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Procedural generation of dungeons
Roland van der Linden, Ricardo Lopes and Rafael Bidarra

Abstract—The use of procedural content generation (PCG)
techniques in game development has been mostly restricted to
very specific types of game elements. PCG has been seldom
deployed for generating entire game levels, a notable exception
to this being dungeons, a specific type of game levels often
encountered in adventure and role playing games. Due to
their peculiar combination of pace, gameplay and game spaces,
dungeon levels are among the most suited to showcase the benefits
of PCG. This article surveys research on procedural methods to
generate dungeon game levels. We summarize common practices,
discuss pros and cons of different approaches, and identify a few
promising challenges ahead. In general, what current procedural
dungeon generation methods are missing is not performance, but
more powerful, accurate and richer control over the generation
process. Recent research results seem to indicate that gameplay-
related criteria can provide such high-level control. However, this
area is still in its infancy, and many research challenges are still
lying ahead, e.g. improving the intuitiveness and accessibility
of such methods for designers. We also observe that more
research is needed into generic mechanisms for automating the
generation of the actual dungeon geometric models. We conclude
that the foundations for enabling gameplay-based control of
dungeon-level generation are worth being researched, and that
its promising results may be instrumental in bringing PCG into
mainstream game development.

Index Terms—Procedural content generation, procedural level
generation, role playing games, gameplay semantics.

I. INTRODUCTION

Procedural content generation (PCG) refers to the algorithmic
creation of content. It allows content to be generated automati-
cally, and can therefore greatly reduce the increasing workload
of artists. Some procedural content generation methods are
gradually becoming common practice in the game industry
but are mostly confined to very specific contexts and game
elements. For instance, SpeedTree [1] is becoming a standard
middleware to procedurally generate trees, as demonstrated by
its integration in games like Grand Theft Auto IV (RockStar
Games, 2008), Batman: Arkham Asylum (Eidos Interactive,
2009), Battlefield 3 (Electronic Arts, 2011), and many others.
More complete PCG approaches (e.g. methods that generate
complete game levels) exist, but mostly in the research domain.

The lack of commercial use of PCG techniques has most
likely to do with their lack of control: designers, by giving
away part of it to an algorithm, are often suspicious of the
unpredictable nature of the results of an automatic generator.
However, an increasing number of recent benefits can help
establish PCG in mainstream game development. These benefits
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include: (i) the rapid generation of content that fulfills a
designer’s requirements [2], (ii) the possible diversity of
generated content (even when using similar requirements),
which may increase game replayability [3], [4], (iii) the amount
of time and money that a designer/company can spare in their
game development process [5], and (iv) the fact that PCG
can provide a basis for games to automatically adapt to their
players [6], [7].

Such advantages continue to motivate ongoing research on
this increasingly active field. In this paper, we survey the
current state of PCG for dungeons, a specific type of level
for adventure and role playing games (RPG). Our focus on
dungeon generation is justified by two important factors: the
unique control challenges it raises and its close relationship
with successful games.

We define adventure and RPG dungeon levels as labyrinthic
environments, consisting mostly of inter-related challenges,
rewards and puzzles, tightly paced in time and space to offer
highly structured gameplay progressions. A close control over
gameplay pacing is an aspect which sets dungeons apart from
other types of levels. This notion of pacing and progression is
sophisticated: although dungeon levels are open for free player
exploration (more than e.g. platform levels), this exploration
has a tight bond with the progression of challenges, rewards
and puzzles, as desired by game designers (unlike e.g. sandbox
levels, in open game worlds).

Since procedural generation is, in essence, automated design,
dungeon generation shares the same challenges of manual
dungeon design. Dungeons are unique due to the tighter
bond between designing gameplay and game space. Unlike
e.g. platform levels or race tracks, dungeons call for free
exploration but with a strict control over gameplay experience,
progression and pacing (unlike open worlds, where the player
is more independent). For example, players may freely explore
a dungeon, choosing their own path among different possible
ones, but never encounter challenges that are impossible for
their current skill level (since the space to back track is not
as open as, for example, a sandbox city). Designing dungeons
is thus a sophisticated exercise of emerging a complex game
space from a predetermined desired gameplay, rather than the
other way around. As such, dungeon generation is unique: it is
more about achieving structured control over generation than
about finding unexpected interesting generated results.

Typically dungeons can be classified in two types: for
adventure games and for RPGs. Adventure games like The
Legend Of Zelda (Nintendo, 1986) strictly follow our definitions
above, as apparent in, e.g., [8], [9]. Modern RPGs, like
The Elder Scrolls V: Skyrim (Bethesda Softworks, 2011),
include more open dungeons, complex in many ways (e.g.
exploration), but, when compared with adventure games,
are less sophisticated in their strict control over gameplay
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experience, progression and pacing. Most current academic
research is in line with dungeons for adventure games and,
as such, the remainder of this survey will be focused on that
scope.

Dungeons are intrinsically tied to the history of PCG,
showcasing its potential in video games. Players of this type
of adventure games and RPGs were introduced early on to
the notion of procedural levels and already recognize its
value. Rogue (Troy and Wichman, 1980), The Elder Scrolls II:
Daggerfall (Bethesda Softworks, 1996) and Diablo (Blizzard
Entertainment, 1998) are some of the better known early
examples of this relationship between PCG and dungeons.
However, that original momentum is not quite apparent in
more complex current adventure games and RPGs, which are
still very successful genres. We reckon that this backlog can
be largely overcome by the application of many current state-
of-the-art research results surveyed here.

This survey aims at providing an overview of dungeon-
generation methods, with a special focus on their main scientific
challenge: how these methods can be controlled. The remainder
of the paper is organized as follows; Section II gives a more
detailed introduction to procedural dungeon generation methods
and how they can be controlled. Sections III through VI
elaborate on specific methods that are relevant for procedural
dungeon generation, classified into Cellular Automata (III),
Generative Grammars (IV), Genetic Algorithms (V), and
Constraint-Based (VI). Section VII analyzes other related
work which, although not directly related to dungeons, could
improve dungeon generation. Section VIII contains an overview
and discussion of the surveyed methods. Finally, Section IX
provides concluding remarks.

