
Procedural filters for customization of virtual worlds

Tim Tutenel
Delft University of Technology

Mekelweg 4
2628 CD, Delft, The

Netherlands
t.tutenel@tudelft.nl

Roland van der Linden
Delft University of Technology

Mekelweg 4
2628 CD, Delft, The

Netherlands
roland.vanderlinden@hotmail.com

Marnix Kraus
Delft University of Technology

Mekelweg 4
2628 CD, Delft, The

Netherlands
marnixkraus@hotmail.com

Bart Bollen
Delft University of Technology

Mekelweg 4
2628 CD, Delft, The

Netherlands
bartbollen@bartbollen.com

Rafael Bidarra
Delft University of Technology

Mekelweg 4
2628 CD, Delft, The

Netherlands
r.bidarra@tudelft.nl

ABSTRACT
Designing virtual game worlds is often a long and labor-
intensive process. Moreover, when a game world needs to
be slightly altered in appearance, the entire process needs to
be repeated, or will at least require some repetitious tasks.
Ideally, when the same game world is needed under different
circumstances (e.g. in another season, before and after a war,
in prosperous or poor economic conditions), the designer
should be aided in this process using procedural generation
techniques.

We propose an approach for the specification of procedural
filters that describe how (parts of) virtual worlds should
be customized to fit a particular situation based on their
semantics and the conditions of the situation. This descrip-
tion will guide the customization process by triggering and
parametrizing, among others, procedural instructions that
can change the appearance of the virtual world. We will
discuss how the generic nature of this approach, which fa-
vors reusability, and its integration with semantics, which
increases the intuitiveness of the design process, can elim-
inate many of the repetitious tasks involved in performing
these actions manually.

We describe an implementation of this approach that shows
how some simple procedural filters can i) age an urban envi-
ronment and simulate the effects of poor living conditions
on the look of that environment, and ii) apply a party atmo-
sphere to an ordinary office scene.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism; I.3.6 [Computer Graphics]: Methodology
and Techniques—Interaction techniques; I.6.7 [Simulation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PCGames 2011, June 28, Bordeaux, France
Copyright 2011 ACM 978-1-4503-0804-5/11/06 ...$10.00.

Figure 1: The painting Girl with a pearl earring, by
Delft painter Johannes Vermeer; from left to right:
original photo, with an emboss filter applied, and
with a patchwork filter applied.

and Modeling]: Types of Simulation—Gaming

Keywords
procedural filters; procedural content generation; virtual
worlds; semantics

1. INTRODUCTION
With the advent of digital photography editing software,

e.g. Adobe Photoshop or Google Picasa, the notion of fil-
ters has become widely popular. In that context, filters
affect an input image in a large variety of predefined, often
parameterized, ways, which mostly have an appealing and
intuitive semantics. In this way, for instance, one can apply
on a photograph, among others, artistic filters (as e.g. fresco
or watercolor), stylize filters (as e.g. diffuse or emboss), or
texture filters (as e.g. grain or patchwork), as shown in the
examples of Figure 1.

Inspired by that concept, we introduce in this paper the
notion of procedural filters for virtual worlds, which we define
as a procedure aimed at being applied on (part of) a virtual
world, that modifies the appearance and other contingent
visual attributes of its objects, in order to give them a peculiar
desired twist.

Regardless of whether they are created fully manually or

using procedural generation techniques, most game worlds
are static, even if they contain dynamic gameplay elements,
e.g. animations or scripted agents. However, the same game
world might be needed in different circumstances or ’flavors’;
e.g. the first act of a game might play in a city during an
economic boom, while the second act might require the same
city during a depression. If the world is generated proce-
durally, one might need to change the techniques used in
order to produce the same world under these different circum-
stances. The situation is even worse when the game world
was completely created manually, in which case designers
will need to manually revamp the entire world all over again
matching the new circumstances. The notion of procedural
filters, introduced above, can be used to soften the load of
this process. In particular, it enables designers to create and
fine tune their own procedural filters, and apply them on
(parts of) the game world during the design phase.

