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Introduction

Feature modeling is increasingly being used for modeling products. One
of its main advantages over conventional geometric modeling techniques
is the ability to associate functional and engineering information to shape
information in a product model. This can be, for example, the function of
some part of the product for the end-user, or information about the way
some part of the product is manufactured.

The basic entity in a feature model is the feature, defined as a repre-
sentation of shape aspects of a product that are mappable to a generic
shape and are functionally significant for some product life-cycle phase.
Typical examples of features are holes, slots and protrusions.

An essential element of a feature is thus that it has a well-defined
meaning, or semantics, in a particular context or life-cycle activity. Con-
sequently, to build and maintain a feature model, feature-based modeling
systems require considerably more advanced facilities than conventional
geometric modeling systems, which manage shape information only.

Two important aspects of the above definition are not well covered by
most current feature-based modeling systems. First, feature semantics is
poorly defined, inevitably limiting the capability of capturing design in-
tent in the model. Second, feature semantics is poorly maintained, per-
mitting previous explicit design intent to be overruled. One of the main
reasons for this is that such systems are still too tied to methods and
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techniques of conventional geometric modeling, e.g. they strongly rely on
a history-based approach of the modeling process.

This thesis addresses various problems concerning the specification
and preservation of feature semantics in a feature model, generally called
validity maintenance.

This chapter first briefly introduces validity maintenance issues in
feature modeling, outlining the main problems that motivated this re-
search (Section 1.1). Next, it presents the main research goals of the
work described in this thesis (Section 1.2). The chapter closes with an
outline of the thesis (Section 1.3).

1.1 Validity maintenance

Current feature modeling systems provide the user with “engineering
rich” dialogs aimed at the creation and manipulation of feature instances.
In some systems, “features” occur solely at the user interface level,
whereas in the product model only the resulting geometry is stored. Such
systems are in essence only geometric modelers. Most other feature mod-
eling systems, although they store information about features in the
product model, fail to adequately maintain the meaning of features
throughout the modeling process. For example, a modeling operation on
one feature may affect the semantics of other features, without the user
even being notified by the system, let alone assisted in overcoming the
situation.

This is illustrated in the example of Figure 1.1. Assume that the two
longer blind holes in the part were positioned relative to the block right-
hand face, whereas the rounded pocket was positioned relative to the
step side face, as indicated in Figure 1.1.a. If the width of the step is now
increased, the rounded pocket overlaps with the two blind holes, “sup-
pressing” their circular bottom faces from the model boundary, see
Figure 1.1.b. Consequently, the two blind holes now have the shape im-
print of through holes. Stated differently, the semantics of the blind holes
has been changed. If the shape now produced was indeed desired, it
might have been more appropriate not to use blind holes, but through
holes instead, attached to the bottom of the rounded pocket and the bot-
tom of the base block.

Assessing the extent to which feature semantics is kept in a feature
model is an important issue in feature validity maintenance.
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Figure 1.1 — Changing feature semantics with a modeling operation

Some recent research work has focused on the validation of features, both
on various validity specification issues (Brunetti et al. 1996, Hoffmann
and Joan-Arinyo 1998) and on validity maintenance (Dohmen et al. 1996,
Mandorli et al. 1997). One of the main conclusions of this research is that
a declarative scheme is preferable over the conventional procedural mod-
eling approaches. In a declarative approach, the specification of each fea-
ture class includes the validity criteria that determine the semantics of
all its feature instances. The feature modeler, in turn, is responsible for
the maintenance of all features in the product model, in conformity with
those criteria.

Research prototype systems that do have some form of validity main-
tenance, see for example (Mandorli et al. 1995, Vieira 1995, Dohmen
1997), are limited to the detection of a number of predefined invalid
situations, for which the only solution offered by the modeling system is
the rejection of the concerning modeling operation. This rigid scheme
considerably hinders the modeling process, yet permits many unantici-
pated inconsistencies in the model.

Mostly, validity violations are due to modeling operations that cause
overlapping features to affect each other’s semantics, so-called feature
interactions. It is therefore important to manage feature interaction phe-
nomena in the context of validity maintenance, so that all relevant inter-
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action situations can be detected, reported and handled in an appropriate
way (Regli and Pratt 1996).

In conclusion, raising the level of assistance provided to the user in
maintaining and recovering model validity is essential to bring feature
technology to maturity. This thesis’ contribution is in that direction.

1.2 Research goals

The main goal of the research presented in this thesis is the development
of a global solution to the validity maintenance problems mentioned
above. In this solution, the following partial goals should be achieved:

1. Feature libraries should include declarative specifications of fea-
ture classes, each containing a complete description of the specific
semantics required for its feature instances.

2. The feature model should be fully specified as a set of interre-
lated feature and constraint instances. Furthermore, its structure
and evaluated geometry should be unambiguously determined
without invoking any model history considerations.

3. The computational cost of geometric model re-evaluation, after a
modeling operation, should be kept independent of the number of
features in the model.

4. FEach modeling operation should be monitored, in order to assess
the conformity of each feature in the model with its validity crite-
ria. In particular, feature interactions should be handled. Addi-
tionally, every validity violation should not only be detected, but
also be documented, reported to the user, possibly with context-
sensitive system hints, and corrected.

Implementation and evaluation of this new approach to feature modeling
—from here on designated semantic feature modeling— should be carried
out within the prototype feature modeling system SPIFF (Bronsvoort et
al. 1997).



Introduction

1.3 Thesis overview

This thesis is organized as follows:

Chapter 2 surveys current feature modeling approaches, identifies
their main shortcomings, and presents an overview of the seman-
tic feature modeling approach.

Chapter 3 deals with the feature class specification scheme of this
approach, with emphasis on specification of feature validity crite-
ria.

Chapter 4 describes the semantic feature model, and its basic main-
tenance mechanisms. Special attention is here paid to the Cellu-
lar Model, the geometric representation of the product.

Chapter 5 discusses the fundamental notions of feature interactions,
and gives a classification of interaction phenomena.

Chapter 6 presents mechanisms and algorithms for the detection of
feature interactions in the semantic feature model.

Chapter 7 describes the validity maintenance scheme of the seman-
tic feature modeling approach. This is illustrated with an ex-
tended modeling session.

Chapter 8 points out some directions for future research, and pres-
ents concluding remarks about the semantic feature modeling
approach.

Parts of the research described in this thesis have been previously pub-
lished or submitted elsewhere (Bidarra and Bronsvoort 1996, Bidarra et
al. 1997, Bidarra et al. 1998a, Bidarra et al. 1998b, Bidarra and Brons-
voort 1999a, Bidarra and Bronsvoort 1999b, Bidarra and Bronsvoort
1999c¢).






Semantic feature modeling

“...there is appearing in the trade press, and apparently also in the minds
of some software system vendors, a view that a feature is simply a macro in a
solid modeler that enables designers to easily create and parameterize such
forms as bosses, holes and the like. This view of features as quite synonymous
with parametric design is quite far removed from the research view, and any
suggestion that research on features is essentially complete since commercial
systems are appearing with parametric capabilities for form features’ is simply
incorrect. These new systems are a small step in the right direction, but there is
much to be learned from research before true feature-based systems can become
a reality.”

(Dixon et al. 1990)

Current feature modeling systems suffer from a number of shortcomings
with regard to the modeling process. In particular, they lack a complete
specification of feature semantics, and thus fail to maintain the meaning
of each feature during modeling. Also, modeling operations sometimes
are hampered by the model history, and occasionally even have ill-
defined semantics.

This chapter identifies the main problems of current feature model-
ing approaches, with special emphasis on history-based systems (Section
2.1). An alternative way of modeling is then presented, which either
avoids or solves those problems (Section 2.2). This new approach is called
semantic feature modeling. Finally, a short overview is given of the archi-
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tecture of the SPIFF system, the prototype feature modeling system in
which the ideas proposed in this thesis have been implemented (Section
2.3).

2.1 Current approaches to feature modeling

Almost all current feature modeling systems are parametric, history-
based modeling systems, using a boundary representation as main geo-
metric model. The boundary representation can be used for several appli-
cations, e.g. process planning for manufacturing. Examples of such sys-
tems are the commercial systems Pro/Engineer (Parametric 1996), Mi-
croStation Modeler (Peters 1997), I-DEAS Master Series (SDRC 1998)
and Autodesk Mechanical Desktop (Autodesk 1998), and the academic
systems of Shah et al. (1990) and Chen and Hoffmann (1995).

History-based modeling systems are procedural systems that, to-
gether with the evaluated boundary representation, keep track of infor-
mation about each modeling operation performed, e.g. the type of feature
created, its parameter values, and its model references for positioning.
The stored sequence of modeling operations, called the model history,
completely determines the resulting boundary representation. Creation
of a feature produces in the evaluated boundary model the shape imprint
characteristic of its feature type. Each new feature is positioned relative
to boundary entities of the evaluated model, obtained from previously
created features.

Feature instances can be modified by specifying new values for their
parameters, or be deleted from the model. This is done by modifying, or
deleting, the respective feature creation operation in the model history,
after which a new boundary model is evaluated by sequentially re-
executing the operations in the modified history. With this scheme, vari-
ants of a feature model can easily be created. An example of this is given
in Figure 2.1. The model has a base block, a through slot and, attached to
the latter, a pocket, see Figure 2.1.b. If the depth of the through slot is
decreased, the model history in Figure 2.1.a is re-executed, yielding the
model in Figure 2.1.c.

Current feature modeling systems have, at least, six major shortcomings
that will now be identified and illustrated with typical examples. The
first three have a common cause: a strong dependency on the chronologi-
cal order of feature creation. The fourth shortcoming is due to constraint
solving limitations. The fifth shortcoming is related to the historical



Semantic feature modeling

Through slot

Base block

(a) model history (b) before the operation (c) after the operation

Figure 2.1 — Example of re-executing the model history

evolution of the entities in the evaluated boundary model. The sixth
problem is mainly due to the use of a manifold boundary representation.

The first shortcoming is that re-executing the whole model history after
modifying or deleting a feature has a computational cost that is propor-
tional to the number of features in the model. Several methods have been
devised to improve this, e.g. storing the intermediate evaluated model
between each history step. Then, only the history steps after the modi-
fied, or deleted, operation need to be re-executed. However, storing in-
termediate models between all history steps requires a considerable
amount of storage space, proportional to the square of the model history
size. An alternative improvement is to store only the deltas between his-
tory steps, and to rollback to the state from which the model needs to be
re-evaluated. This requires less storage space, but more computation
time again. In any case, the sequence of history steps re-executed almost
always includes more features than those actually modified by the opera-
tion in question.

The second shortcoming is that history-based re-evaluation of the bound-
ary model does not always guarantee that the evaluated model matches
the specified parameters of features that overlap. This is illustrated in
the model of Figure 2.2.b, which consists of a base block, a blind hole and
a protrusion. Because the blind hole and the protrusion do not overlap,
the history of this model could be either that in Figure 2.2.a or that in
Figure 2.2.c. However, if the blind hole depth is increased, so that it now
overlaps with the protrusion, different models will result for the two his-
tories: in case (a), re-execution of the history produces a blind hole with



10

Chapter 2

(d) (e

Figure 2.2 — Set operations problem in history-based model re-evaluation

the expected depth (Figure 2.2.d), whereas, in case (c), the blind hole will
be “truncated” by the protrusion, its depth becoming equal to the block
height (Figure 2.2.e). The problem is caused here by the static precedence
order upon which model re-evaluation is based: the chronological feature
creation order. The resulting models are different because the evaluation
process uses two non-associative set operations according to the nature of
a feature being processed: union for additive features, and difference for
subtractive features. The order in which these are executed determines
the result: performing the union of the protrusion as last operation pre-
vents the blind hole to exhibit its nominal depth in the model of Figure
2.2.e.

The third shortcoming of history-based re-evaluation of the model is that
it cannot always process feature modification operations such as, for ex-
ample, feature re-attachment or re-positioning relative to other model
entities. This is illustrated in the example of Figure 2.3. The model con-
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Figure 2.3 — Entity reference problem in history-based model re-evaluation

sists of a block, a through hole and a protrusion, see Figure 2.3.b. The
history of this model could be either that in Figure 2.3.a or that in Figure
2.3.c. In the first case, re-attachment of the through hole to the top of the
protrusion and the bottom of the block, see Figure 2.3.d, can be achieved
by modifying the corresponding attach reference of the through hole in
the history, and re-executing that history step. However, if this reference
modification would be made in the model history of Figure 2.3.c, re-
evaluation of the model would not be possible, because the through hole
creation cannot be re-executed with a reference to a face (the top of the
protrusion) that will be created in the model at a later stage of its history.

Evaluation of the boundary model by stepwise re-executing a se-
quence of operations allows each of them to refer only to those boundary
entities left there by the previous operation. Therefore, modification of
the references in a modeling operation, e.g. when re-attaching a feature
to other model entities, is not always possible, because the entities con-
cerned may be tied to a posterior stage of the model history.
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Figure 2.4 — Dimensioning of a model with unidirectional constraints

The fourth shortcoming of current feature modeling systems has to do
with the type of constraints that can be used. Constraints can be created
in a model, and are thereafter taken into account whenever the history is
re-executed. For example, suppose that, after creating the blind hole in
Figure 2.4.a, the designer wants to keep its depth equal to that of the
blind slot. An algebraic constraint specifying this equality can be created,
and the blind hole creation operation will be modified in the history to
include a reference to this constraint. When the model history is re-
executed, the depth of the blind hole is computed from that of the slot,
yielding the desired result, see Figure 2.4.b. However, such constraints
are, in most systems, unidirectional. In the example of Figure 2.4, only
the blind hole depth is dependent on the slot depth, and not the other
way round. This implies that if the blind hole depth is modified in a sub-
sequent modeling operation, the depth of the slot is not adapted accord-
ingly, and is thus no longer equal to the depth of the blind hole. This in-
ability to cope with bidirectional constraints makes the dimensioning of
the model undesirably rigid.

The fifth shortcoming of history-based modeling is that the semantics of
modeling operations is not always well defined. The main cause of this is
the so-called persistent naming problem. Each modeling operation uses
references to topologic entities in the boundary representation of the cur-
rent model, which is the combined result of all previous modeling opera-
tions. For example, a new feature can be attached to a face or an edge in
the boundary representation. A consequence of this is that each operation
in the history requires a specific set of topologic entities in the model,
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Figure 2.5 — Semantic problem related to entity naming: splitting and merging of
faces

also when the operation is re-executed. However, a general property of
boundary representations is that topologic entities may be split, merged
or deleted as a result of modeling operations. Persistent naming is the
process of identifying and tracking topologic entities when a geometric
model is modified (Kripac 1995). Although some schemes for persistent
naming have been implemented (Kripac 1995, Capoyleas et al. 1996, Le-
quette 1997), there are some fundamental problems related to this issue,
of which two typical examples will now be given. See also (Raghothama
and Shapiro 1998) for a formal approach to these problems.
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The first example has been taken from Chen and Hoffmann (1995),
see Figure 2.5 on the previous page. The model consists of a block to
which subsequently a through slot (Figure 2.5.a) and a chamfer (Figure
2.5.b) have been added. The next modeling operation is to change the
through slot into a blind slot, causing the two faces fia and fi, to be
merged into one face, fo. When the model history is re-executed, depend-
ing on how the persistent naming scheme works, the chamfer will either
be extended along the whole edge (see Figure 2.5.c) or, alternatively, be
completely deleted (see Figure 2.5.d). Either result might be the one ex-
pected by the user, but he has no control on the choice.

The second example is based on an example given by Lequette (1997).
The model consists of a block to which a protrusion has been added, so
that their coplanar top faces are merged into one face, f1, see Figure 2.6.a.
Subsequently a through slot, which intersects both the block and the pro-
trusion, has been attached to face f1, causing it to be split into two faces,
foa and fap, see Figure 2.6.b. The next modeling step is to slide the protru-
sion downwards. When the model history is re-executed, depending on
how the persistent naming scheme works, the slot will either be changed
into a step on the block, Figure 2.6.c, or, alternatively, intrude into the
block, Figure 2.6.d.

In both examples, the model resulting from a sequence of modeling
operations is in fact determined by the underlying persistent naming
scheme. Although the result is deterministic, i.e. one will always end up
with the same result after the same sequence of modeling operations, it is
ambiguous, in the sense that it is definitely not always as expected by the
user of the modeling system. Stated differently, the semantics of some of
the operations is not well defined.

The sixth, and in a way most serious, shortcoming of history-based mod-
eling systems is that they do not maintain feature semantics. Each fea-
ture type specifies its own feature creation scheme, possibly including
some validation procedure (for example, regarding particular geometric
requirements on the attach faces). This procedure is invoked whenever
such a feature is created, and is meant to ensure that the operation pro-
duces its expected shape imprint. However, such validation procedures
are very limited, because they can only analyze a subset of the boundary
model, namely the entities involved in the creation operation. All other
boundary entities are outside the scope of the operation and cannot, thus,
be accessed in this analysis. As a consequence, features previously cre-
ated in the model can easily be made invalid, i.e. in mismatch with their
original validation requirements, without the system being able to detect
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Figure 2.6 — Semantic problem related to entity naming: merging and splitting of
faces

this. Systematically analyzing the whole boundary model after each op-
eration is not the solution either, because in its entities there are no (or
insufficient) traces of the preceding features.
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A first example of problems with changing the semantics of features
has already been given in Chapter 1 (Figure 1.1), where two blind holes
were turned into through holes. Another example is that of Figure 2.6, in
which none of the two results contains a real through slot, with two sides
and a fully open top.

These problems are due to the inability of a manifold boundary rep-
resentation to capture all feature information, e.g. closure faces of sub-
tractive features. This, in turn, excludes the possibility to analyze the
topology of the boundary of those features, which is essential to detect
and prevent modifications in feature semantics as those illustrated in
Figures 1.1 and 2.6.

In fact, history-based modeling systems offer more a geometric mod-
eling approach, to create a boundary representation, than a genuine fea-
ture modeling approach. One of the basic ideas of feature modeling is,
after all, that functional information can be associated to shape informa-
tion. This association becomes, however, useless when the shape imprint
of a feature, once added to the model with a specific intent, is signifi-
cantly modified due to a subsequent modeling operation. In other words,
arbitrarily modifying the semantics of a feature should be disallowed if
one wants to make feature modeling really more powerful than geometric
modeling.

So summarized, history-based feature modeling suffers from dimension-
ing and modeling limitations due to its strong dependency on the
chronological order of feature creation and to the use of unidirectional
constraints, occasionally suffers from ill-defined semantics of modeling
operations, and does not adequately maintain the semantics of features.

A recent attempt to develop an alternative way of modeling, avoiding
some of the pitfalls of history-based modeling, is made by Klein (1997a).
He proposes to integrate geometric information with other kinds of in-
formation, and for this purpose develops a declarative geometric model-
ing approach from a knowledge representation perspective. The possibil-
ity to include knowledge in product models makes the approach promis-
ing for feature modeling. In this approach, called G-Rep, a solid can be
composed of several basic volumes, each basic volume having its own
density, or ranking. The evaluation of the solid is performed by composi-
tion of the basic volumes, based on their densities. The sign of the density
at some point in 3D space determines whether it represents material
(positive density) or “non-material” (negative density) in the modeled ob-
ject. Points that lie in more than one basic volume have the density of the
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Figure 2.7 — Fixed density problem in G-Rep

basic volume with the highest absolute density value. In this way,
evaluation of the geometric model is made independent of the order in
which the volumes were added to the model.

