
27 

Web-based direct manipulation of feature models 

Rafael Bidarra          André van Bunnik          Willem F. Bronsvoort 
 

Faculty of Electrical Engineering, Mathematics and Computer Science 
Delft University of Technology 

Mekelweg 4, NL-2628 CD Delft, The Netherlands 
http://graphics.tudelft.nl 

 
(R.Bidarra/W.F.Bronsvoort)@its.tudelft.nl

 

Abstract 
Providing advanced 3D interactive facilities to users of a client-server collaborative modeling system presents a 
great challenge when thin clients are involved, mainly due to their lack of both a proper CAD model and the 
adequate modeling and solving functionality. This paper presents a new approach that provides a convenient 
representation of feature model data suitable for direct manipulation of feature models at such clients. It 
combines all advantages of a thin client approach with the sort of 3D direct manipulation facilities usually only 
found in powerful standalone CAD systems. 

Keywords 
feature modeling, graphical interaction, web-based modeling, collaborative modeling 

 

1. INTRODUCTION 
 

Current CAD systems, holding a sizeable modeling kernel 
which maintains an unabridged CAD model, provide 
many advanced interactive facilities for model 
manipulation. Requirement for this, however, is that they 
run on powerful, typically standalone, workstations.  

Current demands for supporting design collaboration, on 
the other hand, require an efficient networked 
environment in which geographically distributed 
members of a development team can work together on the 
design of a part. In an ideal collaborative modeling 
framework, several team members should be able to 
remotely browse and manipulate a model, via Internet, as 
if they were working directly at a powerful CAD station. 
A web-based system, for example, would greatly facilitate 
this, by providing access to all sorts of product 
information in a uniform, simple and familiar framework. 
The above mentioned characteristics of current CAD 
systems prevent them from matching these demands. 

A number of commercial tools that are now emerging 
provide some limited support for collaborative design 
activities. For example, tools for collaborative model 
annotation and visualization are now becoming available, 
providing concepts such as interactive 3D visualization, 
shared cameras and telepointers. However, such tools are 
primarily focused on visualization and inspection, 
basically using polygon mesh models, and do not support 
real modeling activities. In other words, they are valuable 
assistants for teamwork, but no real modeling systems. 

Meanwhile, new prototype systems are being developed 
which directly concentrate on collaborative modeling 
facilities. In such systems, mostly following a client-
server architecture, a crucial role is played by their 
complex concurrency and synchronization mechanisms. 

Current commercial client-server modeling systems which 
offer some real collaborative modeling facilities as, for 
example, OneSpace [CoCreate03] and IX SPeeD 
[ImpactXoft03], use considerably fat clients, requiring 
heavy data synchronization among clients, and are 
severely constrained by the model format into which they 
convert shared CAD models. 

Thin client web-based approaches, in contrast, are 
gaining particular attractiveness, one of the main reasons 
being that they usually provide a more efficient solution 
to data synchronization problems by using a single, 
server-based central model. In addition, directly loading 
the client application via Internet avoids complex 
installation and maintenance procedures, and therefore 
increases portability. Typically, in such systems, a 
development team member should be allowed to 
graphically specify a modeling operation, appreciate its 
consequences and, upon approval, issue it for execution 
at the server. 

There are two important characteristics of thin clients in 
such systems which make user interactivity with the 
model particularly challenging. 

First, they lack a real modeling kernel, and cannot 
therefore locally execute actual modeling operations. 
Instead, because such operations are executed only at the 



28 

server, this is required, after each operation, (i) to export 
to the clients the necessary model data (indispensable for 
visualization and user interaction), and (ii) to guarantee 
that such data is always kept up-to-date. 

Second, these thin clients lack a comprehensive constraint 
solver. As a result, it is in general not possible to locally 
anticipate all consequences a given operation may have in 
the whole model. For example, when several features are 
related through geometric constraints, displacing one of 
them will typically affect a few others, but the overall 
result can only be precisely determined by means of a 
constraint solver.  

Summarizing, a careful choice of client model data is 
required in order to provide thin clients with proper user 
interaction mechanisms. 

 
webSPIFF, a web-based, collaborative feature modeling 
prototype system developed at Delft University of 
Technology, offers such a thin client framework. A 
complete description of its client-server architecture and 
functionality can be found in [Bidarra02]. In particular, 
the reader is referred to this reference for all aspects 
related to its consistency management, data 
synchronization and consistency maintenance facilities. In 
Section 3 only a short overview of the system is provided. 