The semantics-based approach proposed in this paper pro-
vides a generic specification scheme in which a set of instruc-
tions can be tied together to describe this customization
process of virtual worlds. Our approach is based on se-
mantics, which we define, in this context of game worlds,
as all information about the world and its objects, beyond
their geometry. This includes object properties, high-level
attributes and functional information, as well as interrela-
tionships among different objects. The role of semantics in
the design phase of game worlds was previously discussed in
more detail in [18]. By allowing designers to use this object
semantics in their specification, procedural filters can become
both more generic and more intuitive: generic, because they
are able to map high-level semantic attributes of objects to
more low level object parameters; intuitive, because such at-
tributes are more accessible than the technical, often cryptic,
parameters typical of procedural generation techniques.

In a procedural filter, a designer describes how a scene
should be changed to match a particular situation. For
example, we can create a filter to turn a landscape into a
winter landscape, to provide an ordinary office with a party
atmosphere, or to turn a street into a gang-led war zone.
Each filter describes a procedure that is to be followed to
alter the scene. This procedure can be built up using a
wide range of possible instructions, which in turn can be
given parameters based on the semantics of the world and
its objects.

Finally, as we will see, developed filters can be used as
components for building more complex filters: for example, a
filter to make a building look neglected can be a combination
of simpler filters that add cracks to windows, put graffiti on
the walls, and spread some random trash in the front yard.

In the next section we discuss existing related work, giving
some examples of other research results towards procedural
ornamentation or, in general, customization of game worlds.
We also give an overview of other tools and applications
that are comparable to the proof of concept editor. We then
give a detailed overview of the concept of procedural filters,
followed by a description of our implementation of both this
concept and a visual editor to create and modify procedural
filters. Finally we show some examples of filters that we
implemented, and draw some conclusions.

2. RELATED WORK
Most procedural generation techniques are targeted at

generating new geometry to fill the virtual world. There are

procedural techniques to generate terrain heightmaps (e.g.
[12]), plants and trees (e.g. [3]), urban environments with
roads (e.g. [6]) or buildings (e.g. [14, 11, 5]). Usually the
output of these techniques can be altered by tweaking some
parameters or by using different assets (different textures
or models). It is, however, much more difficult, and in
some cases, impossible, to use such procedural techniques to
slightly modify parts of an already existing world, nor should
that ever be the intention of procedural content generation
techniques.

In [21], Whitehead surveyed the research sub domain of
procedural decorative ornamentation. Parts of that article
come close to the idea of procedural filters: applying different
decorative styles to existing scenes. The author gives an
overview of techniques and research examples that could be
used to perform these stylistic changes.

To perform these changes, we can use techniques from
many procedural fields, as instructions in procedural filters.
Often driven by fractal techniques, many textures can be
procedurally generated (e.g. [4, 15, 16]). Textures can be
generated to match particular materials like wood, bump
mapped textures for stucco materials etc. Noise textures can
play an important role in applying changes to materials, for
example to add moss to wooden objects or rust to metal ob-
jects. Other, more complex techniques, have been developed
to model paint cracks [13] or to apply weathering and aging
effects on textures [8].

Commercial products are available that use procedures
to combine different texturemaps and 2D imaging filters
to generate new textures. Some examples of such software
are Genetica [17] and MaPZone [2]. These can either be
generated in the software package itself and exported to
a static file or generated on the fly. In the second case,
it is possible to parameterize the textures based on the
circumstances of the game world. Such a process can be an
important and powerful component of procedural filters.

The procedural filter approach, proposed in this paper,
expects a virtual world as input. However, we expect this
world to be semantically annotated in some way: e.g. we want
to know what kind of object a particular model represents.
It is obvious that this takes a little extra effort at design
time. Fortunately a lot of research has been performed and is
still being performed to automate this process, e.g. by using
automatic shape recognition algorithms. An example of such
a method to automatically specify semantics for large sets of
3D models can be found in [22]. Moreover, once semantics
has been specified for a game world, it can be used in many
other ways besides procedural filtering. As said before, in
[18], we gave an indepth overview of the role semantics can
play in both the design phase and the runtime phase of games
and simulations.