A major problem with this approach is, however, that it is not clear
how in practice densities have to be assigned to basic volumes. In case
each feature class would specify in advance a fixed density for the basic
volume of its instances, some model configurations are not feasible, as
illustrated in Figure 2.7. When the density of the protrusion basic volume
has an absolute value lower than that of the slot basic volume, the model
represented is that in Figure 2.7.a, which is not what might be desired.
Only if the densities are chosen according to, for example, those in Figure
2.7.b, is it possible to represent the protrusion attached to the slot bot-
tom. No feature class density specification, however, is able to represent
the model in Figure 2.7.c, because, in absolute values, one of the two slots
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should have a density higher than the protrusion, whereas the other
should have a density lower than the protrusion. In order to achieve
more flexibility, it is suggested that densities might be configured dy-
namically, e.g. as a result of modeling operations that alter dependencies
between features (Klein 1997b). Such an essential mechanism, however,
has so far not been described.

Although certainly interesting, Klein’s approach deviates considera-
bly from current approaches to feature modeling. Furthermore, it has not
yet been implemented.

We propose a new feature modeling approach that is closer to current
practice: semantic feature modeling (Bidarra and Bronsvoort 1999b). This
approach will be outlined in the next section, and elaborated in the sub-
sequent chapters of this thesis, emphasizing how the problems pointed
out so far for current feature modeling approaches are overcome.

2.2 What is semantic feature modeling ?

The semantic feature modeling approach is, just like Klein’s approach,
declarative. This means that, in contrast to most history-based ap-
proaches, feature specification and model maintenance are clearly sepa-
rated. All properties of features, including their geometric parameters
and validity conditions, are declared by means of constraints in a feature
class specification. The main advantage of declarative modeling is the
freedom in the type and order of constraints that can be specified, and
therefore in the way a model can be edited and maintained.

In the semantic feature modeling approach, it is essential that each
feature has a well-defined meaning, or semantics. This is specified in fea-
ture classes, which are structured descriptions of all properties of a given
feature type, defining a template for all its instances. Such properties
include the validity conditions that all feature instances of that type
should satisfy. These conditions, as well as the feature shape and its pa-
rameters, are specified using a variety of constraint types.

Although most other systems have a rudimentary form of validity
conditions too, this approach allows the specification of more powerful
ones, which take into account, for example, requirements of a technologi-
cal and functional character, often dependent on the specific application
area. An example of such a validity condition is that the top and bottom
face of a through hole should remain open, or, stated differently, that
these faces should not be on the boundary of the resulting object. Such
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feature validity conditions are in fact indispensable to maintain the se-
mantics of features during the modeling process: without them, features
can never be more than high-level geometric modeling primitives.

In our approach, users can define their own feature classes, e.g. by
inheriting from an existing feature class and adding some constraints to
its definition. Feature classes are stored in feature libraries, from which
new features can be instantiated during a modeling session. Feature
class specification is elaborated in Chapter 3.

Another characteristic of semantic feature modeling is that the whole
modeling process is uniformly carried out in terms of features and their
entities (e.g. faces and parameters), and of constraints among these. All
modeling actions performed by the user are, thus, effectively feature-
based, and the same applies to all output, both graphical and textual,
generated by the modeling system. An advantage of this is that a feature
and, in particular, its faces and their names are persistent. These remain
valid and, thus, also all references to them, as long as that feature in-
stance remains in the model. This is in contrast to most history-based
modeling approaches, in which references to entities of the evaluated
boundary model are kept in the model history, with the drawbacks iden-
tified in the previous section; unlike boundary faces in such systems (see
examples described on page 14), feature faces are never split, merged or
deleted, even though their geometric representation may be.

Probably the most important characteristic of the semantic feature
modeling approach is that the semantics of all features is effectively
maintained throughout model evolution, for all modeling operations.
Some essential aspects of feature semantics in this approach, e.g. the
through hole clearance described above, cannot be maintained without an
evaluated geometric model, able to consistently represent the whole
boundary of subtractive, possibly overlapping, features. In other words, a
non-manifold geometric model, containing the relevant feature informa-
tion, is indispensable to perform effective validity maintenance.

The two characteristics of semantic feature modeling just mentioned
lead to a two-level structure in the semantic feature model, clearly dis-
tinguishing modeling entities from entities in the evaluated geometric
model. The former, i.e. the entities on which all modeling operations are
performed, are kept in the first level of the model —the so-called Feature
Dependency Graph—, which contains all feature and constraint instances,
interrelated by dependency relations. The second level contains the
evaluated geometric representation of the product in the so-called Cellu-
lar Model. Its entities are kept internal, being only required to “reflect”
the geometry that results from the modeling operations performed on the
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first level. The semantic feature model, and mechanisms for maintaining
the consistency between both levels, are elaborated in Chapter 4.

It turns out that most changes in the meaning of features are due to
modeling operations that cause overlapping features to affect each other’s
semantics, so-called feature interactions, as illustrated in the examples of
Figures 1.1 and 2.6. Managing feature interaction phenomena is there-
fore an essential issue for validity maintenance in the semantic feature
modeling approach. Feature interactions are defined and classified in
Chapter 5, and mechanisms for their detection in a semantic feature
model are presented in Chapter 6.

Maintaining the feature model throughout the modeling process re-
quires not only managing all its constraints, but also monitoring each
modeling operation in order to assess the conformity of each feature in
the model with its validity criteria. This can guarantee that all aspects of
the design intent once captured in the model are permanently main-
tained. An advantage of maintaining feature model validity in this way is
that it becomes possible to provide the user with much better assistance
whenever a modeling operation leads to some constraint violation in the
model. In particular, explanations on what is causing a constraint viola-
tion, and generation of context-sensitive corrective hints, can signifi-
cantly improve the modeling process. Feature model validity mainte-
nance is elaborated in Chapter 7.

2.3 Prototype system architecture

The semantic feature modeling approach has been implemented in the
SPIFF! system, a prototype multiple-view feature modeling system devel-
oped at Delft University of Technology (Bronsvoort et al. 1997).

SPIFF consists of two main functional subsystems: the Feature Li-
brary Manager and the Feature Modeler. The Feature Library Manager
provides interactive facilities for specification of feature classes and for
their organization in application-specific feature libraries. These class
specifications can be loaded into the Feature Modeler at runtime. The
architecture of the Feature Library Manager is described in Section 3.6.

The Feature Modeler provides modeling facilities for creation and
manipulation of feature models, according to the architecture depicted in
Figure 2.8. Several system modules have been described elsewhere (de

=
! Named after Spaceman Spiff, interplanetary explorer extraordinaire. L
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Kraker et al. 1995, Dohmen et al. 1996, Bidarra et al. 1997), and will be
only briefly summarized here.

The Feature Model Manager receives commands from the user via a
graphical user interface, and translates them into elementary tasks,
which are then dispatched to the other Managers. It is responsible for the
control of all modeling operations, and for maintaining model validity
(see Chapter 7). Furthermore, the Feature Model Manager maintains the
Feature Dependency Graph, a high-level representation of the structure
of the product (see Sections 4.2 and 4.4).

The Feature Manager supervises the model processing tasks of each
modeling operation, which are actually performed by the Constraint
Manager and the Feature Geometry Manager. The Constraint Manager is
responsible for all constraint solving tasks, maintaining all constraints in
the Feature Dependency Graph. The Feature Geometry Manager main-
tains a geometric model of the product in the so-called Cellular Model,
and takes care of updating it as required by each modeling operation (see
Sections 4.3 and 4.5).
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The Interaction Manager is responsible for the analysis of the Cellu-
lar Model, in order to detect any disallowed feature interactions possibly
resulting from a modeling operation (see Section 6.1).
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“Complete support of user-defined features in a design-by-features system
requires that feature classes created by the user become full-privileged members
of the feature collection of the system. That is, they can be created, deleted and
manipulated, they can have relationships to other features (and these relation-
ships themselves can be defined too); they can be validated by validation con-
straints or rules (and new validation constraints and rules can be defined); their
geometry can be anything that can be described in the underlying geometric
modeling system. Clearly, to create a feature definition mechanism that covers
all these facilities completely is a challenging task of software engineering (...).”

(Shah and Mantyld 1995)

This chapter presents the declarative scheme of feature class specifica-
tion developed within the semantic feature modeling approach. This
scheme provides a unified description of the shape and validity issues of
a feature class, as well as a flexible configuration of the feature class in-
terface (Bidarra et al. 1998a). In this way, feature instances of these
classes have powerful and well-defined semantics.

First, other research work dealing with specification of user-defined
features is surveyed, and its shortcomings are identified (Section 3.1).

23
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Then, an overview of the proposed scheme is given (Section 3.2). This is
elaborated in subsequent sections, distinguishing the feature shape speci-
fication issues (Section 3.3), the validity specification aspects (Section
3.4), and the feature class interface presented to the user (Section 3.5).
Next, the main functional aspects of the Feature Library Manager are
described (Section 3.6), and its use is illustrated with an application ex-
ample (Section 3.7).

3.1 Introduction

Current feature-based modeling systems provide basic procedures to cre-
ate a part model using a feature vocabulary. However, this functionality
is often hampered by a number of shortcomings:

e when a feature library provides only a fixed set of feature types
for use in a model, the creation of complex shapes, e.g. associated
with some desired functionality and/or technological process, may
become a rather difficult task. Even if this can be achieved by
composing several feature instances, the resulting composed
shape can only be edited, queried and downstream processed in
terms of the elementary instances, because there is no explicit in-
terface defined for the “compound instance” (e.g. its dimension
parameters). In addition, properties and validity conditions that
were conveniently and meaningfully embedded in each of these
elementary features, are of little use for the “compound” shape
generated, if not completely undesirable (think, for example, of a
cylindrical blind hole class, requiring the bottom face of the shape
to be fully present on the part model boundary: one would not be
allowed to compose two such instances in order to obtain a
stepped-hole-like shape);

e some systems provide a mechanism to record a sequence of mod-
eling steps, possibly in a parameterized way. In this procedural
scheme, such macros may later be replayed, in order to create a
given “compound feature” in the model. This suffers from the
same drawback just described: it is hard to consider a library of
such macros as a real feature library, because it does not offer
appropriate validity specification mechanisms;

e on the other hand, it is common experience that using pre-
defined feature libraries with a very large set of feature classes is
not the solution either, because an exhaustive enumeration of all
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possible feature classes is not only unmanageable, but even un-
feasible. Furthermore, such sets would vary significantly with the
application domain, e.g. the functional requirements of the de-
signer or the technological production processes available.

In order to overcome these drawbacks, declarative schemes are receiving
increasing attention. In this section, we survey results of research that
deal with mechanisms for specification of user-defined features (UDFs).

Before the first efforts to develop workable UDFs, Dixon et al. (1990)
already commented that “if a powerful and convenient capability for
user-defined features can be provided, then the library of design-with
features can be smaller and the need for combinatorial power is also re-
duced”. They consider this capability to be a very time-consuming, so-
phisticated and probably not manageable task for the common user of a
CAD system. Therefore they suggest that, in the future, CAD system
vendors might be required to deliver hard-coded, customized feature li-
braries to individual customers, according to their specific requirements.

Shah et al. (1994) presented a declarative approach to the description
of feature classes, as an alternative to their previous procedural proposal,
within the ASU Features Testbed (Shah et al. 1990). A number of primi-
tive geometric constraints is established on feature geometric entities
(e.g. faces and edges), in order to define the volumetric shape of the UDF,
and is combined in a directed graph. After such a constraint graph tem-
plate has been stored in the feature library with the feature specification,
instantiation of a feature is greatly simplified. From their description, it
appears that the explicit geometric representation prevails over the
parametric description of the feature, which might turn the definition of
complex shapes error-prone and far from accessible for non-specialists.
Their work concentrates on the shape definition aspects of a feature
class, using geometric and algebraic constraints; in particular, the speci-
fication of feature validity issues is not dealt with.

Salomons et al. (1994) focused on interactive definition of new fea-
tures during incremental modeling of a part, and on their representation
by conceptual graphs. They propose combining profile sketching with
geometric constraint graph editing, and manual feature identification on
the solid model, in order to assist the user in the definition and insertion
of new features into the model. A surface representation is used for both
features and the part model. Feature models are stored in a hybrid
scheme, using a database (for modeler independent data) and modeler
files (for geometry-related information), which favors their intended fea-
ture recognition applications. Some feature validity issues on such UDFs
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have recently been approached, see (Salomons et al. 1998), focusing
mainly on dimensional and geometric feature constraints.

Another proposal is that of Hoffmann and Joan-Arinyo (1998), who
deal with conceptual definition of UDF prototypes for a feature library. A
UDF has a set of constraints and a set of attributes, aimed at specifying
the overall shape and validity criteria, respectively. Remarkable in this
scheme are the proposed separate treatment of feature attachments, and
the incorporation of topological attributes for validation, analogous to the
semantic constraints first proposed by Bidarra and Teixeira (1994), and
elaborated by de Kraker et al. (1995). The procedural definition of each
geometric component of the UDF, based on sketching planes, sketching
profiles and datum planes, is conceptually very general and powerful,
although somewhat laborious for complex shapes, due to the low-level
details it is based on.

In short, so far the requirements of complete, flexible and user-friendly
specification of UDFs, quoted at the beginning of this chapter, have only
been partially met by current proposals. The main difficulties and limita-
tions can be summarized as follows:

e new UDFs are defined and used in a model, but are not always
stored as new classes in a feature library for later use;

e the mechanisms to define new feature classes focus on shape as-
pects, mostly leaving out validity issues;

e the specification of all relevant information needed in a feature
class requires non-intuitive and complicated procedures, not eas-
ily applicable by common, non-programmer users.

The declarative scheme for the specification of feature classes presented
in the remainder of this chapter, not only overcomes these drawbacks,
but in fact fulfills all the requirements quoted at the beginning. It has
been implemented in the Feature Library Manager of the SPIFF system.

3.2 User-defined feature classes

In Chapter 1, features were defined as “representations of shape aspects
of a product, that are mappable to a generic shape and are functionally
significant for some product life-cycle phase”. In other words, each fea-
ture has a well-defined meaning, expressed through its geometric, topo-
logic, parametric and functional properties. A feature class is a structured
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description of all these properties, defining a template for all instances of
a given feature type. Such properties include the validity conditions that
all feature instances of that type should satisfy. Feature classes are
sometimes also referred to as generic feature definitions.

Feature classes are grouped and stored in feature libraries, each of
which is suited for a particular application. Ideally, feature libraries
should be configurable by domain experts, mostly people without special
programming skills, but with knowledge of the requirements, the tech-
nology and the criteria of a given application domain. For this, they need
a feature library configuration system, providing feature class specifica-
tion and management facilities. On the other hand, designers, during
their modeling activity, are users of the feature classes available in fea-
ture libraries. For this, they use a CAD system, which performs modeling
operations (e.g. create feature instances of selected classes) and takes
care of the validity maintenance of the feature model. In this chapter, we
concentrate on the specification of feature classes and, thus, on a feature
library configuration system such as mentioned above. Issues on validity
maintenance of feature models will be dealt with in Chapter 7.

We propose the use of a variety of constraint types on a given shape,
to specify a feature class. In the following sections, the use of each of
these constraint types will be discussed in detail; here only a brief de-
scription is given:

Attach constraints Specify how a feature instance is attached to

the model, by coupling some of its faces to faces of other features
already present in the model.

Geometric constraints Specify geometric relations, such as par-
allelism and distance, between feature elements (e.g. faces and
datums).

Dimension constraints Specify the set of values allowed for a fea-
ture parameter.
Algebraic constraints Specify expressions for feature parameters.

Semantic constraints! Specify which topological variants of a fea-
ture instance are allowed, by stating the extent to which its fea-
ture faces should be on the model boundary.

! These constraints might be named topologic constraints as well. In the remainder of this
thesis, however, we will use the designation semantic constraint, for the sake of consis-
tency with previous research work (cf. pages 34 and 73).
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Interaction constraints Specify whether a given feature interac-
tion type should be disallowed for a feature instance.

With the scheme proposed here, all feature classes in a library use the
same vocabulary, and exhibit a similar structure, see Figure 3.1. This
scheme makes no distinction between standard feature classes and user-
defined feature classes, in the sense that every feature class can be ed-
ited, refined and customized according to specific requirements. This
turns out to be the same as saying, with Shah and Mantyla (1995), that
UDFs “become full-privileged members of the feature collection of the
system”.

The main characteristics of the semantic feature class specification
scheme are:

e a powerful specification of feature semantics, comprising validity
issues at geometric, topologic and functional levels;

e an inheritance mechanism among feature classes, which makes it
trivial to refine and specialize feature classes;

e a clear and simple feature class interface, encapsulating imple-
mentation details of the class by means of so-called interface pa-
rameters; and

e a translation mechanism, which automatically maps a class de-
scription input by a user to a form suitable for use within the
modeling system.

The specification schemes for the shape, the validity criteria and the in-
terface of a feature class are elaborated in the following sections. The
emphasis here is on the declarative feature class specification scheme,
from the viewpoint of the user of the Feature Library Manager. A formal
DVM model for this scheme can be found in (Idri 1998), together with
syntax details of feature class specifications.

3.3 Feature shape specification

All constraint types introduced above operate on attributes of a feature
shape. Therefore, the specification of a parameterized shape is the first
necessary step in the creation of a feature class. The elementary compo-
nent for this is the so-called basic shape.
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Figure 3.1 — Feature class structure

A basic shape encapsulates a set of geometric constraints that relate
its parameters to the corresponding shape faces, see (Dohmen et al. 1996)
for details. All basic shape classes have a similar structure (see top of
Figure 3.1), with a set of attributes (e.g. parameters, faces, edges, and
datum’s) and some basic functionality (e.g. initialization and query meth-
ods). Figure 3.2 shows three examples of basic shape classes currently
available in SPIFF: a rectangular block, a cylinder, and a trapezoidal
block. The elements of a feature shape, e.g. the faces, are labeled with
generic names. A cylinder shape, for example, has a top, a bottom and a
side face. These names are used in all modeling operations. In the sequel,
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Figure 3.2 — Parameterized basic shapes

for clarity, we will refer to operations on faces only, although operations
on other shape elements are also possible.

A feature class associates also to each feature shape the notion of fea-
ture nature, indicating whether its feature instances represent material
added to or removed from the model (respectively additive and subirac-
tive natures).

There are two mechanisms to use basic shapes for feature shape
specification, (i) shape inheritance and (ii) shape composition.

Shape inheritance

Shape inheritance is used if the desired feature shape matches exactly
one of the available basic shapes. In this case, the feature class is made to
inherit directly from that basic shape class, thus acquiring all its attrib-
utes and functionality.

The inheritance mechanism allows one to rename any of the parent
shape attributes. In this way, for example, the height parameter of a
block basic shape could be renamed to depth, if the block is used in a rec-
tangular slot or pocket feature class.

