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Lo(x, ωo) = Le(x, ωo) +

∫
Ω(x)

L(x, ωi)ρ(x, ωi, ωo) n(x) ·ωi dωi

Incoming radiance
L(x, ωi)

BRDF
ρ(x, ωi, ωo)

Geometry term
n(x) ·ωi
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The rendering equation: Integrand
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Lo(x, ωo) = Le(x, ωo) +

∫
Ω(x)

L(x, ωi)ρ(x, ωi, ωo) n(x) ·ωi dωi

Incoming radiance
L(x, ωi)

Diffuse BRDF
ρ(x, ωi, ωo)

Geometry term
n(x) ·ωi
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The rendering equation: Integrand



Importance sampling
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Idea: Sample regions with large values more frequently.

A rough guess is often good enough.
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Idea: Sample regions with large values more frequently.

A rough guess is often good enough.

E.g. double sample density for x< 0.2 compared to x≥ 0.2.
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Idea: Sample regions with large values more frequently.

A rough guess is often good enough.

E.g. double sample density for x< 0.2 compared to x≥ 0.2.

To compensate, samples with x< 0.2 get half the weight.
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Use probability density function (PDF) p(x)≥ 0 with x∈ [a, b].

Take samples x0, , xN− 1 with density p(x).

Probability for sample x0 to be in [c, d]: 
∫ d

c

p(x) dx
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Use probability density function (PDF) p(x)≥ 0 with x∈ [a, b].

Take samples x0, , xN− 1 with density p(x).

Probability for sample x0 to be in [c, d]: 
∫ d

c

p(x) dx
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Use probability density function (PDF) p(x)≥ 0 with x∈ [a, b].

Take samples x0, , xN− 1 with density p(x).

Normalized to 100% overall probability: 
∫ b

a

p(x) dx= 1
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Use probability density function (PDF) p(x)≥ 0 with x∈ [a, b].

Take samples x0, , xN− 1 with density p(x).

Normalized to 100% overall probability: 
∫ b

a

p(x) dx= 1

I≈ 1
N

N− 1∑
j= 0

f(xj)

p(xj)
 is unbiased estimate if f(x) 0 ⇒  p(x)> 0.
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Use probability density function (PDF) p(x)≥ 0 with x∈ [a, b].
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∫ b

a
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N

N− 1∑
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Take samples x0, , xN− 1 with density p(x).

Normalized to 100% overall probability: 
∫ b

a

p(x) dx= 1

I≈ 1
N

N− 1∑
j= 0

f(xj)

p(xj)
 is unbiased estimate if f(x) 0 ⇒  p(x)> 0.

8

a b
x

0

1

2

3

f(
x
)

p
(x

)

Importance sampling: Definition



Ideally p(x) =wf(x) for a suitable normalization factor w> 0.

Then f(xj)
p(xj)

=
f(xj)

wf(xj)
= 1

w  is constant. No noise!
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Ideally p(x) =wf(x) for a suitable normalization factor w> 0.

Then f(xj)
p(xj)

=
f(xj)

wf(xj)
= 1

w  is constant. No noise!

But 
∫ b

a

p(x) dx= 1 ⇒  
∫ b

a

wf(x) dx= 1 ⇒  1w =

∫ b

a

f(x) dx
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Ideally p(x) =wf(x) for a suitable normalization factor w> 0.

Then f(xj)
p(xj)

=
f(xj)

wf(xj)
= 1

w  is constant. No noise!

But 
∫ b

a

p(x) dx= 1 ⇒  
∫ b

a

wf(x) dx= 1 ⇒  1w =

∫ b

a

f(x) dx

The density p(x) must be a simplified version of f(x).
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Goal: Convert uniform u in [0, 1) to x in [a, b) with density p(x).

10

a b
x

0

1

2

p
(x

)
Inverse CDF sampling



Goal: Convert uniform u in [0, 1) to x in [a, b) with density p(x).

Cumulative distribution function (CDF): F(x)

∫ x

a

p(t)dt
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Goal: Convert uniform u in [0, 1) to x in [a, b) with density p(x).