3. PROCEDURAL FILTER APPROACH
As stated above, the notion of procedural filters was con-

ceived in analogy with filters used in 2D imaging software,
which in turn have their roots in the optical filters for photo
cameras. Attaching a new filter to your camera lens will
not change the content of a photograph, but it will create a
different atmosphere or a different effect for it. Procedural
filters should work in a similar way: the actual content of
the scene should not be changed in a significant way, it will
just be ”rendered” in different conditions.

A procedural filter consists of a set of connected instruc-

tions that form a certain procedure. A filter is represented
by a graph, in which the instructions of the filter are repre-
sented as the graph nodes and the dataflow from the output
of one instruction, to the input of the next, is represented
by directed edges. We distinguish the following categories in
these instructions:

1. basic operations (e.g. mathematical operations, condi-
tional statements, creation of primitives...);

2. object transformations;

3. material alterations;

4. changing or loading assets;

5. semantic queries; and

6. automatic content generation.

We will now describe each category in more detail:

• Basic operations are obviously necessary to perform
even the most simple procedure. Some mathematical
operations or conditional statements, loops and the likes
are vital. These operations also include the creation
of primitives, which are constant values like booleans,
real numbers or strings, that can be used as input for
other instructions.

• Object transformations are translations, rotations
or scalations of objects already present in the world.
These transformations can be used to mess up a scene
by, for example, adding some slight random transforma-
tions to objects on a previously neat, tidy office. It is
of course important to use these transformations with
the initial goals of procedural filters in mind: not to
change the world in a significant, structural way.

• Material alterations are changes to the actual mate-
rials (colors, texture maps and shaders) used to render
an object. Next to changing the color or texture, we
could add or remove shaders, alter shader parameters
to match the semantic characteristics of the object or
the scene or simply change the entire material.

• Changing or loading assets could be loading new
textures to be used in the previously described in-
structions, or switching model assets. This could, for
example, be used to change a model with a broken up
version of the same object, or switching fully-leaved
trees with empty trees, to simulate an autumn setting.

• Semantic queries are probably the most important
and powerful instructions with regards to the reusability
and generic nature of procedural filters. Querying the
semantics of a scene involves mostly selecting objects
of a particular class from the scene and querying their
attributes. When such instructions are available, the
filters will be much less ad-hoc and therefore much
more reusable. Adding semantics to an object, means
in the first place, linking it to a generic class, often
taken from an ontology. Instead of selecting models
based on e.g. filenames, the linked class is a more
generic way of performing selections. Moreover, the
attributes of an object (e.g. their age or the level of
destruction) can be directly linked to parameters of

other instructions or to variables of shaders used by
the object’s material. These more high-level semantic
attributes are also more intuitive and understandable
for a broader range of users. When a filter is created
that maps these semantic attributes to the more vague,
lower-level parameters of a procedural instruction, this
filter can be applied by designers, without requiring
them to delve into the actual workings of the procedural
technique.

• Automatic content generation instructions are tech-
niques that handle a wide range of procedural function-
ality like the generation of noise or other procedural
textures, performing procedural destruction on existing
models or using automatic layout solving techniques to
displace objects or to place new objects in the world.
The availability of such techniques obviously has a sig-
nificant impact on the power of the implementation of
procedural filters: the more, and the more varied, the
instructions in this category, the more expressive and
therefore powerful procedural filters become.

An essential feature of the concept of procedural filters is
their reusability : once a filter has been specified, including
its input and output, it can be subsequently used as an
individual instruction in other filters. This way we can, for
example, create a filter that adds a crack to the material
of an object. This filter, applied with different parameters,
could then be used to add radial cracks to glass or to add a
more straight crack to a wall.