Shape composition

If the desired feature shape is not directly available from any of the basic
shapes, shape composition is used. For this, several basic shape instances
can be specified and geometrically related, possibly overlapping, in order



Specification of feature semantics

31

shaft key rounded pocket shaft case

Figure 3.3 — Shape composition examples

to “build” the desired feature shape. With this constructive scheme, a
large domain of shapes is achieved, not limited to that of linearly swept
profile-based shapes, as in many feature modeling systems. Figure 3.3
shows examples of features whose shapes were obtained by combining
instances of block and cylinder basic shape classes only.

In order to achieve this increased shape complexity, basic shapes are
encapsulated inside the feature shape, as depicted in Figure 3.4.

The shape composition process consists of four steps:

1.

Selection of a number of basic shapes. For example, for a
stepped blind hole class, two cylinder shapes may be chosen, say
cylinder and cylinder2 (see Figure 3.5).

Relative positioning and orientation of these shapes, apply-
ing geometric constraints among their faces. For the stepped
blind hole example, this can be achieved with two geometric con-
straints, one aligning the two cylinders (coaxialCylinders), the
other setting them contiguously (coplanarCylynders), initialized
as follows:

coaxialCylinders (cylinderl.axis, cylinder2.axis)
coplanarCylinders (cylinderl.bottom, cylinder2.top)

Specification of the compound shape parameters, as a func-
tion of the elementary parameters of the basic shapes. This is
achieved by means of algebraic constraints, and should produce a
set of parameters that sufficiently determines the dimensions of
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all basic shapes. In the case of the stepped blind hole class, such a
set could be (see Figure 3.5.a):

TotalDepth = cylinderl.height + cylinder2.height
HeadDepth = cylinderl.height

HeadDiameter = 2 * cylinderl.radius

BodyDiameter = 2 * cylinder2.radius

4. Specification of the compound shape faces, defined in terms
of the faces of the basic shapes. These new faces should provide
full coverage of the boundary of the compound shape. Again for
the stepped blind hole example, this could be (see Figure 3.5.b):

HeadTop = {cylinderl.top}
HeadSide = {cylinderl.side}
HeadBottom = {cylinderl.bottom}
BodySide = {cylinder2.side}
BodyBottom = {cylinder2.bottom}

As depicted in Figure 3.4, both geometric and algebraic constraints, as
well as the list of basic shapes, are only internally used in the shape
composition process, in order to produce the desired feature shape. Com-
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Figure 3.5 — Compound shape for a stepped blind hole class

pound shape parameters and compound shape faces, instead, integrate
the feature class interface, and are therefore meant to be referenced
later, during modeling, by the user of the feature class. Therefore, the
resulting shape has the same interface as in Figure 3.1, presenting a set
of shape elements, a set of parameters, and a nature attribute. These
characteristics will be further explored in Section 3.5.

3.4 Feature validity specification

Once the specification of the feature class geometry has been completed,
it is essential to describe under which conditions the feature instances of
that class can be considered valid: the so-called validity conditions.
Specification of these validity criteria in a feature class is indispensable
to perform validity maintenance later, during the modeling process, as
discussed in Chapter 7.

Criteria for specifying validity of features can take into account re-
quirements of a technological and functional character, often dependent
on the specific application area. It is advantageous if each of those crite-
ria can be specified independently and in a flexible way. In particular,
the configuration of a feature library is considerably simplified, and the
specialization of new feature classes is made easier.
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Validity conditions can be classified into three categories: geometric,
topologic and functional. These are now elaborated.

Geometric validity specification

One way of constraining the geometry of a feature class is by specifying
the set of values allowed for a shape parameter. Examples of such speci-
fications are an enumerated set of values and a range defined by upper
and/or lower bounds. We use dimension constraints applied on shape pa-
rameters. For instance, the radius parameter of a given through hole
class could be limited to values between 1 and 10.

Feature shapes can also be geometrically constrained by means of
explicit relations among their parameters. These relations can be simple
equalities between two parameters (e.g. between width and length of a
square section passage feature) or, in general, algebraic expressions in-
volving two or more parameters and constants. For this, we use algebraic
constraints, similar to those used for shape composition in the previous
section.

Topologic validity specification

As described in Section 3.3, the specification of a feature shape yields a
set of shape faces providing full coverage of the boundary of a volumetric
feature. However, for most features, not all these faces are meant to ef-
fectively contribute to the boundary of the modeled part. Some faces, in-
stead, have a closure role, delimiting the feature volume without contrib-
uting to the model boundary. The specification of such properties is called
topologic validity specification.

To specify topologic validity in a feature class, we use semantic con-
straints on each shape face (Bidarra and Teixeira 1994). Semantic con-
straints are of two types: onBoundary, which means the shape face
should be present on the model boundary, and notOnBoundary, which
means the shape face should not be present on the model boundary. Fur-
thermore, both types of constraints are parameterized, stating whether
the presence or absence on the model boundary is completely or only
partly required. An example of this is a blind hole class for which the top
face has a notOnBoundary (completely) constraint, the side face has an
onBoundary(partly) constraint, and the bottom face has an onBound-
ary(completely) constraint.
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Functional validity specification

Geometric and topologic validity specifications alone, as described above,
are unable to fully describe several other functional aspects that are in-
herent to a feature class as well. These are better described in terms of
the feature volume or feature boundary as a whole, and therefore require
a higher-level specification, not directly based on shape parameters or
faces. An example of this is the requirement that every feature instance
of a class should somehow contribute to the shape of the part model. An-
other example, from a technological perspective, is the requirement for
clearance of tool entrance faces of subtractive features.

Functional requirements can be violated by feature interactions
caused during incremental editing of the model. Feature interactions are
modifications of the shape aspects represented by a feature that affect its
functional meaning. Feature interactions are dealt with in Chapter 5,
where a classification of interaction types is presented, and in Chapter 6,
where their detection is described.

We propose the specification of interaction constraints in a feature
class in order to indicate that a particular interaction type is not allowed
for its instances (Bidarra et al. 1997). Examples of these are the require-
ment that a subtractive feature instance should not become a closed void
inside the model (no closure interaction), and the requirement that a fea-
ture instance should somehow contribute to the shape of the part model
(no absorption interaction).

3.5 Feature class interface specification

An advantage of the scheme presented so far is that, during the specifica-
tion of a feature class, control can be provided on which feature compo-
nents are made public, i.e. accessible to the user of the modeling system
when manipulating its feature instances, and which should be kept pri-
vate inside the feature class. The latter have either an internal role, e.g.
in supporting the shape specification as described in Section 3.3, or a
fully specified character, in the sense that all parameters they require to
be initialized have already been specified in the class. An example of the
latter is a dimension constraint stating that the parameter widih of a slot
class should have a value greater than 3 mm: such a constraint is always
initialized on parameter width and with value 3, requiring no user input
at feature instantiation stage.
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On the other hand, several feature constraints and parameters may
require external data to be provided at feature instantiation stage —the
so-called user-supplied data—, as depicted in Figure 3.1. Those feature
members constitute the feature class interface. The specification of the
feature class interface determines how feature instances will be pre-
sented to the user of the modeling system and, thus, how the user will be
able to interact with them. In the SPIFF system, all interface parameters
have a name, which will be used later to designate them at the graphical
user interface of the modeling system, when the feature is instantiated or
modified.

Essential in the feature class interface is the positioning and orientation
scheme, which is specified by means of attach and geometric constraints,
as depicted in Figure 3.1.

An attach constraint of a feature couples one of its faces to a user-
supplied feature face, to be chosen among those of the features already
present in the model. Attach constraints are a kind of coplanar geometric
constraints that take into account the natures of the two features in-
volved in order to determine the appropriate normal orientations (Doh-
men et al. 1996).

Geometric constraints position and orient a feature relative to (faces
of) other features already present in the model, by fixing its remaining
degrees of freedom. For this, a geometric constraint couples one of the
feature faces to a user-supplied feature face in the model, possibly with
some additional numeric parameter(s). For instance, to position a
through slot, a distanceFaceFace constraint might be used, which re-
quires an external reference feature face and a distance value.

Because feature faces, instead of faces of the boundary representa-
tion, are used to attach and position a new feature to the model,
ambiguities caused in history-based systems by the persistent naming
problem (see Section 2.1) are avoided.

Some shape parameters may be determined implicitly from the fea-
ture attachments, e.g. the depth of a through hole or the length of a
through slot. All other shape parameters need a user-supplied value at
feature instantiation stage, and are therefore also included in the feature
class interface.

Feature validation constraints may also take part in the interface of a
feature class, when some of their parameters are left unspecified until
the creation of a specific feature instance. Examples of this are user-
supplied data aimed at (i) initializing the bounds of an interval of some
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- coaxial(hole1.axis, hole2.axis)

Figure 3.6 — Aligning features by switching off positioning geometric constraints

dimension constraint, (i) determining whether an onBoundary semantic
constraint should be configured as partly or completely, or (iii) setting the
constant proportionality factor between two shape parameters in some
algebraic constraint.

Finally, it is possible to declare some interface parameters as
switchable. This means that, whenever desired during the modeling ses-
sion, these can be deactivated, and therefore not taken into account in
the validation process. While this possibility is not likely to be used for
most feature validity constraints, it is particularly convenient for shape
parameters and for positioning geometric constraints. In this way, they
may be overruled by additional geometric constraints explicitly created
later (so-called model constraints, see Chapter 4). As an example of this,
consider the fixture part in Figure 3.6. Although the two through holes
may have been positioned independently, each one using a different pair
of reference model faces (e.g. the block front and top faces), it might be
desirable to keep them aligned. This can be achieved by switching off the
positioning geometric constraints of one of them, and replacing these by a
coaxial constraint between the axes of the two through holes.

3.6 The Feature Library Manager

The Feature Library Manager of SPIFF comprises a Feature Class Man-
ager and a Graphical User Interface (Idri 1998), as depicted in Figure
3.7. The Feature Class Manager in turn comprises a Parser and a Gen-
erator to process Class Models. Through the Graphical User Interface,
the user may create a new feature class, or modify an existing one.
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Figure 3.7 — Architecture of the Feature Library Manager of SPIFF

Feature Library

The system provides two methods to create a new feature class. In
the first method, the feature class is specified from the outset: the Fea-
ture Class Manager incrementally builds the Class Model, as the user
follows the steps outlined in Sections 3.3 to 3.5. In the second method,
existing feature classes can be used as a basis for the new class. Two
cases are then distinguished.

In the first case, the new feature class inherits from a single feature
class. Therefore, the new class gets the same shape and validity condi-
tions as its parent. Its specification can then be completed by defining
additional validity conditions and a new interface (see Sections 3.4 and
3.5). An example of this is the creation of a square passage class based on
a rectangular passage class, by just adding an algebraic constraint that
specifies its length and width parameters to be equal.

In the second case, the new feature class is composed from multiple
existing feature classes. Here, the positioning geometric constraints of
the component classes are used to compose the shape of the new class,
instead of explicitly building it with additional constraints, as when the
class is defined from the outset. An advantage of using other feature
classes to compose (the shape of) a new class is that both components
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with additive and components with subtractive natures can be used. The
other specification steps are similar to those used for building classes
from the outset, as outlined in Sections 3.4 and 3.5.

When an existing feature class is selected to be modified, it is read by
the Feature Class Manager and parsed in order to build its Class Model.
After that, the class can be interactively modified by the user, through
the Graphical User Interface.

After a feature class has been fully specified, it is stored in a Feature
Library, by means of the Generator. This module translates the Class
Model into a class in L.LOOKS, an object-oriented imperative programming
language (Peeters 1993). SPIFF contains a L.OOKS interpreter, into which
feature libraries are loaded and, thus, made available in the modeling
system.

Eventually, the Feature Library Manager validates a feature class
just specified, in order to avoid over- and underconstrained specifications.
This validation process roughly performs a short “modeling session”: a
prototype feature instance is created with the necessary user-supplied
parameters, and attached to a basic block feature. The constraint solver
of the modeling system then checks whether a well-constrained situation
is achieved (Noort 1997). Possible conflicts with algebraic and geometric
constraints are graphically reported. Such a scheme is useful to fix many
inconsistent and incomplete geometric/algebraic constraint specifications.
It is, however, far from exhaustive because, among other reasons, it tests
only one feature prototype instance, and the concrete set of user-supplied
parameter values determines the constrained model behavior. Also, in
the current implementation, no checking is made on redundant or con-
flicting dimension and semantic constraints.

The Graphical User Interface of the Feature Library Manager will be
illustrated in the next section.

3.7 Application example

This section describes the use of the Feature Library Manager for the
specification of a rounded blind slot feature class; see Figure 3.8.

To describe the shape for the rounded blind slot class, two basic
shapes are specified: block b and cylinder ¢. These are then positioned
relative to each other according to the following scheme:

1. Align the two shapes vertically and give them the same height,
by making their top and bottom faces coplanar, with two coplanar
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Figure 3.8 — Example of a rounded blind slot feature instance

geometric constraints, alignTop and alignBot, initialized as fol-
lows (see Figure 3.9.a):

alignTop (b.top, c.top)
alignBot (b.bottom, c.bottom)

2. Make the diameter of the cylinder equal to the width of the block,
with an algebraic constraint (see Figure 3.9.b):

b.width = 2 * c.radius

3. Position the cylinder at the middle of the back face of the block,
with two distLineFace geometric constraints, cylinderDist1 and
cylinderDist2, initialized as follows (see Figure 3.9.c):

cylinderDistl (c.axis, b.right, c.radius)
cylinderDist2(c.axis, b.back, 0)

The rounded blind slot dimension parameters are then defined in terms
of the basic shapes’ parameters, using algebraic constraints as follows
(see Figure 3.9.d):

length = b.length + c.radius

width b.width
depth b.height

Similarly, the rounded blind slot boundary faces are defined in terms of
the basic shapes’ faces as follows:

top = {b.top, c.top}
bottom = {b.bottom, c.bottom}
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Figure 3.9 — Shape specification for the rounded blind slot class

front = {b.front}
back {c.side}
left {b.left}
right = {b.right}

The rounded blind slot needs two attach constraints, attachTop and ai-
tachFront, on its top and front faces, each of them requiring a user-
supplied model reference face, modelFacel and modelFace2:

attachTop (top, modelFacel)
attachFront (front, modelFace2)

Finally, the position becomes fully specified with a distFaceFace geomet-
ric constraint setting the user-supplied distance d, between one of the
rounded blind slot side faces and a user-supplied model reference face,
modelFace3:

position(left, modelFace3, d)

Several validity conditions can now be specified for the rounded blind
slot feature class. For example:

1. To preserve the desired feature shape properties, the block
should be prevented from degenerating (that would be the case if
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the length of the rounded blind slot were smaller than the cylin-
der radius); similarly, the rounded blind slot width and depth
should be restricted to positive values. This is achieved by setting
lower bounds for these parameters with dimension constraints,
initialized as follows:

dimensionLength (length, c.radius)
dimensionWidth (width, O0)
dimensionDepth (depth, 0)

2. Faces top and front of the rounded blind slot should not be on the
model boundary, whereas each of the remaining faces should
have, at least, some contribution to the model boundary. For this,
the following semantic constraints declarations are made:

semanticTop (top, notOnBoundary, completely)
semanticFront (front, notOnBoundary, completely)
semanticLeft (left, onBoundary, partly)
semanticRight (right, onBoundary, partly)
semanticBack (back, onBoundary, partly)
semanticBottom (bottom, onBoundary, partly)

3. Closure and absorption interactions could be disallowed for
rounded blind slot instances, by including the respective interac-
tion constraints in the class specification.

The final specification of the rounded blind slot feature class is shown in
Figure 3.10.

3.8 Conclusions

Current feature class definition schemes, surveyed in Section 3.2, are
very limited, mainly due to either excessive low-level input requirements,
or incomplete specification of feature validity.

The declarative scheme presented in this chapter overcomes these
drawbacks, providing a very flexible mechanism for the specification of
feature classes. It supports a wide range of shapes, and allows full speci-
fication of validity conditions at geometric, topologic and functional lev-
els, by means of a variety of constraint types. This approach has been
implemented in the Feature Library Manager of the SPIFF system, which
provides a graphical user interface, and thus requires no programming
skills.
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Figure 3.10 — Final specification for the rounded blind slot class

Feature classes created in this way have a simple interface, facili-
tating the creation and manipulation of their feature instances during
the modeling process.






The semantic feature model

“If the designer wishes to create a hole, a slot, or a pocket, then (i) he should
be able to design precisely in those terms, and (ii) the system should retain the
information that a particular set of topological entities belongs to a particular
part feature. (...) What is really needed is the ability to automatically link face
sets upon initial creation of the feature. (...) The explicilt presence of feature in-
formation in the modeler’s database will greatly help in the generation of proc-
ess plans (...).”

(Pratt 1984)

This chapter describes the semaniic feature model, on which the semantic
feature modeling approach, outlined in Chapter 2, is based. First, the im-
portant notion of dependency between model entities is introduced (Sec-
tion 4.1). Next, the two levels integrated in the feature model —the Fea-
ture Dependency Graph and the Cellular Model— are elaborated (Sections
4.2 and 4.3). Finally, mechanisms for model maintenance are presented
for both levels (Section 4.4), illustrating with typical examples how the
feature model evolves throughout a modeling session.

45
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4.1 The dependency relation

Many researchers in feature modeling have pointed out the convenience
of keeping track of the model structure in terms of the relations among
its features, in addition to that provided by the low-level, evaluated geo-
metric model. A variety of structures has been proposed, expressing at-
tachment, adjacency, connectivity or similar relationships among the fea-
tures of a model. Some of them were based on a rigid, CSG-like, parent-
child relationship, yielding a tree-structured model; many others adopted
a general graph structure, in order to better capture feature relations in
more complex models (Kyprianou 1980, Henderson 1984, Luby et al.
1986, Shah and Rogers 1988, van Emmerik and Jansen 1989, Bronsvoort
and Jansen 1993).

More research effort has been dedicated to the nodes in such graphs
(the features) rather than to the edges (the relations between them). So,
for example, issues like “which features are in the model?” or “how should
they be represented?” have received more attention than issues such as
“which relationship is there among those features?” or “how can this rela-
tionship be precisely defined and represented?”.

The dependency relation defined in this section provides a sound ba-
sis for the latter. In particular, it is clearly defined, has rich semantics,
and has direct application in feature model maintenance.

Dependencies among features

As described in Section 3.5, instantiation of a new feature requires the
user to supply a set of parameter values, aimed at initializing all its con-
straints and parameters. Some of these values consist of references to
elements of other features (e.g. faces), and are meant to specify how the
new feature should be attached and positioned relative to the features
already present in the model. In accordance with the requirements intro-
duced in Section 2.2, such references are persistent, in the sense that
they remain valid as long as the features referred to remain in the model.

Moreover, these references establish a clear dependency among the
features in the model. Thus, for example, if a blind hole is attached to the
bottom of a slot, see Figure 4.1.a, it will be displaced when the depth pa-
rameter of the slot is increased, see Figure 4.1.b. Also, the blind hole at-
tachment has to be readjusted, or, alternatively, the blind hole itself re-
moved, when the slot feature is removed from the model.
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Figure 4.1 — Example of a dependency relation between features

A dependency between two features is unidirectional: one can always
distinguish the feature that is determined from the feature that deter-
mines. In this sense, again referring to the example of Figure 4.1, re-
moval of the blind hole from the model does not present any problem to
the slot feature.