Cumulative distribution function (CDF): F(x)

∫ x

a

p(t)dt

x F−1(u) has density p(x).
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Goal: Convert uniform u in [0, 1) to x in [a, b) with density p(x).

Cumulative distribution function (CDF): F(x)

∫ x

a

p(t)dt

x F−1(u) has density p(x).
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Goal: Convert uniform u in [0, 1) to x in [a, b) with density p(x).

Cumulative distribution function (CDF): F(x)

∫ x

a

p(t)dt

x F−1(u) has density p(x).
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Goal: Convert uniform u in [0, 1) to x in [a, b) with density p(x).

Cumulative distribution function (CDF): F(x)

∫ x

a

p(t)dt

x F−1(u) has density p(x).
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Goal: Convert uniform u in [0, 1) to x in [a, b) with density p(x).

Cumulative distribution function (CDF): F(x)

∫ x

a

p(t)dt

x F−1(u) has density p(x).
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Assume p(x)> 0 for simplicity.

Using the rule for derivatives of inverse functions:

(F−1)′(u) = 1

F ′(F−1(u))
= 1

p(F−1(u))

Using integration by substitution:

      
∫ 1

0

f(F−1(u))

p(F−1(u))
du=

∫ 1

0

f(F−1(u))(F−1)′(u) du

=

∫ F−1(1)

F−1(0)

f(x) dx=

∫ b

a

f(x) dx
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Correctness proof



Which factor(s) should we use importance sampling for?∫
Ω(x)

L(x, ωi)ρ(x, ωi, ωo) n(x) ·ωi dωi

Incoming radiance
L(x, ωi)

BRDF
ρ(x, ωi, ωo)

Geometry term
n(x) ·ωi = cos(θi)
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Importance sampling strategies



Which factor(s) should we use importance sampling for?∫
Ω(x)

L(x, ωi)ρ(x, ωi, ωo) n(x) ·ωi dωi

Incoming radiance
L(x, ωi)

Diffuse BRDF
ρ(x, ωi, ωo)

Geometry term
n(x) ·ωi = cos(θi)
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Which factor(s) should we use importance sampling for?∫
Ω(x)

L(x, ωi)ρ(x, ωi, ωo) n(x) ·ωi dωi

Incoming radiance
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Importance sampling strategies



BRDF importance sampling
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p(θ) = 2
π

p(ω) = 1

π2sin(θ)

p(θ) = w cos(θ)sin(θ)

p(ω) = w ′ n(x) ·ω = w ′ ωz

15

Spherical vs. projected solid angle sampling



p(θ) = 2
π

p(ω) = 1

π2sin(θ)

p(θ) = w cos(θ)sin(θ)

p(ω) = w ′ n(x) ·ω = w ′ ωz

(ωx, ωy) is uniform.
Known as Nusselt analog.
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Spherical vs. projected solid angle sampling



Goal: Sample θ∈ [0, π
2
) with density p(θ) =w cos(θ)sin(θ).
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Projected solid angle sampling



Goal: Sample θ∈ [0, π
2
) with density p(θ) =w cos(θ)sin(θ).

CDF: F(Θ)

∫ Θ

0

p(θ) dθ=w

∫ Θ

0

cos(θ)sin(θ) dθ

                   =w[−1
2
cos2 (θ)]Θ0 = w

2
(1− cos2 (Θ))
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Projected solid angle sampling



Goal: Sample θ∈ [0, π
2
) with density p(θ) =w cos(θ)sin(θ).

CDF: F(Θ)

∫ Θ

0

p(θ) dθ=w

∫ Θ

0

cos(θ)sin(θ) dθ

                   =w[−1
2
cos2 (θ)]Θ0 = w

2
(1− cos2 (Θ))

Normalize: F(π
2
) = 1 ⇒ w

2
(1− cos2 (π

2
)) = 1 ⇒ w= 2
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Projected solid angle sampling



Goal: Sample θ∈ [0, π
2
) with density p(θ) =w cos(θ)sin(θ).

