
Integrating procedural generation and manual editing
of virtual worlds

Ruben Smelik
TNO Defence, Security and

Safety
The Hague, The Netherlands

Tim Tutenel
Delft University of Technology

Delft, The Netherlands

Klaas Jan de Kraker
TNO Defence, Security and

Safety
The Hague, The Netherlands

Rafael Bidarra
Delft University of Technology

Delft, The Netherlands

ABSTRACT
Because of the increasing detail and size of virtual worlds,
designers are more and more urged to consider employing
procedural methods to alleviate part of their modeling work.
However, such methods are often unintuitive to use, difficult
to integrate, and provide little user control, making their
application far from straightforward.

In our declarative modeling approach, designers are pro-
vided with a more productive and simplified virtual world
modeling workflow that matches better with their iterative
way of working. Using interactive procedural sketching, they
can quickly layout a virtual world, while having proper user
control at the level of large terrain features. However, in
practice, designers require a finer level of control. Integrating
procedural techniques with manual editing in an iterative
modeling workflow is an important topic that has remained
relatively unaddressed until now.

This paper identifies challenges of this integration and
discusses approaches to combine these methods in such a
way that designers can freely mix them, while the virtual
world model is kept consistent during all modifications. We
conclude that overcoming the challenges mentioned, for ex-
ample in a declarative modeling context, is instrumental to
achieve the much desired adoption of procedural modeling
in mainstream virtual world modeling.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism; I.3.4 [Computer Graphics]: Graphics Utili-
ties—Paint systems; I.3.6 [Computer Graphics]: Method-
ology and Techniques—Interaction techniques; I.6.7 [Simu-
lation and Modelling]: Types of Simulation—Gaming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PCGames 2010, June 18, Monterey, CA, USA
Copyright 2010 ACM 978-1-4503-0023-0/10/06 ...$10.00.

Keywords
virtual worlds; declarative modeling; procedural methods;
manual modelling

1. INTRODUCTION
For three decades now, researchers have been introducing

new procedural methods for generating a variety of types
of content, ranging from textures to complete virtual cities.
All these methods show potential and generate interesting
results. In particular for the topic of virtual world mod-
eling, specific procedures have been proposed for many of
its aspects and features. However, so far these results to-
gether have not resulted in a shift from manual to (semi-)
automated virtual world modeling. There are three causes
as to why this transition has yet to take place: traditional
procedural content generation methods are often complex
and unintuitive to use, hard to control, and results generated
by different procedural methods are not easily integrated
into a complete and consistent virtual world.

In our research, we are addressing these three issues with
an integrated declarative modeling approach, which allows
designers to concentrate on stating what they want to create
instead of on describing how they should model it. Our pro-
totype modeling system implements this approach, providing
a fast and more intuitive way to model virtual worlds, des-
ignated procedural sketching. Designers interactively sketch
their virtual world using high-level terrain features that are
procedurally expanded using a variety of integrated proce-
dural methods. Within this integrated framework, we fit
together the generated content to form a consistent virtual
world, using a consistency maintenance mechanism that auto-
matically manages relationships and conflicts between terrain
features.

With interactive procedural methods, such as procedu-
ral sketching, designers can quickly obtain a virtual world
that matches their requirements on the level of large terrain
features and their relations and connections. However, on
the more detailed level of individual objects, designers will
often want to manually edit and tune the generated results
to fit more precisely to their requirements. Such manual edit
facilities should work well together with procedural genera-
tion methods. This combination, integrated in an interactive

workflow, promises to provide designers with the productivity
gain of procedural methods, while still allowing for a fine
level of user control and flexibility.

We have identified various categories of manual edit op-
erations and their relation to procedural methods. We also
discuss the challenges of bringing these two extremes to-
gether, a topic which has, until now, been unexplored. We
propose and compare several approaches to address these
issues.

Section 2 describes our declarative modeling approach,
with the results of procedural sketching and virtual world
consistency maintenance. Section 3 focuses on manual editing
facilities: the levels of granularity in modeling and the cate-
gories of editing facilities. We present a variety of possible
manual operations. The challenges we foresee in integrating
these operations with procedural generation methods are
discussed in Section 4. We propose several approaches and
discuss possible solutions for these challenges in Section 5.