We can therefore state that feature f1 directly depends on feature f2
whenever f7 is attached, positioned or, in some other way, constrained
relative to f2. Stated differently, f7 directly depends on f2 if some feature
constraint of f1 has a reference to an entity of fa.

By extension, a feature is considered to depend on another feature if
the above definition recursively applies between them: feature f1 depends
on feature f2 whenever f1 directly depends on some feature f3 that de-
pends on fz. Finally, two features are said to be independent if and only if
none of them depends on the other.

Dependencies between constraints and features

In feature modeling, it is very convenient to be able to define, besides the
constraints in feature classes, constraints among the feature instances in
the model, with the goal of further specifying design intent. Constraints
for this can be of any type mentioned in Section 3.2, and are called model
constraints.

An example of the use of model constraints has already been pre-
sented in Figure 3.6. Another example is given in Figure 4.2. The slot
and the passage features, which were independently positioned relative
to the block side faces (see Figure 4.2.a), are repositioned and aligned by
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Figure 4.2 — Relative repositioning of features by means of model constraints

means of two geometric constraints: one requiring the left faces of the
two features to be coplanar, the other setting the distance of the slot, and
thus also of the passage, to the block right face (see Figure 4.2.b).

This example illustrates three important properties of model con-
straints:

1.

Unlike the feature constraints used throughout Chapter 3, model
constraints are model entities comparable to features: they are
created, edited, maintained and removed from the model in a
similar way.

They have a multidirectional character among the features they
refer to: a modification in any of them is always propagated to all
the others. In the example of Figure 4.2.b, regardless of which of
the two features is positioned by the distance constraint (relative
to the block right face), the coplanar constraint will always cause
the other feature to “follow” it (compare this with the limitation
pointed out on page 12).

They mostly overrule some feature constraints previously speci-
fied. In the example of Figure 4.2.b, the two model constraints
prevail over the original positioning constraints of the two fea-
tures relative to the block sides. If this would not be done, an
overconstrained situation would arise.
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A logical consequence of properties (1) and (2) is that model constraints,
regarded as model entities, depend on the features they refer to. By anal-
ogy to feature-feature attachments, we say that they are attached to
those features. Because of this dependency, it is impossible, for example,
to remove either the slot or the passage from the model in Figure 4.2.b
without, at the same time, removing, or at least modifying, the model
constraints attached to it.

Similarly to what has been defined for features, we can now state
that a model constraint ¢ depends on a feature f whenever c is attached to

f.

The notion of dependency plays a crucial role in the semantic feature
model, described in the next sections. It is a dynamic relation among
modeling entities, and can thus evolve as these entities are modified, in
contrast to the static chronological feature creation order used in most
history-based feature modeling systems.

4.2 The Feature Dependency Graph

The Feature Dependency Graph contains all feature instances in the
product model, each of them with its own set of entities (e.g. shape, pa-
rameters and constraints), and all model constraint instances. These in-
stances are interrelated by the dependency relations introduced in the
previous section, yielding a directed acyclic graph structure, consisting of
the set of all model entities (feature instances and model constraint in-
stances), and the set of dependency relations among these entities. Each
edge represents one dependency relation, and is oriented towards the
dependent feature or model constraint. As an example, Figure 4.3 on the
next page depicts the Feature Dependency Graph of the model in Figure
4.2.b.

The goal of the Feature Dependency Graph is to provide a high-level
structure of the feature model. In fact, it contains all entities and infor-
mation required for model manipulation, in a structured way. Interaction
between the user of the modeling system and the model takes place in
terms of the features and model constraints in the Feature Dependency
Graph. Also, all modeling computations are primarily carried out at this
level. For example, all geometric and algebraic constraint solving tasks
act upon entities at this level. Each entity in the Feature Dependency
Graph may be queried about its current parameter values and dependen-
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Figure 4.3 — Feature Dependency Graph of the model in Figure 4.2.b

cies. Furthermore, each feature node in the graph “knows” about its cur-
rent global position, as well as its geometry.

The Feature Dependency Graph contains no evaluated model geome-
try, but instead all information necessary to generate and maintain this
in the Cellular Model, as will be described in the following section.

4.3 The Cellular Model

The Cellular Model is a non-manifold representation of the feature model
geometry, integrating the contributions from all features in the Feature
Dependency Graph. The Cellular Model is presented in detail in (Bidarra
et al. 1998b), together with a survey on other research proposals for the
geometric representation of feature models.

The geometry of each feature instance, designated the feature’s shape
extent, accounts for the bounded region of space comprised by its volu-
metric shape. Moreover, its boundary is decomposed into functionally
meaningful subsets, the shape faces, each one labeled with its own ge-
neric name, as described in Section 3.3.

The Cellular Model represents a part’s geometry as a connected set of
volumetric quasi-disjoint cells of arbitrary shape, in such a way that each
one either lies entirely inside a shape extent or entirely outside it. The
cells represent the point sets of the shape extents of all features in the
model. Each shape extent is, thus, represented in the Cellular Model by a
connected subset of cells.

Furthermore, the cellular decomposition is interaction-driven, i.e. for
any two overlapping shape extents, some of their cells lie in both shape
extents (and are called interaction cells), whereas the remaining cells lie
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Figure 4.4 — Cell owner lists in the Cellular Model

in either of them. As a consequence of this, two cells can never volumetri-
cally overlap. They may, however, be adjacent, in which case there is an
interior face of the Cellular Model separating them. Such a face can be
regarded as having two “sides”, designated as partner cell faces. A face
that lies on the boundary of the Cellular Model has only one cell face (one
“side”), that of the only cell it bounds. In either case, a cell face always
bounds one and only one cell. Each shape face is, thus, represented by a
connected set of cell faces.

In order to be able to search and analyze features and their faces in
the Cellular Model, each cell has an attribute —called owner lisi— indi-
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cating which shape extents it belongs to, see Figure 4.4. Similarly, each
cell face has also an owner list, indicating which shape faces it belongs to.

Just like for features, the nature of a cell expresses whether its volume
represents “material” of the part or not. Its determination will be pre-
cisely described in the next section. For example, in the model of Figure
4.4, cells 1, 6 and 8 have additive nature (i.e. the nature of either the
block or the rib), whereas all other cells have subtractive nature (i.e. that
of a subtractive feature in their owner lists). Similarly, the nature of a
cell face expresses whether it lies on the boundary of the part or not.

The Cellular Model, including its attribute mechanism to maintain and
propagate the owner lists of cells and cell faces, was implemented using
the Cellular Topology husk of the Acis Geometric Modeler (Spatial 1998).

4.4 Feature Dependency Graph maintenance

Feature model maintenance is the process of updating the feature model,
according to the requirements of each modeling operation. It is performed
at both levels of the feature model: first, the Feature Dependency Graph
is modified and analyzed; next, the Cellular Model is updated accordingly
and analyzed. The model modification process at the Feature Depend-
ency Graph level is described in this section. Maintenance at the Cellular
Model level is described in the next section. The analysis mechanisms
will be discussed in Chapter 7, in the broader context of model validity
maintenance.

Modeling operations can be grouped into two major categories: feature
operations and model constraint operations (or simply constraint opera-
tions). Feature operations include the following:

Adding a new feature instance to the model This operation
creates a new feature instance of the chosen feature class, and
requests from the user a full set of initialization parameter values
for the new feature. Together with this, all constraint members
specified in its class are also instantiated, and initialized with the
corresponding user-supplied parameter values (e.g. distance pa-
rameters and external feature faces for attach and positioning
constraints, see Section 3.5).
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Editing a feature instance in the model This operation permits
modifying any feature interface parameter value provided earlier
to that feature instance.

Removing a feature instance from the model This operation
removes from the model the feature and all feature constraints
instantiated at its creation stage.

Constraint operations are similar to feature operations: model con-
straints can be added, modified and removed. They are, however, most
often specified and executed in “batch form” for user convenience: several
new model constraints can be added to the model in one step, and exist-
ing model constraints modified or removed, while at the same time some
feature constraints can be selected to be switched off, in order to avoid
geometrically overconstrained situations (see Figure 4.2.b and property
(3), on page 48, for an example).

In Chapter 7 the generic scheme of modeling operations will be analyzed
in detail, distinguishing in them a number of steps (Figure 7.1, on page
102). In the current context, it is enough to refer to those steps responsi-
ble for the modification of the feature model.

The first step for all modeling operations (except for feature removal
operations) is the internal geometric and algebraic constraint solving
process. When this process is successfully performed, all feature in-
stances in the Feature Dependency Graph have their parameters, posi-
tion and (shape extent) geometry updated. The solving process also rec-
ords which features have actually been geometrically modified by the
modeling operation.

The Feature Dependency Graph is updated according to the specific-
ity of each modeling operation:

Adding a new feature instance to the model The new feature
instance is added to the Feature Dependency Graph, and all its
dependencies stored, according to the user-supplied interface pa-
rameters values.

Editing a feature instance in the model The modified feature
instance is kept in the Feature Dependency Graph. All its feature
constraints are adjusted as required by the operation, possibly
modifying some of the feature dependencies (as for example in a
re-attach operation).

Removing a feature instance from the model The feature is
simply removed from the Feature Dependency Graph. The re-
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moval operation is, however, only allowed if it has no dependent
entities (features or constraints) in the Feature Dependency
Graph; otherwise, the user is given the possibility of modifying
these in order to eliminate their dependencies (e.g. by changing
their attachments, see Chapter 7).

Constraint operations All new model constraints are added to the
Feature Dependency Graph, according to their atiach dependen-
cies. Similarly, modified and removed model constraints are also
updated in, or removed from, the Feature Dependency Graph.

4,5 Cellular Model maintenance

Another step of a modeling operation consists of updating the Cellular
Model, so that changes in the Feature Dependency Graph are also re-
flected in the geometric model. This step is essential in order to check
semantic and interaction constraints, which are concerned with the con-
crete geometry and topology exhibited in the Cellular Model by the fea-
tures involved in the operation (that process, called feature interaction
detection, is elaborated in Chapter 6).

For each modeling operation, this step is carried out in two phases. In
the first phase, the Cellular Model is incrementally re-evaluated; this is
described in the remainder of this section. In the second phase, the Cel-
lular Model is interpreted, according to the feature information stored in
its cellular entities and the current dependencies among the features;
this is discussed in the next section.

In accordance with the goals stated in Section 1.2, these two phases
are aimed at satisfying the following essential requirements:

1. The process of re-evaluation of the Cellular Model, after each op-
eration, should be limited in scope, in order to keep its computa-
tional cost independent of the number of features present in the
model.

2. The evaluation and interpretation of the Cellular Model, corre-
sponding to the structure of the Feature Dependency Graph,
should be completely and unambiguously determined without in-
voking any model history considerations.
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Figure 4.5 — Propagation of owner data in a cellular union operation

Cellular Model incremental evaluation

In contrast with history-based systems, which use two non-associative set
operations (union and difference) to evaluate the geometric model (see
example on page 10), in the semantic feature modeling approach only one
set operation is used to evaluate the Cellular Model: it is computed by
performing the non-regular cellular union of the shape extents of all fea-
tures. Because it is a union operation, the order in which the shape ex-
tents are processed is irrelevant for the final Cellular Model obtained. By
these non-regular cellular operations, between (the single cell repre-
senting) each shape extent and the other cells generated so far, the cel-
lular decomposition described in Section 4.3 is computed. Essential in
this process is the correct propagation of the owner lists of each cell and
cell face when these are further decomposed, so that each entity “knows”
precisely which shape extents, or shape faces, it belongs to.

A simple example of a non-regular cellular union operation is given
in Figure 4.5, where a rectangular slot is inserted into a Cellular Model
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(a) before the operation (b) after the operation

Figure 4.6 — Re-evaluation of the Cellular Model for a model modification

consisting of a single block. Before the cellular union, the owner lists of
both cells are as shown in Figure 4.5.a (for the sake of legibility, only
some face owner lists of both shapes are depicted). After the operation,
the block cell is decomposed into two cells, of which one is shared with
the slot, as depicted in Figure 4.5.b. The owner lists of the cell faces in
Figure 4.5.a are also propagated, when these faces are split, as shown in
Figure 4.5.b.

Re-evaluation of the Cellular Model after each modeling operation
makes extensive use of the ability to process the cellular topology. A de-
tailed description of Cellular Model processing algorithms can be found
in (Bidarra et al. 1998b). According to the particular feature operation,
these can be summarized as follows:

Adding a new feature instance to the model The shape extent
of the new feature is added to the current Cellular Model. For
this, the nonregular cellular union operation is used, which com-
putes the cellular decomposition described above, and propagates
the owner list attributes among the relevant cells and cell faces in
the Cellular Model.

Removing a feature instance from the model This is carried
out in three steps: (i) all references to that feature are removed
from the owner lists of Cellular Model entities; (ii) cells with an
empty owner list are removed from the Cellular Model; and (iii)
adjacent cells and cell faces with the same owner list are merged.
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Figure 4.7 — Feature precedence examples for the models of Figure 4.6

Editing a feature instance in the model In this case, only the
edited feature, and all its dependent features that are also modi-
fied by the operation, need to be taken into account. They are re-
moved from the Cellular Model and then re-added with their new
parameters, using the add and remove operations just described.

A simple example of a feature modification operation is given in Figure
4.6, where the top attach of the through slot is modified, from the top of
the block to the bottom of the step. The rib is also displaced, due to its
attachment to the slot, whereas all other features maintain all their pa-
rameters and their position. The scope of modified features is easily ob-
tained from the Constraint Manager (see Section 2.3), which keeps track
of which features it modifies during the geometric and algebraic con-
straint solving process, as mentioned in the previous section. In this ex-
ample, thus, only the slot and its dependent rib need to be updated in the
Cellular Model. This is carried out by removing the (cells of the) slot and
the rib from their original position @.e. cells 5, 6, 7 and 8 in Figure 4.4),
and adding their shape extents (with a cellular union operation) in the
new position.

This example also illustrates that re-evaluation of the Cellular Model
is independent of the chronological order of feature creation: the process
is the same, regardless of whether the slot has been the first feature to be
attached to the block or not (see Figure 4.7.a). In contrast with this, in
the history-based approach, after the slot displacement operation, the
whole model history (at least since the slot creation) is re-executed, in-
cluding features whose imprint remains unaltered, e.g. blind slot 1 and
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blind slot 2 (see model history at the left-hand of Figure 4.7.a). Even
worse, a history-based modeling system would not be able to perform this
operation if the model history were that at the right-hand of Figure 4.7.a,
because the step is there more recent than the slot (see discussion of this
drawback on page 11).

Computational cost of Cellular Model re-evaluation

An important issue is the efficiency of operations on the Cellular Model,
because boundary evaluation is still a bottleneck in many modeling sys-
tems. The structure of the Cellular Model is certainly more complex than
that of a manifold boundary representation, normally used in history-
based feature modeling systems. In addition, attribute storing and
propagation mechanisms demand some additional processing not re-
quired by set operations on a conventional manifold boundary represen-
tation. However, this is far outweighed by the performance improvement
of incremental re-evaluation of the Cellular Model.

In history-based feature modeling, evolution of the model is, by defi-
nition, dependent on the re-execution of sequences of modeling opera-
tions from the model history. As discussed in Chapter 2, it is impossible
to always avoid including in those sequences operations on unmodified
features, although their re-execution is superfluous. The computational
cost of a modeling operation, such as the modification or removal of a fea-
ture, is therefore proportional to the total number of features in the
model if no intermediate evaluated models are stored, or to the number
of features created after the modified or deleted feature, if intermediate
models or deltas are stored.

Building the whole Cellular Model from scratch has also a computa-
tional cost that is proportional to the number of features in the model.
Fortunately, this is only required when the Cellular Model needs to be
built in one step, e.g. when starting a modeling session with a previously
created model file.

Once this has been done, the computational cost of re-evaluating the
Cellular Model after a modeling operation is kept limited, i.e. it is inde-
pendent of the total number of features present in the model, because, as
described in the previous subsection, only the imprint of the shape ex-
tents whose geometry has been affected by a modeling operation is up-
dated. This scope is easily obtained from the geometric and algebraic
constraint solving process, which keeps track of which features it actually
modifies during the operation (see Section 4.4).
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In conclusion, the computational cost of Cellular Model re-evaluation is
dependent on the number of features whose geometry is affected by the
operation. Usually, this number is very limited, so computational cost is
minimized.

4.6 History-independent interpretation of the
Cellular Model

Interpretation of the Cellular Model consists of determining whether the
point set represented by each cell does or does not belong to (or represent
“material” of) the product, i.e. the nature of that cell. This requires de-
ciding which of the features in its owner list “prevails”, either as additive
or as subtractive (Bidarra and Bronsvoort 1999c¢). It is only at this point
that the precedence among features needs to be taken into account.

Determination of cell natures

If, based on some precedence criteria, a global ordering can be defined on
the set F of all features in the model (say assigning to them unique, in-
creasing precedence numbers), then every cell owner list (a subset of F)
can be sorted according to these precedence numbers. The nature of a cell
becomes, then, the nature of the last feature in its owner list (i.e. the fea-
ture with the highest precedence number). It is obvious that such a global
ordering is always possible, as the set of features in the model is discrete
and finite, and thus numerable.

The main question is then which precedence criteria should be used
in this sorting process. Before going into this, some remarks should be
made on what is involved in the notion of cell nature, and what is thus
relevant in its determination.

The example in Figure 4.7 shows that, at least in some cases, the
same set of features can be sorted in different sequences, yet yielding the
same model interpretation. Indeed, what makes such sequences have the
same interpretation is the fact that they cause the same nature to be as-
signed to the same cells in the Cellular Model.

Considering that the nature of a cell, whose owner list has n ele-
ments, is exclusively determined by the nt element (the last feature) in
the owner list, we can derive the following properties:

1. The nature of a cell is independent of (the precedence numbers
of) features that do not occur in its owner list.
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Figure 4.8 — Precedence permutation among independent features with the same
nature

For example, referring to the model in Figure 4.6, the nature of
the (cell of the) blind slot 1 is independent of whether the prece-
dence numbers of, say, the step, the blind slot 2 and the through
slot are higher or lower than its own precedence number.

2. The nature of a cell is preserved under permutations of the n
elements of its owner list, provided that the nature of the ntt
element is kept the same. In particular, the cell nature remains
invariant under permutations of the first n—1 elements of its
owner list.

This is illustrated by the example model with two crossed slots, in
Figure 4.8.a: the nature of the interaction cell shared by both
slots (see Figure 4.8.b) is not affected by the relative precedence
of these two subtractive features, and thus both precedence se-
quences in Figure 4.8.c yield the same interpretation.

From these two properties, we can conclude that, in general, different
feature precedence sequences can result in the same nature for each cell.
For the interpretation of the model, it is thus enough to have a procedure
that is always able to generate one such sequence. We now discuss ap-
propriate precedence criteria to achieve this goal.