CDF: F(Θ)

∫ Θ

0

p(θ) dθ=w

∫ Θ

0

cos(θ)sin(θ) dθ

                   =w[−1
2
cos2 (θ)]Θ0 = w

2
(1− cos2 (Θ)) = 1− cos2 (Θ)

Normalize: F(π
2
) = 1 ⇒ w

2
(1− cos2 (π

2
)) = 1 ⇒ w= 2
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Projected solid angle sampling



Goal: Sample θ∈ [0, π
2
) with density p(θ) =w cos(θ)sin(θ).

CDF: F(Θ)

∫ Θ

0

p(θ) dθ=w

∫ Θ

0

cos(θ)sin(θ) dθ

                   =w[−1
2
cos2 (θ)]Θ0 = w

2
(1− cos2 (Θ)) = 1− cos2 (Θ)

Normalize: F(π
2
) = 1 ⇒ w

2
(1− cos2 (π

2
)) = 1 ⇒ w= 2

Solve: u=F(θ) ⇔ 1− u= cos2 (θ) ⇔ θ= arccos
√

1− u
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Projected solid angle sampling



Goal: Sample θ∈ [0, π
2
) with density p(θ) =w cos(θ)sin(θ).

CDF: F(Θ)

∫ Θ

0

p(θ) dθ=w

∫ Θ

0

cos(θ)sin(θ) dθ

                   =w[−1
2
cos2 (θ)]Θ0 = w

2
(1− cos2 (Θ)) = 1− cos2 (Θ)

Normalize: F(π
2
) = 1 ⇒ w

2
(1− cos2 (π

2
)) = 1 ⇒ w= 2

Solve: u=F(θ) ⇔ 1− u= cos2 (θ) ⇔ θ= arccos
√

1− u

Simplify: sin(θ) = sin arccos
√

1− u =

√
1−

√
1− u 2 =

√
u

                cos(θ) = cos arccos
√

1− u =
√

1− u
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Projected solid angle sampling



Goal: Sample ω∈Ω proportional to ωz.

ωx(θ, ϕ) cos(ϕ)sin(θ) = cos(2πux − π)
√
uy

ωy(θ, ϕ) sin(ϕ)sin(θ) = sin(2πux − π)
√
uy

ωz(θ, ϕ) cos(θ) =
√

1− uy
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Projected solid angle sampling



Goal: Sample ω∈Ω proportional to ωz.

ωx(θ, ϕ) cos(ϕ)sin(θ) = cos(2πux − π)
√
uy

ωy(θ, ϕ) sin(ϕ)sin(θ) = sin(2πux − π)
√
uy

ωz(θ, ϕ) cos(θ) =
√

1− uy

Density: p(ω) =w ′ ωz Estimate: 
∫

Ω

f(ω) dω≈ f(ω(u))

p(ω(u))
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Projected solid angle sampling



Goal: Sample ω∈Ω proportional to ωz.

ωx(θ, ϕ) cos(ϕ)sin(θ) = cos(2πux − π)
√
uy

ωy(θ, ϕ) sin(ϕ)sin(θ) = sin(2πux − π)
√
uy

ωz(θ, ϕ) cos(θ) =
√

1− uy

Density: p(ω) =w ′ ωz = ωz

π

1 =

∫ π

−π

∫ π
2

0

p(ω(θ, ϕ))sin(θ) dθdϕ=

∫ π

−π

w ′

2
F(π

2
) dϕ= πw ′

Estimate: 
∫

Ω

f(ω) dω≈ f(ω(u))

p(ω(u))
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Projected solid angle sampling



Both images use N= 4 samples per pixel.

Moderate but consistent noise reduction at no cost.

Uniform θ, ϕ Projected solid angle sampling
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Which factor(s) should we use importance sampling for?∫
Ω(x)

L(x, ωi)ρ(x, ωi, ωo) n(x) ·ωi dωi

Incoming radiance
L(x, ωi)

BRDF
ρ(x, ωi, ωo)

Geometry term
n(x) ·ωi = cos(θi)
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Which factor(s) should we use importance sampling for?∫
Ω(x)

L(x, ωi)ρ(x, ωi, ωo) n(x) ·ωi dωi

Incoming radiance
L(x, ωi)

BRDF
ρ(x, ωi, ωo)

Geometry term
n(x) ·ωi = cos(θi)
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Importance sampling strategies



Slightly complicated but code is available.

