Mobile Augmented Reality

Wouter Pasman

July 5, 2004, Philips ApresLuvo Series
Ubiquitous Communications

Low Latency Mobile Augmented Reality
Delft University Library
Architect: Mecanoo
980,000 Books

Prof. Jansen

Applications
Maintenance, assistance

Check min. reservoir level

OK

Low
Latency in Optical AR

Alignment error = Latency * Rotationspeed

For the applications targeted, 0.5° at 50°/s seems acceptable =>10ms.
Low-latency rendering

Std. Voodoo 3D game card

Render just ahead of raster beam

4 partitions gives latency 4-8 ms

To be cleared and rendered

Displaying here

Rendering here

20ms
Latency Layering

Limited resources on mobile, 250-400 polygons w. textures

- Server (backbone)
 - Position from camera, GPS and prediction
 - Complex scene graph: ~1Hz
 - Simple virtual objects: ~10Hz

- Client (mobile unit)
 - Position from inertial tracker: <10ms
 - Display list: 240Hz
 - Display

User movement
Mathematical model per object

- Estimate link and CPU load, memory usage, lifetime of objects, etc.
- Estimate screenspace error and geometric distortions.

$D = 0.001$

$R = 1\text{m}$
VIDEO: Statue on Campus
NISHE

Augmented Reality with Large 3D Models on a PDA
Introduction

• AR with large models on PDA
Application area picked: supporting architects
VR is getting more popular for this. But modeling of environment is cumbersome

--> often modeled quickly with large grey blocks
AR is making its way

-hand work: placing building at right location, proper lighting, occlusion, ...
- still picture

AR on PDA seems useful for such situations.
Architecture

- **Server**
 - RLC decode, Track markers, Render virtual objects
 - Transparent bitmap of virtual objects

- **PDA**
 - Capture camera image
 - Decode virtual objects & mask, Overlay with camera image
 - Show result
Hardware:

PDA: iPaq H3800, Camera 640x240, display 240x320
206MHz StrongARM

Server: Dell Latitude, GeForce4 440 Go, 1.8GHz P4

Links tested: WLAN, USB, GPRS
Tracking

ARToolkit
Multimarking tracking: spanning large area with multiple markers
Markers 76cm wide for tracking up to 10m distance

ARToolkit adaptations:
• using low resolution 320x240 bitmap
• bitmap from link, not from camera
• Disable rendering of camera image
The Test Scene

Real scenes:
• outdoor parking place with snow, -20°C, bright enhanced with few 76cm markers
• Lobby at entrance of the first floor enhanced with 40cm marker or with smaller markers as needed

Virtual scenes: VRML
• Simple scene (flower) not filling screen
• Itäkeskus building, 60k polygons w. texture 60m wide, 15m high, more than screen filling
Compression Opportunities

1. Compressed B&W bitmap the camera image to the server
2. Video compress the overlay image to the PDA
3. Compressed Transparency mask to the PDA
• B&W bitmap the camera image to the server

• RGB to B/W: 24x compression
• RLE coding: using Elias Gamma code: 5x compression

Cam image size:

Original 320x240 : 230 kbyte
B/W : 9.6 kbyte
RLE coded : 1.9 kbyte
2. Video encode the overlay image to the PDA

Using Motion Vector Quantization (MVQ)
Commercial coder, developed at our VTT group

- Very light decoding:
 using motion vectors and lookup tables,
 not using DCT
 typically 50ms for full 320x240 image on PDA
- Large motion vectors up to 64 pixels,
 suits shaky cam movements and low frame rates
Optimizing MVQ Coding Modes
Optimization for Modem (4kb/frame) and Wavelan (30kb)

“Offline” = **Best** but 510ms/frame (10.8/15.3dB)
“Online” = **Fast** 160ms/frame but not so good (9.8/15.2dB)
Optimize for synthetic images with large smooth shaded areas
“Synthetic” = compromise, 200ms/frame (10.1/15.3dB)
3. Compressed Transparency mask to the PDA

• RLE coding: using Elias Gamma code: now 9x compression (less noise than natural imgs)

320x240 mask compresses about 1 kbyte.
Some Performance results

Without optimizations, “offline” MVQ compression, half-screen object, USB1 : 0.28 fps

With optimizations, worst case full screen object using USB1 and “online” : 0.9 fps using WLAN and “synthetic”: 1.25 fps using GSM and “synthetic” : 0.2 fps

Much more details in the paper.
Usability

- WLAN 1fps good for architecture. GSM is bit slow but convenient and always ready for demo
- Architects appreciate on-site experience of presence
- Need for markerless tracking
- ARToolkit has some tracking problems with certain marker orientations
- iPaq screen bit dim, especially when sunny
- Our system can be run even on mobile phone now.
Videos

• AR on PDA “digitalo”. (1:30)
• AR “indoors” (1:10)
Conclusions

• AR with video mixing was implemented on PDA/Mobile Phone.
• For mobile AR with optical mixing and for gaming latency is more critical. For such situations the UbiCom approach still seems the way to go.