
Ibero-American Symposium on Computer Graphics - SIACG (2006), pp. 1–4
P. Brunet, N. Correia, and G. Baranoski (Editors)

GLAZE : A flexible GUI engine for video games

Thijs Kruithof1 and Rafael Bidarra2

1Coded Illusions B.V., Rotterdam, The Netherlands
2Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, The Netherlands

Abstract
In most current video games, a Graphical User Interface (GUI) engine is used that is tightly intertwined with
the graphics engine. This paper presents GLAZE, a flexible GUI engine for games. As a game-oriented User
Interface Management System (UIMS) [RHM∗88], GLAZE provides a game engine independent solution for all
games requiring improved GUI functionality. GLAZE is designed to be integrated with any game engine with
relative ease, and does not restrict the use of any of the functionalities provided by an available game engine.
By maintaining a clear separation between the state and the presentation of GUI elements, GLAZE is capable of
handling a wide variety of GUI types.

Categories and Subject Descriptors(according to ACM CCS): H.5.2 [Information Interfaces and Presentation]: User
Interfaces, H.5.1 [Information Interfaces and Presentation]: Multimedia Information Systems, I.3.6 [Methodology
and Techniques]: Interaction techniques, D.2.2 [Software Engineering]: Design Tools and Techniques

1. Introduction

Through the years video games have become increasingly
complex. The video games we see today take years to de-
velop and demand ever increasing budgets. A direct result
of the increasing complexity of video games is that the role
modularization plays is more important than ever before.
Games are nowadays built up out of several intertwined sub-
systems such as graphics engines, physics engines, sound
engines, networking engines and also GUI engines, the sub-
system responsible for all GUI management.

Most of the games currently on the market reuse existing
game technology such as graphics engines of other games,
or use commercially available engines that can be easily in-
tegrated such as physics systems. GUI engines, however,
are mostly built specifically for one graphics engine and are
therefore not easily usable with any other game system, un-
less it is based on the same graphics engine. [Jor04]

This paper describes the main features of GLAZE, a new
GUI engine for games designed to be independent of the
game engine. This is achieved by not enforcing any require-
ments concerning the presentation of the GUIs.

Another issue that GLAZE addresses is the fact that all
present GUI engines used in games are applied to specific
elements of the game. Mostly, only the menu structures and

HUD (Heads-Up Display) elements, with which a player
can interact, are handled by the GUI engine. In a typical
video game in which a player can walk around in a three
dimensional virtual world, the GUI engine is almost al-
ways responsible for rendering the status indicators and any
present menu structures. However, any interaction between
the player in the virtual world and the virtual world is han-
dled by completely different systems. When for example we
have a switch in our virtual world that can be pulled by our
virtual player this will not be handled by the GUI engine,
although it has a strong resemblance to toggling a switch in
the settings menu of the game. GLAZE can be used for both
of these types of interaction, due to its consistent separation
between the behavior and the presentation of an interactive
game element.

2. Engine Design

GLAZE was designed with the following goals in mind:

• The engine should be well suited for the use in video
games.

• The engine should be reusable. One should be able to inte-
grate it into different games using different technologies,
with relative ease.

• The engine should not assume anything on the presenta-

submitted toIbero-American Symposium on Computer Graphics - SIACG (2006)

2 Th. Kruithof & R. Bidarra / Glaze: A flexible GUI engine for video games

tion part of the GUI. This enables the use of GLAZE for
interaction with elements within the game world next to
the usual GUI elements such as menus and HUD status
indicators.

To get a clear picture of GLAZE ’s design we will first
cover the core, the heart, of GLAZE, followed by a descrip-
tion of the overall system design.

2.1. Foundation

GLAZE is built around the idea that the user of a graphical
user interface does not directly interact with something he
observes. In GLAZE ’s world, a user interacts with a state, the
inner state, of an object which in turn influences an object,
or rather apresentationof an object, that the user observes.

An object with which the user can interact is therefore
within GLAZE defined by a combination of a inner state and
a presentation element.

Inner State

The inner state of an interactive object represents the current
state an object is in. This state consists of a set ofattributes
with their current values and a set of behaviors that spec-
ify how the current state should be altered upon an external
event. External events for which actions can be specified are
typically the actions a user can perform with an input device.

A GUI button that will be pushed when the user presses
the A button on the controller will have an attribute named
pressedin its inner state. This attribute will initially have the
valuefalse. The inner state of the button will also possess a
behavior, which sets thepressedattribute totrue upon re-
ceiving the external event specifying that the user pressed
the A button on the controller.

Inner states can also inherit from other inner states, giv-
ing the GUI designer the well-known benefits of generaliza-
tion and specialization. This also simplifies the creation of
separate libraries which can be used for the creation of new
GUI’s.

Presentation Element

A presentation element describes the entities the user ob-
serves and how the inner state influences this observation.