Method for microfacet BRDFs: doi.org/10.1111/cgf.12417

Faster method for GGX: doi.org/10.1145/2815618

Still faster method for GGX: doi.org/10.1111/cgf.14867

19
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Slightly complicated but code is available.

Method for microfacet BRDFs: doi.org/10.1111/cgf.12417

Faster method for GGX: doi.org/10.1145/2815618

Still faster method for GGX: doi.org/10.1111/cgf.14867
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We have m sampling strategies but only want one sample.

Strategy j∈
{
0, , m− 1

}
 has density pj(x), importance cj.

Total importance:  C
m− 1∑
j= 0

cj

Goal: Pick strategy j with probability cj
C

.

20
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We have m sampling strategies but only want one sample.

Strategy j∈
{
0, , m− 1

}
 has density pj(x), importance cj.

Total importance:  C
m− 1∑
j= 0

cj

Goal: Pick strategy j with probability cj
C

.

Linear search for j:  
j− 1∑
l= 0

cl Cu<

j∑
l= 0

cl with u uniform in [0, 1)

c0 c1 c2 c3

Cu
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We have m sampling strategies but only want one sample.

Strategy j∈
{
0, , m− 1

}
 has density pj(x), importance cj.

Total importance:  C
m− 1∑
j= 0

cj

Goal: Pick strategy j with probability cj
C

.

Linear search for j:  
j− 1∑
l= 0

cl Cu<

j∑
l= 0

cl with u uniform in [0, 1)

Combined density:  p(x) 1
C

m− 1∑
j= 0

cjpj(x)

c0 c1 c2 c3

Cu

20

Combining sampling strategies



Probability for projected solid angle sampling:

The diffuse albedo, but at most 50%.

Otherwise specular BRDF sampling.

In specular highlights, specular is extremely important.

So we do not want to use its sampling strategy too seldomly.
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Combining diffuse and specular sampling
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Light importance sampling
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Daytime, BRDF sampling, N= 16
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Nighttime, BRDF sampling, N= 16
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Nighttime, BRDF+light sampling, N= 16



Which factor(s) should we use importance sampling for?∫
Ω(x)

L(x, ωi)ρ(x, ωi, ωo) n(x) ·ωi dωi

Incoming radiance
L(x, ωi)

BRDF
ρ(x, ωi, ωo)

Geometry term
n(x) ·ωi = cos(θi)
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Which factor(s) should we use importance sampling for?∫
Ω(x)

L(x, ωi)ρ(x, ωi, ωo) n(x) ·ωi dωi

Incoming radiance
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BRDF
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Geometry term
n(x) ·ωi = cos(θi)

27

Importance sampling strategies



Light with radius r, center c∈ 3.

Choose a convenient coordinate frame:

Path vertex xj is origin, c is on z-axis.

jcgt.org/published/0006/01/01/

c  

  xj
28

r

Spherical lights



Light with radius r, center c∈ 3.

Choose a convenient coordinate frame:

Path vertex xj is origin, c is on z-axis.

sin(α) =
opposite

hypotenuse
= r
‖c‖

α= arcsin( r
‖c‖ )

c  

  xj
28

r

‖c‖  

α

Spherical lights



Light with radius r, center c∈ 3.

Choose a convenient coordinate frame:

Path vertex xj is origin, c is on z-axis.

sin(α) =
opposite

hypotenuse
= r
‖c‖

α= arcsin( r
‖c‖ )

Sample direction vectors within angle α of z-axis.

This is a so-called spherical cap.

c  

  xj
28

r

‖c‖  

α

Spherical lights



Goal:  Sample θ∈ [0, α) with density p(θ) =w sin(θ).

CDF:  F(Θ) =

∫ Θ

0

p(θ) dθ=w[−cos(θ)]Θ0 =w(1− cos(Θ))

Normalize:  1 =F(α) =w(1− cos(α)) ⇒ w= 1
1− cos(α)

29

Sampling spherical caps



Goal:  Sample θ∈ [0, α) with density p(θ) =w sin(θ).