II. CONTROLLING PROCEDURAL DUNGEON GENERATION

In most adventure games and RPGs, dungeons basically
consist of several rooms connected by hallways. While the
term ’dungeon’ originally refers to a labyrinth of prison cells,
in games it may also refer to caves, caverns, or (abandoned)
human-made structures. Beyond geometry and topology, dun-
geons include non-player-characters (e.g. monsters to slay,
princesses to save), decorations (typically fantasy-based) and
objects (e.g. treasures to loot).

Typically, dungeon generation refers to the generation of
the topology, geometry and gameplay-related objects of this
type of levels. While generation of non-player-characters,
decorations (and even ambient effects, like lightning and music)
are themselves topics of PCG research, they fall outside the
scope of this survey.

A typical dungeon generation method consists of three
elements:

1) A representational model: an abstract, simplified repre-
sentation of a dungeon, providing a simple overview of
the final dungeon structure.

2) A method for constructing that representational model.
3) A method for creating the actual geometry of a dungeon

from its representational model.
Most surveyed research describes the method of constructing

the representational model, but does not provide quite as much

detail in their method for mapping the model to the actual
geometry of the dungeon. Unfortunately, this step is often
neglected by researchers in their publications. However, it
is understandable, since this is typically a less sophisticated
step than the generation of abstract representational models.
Therefore this survey mostly focuses on the representational
model and its generation.

A very important element in any procedural method is the
control it provides over the output and its properties. We refer
to control as the set of options that a designer (or programmer)
has in order to purposefully steer the level generation process,
as well as the amount of effort that steering takes. Control
also determines to which extent editing those options and
parameters causes sensible output changes, i.e. the intuitive
responsiveness of a generator. Proper control assures that a
generator creates consistent results (e.g. playable levels), while
maintaining both the set of desired properties and variability.
The lack of proper parameters or the lack of understanding
of what a parameter exactly does, almost always imply poor
control over a PCG method, which may lead to undesirable
results or even catastrophic failures.

In early PCG methods (e.g. Perlin noise [10]), the focus
was more on how the methods worked and what could be
generated. More recently, researchers became more concerned
about how they can achieve the results they want. Meaningful
parameters were introduced to help generate content towards
a specific output. As PCG methods grew in complexity, and
different PCG methods were combined to form more complex
generation processes, more control was needed as well. As
an example, PCG control has evolved towards more natural
interaction between designer and machine, with the use of
techniques like declarative modeling [11] or controllable agents
[12]. More recently, PCG control has expanded towards an
even more natural interaction, including the use of gameplay
as a meaningful control parameter [13].

As discussed before, the tight bond between gameplay and
game space is an essential aspect of dungeons. Therefore,
control over PCG methods for dungeons should preferably
facilitate such bond, by steering space generation from game-
play requirements. This can be done in more (e.g. parameters
referring to the difficulty of a level) or less (e.g. parameters
referring to topology) explicit ways. Therefore, in this survey,
we are specially interested in discussing this dungeon-specific
generation challenge: gameplay-based control, where PCG
parameters are related to gameplay data.

III. CELLULAR AUTOMATA

One of the methods for procedural dungeon generation is
cellular automata. This self-organizing structure consists of a
grid of cells in any finite number of dimensions. Each cell has
a reference to a set of cells that make up its neighborhood,
and an initial state at zero time (t = 0). To calculate the state
of a cell in the next generation (t + 1), a rule set is applied to
the current state of the cell and the neighboring ones. After
multiple generations, patterns may form in the grid, which
are greatly dependent on the used rules and cell states. The
representational model of a cellular automaton is a grid of cells
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Fig. 1. A map generated with Cellular Automata. Grey areas represent floor,
red areas, walls, and white areas, rocks [14].

and their states. An example set of allowed states would be
{wall, path}, such that cells represent either a location where
a player can go, or a location where the player cannot go.

Johnson et al. [14] use the self-organization capabilities
of cellular automata to generate cave levels. They define the
neighborhood of a cell as its eight surrounding cells (Moore
neighborhood), where its possible states are {floor, rock, wall}.
After an initial random cell conversion (floor to rock), the rule
set is iteratively applied in multiple generations. This rule set
states that: (i) a cell is rock if the neighborhood value is greater
than or equal to T (T=5) and floor otherwise, and (ii) a rock
cell that has a neighboring floor cell is a wall cell. Based on
these rules, ‘cave level’-like structures can be produced, as
displayed in Fig. 1. This method allows real-time and infinite
map generation.

As interesting features of Johnson et al.’s method, we can
identify: (i) its efficiency (with the possibility of generating
part of a level while the game is being played), (ii) the ability
to generate infinite levels, (iii) the relatively straightforward
creation algorithm (the used states and rules are simple), and
(iv) the natural, chaotic feel that the levels created by this
method have. Its main shortcomings are the lack of direct
control of the generated maps and the fact this method only
applies to 2D maps. The authors briefly discuss 3D generation,
however the present control issues are likely to be worse in 3D.
Additionally, connectivity between any two generated rooms
(i.e. reachable areas) cannot be guaranteed by the algorithm
alone, but has to be systematically checked for and added if
non-existent.

This method uses the following four parameters to control
the map generation process:

• A percentage of rock cells (inaccessible area);
• The number of cellular automata generations;
• A neighborhood threshold value that defines a rock (T=5);
• The number of neighborhood cells.
The small number of parameters, and the fact that they

are relatively intuitive is an asset of this approach. However,
this is also one of the downsides of the method: it is hard
to fully understand the impact that a single parameter has on

the generation process, since each parameter affects multiple
features of the generated maps. It is not possible to create a
map that has specific requirements, like a number of rooms
with a certain connectivity. Therefore, gameplay features are
somewhat disjoint from these control parameters. Any link
between this generation method and gameplay features would
have to be carried out through a process of trial and error.