Precedence criteria

The example in Figures 4.6 and 4.7 suggests that sorting the precedence
sequence of features according to the static chronological feature creation
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order, is not a good criterion for the interpretation of the Cellular Model.
In fact, whichever the sequence of precedence numbers before the opera-
tion, changing the slot’s attachment requires the step to precede the slot
and the rib after the operation. Otherwise, the precedence number of the
rib would be lower than that of the step, and the former would appear
truncated by the latter. We can conclude from this example that the
precedence sequence of features should be dynamic, i.e. subject to revi-
sion after each modeling operation.

This example, together with property 2 above, also shows that for the
interpretation of the structure of the feature model at any moment, the
chronological order in which its features were originally created is, in
general, not determinative. Instead, the actual dependencies among them
at that stage do provide the key for this precedence analysis.

For the model of Figure 4.6.a, for example, one can draw the follow-
ing two precedence relations, based on an attachments’ analysis: (i) the
through slot feature precedes the rib feature (i.e., the latter is dependent
on the former), and (ii) the base block feature precedes all other features
(i.e., they are all dependent on it). Relative precedence among all other
features is irrelevant when it comes to interpret this model; so, for exam-
ple, both feature precedence sequences of Figure 4.7.a produce the same
model interpretation of Figure 4.6.a. Figure 4.7.b, on the other hand,
shows a possible sequence of precedence numbers for the modified model
in Figure 4.6.b. Whatever the sequence of precedence numbers before the
operation, it can be remarked that the step now precedes the through slot
(i.e. has a lower precedence number), as required by the new attachment
of the latter.

In short, the dynamic dependency relation of the Feature Depend-
ency Graph permanently “reflects” the current structure of the feature
model. Therefore, it makes up the first precedence criterion in our goal of
generating a global precedence sequence:

Criterion I Each edge in the Feature Dependency Graph repre-
sents a precedence relation between two features in the model: if
feature f2 depends on feature f1, then f1 precedes fe.

By definition, the above criterion is able to define a precedence relation
between dependent features only. On the other hand, for the modeling
operation described in Figure 2.2, on page 10, a precedence problem was
pointed out between two independent features, a blind hole and a protru-
sion: if the precedence numbers were kept as shown in Figure 4.9.a, i.e.
following the sequence of the history in Figure 2.2.c, the top interaction
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1 base block
2 blind hole
3 protrusion

(a (b)

Figure 4.9 — The precedence sequence (a) for the model of Figure 2.2.e yields an
incorrect nature for the cell highlighted in (b)

cell of the blind hole (highlighted in Figure 4.9.b) would be additive, i.e.
have the nature of the protrusion. This nature is incorrect, because it is
not in accordance with the semantics of the modeling operation per-
formed: the nominal depth of the blind hole, which has been increased,
does not match the actual depth it exhibits in the model.

What is characteristic of the situation described in Figures 2.2 and
4.9, is that the modeling operation in question causes an overlap between
two independent features of different natures. To avoid incorrect interpre-
tations of a model such as that shown in Figure 4.9, an explicit prece-
dence relation should be established when, as a result of a modeling op-
eration, two independent features with different natures come to overlap.
The question arises then on which orientation should be assigned to this
precedence relation, considering that none of the two features depends on
the other. The above example suggests that, to preserve the semantics of
a modeling operation, a feature f that is modified by the operation should
“prevail” in the determination of the nature of its interaction cells. Stated
differently, other overlapping independent features with different nature
should precede f in the precedence sequence. After the operation in
Figure 2.2, thus, the protrusion should precede the blind hole. Hence the
following:

Criterion II To each new overlap between independent features f1
and f2 of different natures, caused by some modeling operation on
f2, corresponds a precedence relation f1 precedes fe.

With the two criteria above, based on the dependency relation and on
possible overlap between independent features, a global sorting of all
features in the model can be achieved. In the next subsection, we show
how such precedence criteria are used to produce a correct interpretation
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of the Cellular Model, which is unambiguously determined without
invoking model history considerations.

Computation of feature precedence relations

The precedence relation, defined in the previous section, is an example of
a so-called partial ordering relation, i.e. a relation which defines an or-
dering between some pairs of elements in a set S, but not among all of
them. In general, partial ordering relations satisfy the following three
properties for any distinct elements x, y and z of the set S:

1. Transitivity

if x precedes y and y precedes z,

then x precedes z

2. Asymmetry

if x precedes y,

then y does not precede x

3. TIrreflexivity

x does not precede x

The dependency relation used in Criterion I is permanently maintained
in the Feature Dependency Graph, and is therefore always explicitly
available for use in the model interpretation process.

Criterion II states that an explicit precedence relation should also be
established when a modeling operation causes an overlap between two
independent features with different natures. To detect such occurrences
and determine the orientation of the relation, the set of features involved
in the modeling operation (i.e. those which are actually processed in the
incremental re-evaluation of the Cellular Model, see Subsection “Cellular
Model incremental evaluation” in the previous section) is analyzed ac-
cording to the Algorithm 4.1. Basically, the algorithm checks whether
any of these features, f;, has acquired a new overlap with an independent
feature f;; if this is the case, and the features have different natures, then
the relation “fj precedes fi” is recorded.

In detecting a new overlap, the algorithm uses the notion of overlap-
ping set of a feature f, denoted OS(f), i.e. the set of all features that over-
lap with feature f (see Section 6.1). Determination of the OS(f) is
straightforward and requires no geometric computations: it is simply
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InvolvedFeatures = {features involved in modeling operation}
for each fi; in InvolvedFeatures

NewOverlappings = OSafter (i) \OSpefore (£1)

for each f; in NewOverlappings

if f; independent of f; and f;.nature # fj.nature
then record relation "f; precedes £f;"

Algorithm 4.1 — Precedence detection algorithm for overlapping independent
features

NewSequence = <>
OldSequence = <current precedence sequence>
while OldSequence is not empty do
find in OldSequence the next feature f such that
all precedents of f are already in NewSequence
move f from OldSequence to NewSequence
assign new dependency number to £

Algorithm 4.2 — Topological sorting algorithm for assigning feature precedence
numbers

computed as the union of the owner lists of all cells of feature f. The
overlapping set of each feature f; involved in the operation is computed
and stored before the Cellular Model is re-evaluated, and compared with
the OS(f;)) determined after the re-evaluation, in order to detect new
overlaps.

Once the precedence relations have been established, using the two
criteria described, the global sorting of features can be easily performed
by a classical topological sorting algorithm, whose goal is precisely to
generate a linear ordering of a partially ordered set of elements (Wirth
1976). The algorithm, see Algorithm 4.2, builds a new sorted sequence by
iteratively selecting (and removing) from the old sorted sequence a fea-
ture whose precedents are all already sorted.

The number of tests in this selection is minimized if candidate fea-
tures are sought in the order of the old sorted sequence, because most
modeling operations have a fairly local effect, affecting only the prece-
dence of a few other features, if any at all. For example, adding a new
feature to the model typically maintains the whole precedence sequence,
the new feature being just attached at its end.
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Eventually, the features in the resulting sorted sequence have new
precedence numbers assigned, and the nature of all cells becomes thus
automatically determined.

Summarizing, precedence numbers are revised after every modeling
operation. For this, precedence relations are updated in the model, and a
new sorting is performed among all its features. These get then new
precedence numbers assigned, reflecting the new model structure, as has
been illustrated for the modeling operation of Figures 4.6 and 4.7.

Application examples

In this subsection, a number of examples is presented to illustrate both
the incremental evaluation and the interpretation of the Cellular Model.
In each example, a modeling operation is performed that involves
changes in one (or more) feature(s). The Cellular Model corresponding to
the final situation is also shown, together with the graph of precedence
relations used in its interpretation. In this graph, the feature nodes that
are actually modified by the operation are highlighted (in black). Moreo-
ver, additional precedence relations between independent features, es-
tablished by the precedence detection Algorithm 4.1, are drawn with a
dotted line, to distinguish them from the other precedence relations, de-
rived from the dependencies in the Feature Dependency Graph.

Example I

The initial model consists of a base block, two ribs and a through hole,
attached between the two ribs, see Figure 4.10.a on the next page. A pro-
trusion is then inserted between the ribs, so that it overlaps with the
through hole, see Figure 4.10.b. Considering that the through hole and
the protrusion are overlapping independent features, the precedence de-
tection Algorithm 4.1 prescribes that the through hole should precede the
protrusion, as indicated by the dotted edge in Figure 4.10.c. Thus the
protrusion receives the highest precedence number in the sorting algo-
rithm and, consequently, the nature of the interaction cell highlighted in
Figure 4.10.d is additive, i.e. that of the protrusion.

In a way, this is comparable to what history-based modeling systems
correctly assume when a new feature is added to the model: it becomes
the last feature in the model history and, thus, it is the last to leave its
shape imprint on the model boundary. This strategy is, in fact, a par-
ticular case of Criterion I (a new feature is always made dependent on
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(a) before the operation (b) after the operation

through hole

(c) Precedence relations (d) Cellular Model

Figure 4.10 — Cellular Model interpretation after adding a new feature

existing features), and possibly also of Criterion II (the new feature
overlaps with existing independent features, as in the example of Figure
4.10).

However, history-based boundary re-evaluation often fails when
some existing feature is modified in the model, as discussed in Chapter 2.
The approach presented above, instead, remains applicable for all mod-
eling operations, as will be illustrated with the next two examples.

Example IT

In this example, the model has two crossing slots of different depths at-
tached to a base block, and a rib on the bottom face of the deeper slot,
through slot 1, see Figure 4.11.a. The depth of the split through slot 2 is
then increased, so that it overlaps with the rib, see Figure 4.11.b. Again,
as these two features are independent, their overlap leads to a prece-
dence relation being established between them, see Figure 4.11.c. As a
consequence, the rib receives a precedence number lower than the
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(a) before the operation (b) after the operation

base block

through slot 2

(c) Precedence relations (d) Cellular Model

Figure 4.11 — Cellular Model interpretation after editing a subtractive feature

through slot 2, and their interaction cell is thus subtractive, as shown in
Figure 4.11.d.

With history-based boundary re-evaluation, the resulting model of
Figure 4.11.b, would not be achievable if the through slot 2 had been cre-
ated before the rib.

Example II1

The third and last example is based on the same model of example II, see
Figure 4.12.a. However, the modeling operation now consists of decreas-
ing the depth of the deeper slot, through slot 1, such that its dependent
rib becomes in interaction with the other slot, through slot 2, see Figure
4.12.b. In this case, from the analysis of the precedence detection algo-
rithm, the (indirectly) modified rib is preceded by the independent
through slot 2, see Figure 4.12.c, resulting in an additive nature for their
interaction cell, highlighted in Figure 4.12.d.

Again, the detection of the new overlap, and the precedence relation
established, yields a model interpretation in which the nature of the
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(a) before the operation

base block

through slot 1

(c) Precedence relations (d) Cellular Model

Figure 4.12 — Cellular Model interpretation after (indirectly) editing an additive
feature

modified features prevails over that of the other overlapping features. To
achieve the model of Figure 4.12.b using a history-based modeling sys-
tem, the through slot 2 should be created before the rib (which is exactly
the history sequence that would make the resulting model of example II
unfeasible).

4,7 Conclusions

The semantic feature model described in this chapter provides a struc-
tured model representation that is very suitable for feature modeling.
First, it maintains a high-level representation of the product —the
Feature Dependency Graph—, with only those entities that are relevant
for its manipulation: features and model constraints. This facilitates user
interaction, providing a natural dialog in terms of features, and hiding
from the user many unnecessary details of the geometric model. Fur-
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thermore, performing all constraint solving tasks at this level avoids the
shortcomings of entity naming schemes pointed out in Chapter 2.

Second, it maintains the Cellular Model as evaluated geometric rep-
resentation of the product. From the properties of the Cellular Model de-
scribed in this chapter, we can conclude that it is significantly more suit-
able than a conventional boundary model for the geometric representa-
tion of feature models. In particular, (i) it is able to represent subtractive
and overlapping features in a consistent way, (ii) its re-evaluation after
each modeling operation has a lower computational cost, compared to
that of boundary representations maintained in history-based modeling
systems, and (iii) its evaluation and interpretation is independent of the
chronological order of feature creation in the model. The latter solves
several problems inherent to history-based modeling.

These two levels are integrated in the semantic feature model, which
disposes of mechanisms for automatically maintaining the consistency
between them. In addition, it supports a variety of queries at both levels,
making it possible to perform effective model validity maintenance
throughout the modeling process, as will be described in Chapter 7.






Feature interactions

“(...) interactions among features pose many complex problems to the devel-
opers of integrated CAD/CAM systems.”

(Regli and Pratt 1996)

Many feature validity violations are caused by feature interactions,
which arise from modeling operations such as the creation of a new fea-
ture or the modification of an existing feature. It is important to get in-
sight in feature interaction phenomena, so that all relevant interaction
situations in a particular context can be detected, classified and handled
in an appropriate way.

This chapter defines what feature interactions are within the scope of
the research described in this thesis. First, a survey is given of previous
research contributions dealing with feature interactions (Section 5.1).
Next, a definition of feature interaction is developed (Section 5.2). Fi-
nally, a classification of feature interactions is presented and illustrated,
based on design and technological criteria (Section 5.3).

5.1 Previous research

The first explicit definition of an interaction relationship between two
features was given by Pratt (1988). This was based on the notions of effec-
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tive volume of interaction (EVI) and actual volume of interaction (AVI),
and a feature graph was proposed to represent such relations on a form
feature model. Although limited in scope, partly due to the lack of a con-
venient geometric model, this scheme was indeed able to capture simple
interactions between features.

Rossignac (1990) alerted for the difficulties and inconsistencies,
mainly due to the occurrence of feature interactions, that might arise
from a naive interpretation of usual editing commands on feature mod-
els. His analysis provides a good insight into some high-level, design-
oriented validity issues of feature models, although some of the problems
pointed out only occur with a CSG-based representation of features. He
also proposes the use of SGCs —Selective Geometric Complexes (Ros-
signac and O'Connor 1990)— as a geometric representation scheme that
would facilitate the detection of features in interaction.

An informal definition for feature interactions was presented by Shah
(1991), relating them to “intersections between entities of two or more
features such that either the shape or semantics of a feature are altered
from the generic definition”. A number of typical feature interactions
were also illustrated. The conclusion from his analysis is that uncondi-
tionally preventing such occurrences would excessively constrain the de-
signer activity, and it is suggested that the modeling system should de-
tect and react to them according to pre-defined procedures.

da Silva et al. (1991) proposed a strategy for explicit representation of
relations between cavity features, in order to perform manufacturability
reasoning. They distinguish interacting and inter-feature relationships.
The latter are equivalent to geometric constraints now commonly avail-
able in modeling systems; the former are actually no more than simple
attach relations between feature constituents. A major limitation of their
approach is that both the relationships and the feature constituents
themselves have to be extracted from the geometric model, which is vir-
tually impossible for intersecting features in general.

Karinthi and Nau (1992) addressed some interaction problems from a
formal perspective, defining an algebra of features. Its purpose is to gen-
erate all possible alternative configurations of a feature model in terms of
manufacturing features, in order to provide better input for a process
planning system. They assume that most of the alternatives are due to
feature interactions. However, the restricted algebra they implemented
either does not yield all possible interpretations, or generates interpreta-
tions that are unsuitable for manufacturing purposes (Gupta and Nau
1995).
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Bidarra and Teixeira (1993) proposed a functional classification of
feature interactions, suggesting that these could be detected by analyzing
the topology of the boundary of volumetric features. For this, a concep-
tual partition of the feature boundary was proposed, distinguishing in it
functionally different subsets —the so-called feature elements (e.g. the top,
bottom and side faces of a blind hole feature). The actual representation
of feature elements in terms of topologic entities in the geometric model
could then be constrained, according to whether those elements should
contribute to the boundary of the part model or not, by means of so-called
semantic constraints. Bidarra and Teixeira (1994) suggest that such con-
straints can be integrated in the validity criteria of each feature class,
and maintained in the model throughout a modeling session. (See Section
3.2, on the use of these constraints in the present approach.)

A methodology for analytical detection of geometric interactions be-
tween features was proposed by Talwar and Manoochehri (1994). The
algorithms presented take all the necessary input from a boundary rep-
resentation and require an intensive, low-level query and traversal of
this model. These algorithms provide a primary classification of feature
interactions (contained, touching, intersecting, etc.), and are mainly in-
tended for use in downstream, rule-based manufacturability analysis sys-
tems.

Suh and Ahluwalia (1995) approached feature interaction problems
from the perspective of incremental feature generation. They propose to
analyze each new shape, created in the model with a set operation, iden-
tifying the scope of its interaction and the actual feature produced. In
addition, changes caused by this operation on previously existing fea-
tures are detected, and these are redefined accordingly. This method is
suitable for detection of a limited set of interaction types only, mainly
because identified features are regarded as open face sets in the evalu-
ated geometric model. Furthermore, cases having more than two inter-
acting features are not dealt with.

Regli and Pratt (1996) distinguished 3 types of interactions inde-
pendent of any application domain: (i) interference interaction, among
features whose volumes intersect, (il) adjacency interactions, mainly re-
lated to assembly connections, and (iii) remote interactions, mostly de-
rived from geometric relationships between non-overlapping features.
Although their analysis is somehow biased towards feature recognition
issues, some interesting open problems are pointed out, e.g. the interac-
tion between features of different views of a product.
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It can be concluded that the perception of feature interactions achieved
so far is either too abstract or too detailed: the former is hard to imple-
ment and put into effect, the latter fails to capture important aspects of
feature semantics. Mostly, difficulties found with feature interaction
phenomena arise from studying them mainly at the geometric represen-
tation level of the feature model. Therefore, it seems clear that effective
feature interaction management requires high-level, functional informa-
tion in the product model to be considered as well (Bidarra and Brons-
voort 1996).

5.2 Definition of feature interactions

From the literature survey in the previous section, it becomes clear that
no general consensus exists as to what feature interactions are. This may
be partly assigned to the lack of a common understanding of the concept
feature itself. In particular, proposals to regard as features various non-
shape aspects of a product (material, precision, function, etc.) lead almost
inevitably to notions of interaction with only analogous, and often vague,
contents.

However, recent literature also shows that even dealing with only
form features, different phenomena are often regarded under the notion
of feature interaction. For example, the adjacency and remote interac-
tions pointed out by Regli and Pratt (1996) are, in our view, better de-
scribed by means of geometric and algebraic constraints among feature
elements and parameters, respectively. This would have the additional
advantage that such relations could be maintained and analyzed by
known constraint solving methods, see (Dohmen 1997) for an application
example. Similarly, many life-cycle interactions identified by Regli and
Pratt, can be advantageously captured by means of the inter-view link
constraints also described by Dohmen (1997).

Within the scope of this research, the term feature always denotes
form feature, defined in Chapter 1 as a “representation of shape aspects
of a product that are mappable to a generic shape and are functionally
significant for some product life-cycle phase”. In this context, we reserve
the term feature interaction for those cases where a spatial overlap occurs
between feature shapes. In other words, two features interact whenever
they share some region in space, designated the interaction extent. Inter-
action extents can be three-dimensional —volumetric interaction— or have
a lower dimension —boundary interaction.
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From the above definition of feature interaction, it follows that virtu-
ally every feature in a model interacts with some other feature. This is
not surprising, because the combination of overlapping features is often
the best method of producing a desired complex shape in the model;
sometimes it is actually the only way, in particular when no suitable
compound feature classes are directly available from the feature library.