A filters, in and of itself, does not add restrictions or
constraints. However, upon creation of a filter, the user can
add restrictions through the use of the semantic queries: e.g.
a filter can specify to add a rust-shader to all metal objects,
but it is equally possible to only add rust to instances of
one specific class. It is therefore up to the designer to create
a filter that matches his or hers intent. Similarly this also
affects the reusability of a filter. In the application examples
section, we show the use of a party filter. In it, balloons
and empty cans are spread around an office scene. We could
create this filter by defining that the cans need to be spread
around on the desks, however this would make the filter only
usable in an office scene. Applying the filter to a living room
would not change the scene at all. On the other hand, if we
were to specify in the filter that the cans need to be spread
around on any kind of surface, this filter would already be
reusable in many different kinds of scenes. Again, it is up to
the designer how generic and reusable a filter is.

In the next section we will discuss an application of this
proposed approach.

4. A PROCEDURAL FILTER EDITOR
Based on the approach introduced above, we developed

a prototype procedural filter editor. This system provides
a variety of nodes or building blocks, each representing an
instruction, with its inputs and outputs. By interactively
connecting these to (outputs and inputs of) other building
blocks, one can easily create a directed graph representing the
procedure intended for the filter. Typically, a filter has itself
one or more input nodes, including possible user-provided
values for settings, intensities, etc. Moreover, most filters
have also a so-called scene object node as input. Scene object
nodes can represent both individual objects and whole scenes

Figure 2: A screenshot of the procedural filter editor showing a filter to fill the scene with rubbish.

(i.e. compositions of multiple scene objects). In addition,
after applying a number of instructions, the filter typically
returns the modified scene object as its output. Scene object
nodes, thus, have at their disposal both the geometric and
the semantic information of an object.

Each object used in our game worlds belongs to some class
of the so-called semantic library [19], and carries therefore
all its semantics. The semantic library provides a hierarchi-
cal class database, partly based on the WordNet ontology
[10], where each class specifies a set of attributes, including
functional information, and also geometric relationships with
objects of other classes. Among other uses, the semantic
library has been deployed for handling object interactions
in games using services [7] and in a semantic layout solving
approach [19]. In the present context, we make use of the
descriptions in the semantic library to handle semantic query
instructions (see Section 3).

While many classes in the semantic library may prescribe
some geometric model(s) for its instances, many other classes
rely on procedural generation methods to create the geom-
etry for their instances, as e.g. the consistent buildings
generated with our integrated approach [20]. In both cases,
their instances share in the corresponding attributes and
semantics, and are therefore suitable for performing semantic
queries. Consequently, our procedural filters are applicable
to the entirety of game worlds: both manually created and
procedurally generated objects.

For the sixth category of instructions (automatic content
generation), we have implemented a number of powerful
procedural techniques that have a wide variety of possible
uses. For example, we developed building blocks to generate
noise maps and crack textures, and also to handle texture
composition. In addition, we developed nodes that make

available the previously mentioned semantic layout solving
approach [19]. They make use of the relationships specified
in classes of the semantic library in order to find possible
and suitable locations for instances of those classes. This
functionality can be used in building blocks to add objects
of a particular class to a scene, e.g. add rubbish to the
front yard of a deteriorated building, spread around some
garbage or empty liquor bottles in an office to create a party
atmosphere.

To apply a filter, a depth-first search is performed, starting
in the output node(s) of the filter. Any building block input
nodes are calculated only when necessary, as decided by the
building block itself. For example, the conditional block will
only execute one of the two input branches based on the
result of the condition.

The procedural filter editor provides a very intuitive visual
editing environment. The user interface was inspired by
other node based editing environments such as Shader FX
[9] or Filter Forge [1]. The user can drag and drop building
blocks onto the filter canvas, including a special building
block that calls a sub-filter. This way, filters can be used as
individual instructions of other filters, as explained in the
previous section. The input and output are represented as
dots on the building block and can be easily connected with
each other, or with filter input and output nodes as well as
primitive nodes. For primitive nodes, a constant value can
be assigned in the editor.

