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Abstract 

There is an increasing demand to improve the procedural 
generation of game levels. Our approach empowers game 
designers to author and control level generators, by 
expressing gameplay-related design constraints. Graph 
grammars, resulting from these designer-expressed 
constraints, can generate sequences of desired player actions 
as well as their associated target content. These action 
graphs are used to determine layouts and content for game 
levels. We showcase this approach with a case study on a 
dungeon crawler game. Results allow us to conclude that 
our control mechanisms are both expressive and powerful, 
effectively supporting designers to procedurally generate 
levels. 

Introduction  

It would be great if computer-generated levels could also 

be somehow designed. Procedural content generation 

(PCG) concerns itself with the algorithmic creation of 

content. The potential benefits of using PCG in games are 

already well established: (i) the rapid reliable generation of 

game content (Smith and Mateas 2011), (ii) the increased 

variability of the generated content (Hastings, Guha, and 

Stanley 2009; Smith et al. 2011), and (iii) its use to support 

player-centered adaptive games (Lopes and Bidarra 2011; 

Yannakakis and Togelius 2011). However, these benefits 

highly depend on an essential feature of any generative 

method: the degree of control over the generator. 

 Proper control over generative methods ensures that the 

created content contains the features designers envision. In 

other words, control determines what a generation 

algorithm can and cannot design. Therefore, the lack of 

intuitive control over generators can partially explain the 

absence of procedural generation in commercial products 

(Smelik et al. 2011). 

The aim of this research is to improve on this control, 

and particularly, to find out how designers can use 
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gameplay as the vocabulary to control the procedural 

generation of game levels. We argue that the geometry, 

topology and content of a game level should mostly follow 

from the specific ways in which a player can interact with 

a game (gameplay), and not the other way round. In this 

paper, we propose a generic method for designing 

procedurally generated levels by specifying their expected 

gameplay. A gameplay grammar, resulting from designer-

expressed constraints, generates graphs of player actions, 

as well as their associated content. This action graph can 

be then used to determine a game level layout.  

 To showcase our method, we apply it to a specific form 

of levels: dungeons. These are a type of game level often 

encountered in Role Playing Games, and mostly consist of 

sequences of challenges in enclosed space structures (e.g. 

caves, cellars). Dungeons are of particular interest since 

they heavily rely on player-centered gameplay. In contrast, 

in more open and active game levels (e.g. cities), player 

interaction is just one type of the many events occurring. 

In the next section, we survey previous work on 

procedural level generation. The following two sections 

introduce our method. First, by proposing our gameplay 

grammar and then by discussing its integration in an 

existing game. The subsequent section discusses results 

and evaluation of our control method, before conclusions 

are outlined in the final section. 

Related Work 

Research in the procedural generation of game levels has 

advanced significantly. Most related work has a focus 

other than effective gameplay-based control over 

generative methods. Johnson, Yannakakis, and Togelius 

(2010) use the self-organization capabilities of cellular 

automata to generate natural and chaotic infinite cave 

levels. For platform games, Mawhorter and Mateas (2010) 

propose a mixed-initiative approach, where level chunks 

are assembled to generate level sections in between 

manually designed ones. Search-based evolutionary 



Action 1: Acquire key 

Sub-actions: Kill an enemy → Loot key from body 

 
Action 2: Enter locked chamber 

Sub-actions: (Acquire key → Unlock related door → Move 

through doorway) || (Climb on roof → Enter chimney) 

 

algorithms were investigated for the generation of game 

levels. In one example, Valtchanov and Brown (2012) use 

their fitness function to optimize topology generation, by 

specifying a strong preference for dungeons composed of 

small, tightly packed clusters of rooms, inter-connected by 

hallways. Roden and Parberry (2004) proposed a pipeline 

for generating underground levels. The authors also use 

constraints to control graph (level) generation. However, 

their constraints directly relate to the topology and 

geometry of a level, and not to gameplay. 

For our purposes, gameplay-based control over 

generative methods is more interesting and relevant, as it 

has allowed player-based rhythm, game narratives and 

game missions to steer level generation. Smith et al. (2009) 

propose a two-layered grammar-based approach to 

generate platform levels. Player actions (like jumping) are 

also used, but only to define desired interaction rhythms, 

which then constrain level generation. Hartsook et al. 

(2011) use a genetic algorithm to create 2D role playing 

game worlds. The initial genetic representation captures 

linked narrative events and the fitness function optimizes 

correct sequencing. This way, narratives that are 

meaningful to the player steer the generation. 