IV. GENERATIVE GRAMMARS

Generative grammars were originally used to describe sets
of linguistic phrases [15]. This method creates phrases through
finite selection from a list of recursive transformational (or
production) rules, which include words as terminal symbols.
Based on generative grammars, other grammars have been
developed, e.g. graph grammars [16] and shape grammars [17],
[18]. These grammars only differ from the linguistic setup in
that they use other terminal symbols (nodes and shapes) to
allow graph and shape generation.

Graph grammars have been previously used by Adams [19]
to generate dungeon levels. Although the author’s work applies
to first-person shooters (FPS), our definition of a dungeon
level still applies directly to the generated content. This is
clear in Adams’ exclusive use of the term ‘dungeon levels’
throughout his work, even if only considering FPS. Rules of a
graph grammar are used to generate topological descriptions
of levels, in the form of a graph. Nodes represent rooms and
edges its adjacencies. All further geometric details (e.g. room
sizes) are excluded from this method. Most interestingly, graph
generation can be controlled through the use of difficulty, fun
and global size input parameters. Generating levels to match
input parameters is achieved through a search algorithm which
analyzes all results of a production rule at a given moment,
and selects the most optimal one.

Adams’ preliminary work is limited by the ad-hoc and hard-
coded nature of its grammar rules and, especially, parameters.
It is a sound approach for generating the topological description
of a dungeon, but generalizing such method for games beyond
the one used by the author would imply creating new input
parameters and the rules that solve it. Regardless, Adams results
showcase the early motivation and importance of controlling
dungeon generation through gameplay.

Dormans [8], [20] uses generative grammars to generate
dungeon spaces for adventure games. Through a graph grammar,
missions are first generated in the form of a directed graph, as
a model of the sequential tasks that a player needs to perform.
This mission is first abstracted to a network of nodes and
edges, which is then used by a shape grammar to create a
corresponding game space. In addition, the notion of ‘keys’ and
‘locks’ is a special feature, since together they are part of tasks
in a mission, and allow players to navigate through the game
space. Fig. 2(a) shows a mission network and Fig. 2(b) shows
the space generated from the latter. The representational model
of this method is a graph that represents the level connectivity
by means of nodes and edges. A mission can also be seen as a
very abstract representational model, although it comes down
to a set of requirements or guidelines for the space.

The very clear integration between the motivation to generate
space and the space generation itself very naturally ties in with
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(a) (b)

(c) (d)

Fig. 2. (a) a mission with Tasks, Keys, and Locks [8]. (b) Mission structure from (a) mapped to a spatial construction [8] . (c) A gameplay graph generated
in [9], (d) a dungeon layout, generated for (a)

the use of PCG in games. By considering the concept of
missions, the PCG algorithm becomes more meaningful, and
thus powerful, for both designers and players. Although this
method allows versatile results, there is still a high complexity
in setting up graph and shape grammars that suit specific needs,
making it unclear whether this approach allows fully automatic
generation for different domains. On the other hand, although
there is no discussion on 3D dungeon generation, previous
work on the use of shape grammars to generate city buildings
[18] encourages future work on this direction.

Dormans does not directly use parameters in his approach,
since control is exerted by the different rules in the graph
and shape grammars. However, as with [18], it takes a lot
of effort to understand and work with these grammars. On a
positive note, the author was able to introduce gameplay-based
control, most notably with the concept of a mission grammar.
Constructing such a grammar, replacing it with a manually
created mission, the direct specification of ‘keys’ and ‘locks’,
or a mixed-initiative approach where a human designer can
work with generated missions [20], are all interesting directions
towards a richer gameplay-based PCG control.

Recently, Van der Linden et al. [9] use gameplay grammars,
an approach similar to Dormans, to generate dungeons for a
commercial game. Game designers specify, a priori, design
constraints expressed in a gameplay-oriented vocabulary, con-
sisting of player actions to perform in-game, their sequencing
and composition, inter-relationships and associated content.
These designer-authored so-called constraints directly result
in a generative graph grammar, a gameplay grammar, and
multiple grammars can be expressed through different sets of
constraints. A grammar generates graphs of player actions,
which subsequently determine layouts for dungeon levels.

For each generated graph, specific content is synthesized by
following the graph’s constraints. Several proposed algorithms
map the graph into the required game space and a second
procedural method generates geometry for the rooms and
hallways, as required by the graph. Fig. 2(c) and (d) show a
graph and dungeon generated from this method.

The authors focus on improving gameplay-based control
and, particularly, on its generic nature. Concerning the latter,
this approach aims at empowering designers with the tools
to effectively create, from scratch, grammar-based generators
of graphs of player actions. The approach is generic, in the
sense that such tools are not connected to any domain, and
player actions and related design constraints can be created
and manipulated across different games. However, integration
of graphs of player actions in an actual game requires a
specialized generator, able to transform such a graph into
a specific dungeon level. The authors demonstrated such a
specialized generator for only one case study, yielding fully-
playable 3D dungeon levels for the game Dwarf Quest (Wild
Card, 2013).

As for gameplay-based control, this approach empowers
designers to fully specify and control dungeon generation with a
more natural design-oriented vocabulary. Designers can specify
their own created player actions vocabulary and use it to control
and author dungeon generators. As required in dungeon design
(see Section I), they specify the desired gameplay which then
constrains game-space creation. Furthermore, designers can
express their own parameters (e.g. difficulty) which control rule
rewriting in the gameplay grammar. Setting such gameplay-
based parameters allows for an even more fine-grained control
over generated dungeons. However, the authors have not
yet evaluated the intuitiveness of their approach with game
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designers.