To guide the user in the data flow, colors mark possible
connection types for each node. They become gray when
multiple types are still possible and are immediately updated
after every added or removed connection. A screenshot of
the editor, showing a filter to add rubbish to a scene, can
be seen in Figure 2. The filter shown in the screenshot, has

Figure 3: Four versions of the same house: (from left to right) the first one is not filtered, the second has
some cracked windows, the third one has graffiti on the walls and the fourth one has rubbish in the front
porch.

three input nodes: the input scene, the number of garbage
items and a random seed; and one output node: the resulting
scene. The input nodes are passed along to an instruction
that places instances of a class (in this case the rubbish class)
in the scene.

In complex filters, it might become difficult to spot mis-
takes or missing links in the data flow. This is solved by
a control in the bottom of the screen that shows warnings
whenever a filter is incomplete, e.g. when the data flow is
interupted, or when something else is missing in order to have
a functioning filter (e.g. a missing input or output node).
When no warnings are left, the designer is ensured that the
filter will execute correctly.

Once it is clear the filter can execute, the designer wants
to know if the output matches the expectations. To check
this, the filter editor provides a preview window, where one
can test and visualize the effects of applying a filter on a
given scene. In that preview window, scenes can be loaded
and saved and the designer can select elements in the scene.
The designer can apply the created filter on the entire scene,
but also on a selection of the scene, which makes it possible
to test sub filters that are used as building blocks in larger
filters.

For the representation of virtual worlds and their objects,
we are using our own geometry representation, which is a
node-based structure with nodes being either group nodes
(combining multiple sub-nodes) or meshes. Meshes contain
a vertex buffer, an index buffer and a material with basic
characteristics like diffuse, ambient and other color values, a
number of texture maps and possibly also shaders. However,
it is possible to unlink the building blocks from the actual
code that applies the instructions, which would make the
filters and the filter editor reusable by simply reimplementing
the building block code for use with other geometry repre-
sentations. It is also trivial to code a new building block and
add it to the current code base, by registering a new building
block (including the different input and output combinations)
to the filter library.

5. APPLICATION EXAMPLES
To show the application of procedural filters we used the

editor, discussed in the previous section, to create a number of
example filters. We created aging and deterioration filters for
houses and a party filter. This included the creation of scenes,
in our case using procedural content generation techniques,
collecting or creating assets (e.g. models, textures, shaders...)
and actually creating the filters in the editor.

The first set of filters was created for an urban environ-
ment (a street or a neighborhood). One filter applies aging
effects on a house (e.g. moss growing on the walls or cracks
appearing in them) and another one handles effects hav-
ing to do with deterioration of buildings because of neglect
or vacancy, e.g. rubbish gathering on the porch, windows
getting smashed in and graffiti being sprayed on the walls.
Both these filters are combinations of smaller sub-filters and
blocks: e.g. using the crack texture generation block to create
smashed windows, using texture composition to add graffiti
to walls or using the semantic layout solving block to add
cans and other rubbish to the front porch. Images of these
three example filters applied to a procedurally generated
Dutch-style middle-class house can be seen in Figure 3.

The creation of the cracks is handled by a building block
which can create cracked lines to a texture. A simple crack
can be created with a one dimensional midpoint displacement
algorithm. To generate the typical pattern of a smashed in
window, the building block allows designers to create multiple
cracked lines from one center point, which can be handed
as a parameter to the building block (and which is fed a
random 2D point on the texture to create window cracks).

For the texture composition, we use a simple shader that
combines a number of textures. By using the appropriate
building blocks to add such a shader and the correct textures
to a material, it becomes possible to create for example
a wall with graffiti. To create the moss on the roof and
walls, the same building blocks are used, however with a
slightly different shader that combines textures based on a
combination texture. In our case we used a building block
that creates a Perlin noise texture, which we used as the
combination texture. The age attribute of the building is

a.

b.

c.

Figure 4: The same street but in various conditions: a) all houses are new and intact (no filter applied), b)
the same houses have different ages, achieved using filters that add moss on the walls and roof, cracks in the
walls and rust on the drain pipes, c) the same street, but with a high vandalism filter that uses additional
sub-filters to produce smashed-in windows, graffiti and garbage.