1.1 Related work
Procedural modeling has been an active research topic for

over thirty years, and has resulted in high-quality results for
specific terrain features, such as landscapes [13], vegetation
[6], roads [9], urban environments [14] and building facades
[12, 7]. However, their industrial application is still limited.
As concluded in our recent survey on procedural methods
[17], traditional procedural methods provide designers with
too little control over the outcome, and typically lack the
interactive workflow of manual modeling systems.

Earlier work in providing designers with more control
resulted in several non-interactive approaches (see, e.g., the
work by Stachniak and Stuerzlinger [21] or Zhou et al. [24]),
in which the elevation map generation is constrained by
some form of user input, e.g. a line drawing indicating a
mountain ridge. With the evolution of the gpu as a device for
general purpose parallel processing, interactive user control
in elevation map generation has become feasible. Schneider
et al. [16] introduce a setup in which the user interactively
edits the terrain by painting grayscale images, which are
used as the base functions of their noise generator. Using an
efficient gpu-based hydraulic erosion algorithm, Stava et al.
[22] propose an interactive way for users to modify terrain
using several types of hydraulic erosion. To provide users with
more control over the exact appearance of mountain ranges,
Gain et al. [8] introduce a sketch-based height-map generation
method in which users sketch the silhouette and bounds of
a mountain in a 3D interface, and the generator creates a
matching mountain using noise propagation. Even more
fine-grained control over the shape of mountains is provided
by the interactive procedural brushing system introduced by
de Carpentier and Bidarra [4]. These gpu-based procedural
brushes allow users to interactively sculpt a terrain in 3D
using several types of noise.

Extensions of traditional procedural methods are also pro-
posed for generating other features, for instance interactively
defining road networks that are used for procedural city gen-
eration. Chen et al. [3] propose interactive modeling of road
networks by using tensor fields that can create common road
patterns (grid, radial, along a boundary) and combine these
in a plausible way. McCrae and Singh [11] present a method
for converting line strokes to 3D roads that are automatically
fit in the terrain. Their system also creates junctions and
viaducts for crossing roads. As city districts and blocks are

typically defined by the road network, Kelley and McCabe
[10] propose an interactive method to generate secondary
roads and house blocks based on the primary roads the user
manipulates. A similar system by de Villiers and Naicker
[5] lets users create a road network and city blocks using
sketch strokes, and interprets a set of sketch gestures that
modify the properties of the city blocks (e.g. population size,
function). Weber et al. [23] present an interactive simulation
system for cities growing over time, by expanding streets in
the city’s road network. An interactive, gpu-based, editing
system for a set of Geographic Information Systems (gis)
vector features is presented by Bruneton et al. in [2].

Commercial virtual world modeling tools typically fall
either in the manual modeling or in the procedural generation
category. However, a noteworthy exception is PixelActive’s
CityScape [15], which allows for hybrid modeling of urban
environments, although it provides a somewhat limited and
narrowly focused set of procedural operations.

The research results cited have been important in advanc-
ing the field of procedural methods towards interactive and
more designer-controlled modeling. However, the presented
methods are very much designed for a specific type of ter-
rain feature, and no trivial way is provided to combine their
results into a complete and consistent virtual world. Fur-
thermore, the problem of interactively combining procedural
generation with manual editing remains unexplored to date.

2. DECLARATIVE MODELING
We believe that it is crucial to provide both procedural and

manual operations in an integrated manner, to allow design-
ers to quickly create the rough layout of a virtual world and
to allow manual refinements to further improve this virtual
world. We have developed an integrated modeling approach,
which aims at combining the strengths of manual and proce-
dural modeling, and provides a more productive and intuitive
workflow to model virtual worlds. This approach lets design-
ers concentrate on what they want to create instead of on
how they should model it, hence it is designated declarative
modeling of virtual worlds [1]. In declarative modeling, de-
signers simply state their intent using intuitive interaction
mechanisms. For instance, they might want a small village on
the banks of a river that runs through a valley encompassed
by high mountain ranges. Using a combination of specialized
procedural methods, this intent can then be automatically
translated to a matching 3D virtual world.