V. GENETIC ALGORITHMS

Genetic algorithms are search-based evolutionary algorithms
that try to find an optimal solution to an optimization problem.
In order to use a genetic algorithm, a genetic representation and
a fitness function are required. The genetic representation is
used to encode possible solutions into strings (called genes or
chromosomes). The fitness function can measure the quality of
these solutions. A genetic algorithm goes through an iterative
process of calculating fitness, and then selecting and combining
the best couple of strings from a population into new strings.
An often used method of selection is to make the probability
to combine a string with another proportional to their fitness:
the higher their fitness, the more likely they will be used for a
combination. The combinatory process itself is called crossover.
In addition, a mutation process can randomly change a single
character in a string with some small probability. Mutations
ensure that given infinite time, the optimal solution will always
be found.

Hartsook et al. [21] presented a technique for automatic
generation of role playing game worlds based on a story.
The story can be man-made or generated. They map story
to game space by using a metaphor of islands and bridges,
and capture both in a space tree. Islands are areas where plot
points of the story occur. Bridges link islands together (although
they are ‘locations’ and not ‘roads’). A space tree represents
the connectivity between islands and bridges, and also holds
information on location types (also called environmental types).
Hartsook et al. use a genetic algorithm to create space trees.
Crossover and mutation deal with adding and deleting nodes
and edges in the tree. The fitness function used by Hartsook
et al. uses both evaluation of connected environmental types
(based on a model that defines which environmental types
often occur next to each other), and data about the play style
of the player (to determine the correct length and number of
branches). Settings include the size of the world, linearity of
the world, likelihood of enemy encounters, and likelihood of
finding treasures. The space tree that the genetic algorithm
selects as the most optimal, after a fixed number of iterations,
is then used to generate a 2D game world, where tree nodes
are mapped to a grid using a recursive backtracking algorithm
(depth-first). If there is no mapping solution, the space tree is
discarded and a new space tree has to be constructed. Fig. 3(a)
shows an example space tree mapped to a grid. This grid is
then used as a basis for the positioning of locations in the
game space (Fig. 3(b)).

As with Dormans, the very clear integration between the
motivation for creating a space and the space itself offers
advantages. The game world is not randomly pieced together:
as long as the story makes sense, so will the game world
generated for it.

So, in addition to the benefits of PCG stated in Section I,
another advantage is that using the story to steer a procedurally
generated game brings it a step closer to the contents of a
conventional manually-created game. In game development,
the story can be the motivation to create a specific game world,

and this PCG method captures that principle. However, the
stories presented by Hartsook et al. seem too simple, given
that they are the base of the entire technique. While being
a very relevant first step towards story-based PCG control,
it is unclear whether the generation process would still be
easy to control with a lot more story properties and options.
Apart from the story, Hartsook et al. considered another form
of gameplay-based PCG control: adding a player model as a
parameter for the world creation leads to a game world directly
suited for the players’ needs.

While the story-based approach may allow some form of 3D
mapping, the current work only focuses on 2D. Furthermore,
based on the discarding rule (no mapping solutions means a
new space tree needs to be constructed), performance could
potentially be a limitation for this method.

Valtchanov and Brown [22] use a genetic algorithm to create
’dungeon crawler levels’. They use a tree structure to represent
(partial) levels, which is also the genetic representation. Nodes
in the tree represent rooms, and edges to children of the node
represent connections to other rooms. See Fig. 3(c) for an
example of the tree structure (genetic representation).

The fitness function has a strong preference for maps
composed of small, tightly packed clusters of rooms which are
inter-connected by hallway paths. Maps with up to three event
rooms near the perimeter of the map are also highly favored
by the fitness function (see Fig. 3(d)). During the generation
process, the maps are directly created to test if rooms can be
placed the way the tree represents it. If it is not the case, the
corresponding branch of the tree is removed.

Interesting features of this method are the elegant and
orderly placement of rooms, even allowing specific distance
requirements for special ’event rooms’. Although results show
that levels indeed converge to tightly packed clusters of rooms,
it should be mentioned that this specific fitness function only
allows chaotic placement of rooms, most of which may be
redundant (in their role): there is no explicit gameplay-oriented
motivation for their placement.

Ashlock et al. [23] investigate multiple methods to create
maze-like levels with genetic algorithms. They explore four
representations of mazes;

• Direct binary: gene with bits, representing a wall or
accessible area;

• Direct colored: gene with letters that represent colors;
• Indirect positive: chromosome represents structures to be

placed;
• Indirect negative: chromosome represents structures to be

removed.
The authors’ results show us that direct mazes are the most

interesting. These are made up of a grid, where the operators
of crossover and mutation are used to flip cells into becoming
a wall or an accessible area. Additionally, a valuable technique
was proposed to improve overall maze generation: the use of
checkpoints, along which the maze generation can be guided
and which can be used in the fitness function (checkpoints are
represented in green in Fig. 4).

The authors detail five fitness functions that are tested
on the genetic maze generation approach for the different
representations. The most promising fitness functions are:
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(a) (b)

(c) (d)

Fig. 3. (a) A space tree mapped to a grid; plot locations are bold [21]. (b) A game world generated from a space tree, similar to (a) [21]. (c) Translation from
tree structure to map [22]. (d) Example of a generated map [22]. Event rooms highlighted.

(a) (b) (c)

Fig. 4. Mazes generated by [23]. All mazes have been created with fitness function F2. (a) Direct binary representation. (b) Indirect positive representation.
(c) Indirect negative representation. Green dots are checkpoints. Red dots are start and finish.

• F1 - maximize path length from entrance to exit;
• F2 - maximize accessibility of checkpoints;
• F3 - ”encourage paths to branch, run over checkpoints,

and then meet up again later”.

The checkpoint based fitness functions [23] are extended
by the authors [24], which can compose larger dungeon levels
(exits on one tile must match entrances on adjacent ones). The
new fitness function simply maximizes the sum, over all pairs
of entrances, of the distances between the entrances. Thus,
using tiles, entrances on each tile become checkpoints.