Figure 5: On the left, two views from an office are shown. To the right, we see the same scenes, but with a
party filter applied to them: some balloons, empty bottles and cans are spread around the room, a few cakes
are placed on the desks, and the desks and computers have been slightly rotated to give a more messy effect.

used as the threshold value: in the pixel shader, we use the
roof texture when the corresponding grayscale value in the
noise texture is above the treshold and the moss texture
when below the treshold. In other words: the higher the
treshold, and thus the higher the age of the building, the
more moss will be visible.

In Figure 4, we see a street filled with similar houses,
generated using the same shape grammar. In Figure 4a, all
houses are new. In Figure 4b, the houses are given a random
age, which defines their level of deterioration. This attribute
is used in filters that apply cracks to the walls, rust on the
drain pipes, and, as explained above, moss on the walls and
roof. Finally, in Figure 4c, a high vandalism filter is applied
to the street, which uses a number of the previously explained
filters as instructions to add graffiti to the walls, cracks in
some windows and garbage on the front porches. Finally in
Figure 5, we see an automatically laid out office room, with
a number of desks with office appliances, all placed using
the semantic layout solver discussed in the previous sections.
On that scene, we applied a party filter which performs a
number of operations, mainly spreading around objects like
cans, empty liquor bottles and some balloons. It also adds a
small random translation and rotation to some of the objects
to give a more messy appearance to the scene.

It is important to note that the visual quality of the output
of the filters also depends on the quality of the used assets.
For example, if we were to use a more complex shader or a
higher quality textures for our moss, the visual quality could
be improved, without the structure of the filter having to
change (only the values of a number of parameters like the

shader or texture path).

6. CONCLUSIONS AND FUTURE WORK
In this paper we proposed a procedural filter approach

aimed at assisting designers in customizing their virtual
worlds or scenes. Procedural filters were defined as sets
of instructions (i.e. procedures) to be applied on a virtual
world or its objects in order to customize their appearance
and give them a peculiar twist. Procedural filters are, thus,
the 3D virtual world equivalent of 2D digital imaging filters.
They provide step-by-step instructions of how a virtual scene
should be customized and how its appearance should change
based on attributes and circumstances. They allow designers
to intuitively express the visual changes proper to a particular
situation. We identified and discussed the categories of
instructions necessary or desirable for this purpose. The
recursive nature of this approach encourages reusability and
allows designers to build up a relatively complex filter piece
by piece. We implemented this approach within a visual
editing and testing environment for procedural filters, and
showed the results of a number of test filters.

When using semantic attributes, if available, filters can be
created that are more intuitively parameterizable. By map-
ping high-level semantic attributes (e.g. ’level of destruction’)
to the more low-level parameters of procedural techniques
(e.g. parameters of a noise function or some threshold value
for texture composition), the use of such filters will become
easier and more readable, even without knowing the exact
workings of the procedural techniques involved.

Currently we are working on coupling procedural filters to

semantic predicates. This way we can create new objects by
adding predicates to classes, and applying the coupled filters
to instances of these classes. We are also looking into how
filters can be deployed in a dynamic virtual environment, in
order to efficiently reproduce its changing attributes.

7. ACKNOWLEDGMENTS
This research has been supported by the GATE project,

funded by the Netherlands Organization for Scientific Re-
search (NWO).

8. REFERENCES
[1] Filter Forge. http://www.filterforge.com/, 2011.

[2] Allegoritmic SAS. MaPZone.
http://www.mapzoneeditor.com/, 2011.

[3] O. Deussen, P. Hanrahan, B. Lintermann, R. Měch,
M. Pharr, and P. Prusinkiewicz. Realistic Modeling and
Rendering of Plant Ecosystems. In SIGGRAPH ’98:
Proceedings of the 25th Annual Conference on
Computer Graphics and Interactive Techniques, pages
275–286, New York, NY, USA, 1998. ACM.

