraints set on semantic
entities, and suggest how they can be automatically monitored
during the incremental modeling process, in order to permanently
assess their conformity with the original designer intent (Section
4).

2. INTERACTIONS AMONG FORM FEATURES

As anticipated in the introduction, the functionality intended by
the designer for some part of the model often requires complex
shapes to be generated by overlapping several simpler form
features. These require the use of modeling operations that create,
insert or modify form features to yield feature interactions. On the
other hand, if an interaction between two features may be
intentionally introduced by the designer, it happens sometimes
that, as an indirect, eventually unanticipated, side-effect
interaction phenomena cause a particular feature to cease or
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FIGURE 1. MODEL WITH FEATURES IN CANONICAL
FORM

modify its original contribution to the shape of the model,
overriding some intended behavior previously specified (Bidarra
and Teixeira, 1993b). In order to further understand the nature of
interaction phenomena, we introduce in this Section some basic
concepts that will show of crucial importance in the subsequent
development.

2.1. Feature Associated Volume (FAV) and Boundary
(FAB)

Provided that we are dealing with volumetric form features, we
often need to refer to the region of the space comprised within
each feature instance; hereafter, we will designate it as the
Feature Associated Volume, FAV. Intuitively, the FAV expresses
the volume of material to be removed from or added to the model
with the insertion of that feature (with subtractive or additive
signal, respectively). Analogously, we define the Feature
Associated Boundary, denoted FAB, as the set of boundary points
of the FAV. Clearly, not all the points in a FAB belong to the
model boundary; for example, the two open ends of a cylindrical
through hole are not part of the model boundary. A partition can
be established on the FAB that classifies points according to this
property:

FAB = FAB' U FAB

+ . .
where FAB  denotes the point subset that contributes to the
model boundary.

2.2. Feature Canonical Form

Every feature class should always provide a standard
specification for the default behavior of each instance feature in
the model. This primary configuration is termed feature canonical
form and it can be illustrated by the features in the model depicted
in Figure 1.

This situation can be characterized by observing that there are
no two features of the same signal whose FAV overlap. Indeed,
this is a necessary condition for the occurrence of the canonical
form.

2.3. Types of Interaction
A feature canonical form occurs, most often, when its FAV
intersects only that of one other feature, as is the case of the SLOT,

the POCKET and the RIB features in Figure 1: this is designated as
single interaction. In some situations, however, a feature may
exhibit a FAV that intersects a few others while still keeping its
canonical form, as exemplified by the THROUGH HOLE in Figure 1;
such situations are here termed multiple interactions.

2.4. Interaction Extent (IE)

The interaction extent of any two features F| and F, is the
region of the space (whatever its dimensionality) defined by the
intersection of the respective FAVs; we shall denote it by
IE(F|.Fy).

The notion of interaction extent is so fundamental that we can
ground on it our definition of interaction between two features:

Definition: given any two features F'; and I, we say they are
in interaction, and denote it by F; ¢ F,, iff their
interaction extent is non empty, i.e.,

F, & F, <& IE(F,F,) # O
2.5. Interaction Mode

Another useful distinction can be established according to the
dimensionality of the interaction extent between any two

interacting features, F; and F,. We have a boundary interaction
whenever

IE (F,,F,) C FAB(F;)AIE(F;,F,) C FAB(F,)
and a volume interaction otherwise.

2.6. Feature Interaction Graph (FIG)

The above definition of interaction generalizes and unifies the
notions of adjacency and interaction identified by Pratt (1988)
and Shah and Rogers (1988), respectively. Therefore, the
interaction relationship provides a powerful basis for a high-level
graph representation of a feature model; we call it the Feature
Interaction Gaph (F1G) and it is defined as

FIG=<F, I >
where

F is the set of features in the model, and

FIGURE 1. FEATURE INTERACTION GRAPH FOR THE
MODEL OF FIGURE 1
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FIGURE 3. MODEL WITH THREE CONGRUENT SUBTRACTIVE FEATURES (a) AND THEIR DISTINCTIVE FAB
CONFIGURATIONS (b)

I is the subset of F that contains all the pairs of features
of F that actually interact in the model.