We are developing a modeling framework, called Sketcha-
World, which demonstrates the feasibility of this declarative
approach. Its goals are:

1. to increase designers’ productivity, while still allow-
ing them to work in an iterative manner and exercise
control over the generation process;

2. to provide an intuitive way for people without special
modeling expertise to create virtual worlds that meet
their requirements (as was motivated in [18]);

3. to facilitate the application of results from research in
procedural methods in an integrated modeling frame-
work.

layered virtual world

Urban layer

Road layer

Vegetation layer

Water layer

Earth layer

procedural
generation

consistency
maintenance

generated terrain feature(s)

modifications to features

affected features

relevant nearby features

generated
terrain

feature(s)

sketched
features

updateuser control

manual refining

procedural sketching

la
n

d
sc

ap
e

m
o

d
e

featu
re m

o
d

e

manual
edits

3D virtual world
update

Figure 1: An overview of the workflow of the declarative modeling framework SketchaWorld.

2.1 Procedural sketching
Procedural sketching provides an intuitive and fast way

of specifying complete virtual worlds (Figure 1 left hand).
Using simple and clear editing tools, designers create a 2D
digital sketch: a rough layout of the virtual world. Procedural
sketching provides two interaction modes:

Landscape mode Designers paint a top view of the land-
scape by coloring a grid with ecotopes (an area of
homogeneous terrain and features). These ecotopes en-
compass both elevation information (elevation ranges,
terrain roughness) and soil material information (sand,
grass, rock, etc.). The grid size is adjustable and the
brushes used are very similar to typical brushes found
in image editing software, including draw, fill, lasso,
magic wand and transition pattern brushes (e.g. from
ocean to shore).

Feature mode Designers place elements like rivers, roads,
and cities on the landscape using vector lines and poly-
gon tools. This resembles the basic tools found in
vector drawing software: placing and modifying lines
and polygons is done by manipulating control points.

As shown in Figure 1, each sketched element is automati-
cally expanded to a corresponding realistic terrain feature
using a customized procedure, and taking into account any
relevant surrounding features. As the design of a virtual
world is very much a creative process, the framework pro-
vides an iterative workflow, with support for unlimited undo
and redo, and a short feedback loop between edit action and
result. Its implementation details are explained in [19].

2.2 Consistency maintenance of the
virtual world model

All generated terrain features are grouped in five logical
layers, inspired from Geographic Information Systems (gis)
(see Figure 1 middle). Using different layers improves the
adaptability of the virtual world model, because changes to
one layer do not necessarily have to affect other layers.

Terrain features need to blend in with their surroundings
to form a lifelike virtual world. If these features were to be
generated separately from their context in the virtual world,
designers would have to perform their integration manually,

which would harm their productivity and limit their ability
to experiment. Because the layered virtual world model is
semantically rich, it can be automatically kept in a valid
state using a form of consistency maintenance.

The introduction of a new terrain feature into the layered
virtual world model discerns two phases, one phase in which
the feature is generated and another phase in which the
feature is fit in the virtual world (shown in Figure 1). In the
first phase, the feature’s path, shape or other properties are
determined based on the provided user parameters and on
relevant nearby existing terrain features. In the second phase,
some of the surrounding features are affected by the newly
introduced feature and are therefore connected to it, modified
in some way or even removed. The consistency maintenance
in these two phases is based on rules describing the mutual
influence of terrain features. They include priorities to
determine, for instance, which type of features has precedence
when features overlap.

Although these maintenance phases somewhat increase the
execution time of individual operations, this continuously
keeps the virtual world model in a consistent and usable state
and it allows the designer to quickly see possible local side-
effects of edit actions. Each time a terrain feature is modified,
changes to related features are performed automatically as
logical side-effects of this change. In traditional modeling
systems, any large scale change to a virtual world typically
involves so much manual effort and editing steps, that a
designer will do anything to avoid it. With our approach,
designers are free to experiment with different alternatives,
as the consistency and the integration is automatically taken
care of. Details of the implementation of consistency mainte-
nance are presented in [20].