Model data used so far by the webSPIFF clients described 
in [Bidarra02] was mainly aimed at providing its users 
with (i) interactive visualization of the model, (ii) 
interactive selection of feature faces during operation 
specification, and (iii) textual information on each 
feature’s parameter values. The main limitation of such 
data is that it can only be modified by means of updates 
received from the server, never directly by the client 
itself. 

The goal of this project is twofold: to extend the model 
data at the webSPIFF clients (i) with a feature 
representation suitable for direct manipulation (Section 3) 
and (ii) with advanced interaction mechanisms supporting 
such feature direct manipulation (Section 4). 

2. INTERACTIVE FACILITIES IN 3D WEB 
SYSTEMS 
In this section interactive facilities offered by a few web-
based 3D systems are briefly surveyed. The reader is 
referred to the Web3D Repository at the Web3D 
Consortium site [Web3D03] for an overview of other 
similar systems. 

Kaon 
The Kaon Composer [Kaon03] is a Java applet aimed at 
supporting virtual product presentations via Internet. It 
uses Kaon’s Master Model native format to provide 
interactive visualization for zooming, panning and 
rotating a 3D mesh model directly in the web browser. 
Pre-defined regions of the model can be made sensitive to 
actions, as for example displaying attached annotations or 
triggering an animation. In addition, queries on 

dimensions can be also interactively performed by 
clicking and dragging on the model. 

RealityWave 
RealityWave [RealityWave03] developed VizStream 
Platform, a client-server technology aimed at supporting 
collaborative browsing and visualization of 3D models by 
loading a simple viewer in a web browser. In addition to 
the same functionality mentioned above for Kaon, 
VizStream provides also inspection facilities as, for 
example, clipping the 3D model by means of an 
interactively adjustable clipping-plane. The user can also 
attach markup to regions of his choice on the visualized 
model. Finally, the possibility of selecting which (and 
how) components of the model are visualized is also 
provided. 

Art of Illusion 
Art of Illusion [ArtOfIllusion03] is an open source studio 
application integrating modeling and rendering 
functionality. Although it is not strictly speaking web-
based, we include it here as, to the best of our knowledge, 
it is the first fully Java-implemented 3D modeling system 
available. Being a moderately small application, it offers 
advanced direct manipulation and complex modeling 
operations (including face lifting and Boolean 
operations), comparable to those found in many 
commercial programs. 

3. CLIENT REPRESENTATIONS FOR FEATURE 
MODELS 
The webSPIFF server has two main components: the SPIFF 
modeling system and the Session Manager. The SPIFF 
modeling system provides all feature modeling 
functionality, including multiple views on a part, 
advanced visualization [Bronsvoort02] and validity 
maintenance of feature models [Bidarra00]. It maintains a 
central product model, which includes a cellular model 
for the geometric representation of a part, and canonical 
shapes representing the individual features in each view. 
The Session Manager provides functionality to start, join, 
leave and close a collaborative session, to coordinate the 
session, and to manage all communication between SPIFF 
and the clients. In particular, the Session Manager 
collects all operations requested by the various clients, 
and schedules them for execution at the SPIFF system. 

webSPIFF clients operate locally as much as possible, e.g. 
regarding visualization of, and interaction with, their 
feature model, and only high-level messages, e.g. for 
specifying modeling operations, as well as a limited 
amount of model data necessary for updating the client 
information, are sent over the network. As soon as real 
feature model computations are required, such as for 
executing modeling operations, conversion between 
feature views and feature validity maintenance, they are 
executed at the webSPIFF server, on the central product 
model, and their results are eventually exported back to 
the clients. An important characteristic of this architecture 
is that by using a central product model, inconsistencies 



29 

are avoided among multiple versions of the model data at 
different clients. 

Both the clients and the Session Manager of webSPIFF 
were implemented in Java, using its Remote Method 
Invocation (RMI) facilities for communication, and 
Java3D for model visualization. 