On the other hand, it is also clear that the occurrence of interacting
features can cause the shape imprint of features to undergo significant
modifications. Such changes may have rather diverse characteristics and
relevance. For example, within feature recognition approaches, as
pointed out by Regli and Pratt (1996), the distortion of certain feature
hints or traces (e.g. topologic entities) in the geometric model is a serious
problem, because many recognition algorithms are strongly dependent on
them. In design by features, and particularly in semantic feature model-
ing, the crucial aspect is the eventual change in feature semantics re-
sulting from such feature interactions.

Feature semantics, as described in Chapter 3, is specified by means of
a variety of constraints. Among them, semantic and interaction con-
straints are meant to specify to which extent interaction with other fea-
tures is allowed. Such constraints can either be specified in a feature
class, and thus hold for all its instances, or be associated to one particular
feature instance as a model constraint, during a modeling session.

5.3 Types of feature interactions

In this section, a number of feature interaction types is identified. Their
relevance is rather dependent on the application domain: some have a
clear technological connotation, whereas others are more biased towards
modeling or functional aspects. Feature interactions have a very wide
range of effects on a feature model. Even using the restricted definition of
feature interaction presented in the previous section, we argue that a
complete taxonomy for feature interactions is unattainable. Two main
reasons can be given for this: (i) overlap between features with arbitrar-
ily complex shapes cannot be cast into an exhaustive classification; and,
above all, (ii) the strong domain-oriented relevance of feature interac-
tions mentioned above would make such a general attempt unacceptably
restrictive. In this sense, this section is no more than an enumeration of
typical feature interaction classes.

This classification does not mean that all interaction types are
equally relevant and meant to be disallowed for all feature classes in all



76

Chapter 5

feature libraries. As stressed in the previous section, disallowing an in-
teraction type for a particular feature class (or instance) is done by speci-
fying for it the appropriate semantic and/or interaction constraints. It is,
thus, upon the user of the Feature Library Manager (or of the Feature
Modeler) to establish which conditions best suit the requirements of
his/her particular domain and perspective of a product. For example, a
blind hole class might have different interaction requirements in a design
feature library and in a manufacturing feature library.

In practice, the interaction classes described here are not even mutu-
ally exclusive, as will soon become clear. This means that a feature in-
stance may undergo several of them simultaneously. This point will be
discussed in the next chapter, on account of the detection of multiple in-
teractions (Section 6.3).

For some interaction classes described here, a partition of the feature
boundary (FB) of a feature will be considered, relating its points to the
model boundary, according to:

FB = FB' U FB_
where

FB' represents the set of points of the feature boundary that are on
the model boundary, and

FB™ represents the set of points of the feature boundary that are in-
stde or outside the model boundary (e.g. points of so-called closure
faces of subtractive features).

The goal of the proposed classification is threefold: (i) to provide the user
with the capability to allow/disallow selected interaction classes, by
means of interaction constraints; (ii) to make possible the development of
appropriate detection mechanisms (see Chapter 6); and (iii) to allow spe-
cific potential reactions of the modeler to each interaction detected (see
Chapter 7).

Splitting interaction

Definition: interaction that splits the FB* of a feature into two (or more)
disconnected subsets.

Splitting interactions are always caused by an overlap with one (or more)
subtractive feature(s). This results in the suppression from the model
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Figure 5.1 — Splitting interaction: insertion of the slot splits the through hole
boundary into disconnected components

boundary of a subset of the FB* of a feature, in such a way that this be-
comes split into disconnected components, see Figure 5.1.

This kind of interaction may have both functional and technological
consequences. On the one hand, the knowledge that a particular feature,
e.g. a through hole, became split in the model, may give useful hints on
feature precedence in a process planning analysis of the model. On the
other hand, the functional purpose of some feature classes may also be
affected by a splitting interaction, e.g. the function of rib or stiffener ad-
ditive features, or the sliding functionality of a slot from an assembly
point of view.

Disconnection interaction

Definttion: interaction that causes the volume of an additive feature (or
part of it) to become disconnected from the model.

Disconnection interactions may occur as a result of the manipulation of
subtractive features, e.g. when their dimensions are made too large,
causing the part model to become topologically disconnected, as shown in
Figure 5.2.

Disconnection interactions are important to deal with because for
some applications of the model (e.g. manufacturability analysis) a part
should mostly consist of one connected component only (otherwise, as-
sembly information would most likely be required as well).
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Figure 5.2 — Disconnection interaction: enlargement of the through hole diameter
disconnects part of the block from the remaining of the model

Figure 5.3 — Boundary clearance interaction: enlargement of the protrusion width
obstructs entrance faces of the through holes

Boundary clearance interaction

Definition: interaction that causes (partial) obstruction of the FB™ of a
subtractive feature.

Boundary clearance interactions have a technological connotation: they
usually affect the machining process possible for a subtractive feature in
several ways, e.g. approach tool direction, machine accessibility and tool
path clearance. An example is given in Figure 5.3.
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(a) (b)

Figure 5.4 — Volume clearance interaction: insertion of a rib obstructs the subtractive
volume of the slot

Volume clearance interaction

Definttion: interaction that causes partial obstruction of the volume of a
subtractive feature.

Some subtractive feature classes, e.g. slot or step classes, may pose
strong manufacturability requirements in terms of restricting additive
volumetric interference into their own subtractive volume. The intrusion
of an additive feature into the volume of a subtractive feature often con-
strains the machining process of the latter. For example, while the slot in
Figure 5.4.a can be machined with one (or more) translational milling
operation(s), a more complex machining process is required to produce
the slot-rib combination in Figure 5.4.b.

Closure interaction

Definttion: interaction that causes some subtractive feature volume(s) to
become a closed void inside the model.

Closure interactions are an extreme case of clearance interactions, in the
sense that they cause a complete inaccessibility of subtractive features.
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Figure 5.5 — Closure interaction: displacement of the protrusion causes the two blind
holes to become closed voids inside the model

Figure 5.6 — Absorption interaction: insertion of a slot suppresses contribution of the
through hole to the model shape

Therefore, their detection may be also important, from both the func-
tional and the manufacturing viewpoint.

Each closed void produced by a closure interaction can be the volume
of a single feature, as illustrated in Figure 5.5, or the combination of sev-
eral overlapping volumes.

Absorption interaction

Definition: volumetric interaction that causes a feature to cease completely
its contribution to the model shape.
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Figure 5.7 — Geometric interaction: insertion of a step changes the actual depth of
the blind hole

Absorption interactions are almost always undesirable, because they turn
useless a feature that was previously created. An exception to this, how-
ever, is the creation of temporary features, e.g. for fixture or gripping
purposes, in a process planning model: after they have played their role,
such features may be absorbed by others in the model.

Absorption interactions occur whenever the FB* of a feature becomes
empty and its volume is completely enclosed within the volume of one (or
more) feature(s), as depicted in Figure 5.6.

Geometric interaction

Definttion: volumetric interaction that causes a mismatch between a
nominal parameter value and the actual feature geometry.

Geometric interactions may affect the functionality intended for a par-
ticular feature, in the sense that some of its shape parameters exhibit a
value different from that nominally specified for it. This mismatch be-
tween actual and nominal parameter values may be relevant in process
planning (e.g., availability of required tools or precedence of machining
features). An example of this interaction is a decrease in blind hole depth
due to a step insertion, as depicted in Figure 5.7.
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Figure 5.8 — Transmutation interaction: insertion of a step turns the blind hole into a
through hole

Figure 5.9 — Topologic interaction: insertion of a pocket suppresses part of a slot
side face

Transmutation interaction

Definition: interaction that causes a feature instance to exhibit the shape
itmprint characteristic of another feature class.

The detection and control of transmutation interactions may be of par-
ticular importance from a process planning perspective of a product, con-
sidering that the transmutated feature may allow (or require) a machin-
ing process different from that of its original feature class. Moreover,
their detection may avoid inadvertent overruling of previous designer
intent. An example of this interaction is given in Figure 5.8, where a
blind hole is turned into a through hole due to a step insertion.
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Topologic interaction

Definition: interaction that causes the violation of a semantic constraint
n a given feature.

Semantic constraints, introduced in Chapter 3, specify topologic require-
ments on elements of a feature shape. When, due to an interaction, one
such constraint does not hold anymore, a topologic interaction takes
place. As an example, the two side faces of a through slot may be re-
quired to lie completely on the model boundary. This means that no sub-
set of these feature elements may be suppressed due to an interaction
with another subtractive feature, in the way illustrated by the example
in Figure 5.9.

5.4 Conclusions

The nature of feature interactions arising from the incremental manipu-
lation of feature models has been addressed in this chapter. A definition
of feature interactions was proposed, as a first necessary step in the de-
velopment of any interaction management mechanism. This definition
covers all interaction situations where two features overlap, and is di-
rectly mappable into detection algorithms, as will be shown in the next
chapter. A classification of feature interactions was presented and illus-
trated, taking into account criteria from various life-cycle phases of a
product.
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interactions

“If there is no control over interactions, one could create nonsense features
(...). If interactions are disallowed completely, it can be very inconuvenient for us-
ers, because there will be a need to define many new generic features or users
will not be able to create the geometry they want. (...) Sometimes it may be all
right to allow interactions. (...) In all cases, it is necessary to detect the existence
of interaction conditions, and determine what actions to take.”

(Shah 1991)

After having presented the basic notions on feature interactions (Chapter
5), we can now turn to the more technical aspects of their detection in the
semantic feature model. As anticipated in Section 4.4, the interaction de-
tection mechanism is invoked at the end of each modeling operation, once
the Cellular Model has been updated. In this chapter, both the global in-
teraction detection mechanism (Section 6.1) and the detection algorithms
for each interaction type (Section 6.2) are presented. Finally, possibilities
for further extensions are discussed (Section 6.3).
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6.1 The interaction detection mechanism

For each of the main feature operations —insertion, modification and re-
moval of a feature—, the global interaction detection mechanism may be
subdivided into three main phases (Bidarra et al. 1997):

1.
2.

determination of the interaction scope of the modeling operation;

detection of specific feature interactions arising from the opera-
tion; and

individual analysis of each interaction detected, in order to de-
termine and report its scope and causes.

The feature interaction scope (FIS) of a feature operation is the set of all
feature instances in the model that may potentially be affected by the
operation.

For the determination of the FIS, two important notions with regard
to a feature f are:

the set of features that overlap with f, either volumetrically or
with their boundaries; these features make up the overlapping set
of f, denoted 0S (£f), and they are identified by querying the Fea-
ture Geometry Manager, which keeps track of all feature shapes
and their intersections in the Cellular Model (see Section 4.5);

the set of features that depend on f; these features make up the
dependency set of f, denoted DS (£), and they are identified by
querying the Constraint Manager, which recursively traces in the
Feature Dependency Graph the dependency relations on f (see
Section 4.1).

Depending on the modeling operation, the FIS will consist of different
combinations of overlapping and dependency sets, as follows:

Adding a new feature instance to the model By definition, after

adding feature f, there are no dependencies of other features on f
yet, i.e. DS (£f)=. The FIS of the operation is thus limited to

FIS « {f} U 0S(f)

Editing a feature instance in the model In this case, the FIS

has to be determined in two steps. Before the operation, it is ini-
tialized as
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Figure 6.1 — Indirect interaction caused by a dependent feature

FIS « {f} U DS(f) U 0s(f) ulU 0s(f:)
f.eDS (f)

in order to include those features whose overlap with feature f (or
with its dependent features) will possibly cease after the opera-
tion.

Later on, i.e. after the Cellular Model has been re-evaluated, the
FIS is updated, so that all features that only then overlap with
feature f or with its dependent features are also taken into ac-
count

FIS « FIS u 0S(f) ulU 0s(f:)
f.eDs ()

With this scheme, interactions caused or suffered indirectly by
any dependent feature are also detected. An example of this is
given in Figure 6.1: displacement of the upper V-shaped slot im-
plies the displacement of the attached rectangular slot, which in
turn causes the transmutation of the blind hole.

Removing a feature instance from the model As pointed out in
Section 4.4, this operation requires that the feature to be re-
moved has no dependent features, i.e. DS (£f)=&. The FIS is thus
determined, before executing the removal of feature f, as

FIS <« OS(f)

The determination of the FIS has as purpose to avoid checking for fea-
ture interactions in vain later: features that are known in advance to be
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left unaffected by the operation are not analyzed in the interaction detec-
tion procedure. This strategy pays because:

1. Mostly, feature operations have a localized scope, affecting only a
small subset of all features in the model. This is particularly ap-
parent in large models.

2. The information required to determine the FIS is explicitly stored
in the feature model, either in the Feature Dependency Graph or
in the owner lists of the Cellular Model, and its retrieval has,
thus, a low computational cost. All that is needed is to query the
Constraint Manager and the Feature Geometry Manager, respec-
tively (see Section 2.3).

3. Many feature classes specify several interaction constraints for
its instances. Checking all of them always, i.e. even when those
instances would fall outside the FIS of an operation, has a higher
computational cost than that of FIS determination.

In other words, for moderately complex, realistic feature models,
situations for which the above strategy is not optimal occur very seldom,
namely only: (i) when the FIS determined would include (almost) all fea-
tures, because the scope pruning achieved would then be minimal, yet
time consuming; and (i) when most features in the model would have
few (or no) interaction constraints, because no real detection computa-
tions would then be pruned out with the FIS.

Feature interactions taking place on any feature of FIS are detected by
checking their interaction and semantic constraints. At this stage, the
other Managers are queried, in order to obtain the specific data required
by each detection algorithm described in the next section.

Each constraint violation is recorded by the Interaction Manager (see
Section 2.3). Eventually, the set of constraint violations is analyzed, in
order to identify their causes and report these to the user (see Chapter 7).

6.2 Interaction detection algorithms

In this section, detection algorithms are presented for the interaction
classes described in the previous chapter. For simplicity, the algorithms
are presented as logical predicates, although in fact each of them collects
and returns additional information, in order to provide the user with a
detailed explanation on the scope and causes of the interaction.
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boundary <« s.boundary (ADDITIVE)
cf; « boundary.first
for each cell face cf; in boundary
if not boundary.accessible(cf;, cfy)
return TRUE
return FALSE

Algorithm 6.1 — Splitting interaction detection algorithm

Each of these algorithms is aimed at checking the respective interac-
tion constraint. Therefore, they operate on a feature shape, denoted by s.
Only the detection algorithm for disconnection interactions operates on
the whole model, provided that such interactions may take place without
actually splitting any single feature shape, but rather disconnecting it
from the remaining model volume.

The algorithms shown make use of methods provided by the Constraint
Manager and the Feature Geometry Manager, in order to query their
data. Most of these methods are described in detail in (Bidarra et al.
1998b); for completeness, a summary of them is presented in Table 1 on
the next page.

Splitting interaction

Splitting interactions are described in terms of the nature of feature
boundaries. They occur to a feature shape whenever the cellular decom-
position of its boundary is such that the subset of its cell faces with addi-
tive nature is not connected.

To assess the connectivity of a set of entities, see Algorithm 6.1, the
method checks whether from one of them, say e, all other entities in the
set are accessible via the adjacency topologic relation of the Cellular
Model. The predicate accessible (eq, e,), defined on a set s of Cellular
Model entities (cells or cell faces), returns TRUE if and only if for the two
specified entities of the set, e; and e,, the following holds:

1. e = ey;or
2. e;.adjacent (e,);or

3. Ele e;.adjacent (e3) A s.accessible (e, e;)

3€ES
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Table 1 — Summary of methods used in the detection algorithms

CELLULAR MODEL, cm

cm.cells(nature) returns the list of cells with specified nature (ADDITIVE or
SUBTRACTIVE) in the cellular model

FEATURE SHAPE, s

s.nature returns the nature specified for shape s

s.elements returns the list of shape elements of shape s

s.cells returns the list of all cells that lie in the shape extent of s
s.boundary(nature) returns the list of cell faces with specified nature that lie

in the extent of shape elements of s

s.overlappingSet(nature) returns the list of shapes of specified nature that overlap
with shape s (either volumetrically or with their
boundaries - cell faces and edges)

s.constraints(type) returns the list of constraints of specified type related to
shape s

f.shape returns the shape to which the shape face f belongs

f.cellFaces returns the list of cell faces that lie in the extent of shape
face f

CELL, ¢

c.ownerlist returns the list of shapes that own cell ¢

c.boundary returns the list of cell faces that bound the volume of cell ¢

CELL FACE, cf

cf.cell returns the cell bounded by cell face cf

cf.partner returns the partner cell face of cf that bounds an adjacent
cell (if this exists)

cf.ownerlist returns the list of shape elements that own cell face cf

cf.nature returns ADDTTTIVE if the cell face cf lies on the model

boundary, and SUBTRACTIVE otherwise

OWNER LIST, 1

Llast returns the last element of the owner list 1

l.after(elementi, element2) returns TRUE if element: occurs after elementz in the
owner list 1

The names of the split feature elements, as well as the feature(s)
causing the interaction, are collected by the algorithm.
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cells « cm.cells (ADDITIVE)

c; « cells.first
for each cell c,; in cells
if not cells.accessible(ci, c2)
return TRUE
return FALSE

Algorithm 6.2 — Disconnection interaction detection algorithm

semanticConstraints <« s.constraints (SEMANTIC)
for each sc in semanticConstraints
if sc.type = nob (COMPLETELY) and not sc.check
return TRUE
return FALSE

Algorithm 6.3 — Boundary clearance interaction detection algorithm

Disconnection interaction

Disconnection interactions are analogous to splitting interactions, but
they are better described in terms of additive shape volumes instead of
additive boundary elements. They occur to an additive feature (or to the
model as a whole) whenever its cellular decomposition is such that the
subset of its additive cells is not connected, see Algorithm 6.2. The fea-
ture(s) causing the disconnection, and the feature possibly being discon-
nected, are also identified by the algorithm.

Boundary clearance interaction

A boundary clearance interaction occurs to a subtractive feature when-
ever a semantic constraint of type notOnBoundary (completely) on one of
its shape elements is not satisfied, see Algorithm 6.3. For this, the check
predicate of semantic constraints is used. Moreover, the feature shapes
causing the semantic constraint violation are identified and returned.
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for each cell c¢ in s.cells

list « c.ownerlist
for each shape s; in list
if list.after(si,s) and si;.nature = ADDITIVE
return TRUE
return FALSE

Algorithm 6.4 — VVolume clearance interaction detection algorithm

Volume clearance interaction

A volume clearance interaction occurs to a subtractive feature whenever
a subset of its volume is later occupied by an additive feature. The detec-
tion of this interaction type, see Algorithm 6.4, relies on checking the
owner list of all cells in the subtractive feature shape. Considering that
each owner list is sorted according to the precedence criteria presented in
Section 4.6, the detection algorithm succeeds when an additive feature is
found in an owner list after the subtractive feature being analyzed. In
case of interaction, the additive features involved are also identified.

Closure interaction

This interaction class is characterized by the occurrence of a (group of
interacting) subtractive feature(s) whose (compound) volume becomes a
closed void inside the model.