2.3 Results
As an impression of how one can use procedural sketching

to design a virtual world, we present the intermediate results
of a short example sketch session (see Figure 2), in which a
designer creates, in a couple of minutes, a natural landscape
with a river flowing through a valley and a city on a hill along
this river. Figure 2.a shows the basic landscape, sketched
in landscape mode brushing the ecotope grid: a green valley
encompassed by mountains, with some forests defined in the
valley and a river flowing through it (see also Figure 2.d).
On top of this natural environment, in feature mode, some

(a) (b) (c)

(d) (e) (f)

Figure 2: Results of an example procedural sketching session: a) sketch of a natural environment b) road
sketched through the valley from east to south, crossing the river c) city outlined on a hill d) resulting natural
landscape e) river crossing with bridge f) resulting city on the hills.

man-made features are added. Firstly, the designer coarsely
outlines the desired path of a major road Figure 2.b. This
road crosses the river at one point, Figure 2.e shows the
bridge that was automatically created. Lastly, the designers
outlines a small village along this road (Figure 2.c), at the
hillside (Figure 2.e).

3. MANUAL EDITING OPERATIONS
To examine how one could integrate procedural methods

with manual edit operations, we start by identifying what
kind of manual operations one could desire and what are the
characteristics of these different types of operations. For this,
we discern four levels of granularity in modeling operations
for creating virtual worlds:

Coarse level At this level, designers are concerned with the
rough layout of the virtual world and specify large scale
terrain features such as mountain ranges, rivers and
cities. For modeling at this level, procedural techniques
are most helpful, as they provide a quick way to fill the
world with terrain features.

Medium level This level concerns relatively large refine-
ments to features specified at a coarse level, for instance
creating a park within a city feature or changing one
of its districts from a residential to a commercial type
of district. Although editing entails refining coarse
features, these changes typically involve a substantial
amount of work, and are therefore very suitable for
procedural generation.

Fine level The fine level deals with modifying individual
objects (e.g. a single building or tree). These objects
typically result from a procedurally generated terrain
feature, but a designer could manually place new ob-
jects as well. Edit actions on this level involve little
procedural generation.

Micro level On the lowest level, designers manipulate geo-
metric meshes, assign textures to 3D models, etc.

Typically, procedural systems only support the coarse level,
and sometimes generate only one specific terrain feature.
Manual modeling systems often operate mainly on the micro
level. Both extremes have clear limitations and they cannot
be easily integrated because of the lack of editing facilities
that operate on the medium or fine level: generating a coarse
layout with a procedural system and then refining this model
using a manual system, operating on the micro level, will
typically involve much modeling effort.

Therefore, there is a need for a modeling approach that
properly integrates procedural generation with medium- and
fine-level manual edit operations. The kind of manual opera-
tions we consider can be placed in several categories:

1. changing the location of a generated object;

2. locally transforming a generated feature’s shape or
changing its internal structure;

3. modifying parameters for a specific region in a feature;

4. introducing new objects and features as part of gener-
ated features;

5. applying user-defined constraints on a feature;

6. all other kinds of operations.

Table 1 shows a list of examples of manual operations
one could consider to provide. As the micro level is already
adequately supported by numerous traditional modeling pack-
ages, we have considered those kind of edit actions out of our
scope. Note the diversity of the operations in scale and com-
plexity. As follows from the table, manual editing in urban
environments encompasses numerous different operations and
a city feature will, as a result be the most complex feature
to edit. As said, many of these example operations are not
available in current manual virtual world modeling systems;
designers have to achieve these by manually performing a
sequence of micro level operations.

Description Cat. Level
Soil and elevation

Brush elevation or soil material data 2 Med
Change terrain roughness in some area 2 Med
Constrain elevation profile 5 Med

Rivers
Modify the course of a river locally 2 Med
Locally adjust a river’s lateral profile 2 Med
Create a natural pass to cross the river 2 Fine

Vegetation
Add or remove individual trees in a forest 4 Fine
Change species or age of a single tree 3 Fine
Move a tree or change its orientation 1 Fine

Major roads
Change lateral profile of a section of a road 2 Med
Change a road junction type 2 Med
Add some road equipment (e.g. streetlights) 4 Fine
Plant vegetation along road by a pattern 4 Fine
Add, or remove a bridge 4 Fine
Change type, model or properties of a bridge 3 Fine

Street network
Remove a small street 2 Fine
Add a street, dividing an existing city block 2 Med
Change street network connections (dead-ends, etc.) 2 Med

Urban environment
Change a district type 3 Med
Add a specific district or area (e.g. park) 4 Med
Change properties of a building lot 3 Fine
Move a building or urban object (bench, lightpole) 1 Fine
Change a building footprint 2 Fine
Change a building type, style 3 Fine
Change a building layout (rooms, doors, windows) 3 Fine
Insert an existing 3D urban model (church, airport) 4 Fine
Add small urban clutter (garbage bin, bus stop) 4 Fine
Constrain part of a city (trafficability, line of sight) 5 Med
Attach a (semantic) annotation to some feature 6 Fine
Apply a procedural filter to change 6 Med
the visual appearance of a specific area

Table 1: Examples of manual operations, sorted by
aspect of the virtual world.

