
An Effective Composition Method for Novice Shader
Programmers

Q. Hendrickx
Computer Graphics Group,

Delft University of
Technology, The

Netherlands

R. Smelik
Modelling, Simulation &

Gaming Department, TNO,
The Netherlands

R. Bidarra
Computer Graphics Group,

Delft University of
Technology, The

Netherlands

ABSTRACT
Shader programming has become an increasingly impor-
tant and complex task in computer graphics. Because of
the in depth knowledge required to write effective and ef-
ficient shader programs, novice users are finding it increas-
ingly harder to construct these programs manually. As a
result, several tools have been developed to assist develop-
ers in producing shader programs more efficiently and easily
than writing them with traditional text-based editors. Graph-
based composition tools have been proposed as an attractive
alternative, as shader programs are intuitively represented as
a graph structure. However, such tools do not usually exploit
the structural and semantic information implicitly available
in the graph to assist building, understanding and debugging
shader programs.

This paper presents a composition method that allows novice
shader programmers to quickly and interactively proto-
type shader programs. This method takes advantage of
a graph based composition, allowing developers to design
their shaders at various levels of abstraction, effectively pro-
moting node reusability. Furthermore, consistently building
upon the graph’s structure and semantics, the method signif-
icantly eases shader program debugging and provides very
helpful insight into its workings, as demonstrated by the re-
sults of the open source prototype system implemented.

It is concluded that this method provides an efficient and
very intuitive alternative for developing shaders. It is there-
fore particularly appropriate for novice shader programmers
and students.

Author Keywords
Graphics shaders, Novice users, ShaderComposer

ACM Classification Keywords
I.3.4 Computer Graphics: Graphics Utilities

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05...$10.00.

INTRODUCTION
Starting with the introduction of programmable shaders in
2001, developers of graphics applications are given more
and more freedom to customize the rendering pipeline.
However, developing shaders is often complex and cum-
bersome. Debugging shader code is hindered by the fact
that, without specialized tools, it is not possible to introduce
breakpoints, step through the code, or inspect values of lo-
cal variables. Therefore, the correctness of a shader program
typically has to be assessed by inspecting its visual output.
Furthermore, the parallel execution of shaders makes it diffi-
cult to predict the performance impacts of specific changes.

Most of the time, professional shader programmers are ex-
perienced enough to overcome most of the aforementioned
issues. However, when someone is just starting to learn writ-
ing shader programs, these problems can become major ob-
stacles. Often, students will not yet be familiar with the par-
allel execution and the GPU rendering pipeline, hindering
them to learn the principles behind specific shading effects.

To solve this problem, several tools have been introduced
that aid developers in designing shaders. For example,
AMD’s RenderMonkey and nvidia’s FX Composer provide
real-time previews of the shader’s output, while editing the
code [2] [7]. However, these tools are still based on a text-
based editor, requiring the developer to directly write shader
code. While current high level shader languages are some-
what based on the C programming language, there are a lot
of important differences that beginners will have to learn be-
fore they are able to write correct and efficient shader code.

A first attempt to increase the efficiency of writing shader
programs was made by [4]. It introduced a system in which
shader programs are represented in a structure called a shade
tree. Every node in this shade tree represents an operation,
the edges between the nodes are parameters. Every node
produces one or more output parameters and can use zero
or more input parameters. This model has proven to be very
adequate for describing shader programs, as even today most
shader programs can still fit into this model. However, [4]
does not construct the shader program as a tree, instead the
tree is generated based on a written shader program. This is
different in [1], where a graphical implementation of a shade
tree is introduced. This allowed users to construct shader
programs through a simple user interface without requiring

1

them to learn a specific shading language.

A somewhat different, but also very intuitive, visual repre-
sentation of a shader is a directed acyclic graph. Inputs,
mathematical operations, texture sampling and outputs are
represented as nodes and the edges represent the flow of con-
trol. The editor of the popular game engine Unreal provides
such a graph-based editor for defining material shading [3].
This allows designers to develop shaders in an accessible
way, without writing a single line of code. However, this ed-
itor does not take full advantage of the graph’s structure and
semantics, e.g. to aid the designer in debugging or optimiz-
ing the shader.

In [6] a similar system is introduced but its focus is directed
towards high-level features such as shadows and reflection.
By inspecting the graph, connections between nodes are au-
tomatically inferred, ensuring that the generated code will
be free of type-mismatches. However, no attempt is made
to assist the inexperienced user in debugging the shader or
providing information about intermediate result values.

A shader development tool specifically designed for use by
non-programmers is introduced in [5]. The intended target
users are artists and students. In a test study the response
toward this tool was positive, with users indicating that it
allows them to quickly create different shaders and receive
good visual feedback.

The composition method presented here, and its prototype
implementation, improve on the existing methods by utiliz-
ing the graph’s structure and semantics for two novel goals:
(i) it provides great insight into the inner workings of graph-
ics shaders and, is therefore a valuable learning tool, and (ii)
it improves the designer’s efficiency, significantly shortening
the iteration cycles of shader development.