In order to support user interaction during collaborative 
modeling sessions, each client receives from the server 
the necessary model data. This data has to be carefully 
derived from the feature model, in order to satisfy two 
somehow conflicting goals: (i) it should contain all 
aspects of the feature model which are relevant for direct 
manipulation purposes; (ii) it should be compact enough 
to be quickly updated in all clients whenever the model is 
modified at the server. 

In this section, a combination of model data is presented 
that fulfils these goals. In particular, the new notion of 
feature skeletons is presented, and examples are given of 
how they represent the relations among feature instances 
in a model. The interactive facilities provided by feature 
skeletons will be dealt with in Section 4. 

3.1. Graphical data 
Graphical data consists of feature model images that are 
rendered at the webSPIFF server in GIF format, and 
displayed in camera windows at the clients. These images 
provide very powerful visualizations of a feature model 
[Bronsvoort02]. Many visualization options can be 
specified. For example, selected features may be 
visualized with shaded faces, and the rest of the model as 
a wire frame or with visible lines only. Also, additional 
feature information, such as closure faces of holes, can be 
visualized. A separate image is needed for each camera, 
and it must be updated every time the model or the 
camera settings are changed. 

These model images provide the camera background on 
top of which other visualization and interaction 
techniques are available at the webSPIFF clients.  

3.2. Geometric data 
webSPIFF clients dispose of two representations of the 
model geometry: the visualization model and the 
selection model. Each one has a specific purpose in the 
camera windows at the clients [Bidarra01]. Both the 
visualization model and the selection model are generated 
by the webSPIFF server in VRML format and loaded by a 
client into its camera’s scene graph. 

The visualization model represents the global shape of the 
product model. It is used at the clients for interactively 
modifying the camera viewing parameters (e.g. rotating 
and zooming). All cameras on a particular client use the 
same local visualization model, but each camera displays 
it with its own viewing parameters. 

The selection model is a collection of objects 
representing the canonical shapes of all features in a 
given view of the product. Its purpose is to support 
interactive selection of feature faces on a feature model 
image, during the specification of a modeling operation. 

Again, the selection model is identical for all cameras on 
a client, each applying its own viewing parameters.  

3.3. Feature skeletons 
A feature skeleton is a parametric representation of a 
feature instance which is linked to a simplified geometric 
model of its shape, in such a way that the latter can be 
modified by interactively manipulating the former. 

Since skeletons are meant to represent feature instances at 
the client, the structure of skeletons bears resemblance 
with the generic structure of a feature class, as described 
in [Bidarra00]. This structure is read from the server 
during client initialization, for each class in the feature 
library, after which the client is able to instantiate the 
skeleton of every feature instance in a feature model. 

All skeletons consist of three main components: a shape 
component, a positioning component and a validity 
component; see Figure 1. The shape component describes 
the feature shape in terms of (i) a number of so-called 
shape elements (e.g. the axis reference and the top, 
bottom and side faces of a cylinder shape), (ii) a number 
of parameters (e.g. the radius and the height of a cylinder 
shape), and (iii) an origin, specified as the intersection 
point of some shape elements (e.g., for the cylinder shape, 
the intersection of the axis and the top face). 

Each shape parameter conveys a relation between two 
shape elements. For example, the height of a cylinder 
shape expresses the distance between its top and bottom 
faces. Although several feature classes may be based on 

 

Figure 1 - Generic structure of a feature skeleton 



30 

the same shape type (e.g. block or cylinder), each feature 
class uses its shape in a different way. This is also 
reflected in the corresponding feature skeletons, and 
specifically, in the way the skeleton parameters may be 
adjusted by the user. For example, the skeletons of a blind 
hole and of a through hole both have a similar cylinder 
shape component. However, the blind hole skeleton 
provides two adjustable parameters, radius and depth, 
whereas for the through hole skeleton only the radius 
parameter is adjustable, its actual height being derived 
from the attaches of the through hole.  

In short, skeleton parameters may be either adjustable or 
derived, and these settings are specified in each feature 
class, together with its own attach and positioning 
scheme, which will now be described. 