The edges in the FIG can be oriented so that for each interaction
the active feature points to the passive one, i.c., the feature that
suffers the interaction. As an example, the FIG of the model in
Figure 1 is shown in Figure 2.

3. THE REPRESENTATION OF FEATURE BEHAVIOR

The functional and technological conotation of every form
feature class is one of the most promising skills for the
development of product modeling systems (Shah, 1991a). Its
sound capture in the product model, however, is crucial if the
designer intent is to be kept consistent throughout the design
process. This poses considerable demands on the system's ability
to express and represent the actual behavior of each feature
present in the model.

3.1. Semantic Entities

The usual primary classification of features according to its
additive or subtractive nature proves insufficient to distinguish the
specific behavior of different feature classes, even among their
canonical instance features. This is clearly shown by the three
subtractive features in the model of Figure 3.(a), which also
present congruent FAVs.

This distinction, however, can be accomplished if we carefully
analyse the FAB of each feature, identifying on it the various
subsets with specific roles or contributions to the feature global
behavior: Figure 3.(b). In particular, we should notice the

side1(SLOT) end2(SLOT)

end1(SLOT)
side2(SLOT)

roof(SLOT)

(2)

floor(SLOT)

(b)

presence in the model boundary of only some of them, said to
exhibit a positive status, while the others, with a closure character,
are said to have a negative status.

We designate each of these subsets a semantic entity, according
to the following

Definition: a semantic entity of a feature is a collection of
sectors of its boundary that plays a specific and
individualized role in the behavior desired for the
respective feature class, as expressed by its canonical
Sform.

Any feature class can, thus, describe its specific behavior
through a set of semantic entities. In Figure 4 we show an
example of these sets for the rectangular SLOT (a) and rectangular
BLOCK (b) features.

From this example, two observations can be made:

i) the generation of feature interactions always produces a
new further decomposition of the involved FABs,
eventually changing the status of some resulting elements
(or sectors); as a consequence of this process, a semantic
entity may become composed of sectors of both status, as
shown in (b), for instance, by the top (BLock) semantic
entity, which exhibits two positive status elements
(forming the so-called positive subentity top+ (BLOCK) )
and one negative element (that integrates the negative
subentity top (BLOCK) );

ii) due to the particular configuration of the interaction
extent, it may occur that some sectors of a FAB are shared

side4(BLOCK) side3(BLOCK)
I

side2(BLOCK)

top(BLOCK)

S~ bottom(BLOCK)

FIGURE 3. SEMANTIC ENTITIES OF A RECTANGULAR SLOT (a) AND A RECTANGULAR BLOCK (b)
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FIGURE 5. INTERNAL DECOMPOSITION OF SEMANTIC ENTITIES OF FEATURES IN MULTIPLE INTERACTION

by (or belong_ to) semantic entities of distinct features
(e.g., the top (BLock) and the roof (svor)in Figure 4
share the same boundary element).

The internal decomposition of each semantic entity and the
classification of its sectors as positive and negative elements
provide us with the appropriate descriptive tools to overcome the
difficulties resulting from the virtually unlimited number of
configurations that arise from generalized feature interactions.
These skills can be stressed with the example model of Figure
5.(a), obtained from the previous one inserting a new feature,
SLOT2, in double interaction.

As shown in (b) and (c), the non-standard topology of both slots
(one of which is even disconnected), is captured and structured
within the respective semantic entities (whose positive elements
are shown dashed). These will, therefore, form the basis for the
development of validity condition for every feature class, in
Section 4.

3.2. Form Feature Semantic Model

As mentioned in Subsection 2.6, we can describe a feature
model, from a high level of abstraction, as a graph (the FIG),
expressing the interaction relationship among the form features
that integrate the model. Although surprisingly simple, the FIG
provides already a global perception of the overall structure of the
feature model, as depicted in Figure 6.