For example, for a typical WIMP style [vD97] button (as
found in interfaces using Windows, Icons, Menus and Point-
ers), the presentation element consists of a drawing of a rec-
tangle with a caption. And the button will contain a behavior
specifying that the rectangle should be drawn sunk when the
pressedattribute of the inner state changes totrue.

2.2. Architecture

GLAZE is decomposed into several components. When
looked upon from a distance we have a hierarchy of GUI

� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

Core
Input
 Presentation

Storage

Glaze

Input
 I/O
 Visualization

Game engine

Figure 1: Subsystem decomposition of GLAZE

definitions, containing all inner states and presentation ele-
ments, as the heart of the system. This central kernel is con-
nected to three other components that provide functional-
ity for communication with the outside world, the game en-
gine. Each of these three components, theinput subsystem,
thepresentationsubsystem and thestoragesubsystem, per-
forms its own tasks. Figure 1 illustrates this architecture.

Within the total engine, theinput subsystem is responsi-
ble for monitoring any user input and presenting this to the
core system in the form of events. The information regard-
ing the status of the input devices is provided by the game
engine, since the game logic itself also relies on this sta-
tus information of the input device. The input subsystem of
GLAZE therefore has to communicate with any input subsys-
tem present in the game engine.

Next to the input subsystem, GLAZE also has apresen-
tation subsystem. The presentation subsystem is responsi-
ble for having the game enginepresentthe GUIs. A GUI
designer can define a presentation element in terms of el-
ements, or primitives, known by the game engine. GLAZE

however has no knowledge of, for example, what a button
looks like. It is the presentation subsystem’s task to have the
game engine render the button as it was specified by the de-
signer. This requires this subsystem to communicate with the
game engine.

Finally thestoragesubsystem is responsible for all low-
level data storage and retrieval functionality. Since the stor-
age techniques used in a game are very much game depen-
dent, it is the storage subsystem’s task to delegate all storage
and retrieval requests to the game engine.

Our core module uses these three subsystems to commu-
nicate with the game engine. Any input device status infor-

submitted toIbero-American Symposium on Computer Graphics - SIACG (2006)

Th. Kruithof & R. Bidarra / Glaze: A flexible GUI engine for video games 3

mation provided by the input subsystem is processed and
will result in the execution of any actions defined in the in-
ner state of an active GUI element. When this results in a
change of one or more inner states within the GUI, then this
can also lead to a presentation element being modified. This
requires the core module to have the presentation subsystem
update the presentation of one of the GUI elements.

The core module also relies on the functionality provided
by the storage subsystem. This system is used for the storage
and retrieval of any GUI definition that is requested at run-
time. GLAZE demands a certain set of functionality needed
for loading GUI definitions, but how this functionality is
implemented is up to the game engine.

2.3. Implementation

To simplify the integration with existing game technologies,
GLAZE is a library written in C++. The choice for C++ also
enables GLAZE to be built and used on a variety of hardware
platforms.

Both Inner States and Presentation Elements contain de-
scriptions of behaviors i.e. responses to external events.
These behaviors are implemented as small scripts written in
the scripting language Lua [IdFF96]. Lua is a language de-
signed and implemented at the PUC-Rio in Brazil that can
easily be embedded in an application. Lua also comes with a
simple and familiar syntax and fast runtime execution times
for scripts: two features GLAZE benefits from.

Game engines, just as games, have the tendency to start up
quite slowly and thus forcing the user to wait before being
able to perform any work. In GLAZE, behaviors, in the form
of scripts, are implemented in such a way that they can be
modified and reloaded by GLAZE during execution. This de-
creases the duration of the typical design-implement-test cy-
cles used for implementing GUI’s in games, since the game
engine only has to be started once.

3. Engine Functionality

In this section, the main distinguishing features of the
GLAZE engine are briefly presented.

3.1. System Integration

One of the design goals for GLAZE was to easily be able
to integrate it with different games using different technolo-
gies. The separation of our system into one core module and
three communication subsystems greatly facilitates this.

Our core module is explicitly designed to be game engine
independent. All three subsystems are tightly coupled with
the game engine, each through its own interface. Integrating

� � � � � �
� � � � � �

Input
 Presentation
Storage

Glaze

Storage interface

Presentation

interface

Input interface

Figure 2: External interfaces required for the integration of
GLAZE

GLAZE into a game engine requires three interfaces to be
established, one for each subsystem, as depicted by figure
2. These interfaces are as it were the ’glue’ between GLAZE

and the game engine.