In case of single closure, there is only one feature shape involved and,
hence, a necessary and sufficient condition is that its whole shape
boundary is completely present on the model boundary, i.e. it has no sub-
tractive cell faces. In multiple closure, however, such cell faces can occur
on the closed features’ boundaries, but only separating their overlapping
volumes, see Figure 6.2.a. Therefore, the detection Algorithm 6.5 exits as
soon as it finds one subtractive cell face of these boundaries that is not
separating two subtractive cells, but instead opens to the exterior, as de-
picted in Figure 6.2.b. In addition, the set of closed feature shapes is also
returned, as well as the feature shape(s) causing the closure interaction.
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(a) subtractive cell face between two (b) subtractive cell face opening to the

closed pockets: void produced exterior: no void produced

Figure 6.2 — Detection of multiple closure interactions

closedShapes <« s U s.overlappingSet (SUBTRACTIVE)
for each shape s; in closedShapes
for each cell face cf in s;.boundary (SUBTRACTIVE)
if not exists cf.partner
return FALSE
else
closedShapes.add (cf.partner.ownerlist.last.shape)
return TRUE

Algorithm 6.5 — Closure interaction detection algorithm

Absorption interaction

Absorption interactions are described in volumetric rather than in
boundary terms. They occur to either an additive or a subtractive feature,
whenever it ceases to contribute to the model shape. A sufficient and
necessary condition is that all cells of the absorbed feature shape are
contained in, i.e. owned by, one or more other interacting shapes, see
Algorithm 6.6. This information is explicitly stored in the owner list of a
cell, sorted according to the precedence criteria presented in Section 4.6.
Additional data collected by the algorithm includes the interacting fea-
ture shape(s) causing the absorption.
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for each cell ¢ in s.cells
if c.ownerlist.last = s
return FALSE
return TRUE

Algorithm 6.6 — Absorption interaction detection algorithm

Geometric interaction

Geometric interactions on a subtractive feature are described by a com-
bination of volumetric and boundary conditions on shape elements. In-
formally, they can be described as the removal of a “slice” of the feature
shape adjacent to one of its shape elements. The detection algorithm (see
Algorithm 6.7) therefore, analyzes, for each shape element, the boundary
of all shape cells in its neighborhood, and exits as soon as it finds one
such cell bounded by additive cell faces, as depicted in Figure 6.3.b. It
collects and returns also the feature parameter(s) involved, as well as the
feature(s) causing the interaction.

The “amount” of geometric interaction, i.e. the computation of the ac-
tual parameter value shown, requires additional queries: determination
(1) of the parameter related with the shape element (queried from the
Constraint Manager), (ii) of the respective direction (also queried from
the Constraint Manager), and (iii) of the dimension of the remaining
shape volume in that direction (queried from the Feature Geometry
Manager).

Transmutation interaction

Transmutation interactions are analogous to geometric interactions, in
that they also act on a shape element. For a shape element e, its semarn-
tic nature is defined by the following predicate:

ADDITIVE, if e has a semantic constraint
of type onBoundary
e.semanticNature = SUBTRACTIVE, ife has a semantic constraint

of type notOnBoundary

NIL, otherwise
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(a) grey cell has only subtractive (b) grey cell has additive boundary cell

boundary cell faces: geometric interaction faces: no geometric interaction

Figure 6.3 — Analyzed cells adjacent to the blind hole top

for each shape element e in s.elements

geom int <« TRUE
for each cell face cf in e.cellFaces
for each cell face cf; in cf.cell.boundary
if cf;.nature = ADDITIVE

geom int <« FALSE
exit
if not geom int
exit
if geom int
return TRUE
return FALSE

Algorithm 6.7 — Geometric interaction detection algorithm

With a transmutation, none of the cell faces of a shape element has
its semantic nature, see Algorithm 6.8. Shape elements on which no se-
mantic constraints are specified, meaning that their presence/absence on
the model boundary is irrelevant for feature semantics, cannot be thus
subject to this interaction class. To determine the new class of the trans-
mutated feature, a dedicated module is used that performs incremental
identification of features in the cellular model, see (de Kraker 1997). The
shape element with the unsatisfied semantic constraint, and the identi-
fied feature class of the transmutated feature are also returned by the
algorithm.
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for each shape element e in s.elements
n <« e.semanticNature
if n # NIL

transm int <« TRUE
for each cell face cf in e.cellFaces
if cf.nature = n

transm int <« FALSE
exit
if transm int
return TRUE
return FALSE

Algorithm 6.8 — Transmutation interaction detection algorithm

semanticConstraints <« s.constraints (SEMANTIC)
for each sc in semanticConstraints
if not sc.check
return TRUE
return FALSE

Algorithm 6.9 — Topologic interaction detection algorithm

Topologic interaction

Topologic interactions on a given feature are detected by simply checking
the semantic constraints that operate on its feature elements, see
Algorithm 6.9. The feature element and the type of semantic constraint
violated, as well as the feature causing the violation, are also identified
and returned.

6.3 Discussion

An interesting issue in interaction detection is that of multiple interac-
tions arising from one modeling operation. The Interaction Manager de-
tects and collects information about interactions taking place in all fea-
tures in the FIS. These can then be reported and handled according to
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the scheme described in Chapter 7, in order to overcome the invalid
situation.

However, as remarked in Chapter 5, the interaction classes identified
there are not mutually exclusive, i.e. it might occur that the same feature
instance undergoes several interactions simultaneously. For example, an
absorption interaction can be regarded as an extreme case of geometric
(or even transmutation) interaction, and a boundary clearance interac-
tion as an extreme case of semantic interaction. It is possible that a fea-
ture specifies interaction constraints in such pairs.

In the current implementation, the Interaction Manager checks, for
each feature, all its interaction constraints in the order given in the pre-
vious section: the most “severe” first. For each feature, the interaction
detection process is stopped as soon as one interaction constraint is vio-
lated. This means that other possible interactions on the same feature
are ignored, and only the one detected will be reported. This approach
has been intentionally chosen, considering that one (disallowed) interac-
tion occurring with a feature is sufficient to have the user notified and
asked to correct the modeling operation, in order to recover model valid-
ity.

The fact that interaction classes may overlap, and the possibility to
further extend the Interaction Manager with new interaction classes,
seem also to encourage this scheme, as it avoids dealing with unpredict-
able combinations of different interactions on the same feature.






Feature model validity

maintenance

Embedding validity criteria in each feature class, as described in Chapter
3, can significantly enhance the modeling process, as it guarantees that
the semantics of each feature instance created in the model effectively
matches the specific requirements of its feature class. As has been stated
before, one of the basic ideas of feature modeling is that functional infor-
mation can be associated to shape information in a feature model. How-
ever, the usefulness of this association is voided if, for example, the mod-
eling system would allow a modeling operation to significantly modify the
shape imprint of a feature, once added to the model with a specific intent.
In other words, arbitrarily modifying the semantics of a feature should be
disallowed if one wants to make feature modeling really more powerful
than geometric modeling.

The goal of this chapter is to present the validity maintenance
scheme of the semantic feature modeling approach, and to show that
consistently maintaining model validity effectively raises the level of
assistance provided by the feature modeling system. First, the main
principles of validity maintenance are discussed (Section 7.1). Next, the
two phases of validity maintenance are further elaborated: validity
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checking (Section 7.2) and validity recovery (Section 7.3). Finally, an
example modeling session is described, illustrating which high-level user
assistance is provided under this approach (Section 7.4).

7.1 Validity maintenance

Feature model validity maintenance is the process of monitoring each
modeling operation in order to ensure that all features conform to the
semantics specified in their respective classes. Maintaining feature model
validity throughout the modeling process requires not only managing all
its constraints, but also assessing the conformity of each feature in the
model with its validity criteria. This guarantees that all aspects of the
design intent once captured in the model are permanently maintained.

The two basic principles of validity maintenance can be summarized
as follows:

1. A modeling operation, to be considered as valid, should yield a
feature model that conforms to all constraints.

This ensures that every feature in the model conforms to the de-
signer intent explicitly specified up to that moment.

2. After an invalid modeling operation, the user should be assisted
in overcoming the constraint violations in order to recover model
validity again.

This can reduce the frequency of backtracking by enlarging the
choice of possible reactions towards validity recovery. In particu-
lar, explanations on what is causing a constraint violation, and
context-sensitive corrective hints, can significantly improve the
modeling process.

In the SPIFF modeling system, validity maintenance tasks are performed
by the Feature Model Manager described in Section 2.3. These can be
classified into two types of tasks:

validity checking, performed at key stages of each modeling opera-
tion; and

validity recovery, performed when a validity checking task de-
tected a violation of some validity criterion.

These are now separately discussed in the next two sections.
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7.2 Validity checking

As mentioned above, the first basic principle of model validity mainte-
nance is that a valid modeling operation should entirely preserve the de-
signer intent specified so far with each feature, as well as with all model
constraints. In other words, after a valid modeling operation, the feature
model conforms to all its constraints.

Modeling operations were introduced in Section 4.4, and classified
into two major categories:

feature operations, which include adding a new feature instance to
the model, and editing or removing an existing feature instance;

constraint operations, which include adding new model constraint
instances, and editing or removing existing model constraints.

A generic scheme of a modeling operation is presented in Figure 7.1 on
the next page, showing its main internal steps. Also shown in the dia-
gram are the various points at which the operation can turn out to be
invalid. Whenever this occurs, the operation branches into the reaction
loop, instead of following the normal flow, and we say the model has en-
tered an tnvalid state. We now concentrate on the description of the main
steps in the diagram, and on the circumstances under which specific in-
valid situations may arise in each of these steps. An important goal here
is to enter the reaction loop, if required, with sufficient knowledge of the
current status of the model, so that it can be appropriately handled, re-
ported to the user and, ultimately, overcome. The reaction loop itself will
be dealt with in the next section.

Dependency analysis

This step is only required by the removal of a feature from the model.
The removal of a feature f is only allowed if f has no dependent entities
(features or model constraints) in the Feature Dependency Graph (oth-
erwise, such dependent entities would be left referring to a non-existing
graph node). In case there are entities dependent on f (see Section 4.1),
they are collected and the operation enters the reaction loop.
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Figure 7.1 — Generic scheme of a modeling operation
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Interaction scope determination

The determination of the feature interaction scope (FIS) is performed at
this stage, as described in Section 6.1. Its purpose is to optimize the in-
teraction detection phase (the last step in Figure 7.1), by avoiding
checking features that are known in advance to be left unaffected by the
operation.
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Geometric and algebraic solving process

This step is required by all modeling operations, except feature removal.
Its goal is to determine or update the dimensions, position and orienta-
tion of all features in the model. This task is performed by the Constraint
Manager, which deploys two dedicated constraint solvers: a geometric
constraint solver based on extended 3D degrees of freedom analysis
(Kramer 1992), and a SkyBlue algebraic constraint solver (Sanella 1992).
The iterative cooperation of these solvers, under the control of the Con-
straint Manager, is described by Dohmen (1997).

At this stage, modeling operations are considered invalid if this solv-
ing process detects:

1. an overconstrained situation, i.e. some feature(s) has (have) con-
flicting geometric and/or algebraic constraints; or

2. an underconstrained situation, i.e. the features and/or model con-
straints specified, with the parameter values provided by the
user, are not sufficient to uniquely determine and fix the degrees
of freedom of all features in the model (Noort et al. 1998).

In both cases, the operation enters the reaction loop.

Dimension constraints checking

When the solving process is successfully concluded, all feature shape di-
mensions have their values assigned, and checking of all dimension con-
straints takes place. The modeling operation is considered invalid if some
feature dimension parameter is out of the range specified by the respec-
tive constraint.

Cellular Model re-evaluation

When this step is reached, each feature in the Feature Dependency
Graph has all its parameters successfully updated. In particular, all fea-
ture shape extents have their dimensions, position and orientation fully
determined. The Cellular Model may thus be updated, so that the effects
of the operation are also reflected in the evaluated geometric model. This
process has already been described in Section 4.5.
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Interaction detection

Once the Cellular Model has been updated, detection of disallowed fea-
ture interactions takes place. At this stage, a modeling operation is con-
sidered invalid if any semantic or interaction constraint is violated, for
some feature in the FIS, previously determined. The interaction detection
process has been described in detail in Chapter 6.

7.3 Validity recovery

When a modeling operation is invalid, for any reason pointed out in the
previous section, a valid model should be achieved again. This is
straightforward if the modeling operation is cancelled: all that is needed
is to backtrack to the valid model state just before executing it, by
“reversing” the invalid operation. According to their type, invalid
modeling operations are reversed as follows:

Adding a new feature instance to the model The added feature
is removed from the model, using the feature removal operation.

Removing a feature instance from the model The removed fea-
ture is added back to the model, using the feature adding opera-
tion with the original parameter values.

Editing a feature instance in the model The original parameter
values of the edited feature are restored, using another feature
editing operation, in all regards similar to the first operation.

Constraint operations Each of them is reversed similarly to the
feature operations (i.e. added constraints are removed, edited
constraints are restored, etc.).

Reversing a modeling operation can be done very efficiently under our
approach. The parameter values possibly required for undoing each mod-
eling operation are kept in a log, the so-called operations stack. Every
modeling operation is registered in this stack, and marked according to
whether it led the model to a valid state or not. Undoing is therefore al-
ways possible, at any moment in a modeling session, by popping opera-
tions from the stack and executing their reverse operation uniil a “valid
state” marker is found. This is illustrated in Figure 7.2: assuming the
insertion of the stiffener is invalid, because of turning the through hole



Feature model validity maintenance

105
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[ add Jthrough hole] vaiia |
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Figure 7.2 — Undo mechanism using the operations stack

into a blind hole, that operation (the last on the operations stack) is
popped from the stack and undone to restore the original situation.

However, to always have to recover from an invalid operation by undoing
it is too rigid. It is often much more effective to constructively assist the
user in overcoming the constraint violations, after an invalid modeling
operation, in order to recover model validity again. In most cases, if the
user receives appropriate feedback on the causes of an invalid situation,
it is likely that corrective actions other than undoing, which restore
model validity as well, might preferably be chosen.

We call this process validity recovery, and it emphasizes the impor-
tance of a user dialog in terms of features and their semantics. Validity
recovery includes reporting to the user constraint violations, document-
ing their scope and causes, and, whenever possible, providing context-
sensitive corrective hints.

To achieve this, a corrective mechanism was devised —the reaction
loop, represented in Figure 7.1—, which is activated whenever an opera-
tion turns out to be invalid. The user can then specify several modeling
operations in a batch (typically editing features and/or model con-
straints), and execute them, in order to overcome the invalid model situa-
tion. Execution of these reaciion operations follows the same scheme of
Figure 7.1, which means that their outcome is analyzed, checking for va-
lidity at each step, just as for “direct” modeling operations. The reaction
loop is only exited when, as a result of the specified reactions, all con-
straints are satisfied again. At any stage when the model is invalid, the
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user may give up attempting to fix it by specifying more reactions, and
backtrack to the last valid stage (i.e. right before the operation that en-
tered the reaction loop). Again, undo is here possible because all reaction
operations executed are also pushed onto the operations stack, and can
thus be reversed.

The specification of reaction operations is assisted by automatically gen-
erated hints, which document each constraint violation detected and
support the validity recovery process. Documentation of constraint viola-
tions varies with the operation step at which the reaction loop is entered,
and with the type of constraint involved. Referring to the scheme of
Figure 7.1, we have:

Dependency analysis The user is presented a list of all entities
that depend on the feature f to be removed, in order to decide how
to handle each of them. For example, the user might choose to
remove with f some of its dependent entities, but to modify oth-
ers, by making them dependent on another feature.

Geometric and algebraic solving process For both over- and
underconstrained situations, the reaction loop notifies the user of
where the conflict was found, highlighting the features involved
in a viewing camera. The user can then make the appropriate
corrections (typically, modifying some of the features or con-
straints involved).

Dimension constraints checking The user is notified about the
particular feature and parameter where the conflict was found, as
well as about the admissible range for that parameter.

Interaction detection For each interaction detected, the user is
notified of its causes (mostly the features creating the interac-
tion), and of its effects (e.g. a feature face or parameter affected).
According to the particular interaction type, specific reaction
choices may also be given. Examples of these are:

e transmutation interaction: replace the transmutated fea-
ture by another feature instance of the identified feature
class (for example, after adding the stiffener to the model in
Figure 7.2, the user might replace the through hole feature
instance by a blind hole feature instance);

e geometric interaction: re-attach the feature affected, by
replacing its attach reference face with a parallel face of the



Feature model validity maintenance

107

feature causing the interaction (an example of this is given in
the next section);

e absorption interaction: remove from the model the ab-
sorbed feature;

e splitting interaction: replace the split feature by two (or
more) instances of the appropriate feature class(es).

In all cases above, the scope of the reaction choices made available to
the user is restricted to those features and model constraints that are
somehow involved in the invalid situation (i.e. features that overlap or
have a dependency relation with the affected feature). This further helps
the user in concentrating validity recovery efforts on effective and
meaningful reactions.

7.4 Example modeling session

The usefulness of the validity checking and recovery mechanisms is illus-
trated in this section with examples taken from a modeling session with
the SPIFF system.

The user starts the modeling session with opening a new model (see
Figure 7.3.a, on the next page). He then defines a base block, and creates
on it two blind slots (see Figure 7.3.b). The subsequent modeling steps
are now described. For each step, the invalid situation reported occurs
because the underlying feature classes do specify the validity criteria
violated at that stage.

Step 1 (Figure 7.4) The user creates a step in the model, but the step
width is such that it overlaps with the blind slots, turning them into
through slots. The system detects these transmutation interactions and
documents the occurrence, reporting that the step is absorbing the slots’
back faces. As a reaction to the invalid situation, the user decides to de-
crease the length of the two blind slots, and also to reduce the step depth,
obtaining the model in Figure 7.5.
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Figure 7.3 — Starting a modeling session in SPIFF

Step 2 (Figure 7.5) The user creates a through slot, attached to the top
face of the block. Because of the slot depth value chosen, a topologic in-
teraction takes place, again affecting the two blind slots. After this is re-
ported by the system, the user overcomes the interaction by displacing
the two blind slots downward, obtaining the model in Figure 7.6.
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Step 3 (Figure 7.6) Next, the user attaches a rib feature to the bottom of
the through slot. The rib feature class, however, prescribes a minimum
width value, not obeyed by this instance, thus the system reports a di-
mension constraint violation. The user corrects this by adjusting the rib
width to the minimum value allowed, as shown in the model of Figure
7.7.

Step 4 (Figure 7.7) Subsequently, the user attempts an alternative de-
sign for the part, re-attaching the through slot from the top of the block
to the bottom of the step. Consequently, the rib feature, which is depend-
ent on the through slot, is also displaced with it. However, the upper re-
gion of the rib intrudes into the subtractive volume of the step. This is
disallowed by the validity criteria of the step (by means of a volumetric
clearance interaction constraint), thus the operation is notified as invalid,
and the situation is reported to the user.

To recover from this interaction, the system suggests modifying the
rib and/or the through slot. In this case, the user opts for increasing the
slot depth.
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Step 5 (Figure 7.8) By mistake, the user supplies too high a value for
the slot depth, causing the model to become disconnected. Although the
previous clearance interaction on the step is indeed overcome, now a new
invalid situation —the model disconnection— occurs and is reported. As a
reaction to this, the user may readjust the slot depth, specify a larger
height for the block, or decrease the step depth (or a combination of these
reactions). In this case, he chooses for decreasing the slot depth.