Fig. 4 displays several maps generated with fitness function
F2. The results of this method can be very versatile. Both
natural looking (chaotic) mazes and more structured mazes can
be created, and connectivity is assured for both types. However,
it appears to be hard to determine a fitness function that always
does what you expect it to do, while creating different looking
levels. For instance, the use of fitness function F3 allows
multiple paths that branch and meet up again - but the length

of the path from entrance to exit then suddenly becomes much
shorter than with fitness function F1. Another drawback is that
the generated levels seem very random.

Regarding control, Valtchanov and Brown and Ashlock et al.
mostly use the parameters associated with genetic algorithms
to steer the level generation process. In both cases the most
important one is the fitness function, which evaluates the
levels that fill the requirements the best way, relatively to
other competing generated levels. Changing the fitness function
causes entirely different levels to be generated. This becomes
very clear from the work of Ashlock et al., where they
investigate different fitness functions. Other genetic-algorithm
parameters are the mutation and crossover probabilities and
the number of generations to be used.

The effect the parameters can have on the generated levels
is quite high. A different fitness function may lead to different
sorts of layout, for instance neatly divided over a specific space,
or as thin-stretched as possible. However, finding and creating
a suitable fitness function can be a hard task, especially for
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designers with no background in programming or mathematics.
The genetic algorithm parameters mostly control how well

(and how fast) the solution reaches an acceptable result based
on the fitness, including the possibility of reaching local optima.
The main problem with these genetic algorithm parameters
is their apparent mismatch with backtracking: if a certain
result is obtained and needs to be adjusted, it is unclear which
parameters need to be altered.

It is encouraging to observe that gameplay can already have
a small role in controlling these search-based PCG methods.
Using special event rooms and checkpoints directly in the
fitness functions, allows a more gameplay-oriented degree of
control, which goes beyond the traditional pure topological
approach. Events and checkpoints have a more explicit meaning
in terms of gameplay (what happens in-game) than other
topological constraints.

Sentient Sketchbook is a tool proposed by Liapis et al. [25],
aiming at supporting designers during the creation of game
levels. Game designers sketch low resolution maps, where
tiles represent passable or impassable sections, player bases
and resources. Sentient Sketchbook is able to add detail to the
coarse map sketch and test maps for playability, navigable
paths, game pace and player balance. Dungeons are one of the
available possible results of automatically detailing coarse map
sketches into final level maps. Tiles are converted into rooms,
dead ends and corridors.

Additionally, this tool automatically suggests new alternatives
for the map being sketched by a designer. These alternatives
are automatically generated via genetic search algorithms
performing constrained optimization, where the current maps’
appearance is the starting point. Besides map diversity, fitness
functions optimize game pace and player balance, by measuring
resource safety, safe areas distribution, exploration difficulty
and its relative balance between a player and its enemy. Via user
studies, the authors concluded that industry experts identified
map suggestions as an important feature, having selected a
generated suggestion to replace the manual design in 92% of
the sessions.

It is most interesting to verify that the generated dungeons
are very close visually to human-designed levels. These results
seem to demonstrate that a mixed-initiative method, where
manual design and generation algorithms are integrated, is
able to add such a quality to generated levels. However, it is
still unclear how low-resolution sketching and genetic-based
generation (steered by this sketching) would scale to larger
and more detailed maps.

Sentient Sketchbook is very explicit in its gameplay-related
criteria to generate suggestions. All the fitness functions directly
maximize gameplay qualities, by measuring playability, pace
and balance. Most interestingly, generation is steered by an
initial state of the designer’s sketch. We argue that, when
manually designing such a dungeon sketch, designers are
creating a game space for a predetermined desired gameplay
experience (as mentioned in Section I). As such, this becomes
an influential aspect in control, since that initial sketch directly
maps from the gameplay concepts in a designer’s mind. Such
control is less automatic than the fitness functions of Valtchanov
and Brown and Ashlock et al. but, nevertheless, goes beyond

Fig. 5. Dungeon in 3D space generated based on constraints [26].

their specialized topological approach.

VI. CONSTRAINT-BASED

Roden and Parberry [26] proposed a pipeline for generating
underground levels. They start by generating an undirected 3D
graph which represents the level structure, where each node
in the graph represents a portion of the actual level geometry.
Constraints on the topology of the graph and node properties
(distance, adjacencies) are used to steer generation of the
graph. The generated 3D graph is then used to place geometry,
using a set of prefabricated geometry sections. After these are
interconnected, objects (such as furniture) are placed in the
dungeon. An example of a generated dungeon is displayed in
Fig 5.

To the best of our knowledge, this approach was the only one
(i.e. until [9]) to describe a method that explicitly considered
dungeon generation for 3D games. Generation is based on a
constraint-solving approach where constraints are expressed as
rules (with parameters as distance, for example) which place
nodes in relation to fixed terminal nodes (entry/exits).

As for control, the authors use an initial graph topology
and a set of constraints as the input for their level generation.
They use standard graph topologies (like tree, ring, star), but
also allow combinations of sub-graphs. Constraint parameters
can be related to one or more fixed nodes, such as min/max
distance, fixed connections to adjacent nodes, and the use
of prefabricated geometry specific to a node. They can also
specify that a given sequence of nodes can only be visited by
the player in a specific order.

Interesting about this control approach is that such constraints
can be defined for a level. This allows control in such a way that
important high-level features can be first defined and then the
rest can be generated around it. A drawback of this approach is
the fact that these constraints do not capture gameplay data as
effectively as missions or narratives. It is still up to the designer
to not only create all the prefabs for level geometry sections
and objects, but also to express a meaningful set of constraints
for the generator. It is not straightforward for a designer to
translate gameplay concepts (like pacing or difficulty) into
topology, adjacency, etc.

VII. OTHER RELATED APPROACHES

In this section, we survey various related research results
identified as relevant for the procedural generation of dungeons.
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Unlike the previous sections, there is no single category or
family to characterize these methods. Such methods are not full-
fledged procedural generators of dungeons, since they are either
very preliminary or they do not generate dungeons levels, as we
defined them. Still, their inclusion in this survey is important
since they could potentially contribute specific improvements,
related and relevant for dungeon generation.