The positioning component of a skeleton describes the 
geometric relations of a feature with the rest of the model. 
Such relations represent the attach and geometric 

constraints used at the server to hierarchically structure 
the actual feature model. An attach constraint is a kind of 
coplanar geometric constraint which takes into account 
the nature of the two features it relates in order to 
determine the orientation of the attach. Examples of 
geometric constraints are distance-face-face and angle-
face-face constraints between two planar faces. Because 
the clients do not dispose of a geometric constraint 
solver, recording such relations amounts to permanently 
maintaining the relative position, orientation and 
dimensions of each feature in terms of the features to 
which it is explicitly related. Basically, a skeleton 
achieves this by relating the parameters and the origin of 
its shape to elements of other features by means of 
geometric transformations.  

Among other things, this information is crucial to know 
which other features a given feature depends on, and thus, 
to allow for tracking the correct propagation of changes 

 

Figure 2 - Propagation of dimension modifications between dependent features 



31 

when any of those features is modified. For example, 
Figure 2 presents a model with a rectangular step attached 
to a base block, together with the respective skeletons. 
When the block width parameter (relating its left and 
right faces) is increased, the step width should be 
increased as well, because its left and right attaches refer 
to those block faces. As will be explained in the next 
section, when a user is modifying a feature, its dependent 
features are also highlighted in the camera, so that 
possible modifications in their derived parameters 
become apparent to him as well. 

The validity criteria referred to in Figure 1 reflect the 
validation constraints specified by a feature class for each 
of its instances. An example of these are dimension 
constraints, which prescribe a specific range for the value 
of a given feature parameter. Such criteria can be 
profitably used during direct manipulation of the model, 
to prevent the user from performing feature modifications 
which would turn the model invalid. It should be noted, 
however, that not all advanced validity criteria specified 
in feature classes can be maintained and assessed 
remotely at the clients. This is, for example, the case of 
most topology-related validity criteria involved in feature 
interaction management, which can only be properly 
maintained on the central model at the server [Bidarra00]. 

Summarizing, feature skeletons provide a compact 
parametric representation of the features in a model, and 
their relations. As a result of their integration with the 
feature geometry stored in the selection model, webSPIFF 
clients are able to support direct manipulation of the 
feature model, as will be discussed in the next section. 

4. INTERACTIVE FEATURE EDITING FACILITIES 
Feature skeletons, as described in the previous section, 
contain all elements required to provide interactive 
feature editing facilities to webSPIFF clients. To achieve 
this, a number of methods has been implemented at the 
clients that visualize a feature skeleton, including all its 
adjustable parameters, and allow for their interactive 
modification. As explained in Section 1, the main goal of 
this functionality is to achieve that webSPIFF users specify 
their modeling operations in an interactive manner and be 
given as much insight as possible into their result, without 
recurring to the server. 

Direct manipulation on a skeleton is performed by means 
of handles, each of which is associated to exactly one 
parameter, so that dragging a handler adjusts the value of 
the corresponding parameter. 

There are three sorts of handles: (i) for attaches and 
references, (ii) for positioning and (iii) for shape 
parameters. Handles for attaches and references are aimed 
at selecting the shape elements of other skeletons to be 
used in attaches and positioning references. These 
handles describe thus how the feature skeleton relates to 
those of the other features in the feature model. Handles 
for positioning are aimed at setting the value for 
positioning parameters. These handles determine the 
distances and angles used in skeleton position and 

orientation parameters. Handles for shape parameters are 
aimed at setting the values for the adjustable parameters 
of a feature skeleton. 

The basic procedure to interactively modify a feature in 
the model is straightforward. First, the user selects the 
feature by clicking it on a camera, showing a model 
image. If more than one feature is located behind the 
selected camera position, then clicking on the same 
position will scroll through all intersected features. The 
selected feature is highlighted by displaying its canonical 
shape (from the selection model) and, on top of it, the 
wireframe representing its skeleton. This wireframe 
contains the different sorts of handles mentioned above, 
which can be used to modify the feature. Dragging a 
handle results in the immediate modification of the 
skeleton. As the shaded image does not change, it is 
clearly visible what is the effect of changing the 
parameter whose handle is being dragged. When the user 
has finished manipulating the feature, the specified 
modify operation, containing the new parameters, is sent 
to the server, where it is executed on the central model. 
As a result, new model data is generated and sent back to 
the client, where it is visualized. 