By implementing these interfaces, GLAZE can be em-
bedded in any game engine, making it virtually possible to
present one single GUI definition within any game. How-
ever, GUIs defined for GLAZE are very much game engine
dependent. A GUI defined in GLAZE relies on a set of input
events and on some available presentation functionality. The
set of possible input events is a result of the implementa-
tion of the interface between the input subsystem of GLAZE

and the game engine. The functionality provided by the pre-
sentation subsystem of GLAZE is also a result of the imple-
mentation of the interface between that same subsystem and
the game engine. A different game engine requires differ-
ent interfaces which results in a different set of functional-
ity available within a GUI definition. Therefore, although a
particular GUI defined within GLAZE can possibly be game
engine dependent, GLAZE itself is not.

3.2. Users

As a GUI engine, GLAZE has to deal with two quite different
types of users.

The first type of users are the GUI implementers. GUI im-
plementers typically use GLAZE to "run" their GUIs. They
deliver GUI definitions in the form of XML documents to
GLAZE, which GLAZE processes and executes. GUI defini-
tions consist of descriptions of Inner States and Presentation
Elements which are made up out of property definitions and
simple behavior scripts, which are written in Lua. To be able
to create a GUI by hand some basic knowledge of program-
ming is needed. External tools (e.g. with visual features) can
overcome this requirement, which otherewise might form an
obstacle for GUI designers and implementers.

The second type of users are the engine programmers. En-
gine programmers have the task to integrate GLAZE into the
existing game architecture. This also includes maintaining
the connection between the game engine and GLAZE ’s sub-
systems.

submitted toIbero-American Symposium on Computer Graphics - SIACG (2006)

4 Th. Kruithof & R. Bidarra / Glaze: A flexible GUI engine for video games

3.3. Capabilities

The design of GLAZE offers several unique capabilities to its
users, including the following:

• GLAZE can be easily integrated into an existing game en-
gine. Most available complete GUI solutions are tightly
coupled to other technologies, such as graphics engines.
When developing a game the decision of which GUI tech-
nology to use is often only a matter of finding out which
GUI system is available for the used graphics engine.
Thus in fact limiting the available GUI functionality to
the set provided by the included GUI system.

• Due to the fact that almost all available GUI systems fo-
cus on providing a fixed set of WIMP GUI elements, there
is a technical separation in most games between what is
handled by the GUI system and what is categorized as
game logic. A switch that is placed in a menu that can
be toggled by the player to activate or deactivate a certain
game configuration setting is typically an interactive ele-
ment controlled by the GUI system. But, a switch placed
next to a door in the virtual game world, which, when acti-
vated, will open the door, is often regarded as a game logic
element. Game logic elements are controlled by the game
logic subsystem, which is a completely different subsys-
tem than the GUI subsystem. GLAZE is designed to be
able to control both types of these interactions. Figure 3
shows an example of the usage of GLAZE for this second
type of interaction.

• GUIs for GLAZE are defined by GUI definition docu-
ments. These GUI definitions can be hand written by
GUI designers. Alternatively, a game engine-specific GUI
editor can be created to aid the development of GUIs
for complex games. GUIs for GLAZE can also be de-
fined using existing GUI device independent definition
language such as the User Interface Markup Language
(UIML [APB∗99]).

• Due to the hierarchical nature of the inner states and pre-
sentation elements that form a GUI, it is possible to create
GUI libraries, consisting of definitions of several GUI el-
ements. The creation of libraries simplifies the creation of
large or complex GUI structures.

4. Conclusions

The GUI engine presented in this paper, GLAZE, is a flexi-
ble UIMS for games. It provides a uniform solution for the
management of GUIs within a video game, independently of
the used game technology and targeted platform.

The present version of the GLAZE engine is already be-
ing integrated in a video game currently in development, tar-
geted at the next generation video game consoles.

References

[APB∗99] ABRAMS M., PHANOURIOU C., BATONG-
BACAL A., WILLIAMS S., SHUSTER J.: UIML:

Figure 3: An in-game soda vending machine powered by
GLAZE

an appliance-independent XML user interface language.
Computer Networks (Amsterdam, Netherlands: 1999) 31,
11–16 (May 1999), 1695–1708.

[IdFF96] IERUSALIMSCHY R., DE FIGUEIREDO L. H.,
FILHO W. C.: Lua — an extensible extension language.
Software Practice and Experience 26, 6 (1996), 635–652.

[Jor04] JORGENSENA. H.: Marrying HCI/Usability and
computer games: a preliminary look. InNordiCHI ’04:
Proceedings of the third Nordic conference on Human-
computer interaction(New York, NY, USA, 2004), ACM
Press, pp. 393–396.

[RHM∗88] ROSENBERG J., HILL R., MILLER J.,
SCHULERT A., SHEWMAKE D.: Uimss: threat or men-
ace? InCHI ’88: Proceedings of the SIGCHI conference
on Human factors in computing systems(New York, NY,
USA, 1988), ACM Press, pp. 197–200.

[vD97] VAN DAM A.: Post-WIMP user interfaces.Com-
munications of the ACM 40, 2 (1997), 63–67.

submitted toIbero-American Symposium on Computer Graphics - SIACG (2006)