SHADER COMPOSITION METHOD
A graph structure is a natural representation for visual shader
programming. In this section we will show how this struc-
ture not only provides an intuitive visualisation of shader
flow, but gives many opportunities for exploiting its structure
and semantics to help designers writing shader programs.

In our method, shader programs are represented as a directed
acyclic graph. Each node in this graph can have multiple
input and output variables, which provide the connection
points for the graph’s edges. The type of node defines an op-
eration that computes the output variables, based on its input
variables. Example operations include a dot product, value
clamping or a texture sample fetch. By connecting outputs
of nodes to inputs of other nodes we can compose graphs
that define complex operations. A node with no inputs can
represent either a constant value or a per vertex varying vari-
able (passed on from the vertex shader). The result of the
shader program is represented by the output node; typically
this value defines the fragment’s colour.

A common pattern in programming is abstraction, i.e. pro-
viding a simple interface to complex functionality. This pat-

Add
A
B : AmbientColor

A+B

Multiply Add
A : LightColor
B

A(B+C)CPower
A
B : SpecularFactor

A^B

Dot Product
A : LightVector
B : NormalVector

A dot B

Dot Product
A : Re�ectVector
B : EyeVector

A dot B

Phong Lighting

Phong Lighting
LightVector
NormalVector

Color

Re�ectVector
EyeVector
SpecularFactor
LightColor
AmbientColor

Figure 1. A phong shading fragment designed as a graph. A collapsed
node based on this sub-graph would expose the connections indicated
in green as input parameters and the connections indicated in red as
output parameters.

tern is also very useful in shader development. For example,
although one might want to use the phong lighting model in
a shader, often one will not be interested in its specific im-
plementation. In our method, we allow for this kind of ab-
straction using the notion of abstract nodes. A sub-graph that
contains nodes whose input and output variables have not all
been connected can be collapsed into a new type of node that
exposes all those input and output variables. This idea is il-
lustrated in Figure 1, where a sub-graph containing several
operations is collapsed to form an abstract Phong Lighting
node. A designer needs only to supply the proper inputs for
the Phong Lighting node to obtain its output, without any
concern for of its implementation. It is possible to go further
with this abstraction, effectively constructing a hierarchical
node tree, where high-level nodes are composed of several
connected abstract nodes.

For shader programming, it would be helpful to be able to
inspect values of local variables and intermediate results.
However, in a text-based environment, designers only have
access to the shader’s final output. We provide the designer
with a real-time view of the intermediate result ouput by any
graph node. Continuing the phong lighting example, Figure
2 shows relevant intermediate outputs of the phong shader,
composed as shown in Figure 1. In debugging, a designer
could use this feature to quickly identify which part of a
shader is not working correctly.

It is straightforward to implement this inspection functional-
ity, using the shader graph structure. For this, we clone the
original graph several times, and for each of these graphs we
directly link a different intermediate node’s output to the out-

2

Figure 2. Different intermediate outputs of a phong shader that can be
used to debug and gain new insights in the working of a shader.

put node. Then, we compile the resulting shaders and render
the scene for each of the different shaders. The resulting im-
ages provide helpful insights into the workings of the shader.
Sampling specific pixels from these images allows designers
to debug the shader in even more detail.

Often one would like to compare different variations of the
same shader, such as slight changes in some constant or a
different approach at calculating a specific value. By keep-
ing track of the shader version history, we allow the designer
to quickly compare several versions of the same shader. For
this, we store a screenshot and a performance analysis for
each version of the shader, thus allowing designers to make
trade-offs between render quality and performance. In a
graph structure, edit actions occur at a high level, making
it easy to identify only the valid versions of the shader.

SHADER COMPOSER IMPLEMENTATION
The shader composition method described above was im-
plemented in a stand alone design tool, Figure 3 provides an
overview of its GUI. In the top-left area, the shader graph can
be composed. Using the available tabs it is possible to in-
spect the shader in different representations, such as XML or
as compiled shader code in one of the dominant languages.
At the right hand side there is an interactive preview that up-
dates after any changes made to the shader graph. At the
bottom we visualize the version trail tree; selecting a previ-
ous version reverts the shader to this previous state.

It is possible to debug the shader for a specific pixel by
clicking in the shader preview window. The output value
of this pixel is shown underneath the preview window in a
text based format. Additionally, it is possible to check the
value of this pixel at each connection between nodes in the
graph. In effect, this provides an instant debugging expe-
rience that is comparable to step by step debugging that is
available when using regular programming languages. This
feature allows users to quickly trace through the computa-
tions and identify any problems.

As opposed to inspecting a specific pixel of the shader output
it is also possible to view all pixel values at a specific loca-
tion in the graph. By hovering over a connection between
two nodes, a popup window opens that shows the output
of that particular node. This popup window can be pinned
so that it remains visible even when the cursor is no longer
hovering over the connection. Because the output type of a
node isn’t always in the visual range, we sometimes have to
convert it before showing the output. For example, a single
channel float value is converted into a grayscale representa-

Figure 3. GUI of the developed shader tool. A live preview is visible in
the top right corner, the bottom panel is used to visually track changes
made to the shader.

tion and boolean variables are converted into black and white
values. These preview windows are very helpfull when try-
ing to grasp the meaning of intermediate shader variables
(e.g. specular factors or view space normals).