In our approach, we implemented the coarse level of mod-
eling with procedural sketching, see Section 2.1. Using only
the sketching facilities defined for this level, our framework
allows designers to model a complete virtual world in minutes.
Typically, these generated results will match the designer’s
intent to a large extent. The designer can subsequently, if
desired, modify the sketched terrain features, by changing
their shape, parameters or location and interactively examine
the updated results. However, designers will also often want
to make smaller scale changes to the generated content. By
integrating manual fine-tuning operations as those in Table 1
with both procedural sketching and virtual world consistency
maintenance, designers can perform manual editing in a more
productive manner, continuously keeping the virtual world
model in a consistent state.

4. OPEN ISSUES
The integration of manual editing facilities within any pro-

cedural modeling environment poses a number of important
challenges for which no standard solutions exist. Here, we
identify and characterize three main open issues one has to
address for this goal:

1. how to preserve manual edit actions on a terrain feature
throughout procedural re-generation?

2. how to balance user control versus automatic model
consistency maintenance?

3. how to integrate both procedural and manual opera-
tions in the same iterative workflow?

4.1 Preserving manual changes
The first open issue is how to preserve manual edit opera-

tions a designer has performed on a terrain feature that is
now procedurally regenerated. The motivation preserving
these actions is twofold: they state, in more detail, the de-
signer’s intent for that specific feature and they can equate
to a large amount of designer modeling effort. Losing these
modifications every time a feature is regenerated could lead
to a perceived lack of user control and frustration. It is
therefore important to devise a method of preserving manual
changes on generated results, where possible.

In order to be able to preserve manual changes, a modeling
system should fulfill the following two requirements:

1. it should be able to associate a sequence of manual
edit operations to the specific terrain feature on which
these operations applied, so that once this feature is
regenerated, all manual changes can be reapplied in
order;

2. within such a terrain feature, for each manual edit
operation, it should be possible to localize the right
location or (sub-)element where the manual operation
should be reapplied.

This second requirement is especially challenging for a
modeling approach such as ours, where the virtual world
model is made consistent after every edit action. Because
of these automatic consistency mechanisms, changes to a
terrain feature might result in another associated feature to
be regenerated. For instance, consider a city generated on
the basis of a sketched city outline and suppose that city
has had several manual modifications, e.g. some of its streets
are rerouted and a park was placed in one of the suburban
districts. If a designer now sketches a river running through
this city, the city structure drastically changes, typically
causing the city feature to be regenerated. Still, as the
sketch and the high-level parameters of the city remain the
same, the new city will have local resemblance to its previous
version, especially further away from the river. In that case,
for example, an edit action that introduced a park in one
of its districts still might make sense for the new city. The
same holds for the modifications to individual streets. If the
new city now contains streets that (visually) match with the
streets in its previous state, from the designer’s perspective, it
could be logical to apply the modifications to these matching
streets.

Therefore, there seems to be no straightforward manner in
which to decide where precisely a preserved manual change
has to be reapplied, or whether it should be reapplied at
all. Finding a good solution requires lots of experimentation,
tuning and evaluation.

4.2 Balance control versus consistency
The second main issue is to balance user control versus

model consistency. This issue is most apparent at the fine
level of modeling, as this level comes closest to the typical op-
erations found in current manual modeling systems. Without
any consistency maintenance, designers have total control,
but as a result are themselves responsible for keeping the vir-
tual world consistent. Designers can then accidentally create
all kinds of invalid situations (streets through buildings, trees
in river beds, etc.), and they would have to clean up these in-
consistencies afterwards. All in all, providing no consistency
maintenance for manual modeling operations, which is the
most common case in current modeling systems, considerably
affects designers’ productivity. If the mechanism is too strict
however, a designer might, for instance, move a generated
tree upon a rocky hill, only to see it automatically removed,
because the vegetation consistency procedure finds that spot
unsuitable for that particular tree species. Designers thus
would give away a large amount of control, and could become
frustrated with the modeling system.