Togelius et al. [27] proposed a PCG approach to generate
dungeons. However, this method is very preliminary since,
as far as we know, there is no current evaluation yet for
their claims. Simple 2D dungeons are generated using hybrid
compositional PCG, where two distinct content generation
methods are combined, one nested inside the other. The authors
argue that distinct PCG methods have distinct advantages and
disadvantages and that, through composition, their strengths
are reinforced and weaknesses eliminated.

An experiment was performed using an Answer Set Pro-
gramming (ASP) and Evolutionary Search hybrid approach.
In essence, a constructive or solver-based algorithm (ASP) is
used as the genotype-to-phenotype mapping of an evolutionary
search-based algorithm. The advantage is that, with a nested
composition of these PCG methods, the ”inner” algorithm
(ASP) could better guarantee a low-level of desirable properties
(well-formedness, playability and winnability of dungeons),
while the ”outer” algorithm can pursue higher-lever desirable
properties (optimizing challenge and skill differentiation).

This research raises interesting questions. By having two
different methods, nested and responsible for different desired
properties, control over generation could improve. In theory,
by having compositions of generators, composition of the
respective parameters is also possible. Since ”more is more”,
this could mean a finer-grained level of control. However, the
authors did not compare their results (generated dungeons,
used as an example) with any other method. It remains to be
seen if their claims of improving the control over the desirable
properties of generated content are correct.

An interesting research direction is proposed by Smith et
al. [28]. Although the authors generate 2D platform levels, we
see their method as highly applicable to dungeons. Levels are
generated based on the notion of rhythm, linked to the timing
and repetition of user actions. They first generate small pieces
of a level, called rhythm groups, using a two-layered grammar-
based approach. In the first layer, a set of player actions
is created, after which this set of actions is converted into
corresponding geometry. Many levels are created by connecting
rhythm groups, and a set of implemented critics selects the
best level.

Although this approach only creates platform levels, it
ties in well with dungeon generation. As with Dormans, a
two-layered grammar is used, where the first layer considers
gameplay (in this case, player actions) and the second game
space (geometry). The notion of ‘rhythm’ as exactly defined
by Smith et al. is not applicable for dungeons, but the pacing
or tempo of going through rooms and hallways could be of
similar value in dungeon-based games. The decomposition
of a level into rhythm groups also connects very well with
the possible division of a dungeon into dungeon-groups with
distinct gameplay features, e.g. pacing.

For more control, Smith et al. have a set of ”knobs” that a
designer can manipulate, such as: (i) a general path through the
level (i.e. start, end, and intermediate line segments), (ii) the
kinds of rhythms to be generated, (iii) the types and frequencies
of geometry components, and (iv) the way collectables (coins)
are divided over the level (e.g. coins per group, probability
for coins above gaps, etc). There are also some parameters
per created rhythm group, such as the frequency of jumps per
rhythm group, and how often specific geometry (springs) should
occur for a jump. The critics also have a set of parameters
to provide control over the rhythm length, density, beat type,
and beat pattern. Overall, the large amount of parameters for
different levels of abstraction provide a lot of control options,
and allow for the versatile generation of very disparate levels.
They relate quite seamlessly to gameplay (specially in its
platform genre), although achieved at a lower level than, for
example, the missions of Dormans.

Although occupancy-regulated extension (ORE) was pro-
posed by Mawhorter and Mateas [29] to procedurally generate
2D platform levels, their method seems very interesting to apply
to dungeon generation, without needing many adjustments.

ORE is a general geometry assembly algorithm that supports
human-design-based level authoring at arbitrary scales. This
approach relies on pre-authored chunks of level as a basis,
and then assembles a level using these chunks from a library.
A ’chunk’ is referred to as level geometry, such as a single
ground element, a combination of ground elements and objects,
interact-able objects, etc. This differs from the rhythm groups
introduced by Smith et al. [28] because rhythm groups are
separately generated by a PCG method whilst the chunks are
pieces of manually-created content in a library. The algorithm
takes the following steps: (i) a random potential player location
(occupancy) is chosen to position a chunk; (ii) a chunk needs to
be selected from a list of context-based compatible chunks; (iii)
the new chunk is integrated with the existing geometry. This
process continues until there are no potential player locations
left, after which post-processing takes care of placing objects
such as power-ups.

A mixed-initiative approach is proposed for this ORE method,
where a designer has the option to place content before the
algorithm takes over and generates the rest of the level. This
approach seems very interesting for dungeon generation, where
an algorithm that can fill in partially designed levels would be
of great value. Imagine a designer placing special event rooms
and then have an algorithm add the other parts of the level
that are more generic in nature. This mixed-initiative approach
would increase both level versatility, and control for designers,
while still taking work out of their hands. Additionally, it would
fit to the principles of dungeon design, where special rooms
are connected via more generic hallways. Also, using a chunk
library fits well in the context of dungeon-level generation (e.g.
combining sets of template rooms, junctions and hallways).
However, dungeon levels (especially in 3D) are generally
required to be more complex than 2D platform levels that
have a lot of similar ground geometry.

Potential player locations are used as a basis for chunk
placement to ensure playability. The chunks themselves can
still cause unplayable levels, though. For example, if chunks
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(a) (b)

Fig. 6. Results from [30]. (a) An architectural program. (b) A set of floor plans based on (a).

without ground geometry are positioned next to each other,
there is no place for the player to go, making a level unplayable.
Their framework is meant for general 2D platform games, so
specific game elements and mechanics need to be filled in, and
chunks need to be designed and added to a library. Versatile
levels can only be generated given that an interesting decently-
sized chunk library is used.