On the other hand, we stressed the crucial role played by the
notions of feature associated volume and boundary, interaction

PROT

SLOT /

(2)

BLOCK

extent and semantic entity, which are so closely related. These
concepts can be conveniently described in a second lower level of
abstraction, by means of a structured layer of cellular entities.
This level emerges as a common basis for the unification of the
FAV (3-cells), the semantic entities (2-cells) and the interaction
extent (potentially, cells of all dimensionalities). Therefore, it
should not be confused with any type of cellular representation
scheme used in solid modeling, although some analogy can be
found through the boundary of relationship between cells of
dimension n and n+1 (with n=0, 1, 2).

The global Form Feature Semantic Model integrates both the
FIG (at the semantic level) and the structured cellular level, as
depicted in the diagram of Figure 7.

For each interaction relationship recorded at the semantic level
there is one interaction extent, whose counterpart at the cellular
level consists of a collection of n-cells (with n=3 for volumetric
interaction and n<3 for boundary interaction). On the other hand,
the semantic entities and the FAV of each feature have their
corresponding expression in the cellular level as collections of 2-
and 3-cells, respectively. The hierachical structure of this level
provides a unified basis for the consistent access and reference to
the actual situation of both interaction extents and semantic
entites, essential for the on-line monitoring of feature
manipulation operations and the effective detection of critical
interactions. Thus, for example, when a 3-cell of a FAV has to be
decomposed to yield one or more 3-cells for interaction extents,
its boundary (made up of 2-cells) is consistently decomposed,
automatically updating the contents of the respective semantic
entities.

(b)

FIGURE 6. FORM FEATURE MODEL (a) AND THE CORRESPONDING FIG (b)
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FIGURE 7. GLOBAL FORM FEATURE SEMANTIC MODEL

In Figure 8 we exemplify the semantic model structure for the Brock and the prot is highlighted, at the cellular level, by dashed
object of Figure 6. 2-cells. The correspondence of semantic entities in the cellular
The interaction extent for the boundary interaction between the level, intentionally omitted in Figure 8 for clarity, is presented in

Semantic Level

Cellular Level

FIGURE 8. SEMANTIC MODEL FOR THE OBJECT OF FIGURE 6
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FIGURE 10. SEMANTIC ENTITIES AND THEIR CORRESPONDENCE IN THE CELLULAR LEVEL

Figure 9, where we can distinguish their internal partition in
subentities (the negative ones being dashed).

Although, for the sake of clarity, cells appear in the previous
two Figures as completely disjoint, one should keep in mind that
they are actually all glued together, some of them (those that
integrate an interaction extent) being shared by more than one
FAV. Correspondingly, some 2-cells are shared by more than one
semantic entity, as, for example the one shaded in Figure 10,
which is shared by both the roof (sror) and one side (BLOCK) .

FIGURE 10. SHARED CELLS AT THE CELLULAR LEVEL

4. THE SPECIFICATION OF FEATURE VALIDITY

Form feature validity checking is a key issue in any feature-
based modeling environment. This problem is particularly
important when we want the system to automatically detect and
signal situations that violate the integrity of the previous
specification of the designer intent. With this objective, we
propose the system to monitor every feature operation (insertion,
removal, modification, etc.) to assess the conformity of the result
with the original semantic specification provided in the respective
feature class.

All instance features of a particular feature class, although
significantly distinct in their FAB configurations due to
interactions, are expected to preserve always some essential
behavior of that class. This semantic description can be
established as a set of validity conditions, to be verifyed and
obeyed permanently by each instance feature present in the model.

4.1. Semantic Constraints

The key for specifying feature validity conditions lays in settling
a set of constraints - here called semantic constraints -, each of
which requires a semantic entity to exhibit a particular behavior,
as a consequence of the type of internal decomposition it allows.

The first step in this goal consists of specifying a default or
canonical status for each semantic entity in a feature class
description; in this way, for instance, a rectangular slot class
should assign a positive canonical status for the sides and
floor semantic entities, as well as a negative one for the ends
and roof semantic entities (see Figure 4.(a)). The role of this
specification, however, is essentially indicative, in that it makes
no assumption on the actual partition of the semantic entity. In
turn, this can actually be constrained by the introduction of a
predicate that specifies how the semantic entity is allowed to be
decomposed.

Let us first introduce the generic Prolog-like predicate

s_entity(Elements,Entity, Status, Feature)

that provides the access to the Elements of Status in the
semantic Entity of an instance Feature. The Status
specified in a query, if constrained, can be either absolute
(positive, +, or negative, —) or relative to the Feature semantics
(i.e., canonical, e, or improper, 1i).