The challenge is to come up with a solution that, in most
manual editing cases, provides the productivity of an auto-
mated mechanism and comes up with suitable solutions to
feature interactions, but, in specific cases, allows for more
extensive control or alternative solutions. This will require,
among other things, facilities for restricting the influence of
the consistency maintenance. Finding a good solution that
provides this balance, while keeping the current simplicity
in modeling intact requires lots of evaluation with designers
in the loop.

4.3 Iterative modeling workflow
The last major hurdle we identify here is the integration

of both the procedural and the manual operations in the
iterative modeling workflow. One of the main components of
such a workflow is the user edit history, which is used to undo
and redo actions. In [19], we explained that, when dealing
with procedural operations, storing all (partial) model states
in an edit history is impractical due to excessive memory
demands. We therefore opted to implement undo and redo
support using partial regeneration of the model. For manual
editing, it seems more feasible to store local states, as the
scope of such an operation is typically much smaller than a
procedural operation. However, for medium level operations,
or operations involving a great deal of consistency mainte-
nance, this might not hold. The alternative for restoring a
feature to its previous state, when undoing a manual edit
action, is then to regenerate that feature and then reapply all
active manual edit actions to that feature, which is probably
not always desired or meaningful, and might in some cases
lead to a very slow undo-mechanism. Thus a good mix of
these two extremes has to be found, which has a reasonable
memory usage and model update performance.

5. DISCUSSION
In this section we discuss possible approaches for sup-

porting manual editing within a procedural system, and we
propose some initial solutions for addressing the open issues
presented in the previous section. In general, we see three
approaches one could take to provide more fine-grained user
control in a procedural modeling system:

1. a stepwise approach in which procedural methods and

manual editing facilities are offered in two separate
modeling phases;

2. a fully declarative approach were designers can more
precisely express their intent;

3. a mixed-mode approach where procedural and man-
ual operations are seamlessly combined in an iterative
workflow.

5.1 Two-phased approach
A simple approach that one could take in order to avoid

some of the previously discussed problems is to split the
modeling process in two phases: a procedural phase, in which
a designer quickly generates a draft version of the virtual
world, and a manual phase, in which the designer manually
tweaks the results until they are satisfactory. In this setup,
there is no way to go back from the manual to the procedural
phase (they could even be implemented as separate systems),
thereby avoiding most problems related to issue 1 and 3 in
the previous section. In addition, one could choose to provide
total user control in the manual editing phase. If, however,
one would whish to provide some form of automated consis-
tency maintenance, a balance still has to be found for that
(issue 2 in previous section). The advantage of this approach
is that one can keep the user interaction and implementation
of the approach at a reasonable level of simplicity. The ob-
vious disadvantage is that this approach avoids the serious
problems by disrupting the iterative workflow, which can be
quite restrictive and cumbersome in use. In some sense, this
approach is very similar to the current practice, whenever
some procedural tool is deployed for generating part of the
virtual world, thus it is not a satisfying approach.

5.2 Declarative input approach
A more comprehensive approach would be to focus on

getting the user input to be more expressive: if designers are
better supported to state their intent, and if the procedural
methods are able to generate content that matches this intent,
there will be less need for manual refinements afterwards.

A way of providing users with more control over procedures,
which has often been tried in the past, is to present long lists
of low-level input parameters to configure these procedures.
As procedure parameters are often quite unintuitive and one
needs to have a detailed understanding of the working of
the algorithms to be able to set the proper input values.
Therefore, this is not a real solution.

A promising alternative direction is to allow designers to set
high-level constraints on terrain features. These can be used
in the generation process, yielding results that better match
designer’s intent. Designers are then beforehand able to force
certain properties to hold or be present in the resulting virtual
world model, instead of having to manually model these
afterwards. Some meaningful examples of such constraints
might be:

• force a small pass through a mountain range;

• declare a hill to have good visibility over a nearby
village or force a specific line of sight;

• declare an area of a city to be dense and narrow (small
streets, buildings built close together, lots of urban
clutter or more widely constructed with many open
spaces);

• force a specific route through a city to be accessible for,
e.g., large vehicles;

• declare a specific type of land use or income range
within an area of a city feature;

• force a specific grade of tactical cover to be provided
in a certain area;

• declare a certain preferred curvature for a road, or a
preference for tunnels over bridges.