Mawhorter and Mateas do not mention specific parameters
for their ORE algorithm. However, a designer still has a
lot of control. Besides the mixed-initiative approach, the
chunks in the library and their probability of occurrence are
implicit parameters (i.e. they determine the level geometry and
versatility), and possible player actions need to be defined and
incorporated in the design of chunks. The mixed-initiative is
still the biggest amount of control one can have, even from
a gameplay-based perspective. However, this approach can
become at times too similar to manually constructing a level,
decreasing the benefits of PCG. In summary, a designer has
the potential to have a lot of control over the level generation
process, but the available control might not be very efficient. It
seems that, at this point, a lot of manual work is still required
for specific levels to be generated.

Another technique which can be suitable for dungeon
generation is proposed by Merrell et al. [30]. They apply
machine learning techniques to generate 3D residential building
layouts, with a focus on floor plans, i.e. the internal organization
of spaces within the building.

Building requirements include: (i) a list of the different
rooms, (ii) their adjacencies, and (iii) their desired sizes; see
Fig 6(a). These are the input to generate architectural programs
by means of a Bayesian network that has been trained on
real-world data, i.e. from actually existing residential buildings.
Such data includes, for example, rooms that are often adjacent,
and whether the adjacency is open, or mediated by a door. PCG
methods based on real-world data are a recent advancement in
the academic community.

From the architectural programs, sets of floor plans are
generated using stochastic optimization, where the Metropolis
algorithm is used to optimize the space. An example of such
floor plans is displayed in Fig 6(b). The floor plans are then
used to construct the 3D model of the building. Different

styles can be applied that define the type of geometric and
material properties of building elements, as well as the spacing
of windows, roof angle, etc.

In terms of control, Merrell et al. take a set of high-
level requirements as the input to their residential building
generation. Input options can be defined in a flexible manner
and include the number of bedrooms, the number of bathrooms,
approximate square footage, and (after the layout has been
generated) the style of the building. The ’residential’ type of
building always has some similar structure, and the authors
identified only a few high-level parameters to generate a
realistic 3D model of a residential building. Still, although
controlling the generation process can be very clear and
easy, this strength can also be a disadvantage. This technique
can generate ’standard’ residential buildings, but any desired
deviation from that type of building seems hard to control,
since everything depends on the floor-plan algorithm.

Of all surveyed non-dungeon methods, this is perhaps the
most interesting one, in terms of application. First of all, a
dungeon map can behave like a floor plan, using the same
definition as before: the internal organization of spaces, in
this case, within the dungeon. The proposed method could
generate dungeon floor plans, by considering different types
of rooms and constraints, and by using different 3D models.
In that case, dungeon level data from existing games could
be used to train a Bayesian network on the adjacencies or
connections between different rooms in dungeons, and even
be used to position rooms in a the dungeon layout. Generated
levels would then mimic the best practices in dungeon level
design. As with the previously analyzed methods, the use of
a step-wise approach (i.e. connecting requirements together,
creating a basic floorplan, and then creating the geometry with
different possible styles) is also applicable to dungeons.

As mentioned above for buildings, the technique only seems
appropriate to define dungeon types of similar structure. If
dungeons in all kinds of shapes need to be generated, this
approach seems to be a bit too restrictive (unless the real-
world design data is large enough, and the Bayesian network
can deal with it).
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TABLE I
OVERVIEW OF SURVEYED METHODS AND THEIR PROPERTIES

Properties
Category Reference Approach Control provided Gameplay features Output Types Variety of results
Cellular

Automata [14] Grid cells state
modification

Initial state; # of
generations - 2D dungeon with

floor, rock, wall cells
Chaotic maps: little

variation

Generative
Grammar [19] Graph grammars Difficulty, size,

fun
Difficulty, fun

parameters 2D room graph
Dependent on

hard-coded graph
grammar

[8], [20] Graph and shape grammars Input missions Missions 2D dungeon with
rooms, locks, keys

Maps as versatile as
missions

[9] Gameplay grammar and 3D
geometry generator

Customizable
grammars,

parameter-based
rule selection

Player actions as
nodes, gameplay

parameters for rule
re-writing

3D dungeon
As versatile as
grammars and

parameters

Genetic
Algorithms [21] Space tree mutation

Game story,
fitness function,

player model
Game story 2D dungeon-like game

world

Combination of
premade location

types

[22] Tree mutation Fitness function,
genetic parameters Special event rooms 2D dungeon Tightly packed rooms

connected by hallways

[23], [24]
Combining 4 genetic
representations and 5

fitness functions
(same as above) - 2D maze Larger between

combinations

[25]
Mixed-initiative: map

sketch and constrained
optimization

User sketching
and fitness

function

Playability, pace,
balance 2D dungeon Large, even beyond

dungeons

Constraint-
based [26] Constrained graph

generation
Topology, node

placement - 3D underground level Small rooms
connected by hallways

Other related approaches
Hybrid

Approach [27] Compositional PCG: ASP
and evolutionary search

ASP constraints,
fitness functions - 2D dungeon -

Generative
Grammar [28]

Rhythm-to-actions-to-
geometry
grammars

Path, rhythm,
objects, critics Player-based rhythm 2D platformer level

Combination of
premade level

segments
Occupancy
Regulated
Extension

[29] Position-based combination
of level chunks

Chunk library,
mixed-initiative

Chunks contain
game-related items 2D platformer level Combination of

premade level chunks

Real-World
Data [30] Bayesian network trained

with real data

# of rooms, sizes,
distances, style of

the building
- 3D residential

building layout
Varied residential
building models

VIII. DISCUSSION

As surveyed in the previous sections, there are many ap-
proaches that can be applied to procedural dungeon generation.
Even for a specific domain as dungeon levels, no single
approach stands out to generate all possible types of dungeons.
The existence of such a variety of methods demonstrates
that dungeon generation typically involves multiple distinct
requirements. Table 1 provides an overview of the methods we
surveyed. The variety on dungeon generation strategies can be
observed in the columns for the Approach, Output types and
Variety of results.