CDF:  F(Θ) =

∫ Θ

0

p(θ) dθ=w[−cos(θ)]Θ0 =w(1− cos(Θ))

Normalize:  1 =F(α) =w(1− cos(α)) ⇒ w= 1
1− cos(α)

Solve: u=F(θ) ⇔ (1− cos(α))u= 1− cos(θ)

                            ⇔ θ= arccos(1− (1− cos(α))u)

29

Sampling spherical caps



Goal:  Sample θ∈ [0, α) with density p(θ) =w sin(θ).

CDF:  F(Θ) =

∫ Θ

0

p(θ) dθ=w[−cos(θ)]Θ0 =w(1− cos(Θ))

Normalize:  1 =F(α) =w(1− cos(α)) ⇒ w= 1
1− cos(α)

Solve: u=F(θ) ⇔ (1− cos(α))u= 1− cos(θ)

                            ⇔ θ= arccos(1− (1− cos(α))u)

Simplify: cos(α) = cos(arcsin( r
‖c‖ )) =

√
1− r2

‖c‖2

                 ωz cos(θ) = 1− (1− cos(α))u

                 sin(θ) =
√

1−ω2
z

29

Sampling spherical caps



Goal:  Sample ω uniformly in spherical cap with angle α.

zmin cos(α) =

√
1− r2

‖c‖2

ωz cos(θ) = 1− (1− zmin)uy

ωx cos(ϕ) sin(θ) = cos(2πux − π)
√

1−ω2
z

ωy sin(ϕ) sin(θ) = sin(2πux − π)
√

1−ω2
z

29

Sampling spherical caps



Goal:  Sample ω uniformly in spherical cap with angle α.

zmin cos(α) =

√
1− r2

‖c‖2

ωz cos(θ) = 1− (1− zmin)uy

ωx cos(ϕ) sin(θ) = cos(2πux − π)
√

1−ω2
z

ωy sin(ϕ) sin(θ) = sin(2πux − π)
√

1−ω2
z

Density: p(ω) = 1
2π(1− zmin)

2π(1− zmin) is the solid angle of the spherical cap.

Solid angle =  area of shape projected onto unit sphere.
29

Sampling spherical caps



For m lights, we get densities p0(ω), , pm− 1(ω).

Combine all these strategies as for diffuse and specular.

Importance cj solid angle times Le or zero if a light is

outside the hemisphere Ω(x) (i.e. n(x) · c<−r).

30

Combining light sampling strategies



For m lights, we get densities p0(ω), , pm− 1(ω).

Combine all these strategies as for diffuse and specular.

Importance cj solid angle times Le or zero if a light is

outside the hemisphere Ω(x) (i.e. n(x) · c<−r).

Incurs computations per light for each path vertex xj.

But the quality improvement justifies this cost (for ~30 lights).

Compute units are underutilized anyway.

The ray tracing cores are the bottleneck in this path tracer.
30

Combining light sampling strategies



Similar algorithms exist for lights of various shapes.

Solid angle sampling:

Polygons: doi.org/10.1145/218380.218500

Rectangles: doi.org/10.1111/cgf.12151
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Sampling other light shapes



Similar algorithms exist for lights of various shapes.

Solid angle sampling:

Polygons: doi.org/10.1145/218380.218500

Rectangles: doi.org/10.1111/cgf.12151

Projected solid angle sampling:

Spheres: doi.org/10.1145/3320282

Polygons: doi.org/10.1145/3450626.3459672

Thin cylinders: doi.org/10.1111/cgf.14379
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Sampling other light shapes



Multiple importance sampling (MIS)

32



For BRDF sampling, we have a strategy with density pb(ω).

Fails for small lights in rough reflections.
For light sampling, we have a strategy with density pl(ω).

Fails for large lights in smooth reflections.
MIS works in all of these cases.

doi.org/10.1145/218380.218498

BRDF sampling Light sampling MIS
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Combining BRDF and light sampling



Take sample ωb using the BRDF density pb(ω).

Take sample ωl using the light density pl(ω).

MIS estimate:  
∫

Ω

f(ω) dω ≈ f(ωb)

pb(ωb) + pl(ωb)
+

f(ωl)

pb(ωl) + pl(ωl)

doi.org/10.1145/218380.218498 34

MIS (with balance heuristic)



Take sample ωb using the BRDF density pb(ω).