The advantage of this approach is that it is quite intuitive
to work with, and it is able to capture the (high-level) intent
of the designer, and these constraints seem to fit well with
procedural content generation. The disadvantage of this
approach is that it does not provide full, fine-grained user
control. We believe that, if designers would have the right
constraints at their disposal, this approach could be a very
powerful and productive way of working.

5.3 Integrated modeling approach
The most complex and powerful approach would be to

come up with a solution that provides the combination of
procedural and manual modeling in an iterative modeling
workflow. This approach needs to address all the issues
presented in the previous section. Here we briefly discuss
some of the ideas and mechanisms for addressing these issues.

One of the measures one can take to preserve manual
changes to terrain features is to link the relevant subset of the
history of manual edits to specific terrain features. Once some
action causes the feature to be regenerated, all the associated
manual edit actions can be re-applied in order. Depending on
the extent of the modifications, a regenerated city might still
have the same structure in some relatively unaffected parts.
However, minor changes might cause streets, for instance,
to be slightly different, while they visually appear to have
remained the same. Therefore, in order to avoid losing
all manual changes to these features, a feature matching
mechanism could be used to find the best matching feature
for a manual edit, given some approximation.

Finding a balance between user control and consistency
maintenance is difficult, especially for modeling urban envi-
ronments. If one chooses to provide full consistency main-
tenance for manual editing, designers will need facilities to
influence or limit this process in specific cases. Here we
present possible facilities, which are inspired from image
processing software, but have more advanced and complex
semantics:

Grouping By default, many generated features will be
grouped or linked together in some way, for instance, a
set of buildings is grouped with a specific road. This
grouping entails geometric distance and orientation
constraints, so that when a designer moves a road, the
associated buildings move along with it. By allowing
designers to modify the grouping structure and to in-
troduce new links, they have a more detailed influence
on the effects of manual operations.

Locking By locking a certain area or feature, the designer
can ensure that it will not be affected by any modeling
operations he or she is currently performing. To avoid
unrealistic sharp changes in the environment, a fall
off area could be established around a locked area,
resulting in a more lifelike transition.

Scoping This facility allows designers to examine and mod-
ify the scope (i.e. area of influence) for an operation.
By restricting this scope, they are able to avoid that

an operation has a (negative) effect on a nearby area,
if the consistency maintenance rules are too strict or
partly unsuitable for that specific modeling instance.

The advantage of this approach is that it combines the fine-
grained level of user control that a designer typically desires
with the productivity of procedural content generation. The
disadvantage of this approach is the complexity in design
and implementation, which may also have some effects on
the interactivity and performance. Furthermore, it increases
the modeling complexity for designers that use these manual
editing facilities. Despite these challenges, we believe these
manual editing facilities are a requirement to get procedural
modeling accepted in mainstream virtual world modeling.
We should therefore strive to overcome these challenges, to
allow designers to adapt at any time the level of control they
desire.

6. CONCLUSIONS
One of the main obstacles for getting procedural techniques

into mainstream virtual world modeling is that they offer
designers either inadequate or little control to specify their
requirements. As a result, they mostly rely on conventional
modeling systems, which require enormous manual efforts,
but at least provide proven editing facilities to experiment
with. Integration of both procedural generation and manual
editing operations seems, therefore, a very promising and
powerful target, combining the best of two worlds, but so far
the topic is as good as unaddressed.

In this paper we discussed several challenges and open
issues associated with this integration. According to their
level of granularity, we identified a variety of modeling op-
erations that are neither fully procedural nor conventional
low-level manual editing. We believe that supporting this
kind of operations is essential to bridge the gap between
procedural and manual modeling. Particularly difficult are
the challenges related to preserving the results of manual
operations throughout procedural re-generation, as well as
the tension of user control versus consistency maintenance.