Dormans' (2010, 2011) work on grammars to generate 

dungeons shares most similarities with our research. 

Missions are generated through a graph grammar, 

representing sequential player tasks. This mission graph is 

then used by a shape grammar to create a corresponding 

game space. Recipes are created by designers to instruct 

the generator how to re-write grammar rules. Our generic 

approach aims for a wider range of application, to both 

games and genres, than done before. The main distinct and 

novel contributions are: (i) tasks can be created from 

scratch, with associated game content, (ii) parameters to 

control the generative grammar can be freely specified and 

manipulated, and (iii) additional spatial relationships, 

beyond “key-lock” pairs, can be specified and controlled. 

Gameplay Grammars 

Typically, the geometry and content of a designed game 

level follow from gameplay requirements, not the other 

way round. This happens because gameplay naturally 

determines which unique content is required, whereas 

content can be ambiguous as to which gameplay it sustains. 

Optimizing content to match gameplay is more natural, 

since it is more appropriate in the level design setting.  

 Our approach allows designers to author procedurally 

generated levels, empowering them with intuitive control 

over the generative methods. Control is realized a priori, 

by specifying all the design constraints, expressed in a 

gameplay design-oriented vocabulary. Player actions to 

perform in game (e.g. fighting), their sequencing, 

relationships and content (e.g. fighting a dragon) can be 

expressed as (design) constraints. These designer-authored 

constraints directly result in a generative graph grammar, 

i.e. a gameplay grammar, and multiple grammars can be 

expressed through different sets of constraints. A grammar 

is thus tailored by a designer to fit a specific game. It is 

able to generate graphs of player actions which 

subsequently determine layouts for game levels. For each 

generated graph, specific content should be synthesized by 

following the graph’s constraints, for example, by placing 

in a game level the objects required by each action, in the 

appropriate sequence. 

Expressing Design Constraints 

In our grammar-based method, designers author level 

generators by expressing their design constraints, specified 

as player actions, their relationships and related content. A 

player action, also considered by Smith et al. and 

Dormans, describes gameplay by inherently indicating 

what a player can do in a level. There is no universal set of 

actions, so for each game, designers have to specify their 

own. Constraints were implemented into Entika (Kessing, 

Tutenel and Bidarra 2012), a semantic library editor used 

to express semantic attributes and relationships as 

constraints to layout solving.  

 Individual player actions are specified as a verb and a 

target, e.g. kill a dragon. Targets typically relate to game 

content, e.g. the dragon in kill a dragon. Content refers to 

the objects, non-playing characters (NPC) and their 

relationships. Entika allows you to directly specify this 

target as a semantic entity linked to content (e.g. a 3D 

model, a procedure). This can even be expressed in more 

abstract terms, like other constraints to be solved later (e.g. 

“some animal with scales”). 

 Player actions are most interesting and useful if they are 

considered in logical groups and not individually. 

Sequences of actions, and even branching sequences 

(representing player choices), can capture more complex 

and intricate gameplay. As such, player actions can also be 

grouped and specified as a compound, where the whole 

composition of sub-actions is represented by a single 

name. For example, as seen below, acquiring a key can be 

fulfilled by killing an enemy and then looting the key from 

its body. Furthermore, each sub-action can itself be a single 

or compound action. Sequences of actions can also include 

branching, to capture player choices or alternatives 

(resembling the logical ‘or’ operator, ||). Below we see an 

example, with two alternatives of action sequences to 

fulfill entering a locked chamber. 

  

 

 

 

 



Action 1: Acquire key 

Sub-actions: 

 Option 1: if Difficulty == 25 and Length > 25 

   1.1: Kill an enemy → Loot key from body 

   1.2:  Distract enemy → Steal key  

 Option 2: else      

     Look under doormat → Pickup key 

     

 

Additionally, there may exist totally disjoint alternatives 

of fulfilling a compound action, which depend on designer 

choice, rather than on player choice. In other words, at 

design and generation time, and not at game time, several 

options for fulfilling a compound action may be specified. 

Selecting one option among them (i.e. re-writing that 

player action) can increase variability and flexibility. This 

selection can be done randomly or controlled by the 

designer. For the latter, designers steer selection by (i) 

making re-writing options dependent on given conditions, 

and (ii) by specifying, for each generation, a set of global 

parameter values to evaluate against those conditions. For 

example, and as shown below for re-writing Acquire key, if 

values for Difficulty and Length are met, then option 1 is 

chosen, with random selection between option 1.1 and 1.2. 