Whenever changes are made to the shader graph it is possi-
ble to create a new tag. This will create a new entry in the
version trail at the bottom of the window. Every entry in the
version trail contains a screenshot of the final shader output
and provides statistics about the performance of the shader.
This allows users to compare the quality of different shader
configurations as well as the performance. Especially for
novice users this is an important feature because it is not al-
ways obvious what the perfomance impact of specific opera-
tions on the GPU might be. Sometimes approximations that
sacrifice quality over performance can be the correct choice
in graphics programming.

By clicking on an entry in the version trail it is possible to
revert to a previous version and start editing the shader in a
new branch. This approach uses the idea of version control
systems such as SVN, and extends it with easy comparison
between shaders based on quality and perfomance.

The shader development tool, which implements the dis-
cussed composition method, is open source and can
be downloaded at http://code.google.com/p/
shadercomposer/.

RESULTS
We discuss the results of our composition method using a
real life scenario of a terrain shader. Figure 4 shows a screen-
shot of a terrain rendered using the shader we are about to
discuss. The corresponding shader graph is shown to the left.

Before we start designing the shader graph, we first have
to select the terrain characteristics that influence the terrain
soil type. Here, we use only elevation and slope to keep this
example easy to understand, but this can be extended to a
wide variety of parameters, e.g. the local climate, distance
to a water source, occlusion from the sun or the distance
to urban areas. Next, we determine the terrain soil types.

3

http://code.google.com/p/shadercomposer/
http://code.google.com/p/shadercomposer/

Figure 4. Screenshot of terrain rendered using a shader developed using the proposed composition method. A global overview of the corresponding
shader graph is also shown.

The elevation parameter separates the terrain in two parts:
mountaintops are to be covered in snow, while the valleys are
filled with grass. At steep angles snow will not accumulate
as much as on flat terrain, therefore the slope parameter will
further influence snow coverage, exposing rocky terrain on
steep slopes. Each soil type is modelled in a separate sub-
graph and stored as an abstract node. By combining multiple
detail textures, we can achieve more variation within a single
soil type.

After this, we require a new node to blend these types to-
gether at transition boundaries. A simple linear blend does
not produce convincing results, therefore we create a thresh-
old blending node. The soil type that has the highest weight
will be fully visible, while the other terrain type will not be
visible at all. Before being compared, the weights of both
soil types are slightly perturbed by a Perlin noise texture.
This produces discrete but organic transitions. The idea of a
threshold blending is encapsulated in an abstract node, that
can be saved for reuse in other projects.

CONCLUSION
In order to make shader technology accessible to a much
wider public, better tools are needed which effectively fos-
ter shader understanding and facilitate shader debugging.
With this motivation, we developed the presented graph-
based composition method. The method is innovative in
that it takes advantage of the graph hierarchical composi-
tion, allowing developers to design their shaders at various
levels of abstraction, effectively promoting node reusability:
sub-graphs, or whole shaders, that have been completed and
tested, can be encapsulated in a single node, stored, shared
and freely reused at a later stadium.

Another advantage of this method is that it makes use of
the shader generator to expose the very nature of the shader
graph’s structure and semantics, making it very easy and in-
tuitive to probe the output of any node in the graph and see
the corresponding results. This facility provides very help-
ful insight into shader program workings, and significantly

eases its debugging.

We developed an open source prototype system that imple-
ments this method and demonstrates all its interactive fea-
tures described here. A shader code compiler takes care
of exporting the shader program to the shader language of
choice (e.g. HLSL, CG and GLSL), so that it can be used in
some external application.

From our experiments and test sessions, we can conclude
that this method provides an efficient and very intuitive
alternative for developing shaders. It is therefore partic-
ularly appropriate for novice shader programmers, inter-
ested students, or within the context of introductory graphics
courses.

REFERENCES
1. Abram, G. D., and Whitted, T. Building block shaders.

SIGGRAPH Comput. Graph. 24 (September 1990),
283–288.

2. AMD. RenderMonkey, 2008.

3. Burke, D. A tutorial on creating materials in the Unreal
Editor. Epic Games, 2009.

4. Cook, R. L. Shade trees. In Proceedings of the 11th
Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’84, ACM (New
York, NY, USA, 1984), 223–231.

5. Fitger, M. Visual shader programming. Master’s thesis,
KTH Royal Institute of Technology, 2008.

6. McGuire, M., Stathis, G., Pfister, H., and Krishnamurthi,
S. Abstract shade trees (preprint). In Symposium on
Interactive 3D Graphics and Games (March 2006).

7. Nvidia. FX Composer 2.5, 2008.

4

	Introduction
	Shader composition method
	Shader composer implementation
	Results
	Conclusion
	REFERENCES