[4] D. S. Ebert, S. Worley, F. K. Musgrave, D. Peachey,
and K. Perlin. Texturing & Modeling, a Procedural
Approach. Elsevier, 3rd edition, 2003.

[5] D. Finkenzeller. Detailed Building Facades. IEEE
Computer Graphics and Applications, 28(3):58–66,
2008.

[6] E. Galin, A. Peytavie, N. Marchal, and E. Gurin.
Procedural Generation of Roads. In Computer Graphics
Forum: Proceedings of Eurographics 2010, volume 29,
pages 429–438, Norrköping, Sweden, May 2010.
Eurographics Association.

[7] J. Kessing, T. Tutenel, and R. Bidarra. Services in
Game Worlds: a Semantic Approach to Improve Object
Interaction. In Proceedings of the International
Conference on Entertainment Computing, pages
276–281, 2009.

[8] J. Lu, A. S. Georghiades, A. Glaser, H. Wu, L.-Y. Wei,
B. Guo, J. Dorsey, and H. Rushmeier. Context-aware
textures. ACM Trans. Graph., 26, January 2007.

[9] Lumonix. Shader FX.
http://www.lumonix.net/shaderfx.html, 2011.

[10] G. A. Miller. WordNet: A Lexical Database for English.
Communications of the ACM, 38:39–41, 1995.

[11] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. V.
Gool. Procedural Modeling of Buildings. In
SIGGRAPH ’06: Proceedings of the 33rd Annual
Conference on Computer Graphics and Interactive
Techniques, pages 614–623, New York, NY, USA, 2006.
ACM.

[12] F. K. Musgrave. Methods for Realistic Landscape
Imaging. PhD thesis, Yale University, New Haven, CT,
USA, 1993.

[13] E. Paquette, P. Poulin, and G. Drettakis. The
simulation of paint cracking and peeling. In
W. Stuerzlinger and M. McCool, editors, Proceedings of
Graphics Interface, pages 59–68, 2002.

[14] Y. I. H. Parish and P. Müller. Procedural Modeling of
Cities. In SIGGRAPH ’01: Proceedings of the 28th

Annual Conference on Computer Graphics and
Interactive Techniques, pages 301–308, New York, NY,
USA, 2001. ACM.

[15] D. Peachey. Solid texturing of complex surfaces. In
Computer Graphics (SIGGRAPH ’85 Proceedings),
volume 19, pages 279–286, July 1985.

[16] K. Perlin. An Image Synthesizer. In SIGGRAPH ’85:
Proceedings of the 12th Annual Conference on
Computer Graphics and Interactive Techniques,
volume 19, pages 287–296, New York, NY, USA, 1985.
ACM.

[17] Spiral Graphics. Genetica 3.5.
http://www.spiralgraphics.biz/genetica.htm,
2011.

[18] T. Tutenel, R. Bidarra, R. M. Smelik, and K. J. de
Kraker. The Role of Sematics in Games and
Simulations. ACM Computers in Entertainment,
6:1–35, 2008.

[19] T. Tutenel, R. Bidarra, R. M. Smelik, and K. J. de
Kraker. Using Semantics to Improve the Design of
Game Worlds. In Proceedings of AIIDE 2009 - 5th

Conference on Artificial Intelligence and Interactive
Digital Entertainment, Stanford, CA, USA, October
2009.

[20] T. Tutenel, R. M. Smelik, R. Lopes, K. J. de Kraker,
and R. Bidarra. Generating Consistent Buildings: a
Semantic Approach for Integrating Procedural
Techniques. Submitted for publication.

[21] J. Whitehead. Toward proccedural decorative
ornamentation in games. In Proceedings of the 2010
Workshop on Procedural Content Generation in Games,
PCGames ’10, pages 9:1–9:4, New York, NY, USA,
2010. ACM.

[22] X. Zhang, T. Tutenel, R. Mo, R. Bidarra, and
W. Bronsvoort. Specifying semantics of large sets of 3D
models. Submitted for publication, 2011.