  

 

 

 

 

 

 

 Expressing all these design constraints enables designers 

to author how gameplay should progress in a level. To 

increase this expressive power, we defined two types of 

explicit relationships: (a) co-located actions (e.g. killing an 

enemy, and looting a key from his body), and (b) 

semantically connected action pairs (e.g. a key and its lock, 

like in Dormans’ work).  

 Action co-location is a special example of spatial 

relationships. Game spaces refer to the bounded areas in 

which the player can navigate, and in which the content is 

located. Typically, determining spaces is highly game 

dependent. Furthermore, the link between spaces and 

actions can be unclear (a dragon can be killed in different 

spaces). Therefore, our approach does not include 

constraints on the spaces where actions (and their target 

content) should occur. However, this does not preclude 

that, as mentioned above, some actions must be together in 

the same space, whatever that space may be. For example, 

two individual actions targeting the same object instance. 

This object exists in a single space, and therefore those 

actions are also required to be in that same space (e.g. 

killing a dragon and looting a dragon). This is why the co-

location of two individual player actions can be expressed 

as a constraint.  

Graph Generation 

Once a designer has expressed all design constraints, they 

result in an instance of a gameplay grammar, able to re-

write a set of initial action(s) into an action graph. Nodes in 

that graph represent (groups of) player actions and edges 

indicate their order. Eventually, this information in the 

graph will determine a game level layout. 

 Different sets of designer-specified constraints result in 

distinct gameplay grammars, which is a first way of 

controlling generation. Additionally, generation can also be 

controlled by setting the initial parameter values of a single 

grammar which, as explained before, will steer the 

selection of the corresponding re-writing options. 

 The initial graph is composed of a set of start action 

node(s). The generative algorithm re-writes compound 

actions into a sub-graph of linked actions. It takes the 

following steps while a single compound action still exists: 

1. Select the first compound action in the graph 

2. Select an option based on parameter values 

(randomly, if no conditions are set) 

3. If needed, randomly select sub-options 

4. Convert the selected rewriting option to a graph of 

sub-action nodes (sub-graph). 

5. Add the compound action as the parent of all sub-

graph nodes 

6. Replace the compound action with the subgraph. 

Connect all the predecessors of the compound action 

with the first nodes in the subgraph. Connect all the 

successors of the compound action with the last nodes 

in the subgraph. 

 The next step is to group actions into the same space, i.e. 

solve co-location of actions. New group nodes are created 

from merging the individual nodes which must be co-

located. These new nodes are groups of actions which 

represent a space. Aggregating nodes has some 

particularities. If either or both nodes were already in a 

group, all nodes are merged into a new group. Merging 

must occur because part of a longer co-location sequence 

may be cut in half due to branching combined with depth-

first recursion. If the two nodes to be merged exist in the 

same tree level (they share a parent or a child node), more 

duplicates of one of them might theoretically occur in that 

same level. The algorithm inspects all the stored parent 

compound actions (step 5 above) which originated each 

node. Merging only occurs within these compound actions 

hierarchies. Finally, semantically connected pairs are 

marked by inspecting all actions and backtracking their 

compound action parent-hierarchy. Figure 1(a) displays an 

example of a generated action graph, where a co-located 

group node for Fight Melee Enemy and Loot Key can be 

observed. 

 With this generative algorithm, multiple grammars and 

parameters can generate a variety of action graphs. These 

not only indicate the sequence of actions that must occur 

in-game, but also other requirements as e.g. their target 

content, the groups where some actions must occur in the 

same space, as well as semantically connected action pairs. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case Study: Dwarf Quest 

With the approach described so far, designers can express 

gameplay-related constraints which ultimately result in 

action graphs describing game level requirements. This 

approach can be considered generic, in the sense that, once 

created, player actions and related design constraints can 

be manipulated across different games. Furthermore, 

generated graphs can even be made re-usable and game 

independent as long as the target content of each action is 

abstract and ‘portable’ enough. 

 However, the full realization of our approach still needs 

that such abstract action graphs be converted into an actual 

specific game level. For use in a game, those action graphs 

should be integrated with a dedicated level generator. 

Designers working with Entika and player actions still 

need algorithms to actually synthesize levels. Given the 

information stored in the graph, these algorithms can be, 

for example, simple layout solving techniques (Tutenel et 

al. 2010).  