As remarked in the previous section, features that are irrelevant to
overcome the invalid situation, for example the two blind slots, are not
editable at this stage of the reaction loop.

Step 6 (Figure 7.9) At this stage, the user chooses for a variant of the
part without the step feature, and issues its removal from the model. Be-
cause the through slot is dependent on the step, and thus indirectly also
the rib, the system requires these dependencies to be eliminated prior to
removing the step. Removal of the dependent features from the model
and modification of their attaches are among the possible reactions sug-
gested by the system. The user chooses to re-attach the through slot to
the top face of the block, by which its dependent rib is also automatically
displaced, as shown in Figure 7.10.
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Step 7 (Figure 7.10) The user proceeds with the design by attaching a
through hole between the top and bottom faces of the block. By mistake,
however, the two model faces chosen for positioning the through hole are
parallel (the front and back faces of the block), and thus insufficient to
determine its position. The underconstrained situation is reported to the
user, who is asked to specify appropriate reference faces for positioning
the through hole, after which a valid model is achieved again.

Step 8 (Figure 7.11) Finally, the user creates a pocket at the bottom
face of the block, such that the through hole attached to it in the previous
step becomes shorter. This geometric interaction is detected and reported
by the system. The user reacts by re-attaching the through hole to the
bottom face of the pocket, and takes the opportunity to slightly increase
the depth of the pocket. The final model is shown in Figure 7.12.
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Figure 7.12 — Final model

7.5 Conclusions

Maintaining the meaning, or semantics, of features in a feature model —
so-called validity maintenance— has been addressed in this chapter.

The validity maintenance scheme presented overcomes several draw-
backs of current feature modeling systems. This is achieved by main-
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taining all constraints throughout model editing with constraint solving
techniques. A validity recovery mechanism analyzes any invalid situation
that might result from some modeling operation, and gives the user ex-
planations and hints to overcome this. The user gets thus valuable assis-
tance in creating valid models only, containing features with well-defined
semantics only.

Application of this approach has been exemplified with a variety of
modeling situations. From these it can be concluded that maintenance of
feature model validity using a consistent feature vocabulary is not only
possible, but indeed effectively provides user assistance at a much higher
level than current feature modeling systems do.






Conclusions

At the end of this thesis, we make some global considerations on the se-
mantic feature modeling approach. First, some research directions for
future work are outlined (Section 8.1). Finally, concluding remarks on
the research reported are presented, comparing semantic feature model-
ing to other current feature modeling approaches (Section 8.2).

8.1 Future research

The ability of the Feature Library Manager to effectively create and
manage a hierarchical library structure supports the process of deriving
variants of a given feature class. Creation of such variants, however, can
easily lead to an explosion in the number of feature classes available in
the library, due to the combinatorial possibilities in this refinement proc-
ess. In the current implementation, this has been alleviated by offering
the user of the Feature Modeler the possibility to fine-tune some validity
conditions of a feature instance, in order to take into account, or not,
those criteria. This ability is not always desirable, and other alternatives
should be investigated.

119
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The implemented Feature Library Manager uses a fixed set of con-
straints in each constraint category (geometric, algebraic, etc.). New con-
straint classes can be added to each category by inheritance and/or com-
position of existing classes, but they need to be manually coded. This
could be improved by means of a Constraint Library Manager, aimed at
automating this task, similarly to what the Feature Library Manager
provides for feature classes.

Related to the latter is the fact that the Interaction Manager requires
dedicated interaction detection algorithms for each interaction class.
Again, extension of the set of interaction classes to other, possibly do-
main-specific interactions, is possible, due to the declarative and modular
implementation of this approach, but coding of the new detection algo-
rithms is required.

The definition of feature interaction developed in this thesis requires
overlap between feature shapes. Two possible extensions of this notion
deserve further investigation. The first extension concerns the influence
exerted on one feature by another feature in its “neighborhood”. For ex-
ample, in manufacturability analysis, tool path clearance may require,
say, an access region “in front” of a blind hole, in addition to the clear-
ance entrance face criterion currently supported. A solution for such
cases might include the specification of additional clearance volumes in
the feature class, which would then be represented in the Cellular Model,
and processed accordingly (e.g. with the current “volumetric clearance
interaction” criterion).

The second extension deals with a broader notion of interaction as
the “mutual influence between features, whose semantics are somehow in
conflict”. An example of this, in an assembly modeling context, is a con-
flict in the degrees of freedom left by a number of connection features
between two parts. Ongoing research in our group includes work in this
direction (Noort and Bronsvoort 1999), benefiting from previous work
carried out on assembly modeling (van Holland 1997).

Regarding the validity maintenance scheme, the possibility of, on de-
mand, deferring validity checking should be carefully considered. Moreo-
ver, the reactions currently provided for validity recovery could be en-
hanced in several directions. Firstly, more information might be provided
about the causes of some invalid situations (e.g. when an interaction is
indirectly caused via cascaded geometric constraints among several fea-
tures). Secondly, more concrete hints might be given, in some cases, to
recover from specific feature interactions (e.g. suggest a particular fea-
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ture face for re-attachment after a geometric interaction). Thirdly, the
choice of reaction operations could itself be extended, based on domain-
specific information.

The SPIFF modeling system supports multiple interpretations, or views,
on the same product. Each view has its own feature model, containing
features relevant for a specific product development activity (e.g. design,
manufacturing planning or assembly planning). When several views on a
product are open, the system maintains the consistency among their fea-
ture models, using feature conversion techniques (de Kraker 1997). Cur-
rently, when a modeling operation in one view leads to some unrecover-
able inconsistency with another view, either the latter has to be closed
and discarded, or the operation is rejected and undone.

The validity maintenance scheme presented in this thesis is generic,
providing the same high-level assistance to the user of the modeling sys-
tem, regardless of which particular view of the product he is working on.
It would be interesting to investigate whether the multiple-view consis-
tency framework just described could benefit from the validity mainte-
nance scheme proposed in this thesis. On the one hand, better user assis-
tance could then be provided when, for example, a modeling operation on
one view of the model would cause some invalid situation in another
opened view. On the other hand, the question arises on which terms (i.e.
of features of which view) that user assistance could (or should) be pro-
vided: none of the views alone is likely to have the necessary and suffi-
cient information for that, and some combined strategy might have to be
developed.

Finally, other refinements in the semantic feature modeling approach
can be expected in the future, benefiting, among other things, from fur-
ther assessment of its usability in practice.

8.2 Concluding remarks

There are several important characteristics that distinguish the semantic
feature modeling approach from current feature modeling approaches, in
particular the history-based feature modeling approach. In this section,
these approaches are compared on their merits.

The most salient characteristic of semantic feature modeling is that the
semantics of all features is well defined and maintained during the whole
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modeling process. The use of various constraint types for validity condi-
tions in generic feature classes allows a complete definition of all seman-
tic aspects of the instances of each class. Among these constraints, those
specifying admissible feature interactions are of particular interest. User-
added constraints can further assist in capturing the user intent in a
model. Once specified, all constraints are maintained throughout model
editing with constraint solving methods. A mechanism is provided to de-
tect and analyze any invalid situation that might result from some mod-
eling operation, and to give the user an explanation and hints to over-
come this. So the user gets valuable assistance in creating valid models
only, containing features with well-defined semantics only.

It might be argued that imposing rigid validity rules reduces the
modeling freedom of the user. For example, the user might actually want
to turn blind a through hole. In current feature modeling approaches,
this can be achieved by simply closing one of the hole’s entrance faces,
e.g. with a protrusion, without the system objecting to this. Therefore,
even if no blind hole feature class is available in the feature library, a
blind hole can be created by such a geometric construction. In the seman-
tic feature modeling approach, on the other hand, this modification can
only be made by adding the protrusion and, after the system objecting
against the transmutation of the through hole into a blind hole, explicitly
changing the through hole into a blind hole. However, this reaction is
only possible if a blind hole class is available in the feature library of the
system. Thus, only models with features that are permitted, by their in-
clusion in the feature library, can be created. This example demonstrates
how in semantic feature modeling, by imposing restrictions on the mod-
eling freedom, the user is assisted in creating valid models only.

A correspondence with programming languages can be noted here.
Geometric modeling, but also current feature modeling practice, is in a
way comparable to the use of low-level programming languages, with
low-level operations. These offer large freedom in what can be pro-
grammed but, as a consequence, errors can easily occur, and the pro-
grammer has much responsibility in getting a program correct. Semantic
feature modeling, on the other hand, is comparable to the use of high-
level programming languages, such as object-oriented languages, pro-
viding high-level operations with well-defined and powerful semantics.
Practice has shown that programs in such languages contain fewer er-
rors, i.e. correspond more to the user intent of the programs. The loss of
“programming freedom” in these languages is commonly accepted be-
cause of the advantage of being forced to create more meaningful, error-
free programs. Similarly, we believe that the loss of modeling freedom in
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semantic feature modeling is acceptable because of the advantage of be-
ing forced by the system to create more meaningful models.

In addition to offering much better facilities for specifying and main-
taining feature semantics in models, semantic feature modeling solves
several other problems that occur in history-based feature modeling op-
erations. In particular, there is no longer a dependency on the chrono-
logical order in which features are added to a model. This means an im-
provement in model modification and dimensioning facilities. In addition,
shortcomings originating from the persistent naming problem in history-
based modeling are avoided, because all modeling operations work on
feature faces, instead of boundary model faces, and, therefore, ambigui-
ties in names cannot occur. Stated differently, in semantic feature mod-
eling the semantics of modeling operations is well defined, in contrast
with history-based feature modeling.

The Cellular Model has several properties that make it very suitable for
the geometric representation of feature models. In particular, the
generation and interpretation of the Cellular Model is independent of the
chronological order of feature creation. Furthermore, subtractive and
overlapping features can be dealt with in a consistent way during model
editing.

Because of the complexity of the Cellular Model, the question of the
efficiency of operations on this non-manifold model is important. The
structure of the Cellular Model is certainly more complex than that of a
manifold boundary representation, normally used in history-based fea-
ture modeling. However, this is largely compensated by the performance
improvement of Cellular Model incremental evaluation. In history-based
modeling systems, re-evaluation of the boundary model has a computa-
tional cost that is proportional to either the total number of features in
the model, if no intermediate evaluated models are stored, or to the
number of features created after the modified or deleted feature, if in-
termediate models or deltas are stored. In the semantic feature modeling
approach using the Cellular Model, on the other hand, the computational
cost of a modeling operation is dependent on the number of features
whose geometry is affected by the operation. Usually, this number is very
limited, so computational cost is minimized.

To conclude, it has often been remarked that feature modeling is nothing
more than advanced geometric modeling, only offering parametric and
constraint-based modeling facilities, in addition to the normal geometric
modeling facilities. This thesis, however, shows that semantic feature
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modeling is significantly more powerful than current feature modeling
approaches, and finally can bring feature modeling to a much higher
level than geometric modeling, not only with regard to applications, but
also with regard to modeling facilities.
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Summary

Validity Maintenance in
Semantic Feature Modeling

Rafael Bidarra

Computer-based techniques for supporting product development have
evolved rapidly in the last two decades. Mainly driven by market and
quality demands, concepts like rapid prototyping and concurrent engi-
neering have been proposed. Such concepts require more, and more com-
plex, information to be stored in so-called product models. For example,
information about the shape of a product, traditionally stored and proc-
essed using geometric modeling techniques, is now required to be inte-
grated with other types of product information (e.g. function, manufac-
turing and assembly information). Feature modeling constitutes an im-
portant milestone in this evolution.

Feature models can combine shape information and functional infor-
mation, which makes them a versatile product representation suitable for
the integration of many product life-cycle activities (e.g. design, manufac-
turing planning and assembly planning). For the success of this integra-
tion, a key role is played by a well-defined specification of the meaning,
or semantics, of features, clearly associating the shape aspects to their
desired functionality. Feature-based modeling systems should correctly
interpret and maintain those associations in the feature model, through-
out the whole modeling process. This is usually called feature model va-
lidity maintenance.
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Current feature modeling systems, however, are still very much tied
to methods and techniques of conventional geometric modeling systems.
Among other drawbacks, they offer only restricted facilities for defining
feature semantics, and often fail to preserve this semantics as the feature
model evolves.

This thesis presents a new feature modeling approach —designated
semantic feature modeling—, which overcomes the validity maintenance
problems of current feature modeling systems.

In semantic feature modeling, feature specification is done declaratively
in feature classes, using a variety of constraint types. A feature class is a
structured description of all properties of a given feature type, and in-
cludes the validity conditions that all its feature instances should satisfy.

A two-level semantic feature model has been developed to represent a
product. The first level —called the Feature Dependency Graph— consists
of a set of interrelated feature and constraint instances: the entities on
which all modeling operations are performed. The second level contains
an evaluated geometric representation of the product in the so-called Cel-
lular Model. Its most important property is that both the generation and
the interpretation of the Cellular Model are independent of the chrono-
logical order of feature creation in the model. The two levels are inte-
grated in the semantic feature model, which disposes of mechanisms for
automatically maintaining the consistency between them. In addition, it
supports a variety of queries at both levels, making it possible to perform,
among other things, effective model validity maintenance.

Feature interactions, which arise from modeling operations such as
the creation of a new feature or the modification of an existing feature,
are among the main causes of feature semantics violations. Such phe-
nomena are therefore thoroughly analyzed and classified in this thesis,
and a variety of interaction detection algorithms is also presented.

The validity maintenance scheme presented here basically monitors
each modeling operation, in order to assess the conformity of all features
in the semantic feature model with their wvalidity criteria. This is
achieved by maintaining all constraints, using various constraint solving
techniques.

Each invalid situation detected is analyzed by a validity recovery
mechanism, which gives the user explanations and context-sensitive
hints to overcome the situation. The user gets thus valuable assistance in
creating valid models only, containing features with well-defined seman-
tics only.
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The semantic feature modeling approach has been implemented in the
prototype modeling system SPIFF. This system provides interactive facili-
ties for the specification of feature classes, and modeling facilities for the
creation and manipulation of semantic feature models. The Cellular
Model has been implemented using the Cellular Topology husk of the
Acis Geometric Modeling kernel.






Samenvatting

Validiteitshandhaving in
Semantisch Feature Modelleren

Rafael Bidarra

Computer-gebaseerde technieken voor ondersteuning van product-
ontwikkeling hebben de afgelopen twee decennia een snelle evolutie
doorgemaakt. Vooral door marktvraag en kwaliteitseisen zijn bena-
deringen als rapid prototyping en concurrent engineering ontstaan.
Dergelijke benaderingen vereisen meer en complexere informatie, die in
zogenoemde productmodellen moet worden opgeslagen. Zo wordt
vandaag de dag informatie over de vorm van een product, van oudsher
opgeslagen en verwerkt met geometrische modelleertechnieken,
geintegreerd met andere soorten productinformatie (0.a. functionele in-
formatie, productieinformatie en assemblageinformatie). Feature model-
leren vormt een belangrijke mijlpaal in deze ontwikkeling.

Feature modellen zijn in staat vorminformatie en functionele
informatie te combineren, zodat een veelzijdige representatie van een
product ontstaat die geschikt is voor de integratie van veel activiteiten in
de levenscyclus van het product (b.v. ontwerp, productieplanning en
assemblageplanning). Een succesvolle integratie is echter sterk
afhankelijk van een goed afgebakende specificatie van de betekenis van
de features, oftewel hun semantiek. Deze koppelt op een duidelijke wijze
vormaspecten aan hun gewenste functionaliteit. Feature-gebaseerde
modelleersystemen dienen te zorgen voor de juiste interpretatie en het
handhaven van deze koppelingen in het feature model gedurende het
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hele modelleerproces. Dit wordt gewoonlijk feature model validiteits-
handhaving genoemd.

De huidige feature modelleersystemen zijn echter nog steeds sterk
gebaseerd op technieken van conventionele geometrische modelleer-
systemen. Nadelen hiervan zijn o.a. dat zij slechts beperkte faciliteiten
bieden om de semantiek van features te definiéren en vaak tekort-
schieten om deze te handhaven tijdens het modelleren.

Dit proefschrift stelt een nieuwe benadering van feature modelleren
voor —aangeduid met semantisch feature modelleren— waarbij de
problemen van validiteitshandhaving met de huidige feature model-
leersystemen worden overwonnen.

Bij semantisch feature modelleren vindt feature specificatie op
declaratieve wijze plaats in feature klassen, waarbij van diverse typen
constraints gebruik wordt gemaakt. Een feature klasse is een gestruc-
tureerde beschrijving van alle eigenschappen van een gegeven feature
type, en bevat de validiteitsvoorwaarden waaraan al zijn feature instan-
ties moeten voldoen.

Een semantisch feature model met twee niveaus is ontwikkeld om
een product te representeren. Het eerste niveau —de Feature Dependency
Graph genoemd-— bestaat uit een verzameling van onderling gerelateerde
feature en constraint instanties, de entiteiten waarop alle model-
leerhandelingen worden uitgevoerd. Het tweede niveau bevat een
geévalueerde geometrische representatie van het product in het
zogenoemde Cellulaire Model. De belangrijkste eigenschap hiervan is dat
zowel het genereren als de interpretatie van het Cellulaire Model
onafhankelijk zijn van de chronologische volgorde van het toevoegen van
de features aan het model. De twee niveaus worden geintegreerd in het
semantische feature model, dat over mechanismen beschikt voor het
automatisch handhaven van de consistentie tussen beide niveaus. Verder
biedt dit model allerlei mogelijkheden om beide niveaus te raadplegen,
hetgeen o.a. effectieve handhaving van de modelvaliditeit mogelijk
maakt.

Feature interacties, die het gevolg kunnen zijn van model-
leeroperaties zoals het creéren van een nieuwe feature of het wijzigen
van een bestaande, vormen een van de belangrijkste oorzaken van
schendingen van de semantiek van features. Zulke verschijnselen worden
daarom in dit proefschrift grondig geanalyseerd en geclassificeerd, en een
aantal algoritmen om interacties te detecteren wordt behandeld.

Het hier gepresenteerde schema voor het handhaven van de validiteit
controleert elke modelleeroperatie, om te bepalen of alle features in het



Samenvatting

145

model nog steeds overeenkomen met hun validiteitsvoorwaarden.
Hiervoor worden alle constraints beschouwd m.b.v. verschillende
technieken voor het oplossen van constraints.

Elke ongeldige situatie wordt door een mechanisme voor het
herstellen van de validiteit geanalyseerd. Dit mechanisme is in staat
toelichtingen en context-afhankelijke tips te verschaffen om zo'n situatie
te overwinnen. De gebruiker wordt dus effectief ondersteund om alleen
geldige modellen te creéren, die slechts features met goedgedefinieerde
semantiek bevatten.

Semantisch feature modelleren is in het experimentele modelleersysteem
SPIFF geimplementeerd. Dit systeem ondersteunt interactieve specificatie
van feature klassen en biedt ruime modelleerfaciliteiten om een
semantisch feature model te creéren en te wijzigen. Het Cellulaire Model
werd geimplementeerd m.b.v. de Cellular Topology husk van de Acis
Geometric Modeling kernel.
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