The example in Figure 3 illustrates this with a model 
containing a block and a trapezoidal slot, for the 
modification of one of the angle parameters of the slot 
(Figure 3.a). First, the slot is selected and its skeleton is 
displayed, together with its handles (Figure 3.b). 
Subsequently, the handle of the angle parameter between 
the left and top faces is dragged to change its value. The 
original feature model depicted in the model image 
remains unchanged, so that the difference between the 
original angle and the new angle shown in the skeleton is 
clearly perceptible (Figure 3.c). Finally, the operation is 
submitted for execution at the server, after which the 

 

Figure 3 – Modifying a feature at the client 



32 

resulting model is displayed at the client’s camera (Figure 
3.d). 

Adding a new feature to the current feature model is in 
many regards analogous to modifying an existing one. It 
only requires an initial step, in order to first choose the 
feature class of the new feature instance and to select its 
attach faces. Once this is done, the skeleton of the new 
instance is displayed, with its parameters set to their 
default values. The user is then required to interactively 
select the references required for positioning the new 
feature, after which its shape parameters can be adjusted 
as desired. 

Figure 4 provides a simple example of this, illustrating 
how a blind hole can be attached to a base block. As soon 
as the desired attach face is selected on the block, the 
skeleton of the blind hole is displayed, exhibiting its 
default shape parameter values (Figure 4.a). 
Subsequently, the user selects the required pair of (non-
parallel) reference faces relative to which the blind hole 
origin is positioned (Figure 4.b), in this case, the front 
and left face of the block. The parameters of the hole can 
then be adjusted by dragging the corresponding handles: 
dragging the radius handle closer to the origin decreases 
the radius of the hole (Figure 4.c), dragging the depth 
handle closer to the origin decreases its depth (Figure 
4.d). By dragging the blind hole origin to another position 
on the attach face, the entire skeleton is displaced, and the 
parameters representing the distance to the reference 
faces are modified accordingly (Figure 4.e). When the 

user is satisfied with the settings of the blind hole, he can 
submit the operation for execution at the server, after 
which a new model image of the resulting model is 
displayed at his camera (Figure 4.f). 

5. CONCLUSIONS 

A novel approach has been presented that enables thin 
clients in a client-server collaborative modeling 
environment to provide their users with direct 
manipulation facilities on a feature model. These are 
made possible by the use of feature skeletons, a compact 
parametric representation of the features in a model and 
their relations, which are maintained at the system's thin 
clients. Feature skeletons can be visualized and 
manipulated in real-time, allowing users to locally specify 
a modeling operation in an interactive manner, and giving 
them insight into its results, prior to recurring to the 
modeling server for its actual execution. 

Future work in this project will have to clarify whether it 
is always possible to determine in advance which validity 
criteria can be handled at the client and which do not. 

6. REFERENCES 

[ArtOfIllusion03] Eastman, P. Art of Illusion. 
www.artofillusion.org, May 2003. 

[Bidarra00] Bidarra, R. and Bronsvoort, W.F. Semantic 
feature modelling. Computer-Aided Design, 32(3): 
201–225, 2000. 

 

Figure 4 - Adding a new feature to the model 



33 

[Bidarra01] Bidarra, R., van den Berg, E. and 
Bronsvoort, W.F. Interactive facilities for 
collaborative feature modeling on the web. 
Proceedings of 10th EPCG, Madeira, J., Marques, J.S., 
Dias, M.S., and Jorge, J.A. (Eds.), pp. 43-52, October 
2001. 

[Bidarra02] Bidarra, R., van den Berg, E. and 
Bronsvoort, W.F. A Collaborative feature modeling 
system. Journal of Computing and Information 
Science in Engineering 2(3): 192-198, 2002. 

[Bronsvoort02] Bronsvoort, W.F., Bidarra, R. and Noort, 
A. Feature model visualization. Computer Graphics 
Forum 21(4): 661-673, 2002. 

[CoCreate03] CoCreate Software Inc., Fort Collins, CO, 
USA. www.cocreate.com, April 2003. 

[ImpactXoft03] ImpactXoft, San Jose, CA, USA, 
www.impactxoft.com, January 2003. 

[Kaon03] Kaon Interactive Inc. Maynard, MA, USA, 
www.kaon.com, April 2003. 

[RealityWave03] RealityWave Inc. Cambridge, MA, 
USA, www.realitywave.com, April 2003. 

[Web3D03] The Web3D Repository. 
www.web3d.org/vrml/vrml.htm, May 2003. 

 

 