For our case study, we used Dwarf Quest1, a typical 

dungeon crawler game in which the player explores 

dungeons, fighting enemies, solving key-lock challenges, 

finding treasures and boosting skills. Dungeons are 

composed of rooms, in which the main content is located, 

and hallways, connecting rooms. 

 

                                                 
1(Wild Card Games) http://www.dwarfquestgame.com/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We implemented a Dwarf Quest generator, which 

converts action graphs, generated by a gameplay grammar, 

into dungeon levels. Several Dwarf Quest features were 

essential for constraining this dedicated generator. First, 

the rooms and hallways have to be orthogonally placed on 

a 2D grid, with a maximum of four connections (doors) per 

room. Second, due to game engine and camera reasons, 

rooms cannot be made too large, implying that spaces 

cannot hold too many actions. Full details on the 

algorithms of the dedicated generator are outside the scope 

of this paper and can be found elsewhere (Van der Linden 

2013). 

The Dwarf Quest generator takes an action graph as 

input and yields a room graph. The algorithm takes the 

following steps:  

1. space assignment converts nodes of the action graph 

into rooms and edges into hallways;  

2. layout pre-processing converts the graph into a planar 

graph (without overlapping edges) and reduces edges 

per node to four by adding new intermediate nodes 

(i.e. rooms); 

3. layout solving converts the planar graph into an 

orthogonal graph mapped onto the 2D grid map; 

4. layout post-processing still needs to optimize the 

resulting layout. As with other orthogonal planar 

graph drawing techniques, excessively long edges 

(i.e. hallways) are a side-effect. Long hallways are 

then compressed, and rooms added into the ones 

which cannot be further compressed. 

 

Fig. 1. (a) Graph of player actions for an example generated dungeon, (b) Dwarf Quest dungeon layout, generated for (a), (c) 'Loot 

Treasure' room, generated for (a), (d) another (unrelated) example of a dungeon layout (colors are only decorative).  

(a) 

(c) 

(b) 

(d) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, the geometry of rooms, hallways, objects and 

NPCs is actually created and placed. Dwarf Quest’s 

designer had already randomly generated levels as a basis 

which he then manually finished for inclusion in the game. 

We extended this generator with our control layer. 

Predefined room configurations indicate size, entrances 

and possible object locations. Configurations are selected 

according to the original action graph, matching the target 

content of an actions node (i.e. the content associated to 

that action) to a possible room configuration. Room 

configurations instruct the generator to instantiate rooms 

(geometry, lights, doors) and content (objects, and NPC) in 

the location defined with the layout solving steps. To 

maintain player immersion, decorations, thematically 

related to the created objects, are instantiated. Finally, 

semantically connected pairs are marked so the game 

engine knows how to deal with them, so that e.g. a lever 

actually lowers a closed bridge. Figure 1 displays examples 

of generated dungeons (b, d), and one of their rooms (c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results and Discussion 

The aim of this research is to provide a more intuitive 

control over procedurally generated levels, through a 

gameplay-based vocabulary. Before evaluating our 

approach with designers, we sought to measure the 

responsiveness and effectiveness of our generation control 

mechanisms. For this, we analyzed the expressive range of 

its generative space (i.e. the variety of generated levels and 

the impact of changing parameters), as introduced by 

Smith and Whitehead (2010). 

The generative space can be shaped by our control tools, 

i.e. the gameplay grammars and the parameters created by 

designers (in this case for Dwarf Quest). We represent the 

generative space by a 2D histogram, where the axes are 

defined by the range of metric scores measuring level 

features. This allows to view peaks of commonly created 

content and possible holes in the generative space (Smith 

and Whitehead 2010). As metrics we use graph complexity 

and danger, as we believe that these indicate important 

gameplay features of a designed Dwarf Quest level. 

Fig. 2. Histograms for graph complexity and danger, measured for 1000 generated dungeons. Graph complexity is the number of 

sub-graphs in the final level layout. Danger is the total amount of damage points a level can inflict. Results are displayed for: (a) a 

grammar without parameters. Another grammar was created with control parameters for dungeon length and challenge difficulty, 

expressed in a designer-created scale (0 to 100). Results are displayed for parameter inputs of, respectively, length and difficulty: 

(b) 12-48 and 20-50 (c) 40 and 100 (d) 70 and 40 (e) 90 and 5-25 (f) 90 and 60. As an indication of performance, the average 

processing times for the levels generated in (b) and (f) are 1 and 2 seconds, respectively. 