The flexibility of this predicate becomes clearly illustrated with
a few examples:

s_entity(Elements, floor, +,SLOT)

e obtains the ELlements of £loor (sroT) ;

s_entity(Elements, ,-,POCKET)

e obtains all negative Elements of all
semantic entities of pocker, i.e., the FAB
(POCKET) ;



s_entity([],endl, i, THOLE)

e  verifies if the semantic entity endl of THOLE
has no improper elements, i.e., if it is only
composed of canonical elements.

This last example serves to show a first kind of semantic
constraint, namely that of requiring a semantic entity to be intact
or complete, i.c., integrating only elements in canonical status.
This means that if the feature undergoes some decomposition due
to an interaction, that semantic entity is required to keep active
and completely contributing to the global feature behavior, with
no missing (or improper) fragments. The definition of the
complete semantic constraint is, thus,

complete (Entity, Feature) <«
s_entity([],Entity,i,Feature).

Another, more loose, constraint requires the semantic entity to
be only present in the model boundary, i.e., integrating some
canonic elements, according to the definition

present (Entity,Feature) <«
s_entity([_I|_],Entity,c,Feature).

This allows for arbitrary interactions to partially corrupt a
semantic entity, provided that it still keeps some original
canonical subset contributing to the overall feature behavior.
Naturally, this semantic constraints could be established in
conjunction with some kind of quantification for the actual
canonical subset, e.g., based on geometric criteria.

Some other constraint predicates can be defined, based on the
topological notions of adjacency and accessibility. Among these,
the requirement for the connectivity of a semantic entity may be
used to prevent a form feature from being split into several
canonical components due to an interaction with some subtractive
feature, as shown by the through hole of the model in Figure 11.

The definition of such a constraint can be stated as follows:

connected (Entity, Feature) <«
s_entity(Elements,Entity, c,Feature),
forall (
(element (X,Elements) ,
element (Y,Elements)),
accessible (X, Y)

FIGURE 11. THROUGH HOLE DISCONNECTED BY AN
INTERACTION WITH A SUBTRACTIVE FEATURE

4.2. Validity Conditions

If each semantic constraint establishes some local partial
behavior for a feature, it seems both natural and powerful to
associate to each feature class a set of semantic constraints,
combined to form a logical expression that describes the overall
behavior for all its instance features. This expression is called the
feature class validity conditions. Whenever an instance feature
satisfies these conditions in the model, we say it presents semantic
completeness; otherwise, it diverges in some fashion from the
original class specification and must, therefore, be considered as
an invalid feature.

Due to the incremental nature of the design process,
semantically invalid features can emerge as an indirect, eventually
unanticipated, result of feature interactions. Such situations
should always be detected and signaled by the system, although it
is the designer responsibility to allow their maintenance in the
model. In this case, they should be considered as intentional
features, just reflecting some designer intention on the respective
functionality, temporarily overriden, which he should restore
latter on (Rossignac, 1990).

It should be remarked that the notion of form feature validity
here developed is closely tied with the exact expression of the
intentional behavior that form features actually exhibit in a model.
Naturally, the choice for some particular semantic specification is,
most often, domain dependent and it is not, therefore, our purpose
to elaborate here on a taxonomy for such a scheme, if it ever
exists. Instead, we propose a flexible framework for the semantic
expression of any validity conditions, suitable for the eftective
configuration of the system's feature library according to designer
specific requirements.

We now illustrate with a simple example the specification of a
set of validity conditions for a particular SLOT subclass. The set of
conditions

complete (floor,swor) A

present (sidel, sLotr) vpresent (side2,sLoT) A
complete (endl, sLoT) A

complete (end2,s10T) A

complete (roof, sLoT)

would accept as valid instances the SLOT features in the models
of Figure 12.(a), whereas those of (b) exhibit some interaction that
makes incomplete either the £1loor or the end semantic entities,
yielding invalid situations.
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FIGURE 12. MODELS WITH (a) VALID AND (b) INVALID
SLOT INSTANCES IN MULTIPLE INTERACTION
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5. CONCLUSIONS

Complex-shaped solid objects present strong demands on a
feature-based modeler's ability to cope with form feature
interaction phenomena. The nature of feature interactions, the
semantic interpretation of interacting features, and the
specification of non-canonic feature validity are some of the
current open issues addressed in this paper.