Efficiently generating dungeons on-line, as the player ad-
vances through them, is still a largely unexplored problem.
In reality, the nature of a dungeon might actually discourage
this: a dungeon typically works as a (narrative) progression
towards a fixed final goal at its end (e.g. a boss, important
item or exit in its final room). However, we believe there are
still interesting open research questions in on-line dungeon
generation, including for example, generating the intermediate
spaces between some entry and exit spaces, as the player
advances through the dungeon.

From Table 1, we can identify the less investigated challenge
in dungeon generation: 3D content, which is considered in just
two proposals [9], [26]. Because they depend on a particular
game, both methods are ad-hoc solutions, focused on mapping
their representational model to a 3D geometric level. Still, the
results of these methods indicate that 3D-generated dungeons
are still far from designer-made dungeons. An interesting

future direction to improve upon this limitation is to consider
gameplay-based control not only for the representational model
generation [9], but also for the geometric level creation,
including e.g. decorations or ambiance effects.

Apart from on-line generation and 3D content, which remain
open challenges, we can identify some useful common practices
in procedural dungeon generation. For example, a stepwise
approach is adopted by Dormans [8], [20], Hartsook et al.
[21], and Merrel et al. [30]. A high level input is gradually
transformed into a refined result, where each step increases the
amount of details in the model, possibly using intermediate
representational models. This strategy also favors a mixed-
initiative approach, in which designer and machine work
alongside each other in the generation process. The gradual
steps allow designers to include specific details they want at
different levels of abstraction, without the need to specify the
rest of the details. Even better, they could allow the designer to
act on only one of the levels of abstraction, typically the highest
level, leaving the remaining steps to an automatic generator.
A good example of that is the approach by Mawhorter and
Mateas [29], which allows designers to place geometry chunks
in a 2D platformer level, and then lets the generation process
take care of filling up the rest of the level.

From Table 1, we can also gain interesting insights regarding
current features for controlling the generation process (columns
Control provided and Gameplay features). In general, most
control parameters are rather specific to the technique used, and
it is often non-intuitive what adjusting a parameter will mean
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for the generated model. Cellular automata and constraint-
based approaches use a straightforward control mechanism
over their algorithm’s low level parameters, thus requiring a
full understanding of the generation process. For designers
to control them in a meaningfully way, they always need to
explicitly map that understanding to gameplay-related goals
(e.g. how does room adjacency better support the designed
mission).

As for genetic algorithms, the variety of generated maps
greatly depends on the fitness function. Fitness functions do
control the generation process, but understanding which fitness
function to use requires considerable knowledge about the
entire generation process: it is not very intuitive, specially from
a gameplay perspective. Liapis et al. [25] have made some
significant contributions in this regard by not only proposing
more gameplay-based fitness functions, but also allowing for
a mixed-initiative approach, based on designer sketches. The
genetic algorithm by Hartsook et al. [21] also allows a mixed-
initiative approach, in which a story guides the initial map
generation process, so that the fitness function is not the
exclusive control mechanism. This gameplay-based layer of
story control is added on top of the fitness function, allowing
for a more meaningful control of generation.

The story-based approach of Hartsook et al. [21], the mission-
based method of Dormans [8] and the gameplay-grammar
approach of van der Linden et al. [9] are closer to providing a
richer gameplay-based PCG control. By encoding and capturing
the mapping between gameplay data and space generation, they
(i) relieve designers from having to regularly deal with that
mapping, (ii) offer a control vocabulary closer to the designers’
way of expressing their intent, and (iii) provide an intuitive
basis for generating more meaningful and diverse content.

Further extending this type of control still remains an
interesting challenge. Beyond missions, player actions and
story, further gameplay-based control methods could include,
for example, detailed data on the player performance or skills,
an important gameplay concept in adventure games and RPGs.
The more PCG becomes dependent on gameplay, the more
apparent it becomes the need for encoding some mapping
between content and gameplay data in a generic way. One
such encoding mechanism is the use of object semantics,
i.e. additional information about game content, beyond its
geometry. For dungeons, richer gameplay-related semantics
could help support more powerful PCG methods. This was,
for example, combined with the gameplay grammar approach
mentioned above [9], where player actions are associated with
the type of content that can enable their execution. Still, it
would be very interesting to investigate its reverse, i.e. enriching
game content with the knowledge on which player actions it
can enable. This would likely help in generating even more
meaningful dungeons. Such gameplay semantics has previously
been applied to the procedural generation of game worlds [13],
[31]. Another good example of the use of object semantics is
the work of Merrel et al. [30], where known room functions
and their interrelations are used, leading to more meaningful
floor layouts being generated.

IX. CONCLUSIONS

Dungeon levels for adventure games and RPGs are probably
among the few types of game worlds that have been generated
very successfully in the past by applying PCG methods.
However, procedurally generating a dungeon is a large and
complex problem, and each of its stages has multiple possible
solutions.

In this paper, we surveyed research on a variety of PCG
methods that are suitable for procedural dungeon generation.
From the analyzed papers, we conclude that a variety of
different PCG methods and dungeon types can already help in
achieving some designer’s requirements. These methods are
fast enough, in the sense that their procedural generation is
faster than creating the dungeon content manually, thus leading
to spare time and money in the game development process.
As discussed in Section VIII, real-time performance is not
essential and, as such, dungeon generation can benefit from
the advantages of all PCG methods that are not appropriate
for on-line generation.

We found that there is a wide diversity in the generated
results. This happens not only for similar requirements within
a certain method, but mostly among different PCG methods,
which lead to a wide array of dungeon types and topologies.
We also observe that gameplay-based control is now being
successfully investigated, e.g. using missions, stories, player
actions or even player models to control PCG. This, in turn,
provides a significant basis for games to automatically adapt
to their players.

We conclude that the most promising challenges lie in the
generation of complete dungeons for 3D games, preferably
with extensive gameplay-based control. As discussed in Section
VIII, current achievements show that these research goals are
possible, although there are still quite some open challenges
ahead. We believe that dungeon generation is a privileged
PCG domain able to yield substantial results with a moderate
research investment, eventually contributing to bring PCG into
mainstream game development.
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