Take sample ωl using the light density pl(ω).

MIS estimate:  
∫

Ω

f(ω) dω ≈ f(ωb)

pb(ωb) + pl(ωb)
+

f(ωl)

pb(ωl) + pl(ωl)

Weights as if ωb, ωl were sampled with a combined strategy.

Similar to the single-sample combination of strategies.

doi.org/10.1145/218380.218498 34

MIS (with balance heuristic)



Take sample ωb using the BRDF density pb(ω).

Take sample ωl using the light density pl(ω).

MIS estimate:  
∫

Ω

f(ω) dω ≈ f(ωb)

pb(ωb) + pl(ωb)
+

f(ωl)

pb(ωl) + pl(ωl)

Weights as if ωb, ωl were sampled with a combined strategy.

Similar to the single-sample combination of strategies.

Density computation must work independently of sampling.

Otherwise we cannot compute pl(ωb) and pb(ωl).

doi.org/10.1145/218380.218498 34

MIS (with balance heuristic)



Next event estimation (NEE)
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x2

x3ωl, 1

ωl, 2

ωl, 3

BRDF samples continue the path, light samples do not.

Path construction



Take apart the integrand into direct and indirect illumination.

Direct:  Ld(xk, ωk) Le(xk+ 1, −ωk)

Indirect/reflected:  Lr(xk, ωk) L(xk, ωk)−Ld(xk, ωk)

37

Next event estimation (NEE)



Take apart the integrand into direct and indirect illumination.

Direct:  Ld(xk, ωk) Le(xk+ 1, −ωk)

Indirect/reflected:  Lr(xk, ωk) L(xk, ωk)−Ld(xk, ωk)∫
Ω(x)

L(x, ωi)ρ(x, ωi, ωo) n(x) ·ωi dωi
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Next event estimation (NEE)



Take apart the integrand into direct and indirect illumination.

Direct:  Ld(xk, ωk) Le(xk+ 1, −ωk)

Indirect/reflected:  Lr(xk, ωk) L(xk, ωk)−Ld(xk, ωk)∫
Ω(x)

(Ld(x, ωi) +Lr(x, ωi))ρ(x, ωi, ωo) n(x) ·ωi dωi
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Next event estimation (NEE)



Take apart the integrand into direct and indirect illumination.

Direct:  Ld(xk, ωk) Le(xk+ 1, −ωk)

Indirect/reflected:  Lr(xk, ωk) L(xk, ωk)−Ld(xk, ωk)∫
Ω(x)

(Ld(x, ωi) +Lr(x, ωi))ρ(x, ωi, ωo) n(x) ·ωi dωi

≈  MIS estimate for 
∫

Ω(x)

Ld(x, ωi)ρ(x, ωi, ωo) n(x) ·ωi dωi

+ pb(ω)-estimate for 
∫

Ω(x)

Lr(x, ωi)ρ(x, ωi, ωo) n(x) ·ωi dωi
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Next event estimation (NEE)



Outlook

38



Learns a good sampling density by exploiting coherence.

Reuses samples from neighboring pixels and previous frames.

doi.org/10.1145/3386569.3392481 39

Light sampling for many lights: ReSTIR



Denoising "blurs away" the noise.

Designed to preserve image features as much as possible.

Filtering across pixels and across frames.

doi.org/10.1145/3105762.3105770 40

Spatiotemporal variance-guided filtering (SVGF)



Random number generation is too important to be left
to chance.  −Robert Coveyou

Stratified sampling preserves benefits of randomization.

But certain subsets always get exactly one sample.

Simply use stratified "random" numbers instead of PRNG.

Ideally: Lower variance at same sample count.

doi.org/10.1145/3450626.3459880 41

Stratification



Path tracing is...

general: All light transport in one framework.

unbiased: Gives correct image + noise.

scalable: More samples, higher quality.

parallelizable: Across samples and pixels.

efficient: With good sampling strategies.

the default in offline rendering.

the future of real-time rendering.

42

Conclusions



Real-time path tracing needs...

wider availability of good ray tracing hardware.

better importance sampling for indirect light.

faster builds for acceleration structures.

methods for level of detail.

more research...

better understanding among developers.
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Conclusions



43