A semantic framework for the dynamic interpretation of form
feature behavior was developed, based on the notion of semantic
entity. This has shown to bring together the semantic expressive
power of form features and the flexibility of their behavior
throughout interaction phenomena.

A mechanism for feature validity maintenance was proposed,
that relies on the logic composition of semantic constraints. The
need for enhancing the conventional manipulation operations in
any feature-based modeling system with validity monitoring and
assessment is crucial if one wishes to achieve a finer tuning with
the designer throughout the design process.

Our current research goals include the development of reasoning
mechanisms to cope with such requirements for feature insertion,
removal and geometric modification operations.

REFERENCES

Bidarra, R., Teixeira, J.C., 1993a, "Mecanismos de Raciocinio
na Manipulacdo de Modelos Baseados em Caracteristicas de
Forma", Proceedings of V Encontro Portugués de Computagdo
Grdfica, Aveiro, Portugal.

Bidarra, R., Teixeira, J.C., 1993b, "Intelligent Form Feature
Interaction Management in a Cellular Modeling Scheme",
Proceedings of the Il ACM/IEEE Symposium on Solid Modeling
and Applications, Montreal, Canada.

Bronsvoort, W.F., Jansen, F.W., 1993, "Feature Modelling and
Conversion - Key Concepts to Concurrent Engineering",
Computers in Industry, no. 21, pp. 61-86.

Dixon, J.R., Libardi, E.C., Nielsen, E.H., 1990, “Unresolved
Research Issues in Development of Design-with-Features
Systems”, Geometric Modeling for Product Engineering, Wozny,

M., Turner, J., and Preiss, K. (Eds.), North-Holland, The
Netherlands.

van Emmerik, M.J.G.M., Jansen, F.W., 1989, "User Interface
for Feature Modelling", Computer Applications in Production
and Engineering, Kimura, F. and Rolstadas, A. (Eds.), Elsevier
Science Publishers, B.V. (North-Holland), IFIP, pp. 625-632.

Luby, S.C., Dixon, J.R., Simmons, M.K., 1986, "Designing with
Features: Creating and Using a Features Data Base for Evaluation
of Manufacturability in Castings", Proceedings of the ASME
International Computers in Engineering Conference and
Exhibition, Chicago, IL.

Pratt, M.J., 1987, "Recent Research in Form Features",
Siggraph Course Notes: Advanced Topics in Solid Modeling,
Course #26, Siggraph'87 Conference , Anaheim, CA.

Pratt, M.J., 1988, "Synthesis of an Optimal Approach to Form
Feature Modelling", Proceedings of the ASME International
Computers in Engineering Conference and Exhibition, San
Francisco, CA, Vol. 1, pp. 263-274.

Rossignac, J.R., 1990, "Issues on Feature-Based Editing and
Interrogation of Solid Models", Computers & Graphics, Vol. 14,
no. 2, pp. 149-172.

Shah, J.J., et al., 1990, "The ASU Features Testbed: An
Overview", Proceedings of the ASME International Computers in
Engineering Conference and Exhibition, Boston, MA, Vol. 1, pp.
233-241.

Shah, J.J., 1991, "Assessment of features technology",
Computer-Aided Design, Vol. 23, no. 5, pp. 331-343.

Shah, J.J., 1991, "Conceptual Development of Form Features
and Feature Modelers", Research in Engineering Design, Vol. 2,
pp. 93-108.

Shah, J.J., Rogers, M.T., 1988, "Expert Form Feature
Modelling Shell", Computer-Aided Design, Vol. 20, no. 9, pp.
515-524.

Shah, J.J., Wilson, P.R., 1989, "Analysis of Design Abstraction,
Representation and Inferencing Requirements for Computer-
Aided Design", Journal of Design Studies, Vol. 10, no. 3, pp.
169-178.