(f) (e) (d) 

(c) (b) (a) 



Graph complexity indicates the structural complexity of 

the generated level. It captures the duration of the level, as 

well as the amount of choices a player can face. Previously 

used for molecular complexity in chemistry (Bertz and 

Sommer 1997), for our purposes, graph complexity is the 

number of subgraphs of the final rooms graph. 

Danger quantifies the capacity of the whole level to 

inflict harm to the health of the player character. Like in 

Smith et al., it captures how the level can potentially kill 

players. We have based danger on Valve’s game intensity 

metric (Tremblay and Verbrugge 2013), which measures 

the amount of player health lost during two intensity 

updates. Danger is an estimate of the expected game 

intensity for a generated level. For our purposes, it is 

calculated by summing the average amount of damage 

dealt to the player, for all damage-dealing components. 

The histograms in figure 2 show the measurements 

performed on dungeons from two different grammars. For 

each histogram, 1000 dungeons were generated. Figure 

2(a) plots generated levels from a first grammar, featuring 

no parameters. This grammar yields a dungeon with a 

simple structure, each challenge belonging to the harder 

segment of Dwarf Quest’s challenges spectrum (e.g. fight a 

boss). The resulting dungeons have a rather linear 

structure, but do pose a challenging experience. With such 

a grammar, designers can control all generated levels to 

these features while allowing for some variation, as seen in 

the figure. This shows they can create highly specialized 

level generators, to be used, for example, in games where a 

very consistent gameplay experience is desired. 

Figures 2(b) through 2(f) show levels generated from a 

second grammar, featuring control parameters. The 

parameters dungeon length and challenge difficulty were 

specified for this grammar, with a designer created scale 

ranging from 0 to 100. As explained before, parameters are 

added to compound player actions to constrain which 

options are available to rewrite them. In this second 

grammar, higher length values correspond to rewriting 

options with longer action sequences. And challenge 

difficulty values correspond to the difficulty a designer 

perceived for that option. As outlined in figures 2(b) – 2(f), 

different input parameter values were used to generate 

levels. This resulted in the following dungeon features: 

(2b) a simple structure and minor danger, (2c) a simple 

structure and very high danger, (2d) a medium complex 

structure and medium danger, (2e) a complex structure and 

low danger, and (2f) a complex structure and high danger. 

Parameters add flexibility to this second grammar, 

allowing fine-grained control over dungeon features. The 

grammar can potentially create any level in the generative 

space visible in figures 2b through 2f always with 

abundant variation, as observed. Parameters add control 

over what and when level generators can specialize in. This 

functionality can be used by designers: (i) as a design tool, 

to select a number of generated levels with specific 

features and include them in their game, (ii) to give away 

some of that control to players, where the parameters can 

be used as game options, and (iii) for adaptive games, 

where the parameters are derived by some algorithm, e.g. 

based on some player model (Lopes et al. 2012). 

Conclusions and Future Work 

We proposed an approach that enables designers to 

exercise fine-grained control over the procedural 

generation of game levels by means of a gameplay 

vocabulary. With our approach, procedurally generated 

levels can be designed by specifying a gameplay grammar, 

expressed in terms of design constraints, which ultimately 

steer content generation. 

 Through our case study, we conclude that these design 

constraints are expressive enough, able to cover a wide 

generative space of possible Dwarf Quest game levels. 

Furthermore, we conclude that this degree of control is 

powerful enough to precisely steer generation into distinct 

sets of desired Dwarf Quest level features. This control 

opens up a variety of possibilities of new game design 

applications. We believe these conclusions hold for other 

action games beyond our case study. 

As for future work, our next step is to evaluate how 

intuitive this method is for game designers, by conducting 

user studies. On a longer term, we consider our approach 

eligible for adaptivity, where level generation is based on 

the performance of the player. Our grammar parameters, 

once specified by the designers, can be adjusted between 

generation sessions. As such, the performance of the player 

in a single dungeon may determine the parameter values 

for the next generated dungeon. Our focus on gameplay, as 

the vocabulary to design procedurally generated levels, 

supports control over generated interactive content. 

However, it does not fully support control over all aesthetic 

content (e.g. decorations). We believe that storytelling 

would provide an interesting extension atop our action-

based vocabulary. Not only is storytelling an even more 

natural concept for game designers, but it can also capture 

both gameplay and aesthetic features. 

 In short, gameplay grammar-based level generation is 

already quite expressive and powerful to significantly 

improve the design of procedurally generated levels.  
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