Three approaches aimed at solving the above challenges
were pointed out and briefly elaborated, but they will clearly
require considerable experimentation and evaluation. Our
way ahead includes exploring the two most promising ap-
proaches: constraint-based declarative input and integrated
modeling approach. This research nicely complements our
previous results on interactive procedural sketching [19],
within the scope of our declarative modeling framework,
SketchaWorld, which provides a very powerful and intuitive
alternative for the creation of virtual worlds. We believe that
by seamlessly integrating procedural modeling techniques
with high-level manual editing, designers will be able to freely
experiment, switching to and fro between procedural sketch-
ing and meaningful manual operations, without worrying
about the impact of each edit action on the consistency of
their virtual world.

7. ACKNOWLEDGMENTS
This research has been supported by the gate project,

funded by the Netherlands Organization for Scientific Re-
search (nwo) and the Netherlands ict Research and Innova-
tion Authority (ict Regie).

8. REFERENCES
[1] R. Bidarra, K. J. de Kraker, R. M. Smelik, and

T. Tutenel. Integrating semantics and procedural
generation: key enabling factors for declarative
modeling of virtual worlds. In Proceedings of the
FOCUS K3D Conference on Semantic 3D Media and
Content, Sophia Antipolis - Méditerranée, France,
February 2010.

[2] E. Bruneton and F. Neyret. Real-time Rendering and
Editing of Vector-based Terrains. In G. Drettakis and
R. Scopigno, editors, Computer Graphics Forum:
Eurographics 2008 Proceedings, volume 27, pages
311–320, Crete, Greece, 2008.

[3] G. Chen, G. Esch, P. Wonka, P. Müller, and E. Zhang.
Interactive Procedural Street Modeling. In SIGGRAPH
’08: Proceedings of the 35th Annual Conference on
Computer Graphics and Interactive Techniques,
volume 27, pages 1–10, New York, NY, USA, 2008.
ACM.

[4] G. de Carpentier and R. Bidarra. Interactive
GPU-based Procedural Heightfield Brushes. In
Proceedings of the 4th International Conference on the
Foundations of Digital Games, Florida, USA, April
2009.

[5] M. de Villiers and N. Naicker. A sketching interface for
procedural city generation. Technical report,
Department of Computer Science, University of Cape
Town, November 2006.

[6] O. Deussen, P. Hanrahan, B. Lintermann, R. Měch,
M. Pharr, and P. Prusinkiewicz. Realistic Modeling and
Rendering of Plant Ecosystems. In SIGGRAPH ’98:
Proceedings of the 25th Annual Conference on
Computer Graphics and Interactive Techniques, pages
275–286, New York, NY, USA, 1998. ACM.

[7] D. Finkenzeller. Detailed Building Facades. IEEE
Computer Graphics and Applications, 28(3):58–66,
2008.

[8] J. Gain, P. Marais, and W. Strasser. Terrain Sketching.
In I3D ’09: Proceedings of the 2009 Symposium on
Interactive 3D Graphics and Games, pages 31–38, New
York, NY, USA, 2009. ACM.

[9] E. Galin, A. Peytavie, N. Marchal, and E. Gurin.
Procedural Generation of Roads. In Computer Graphics
Forum: Proceedings of Eurographics 2010, volume 29,
NorrkÃűping, Sweden, May 2010. Eurographics
Association.

[10] G. Kelly and H. McCabe. Citygen: An Interactive
System for Procedural City Generation. In Proceedings
of GDTW 2007: The Fifth Annual International
Conference in Computer Game Design and Technology,
pages 8–16, Liverpool, UK, November 2007.

[11] J. McCrae and K. Singh. Sketch-based Path Design. In
GI ’09: Proceedings of Graphics Interface 2009, pages
95–102, Toronto, Ontario, Canada, 2009. Canadian
Information Processing Society.

[12] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. V.
Gool. Procedural Modeling of Buildings. In
SIGGRAPH ’06: Proceedings of the 33rd Annual
Conference on Computer Graphics and Interactive
Techniques, pages 614–623, New York, NY, USA, 2006.
ACM.

[13] F. K. Musgrave. Methods for Realistic Landscape

Imaging. PhD thesis, Yale University, New Haven, CT,
USA, 1993.

[14] Y. I. H. Parish and P. Müller. Procedural Modeling of
Cities. In SIGGRAPH ’01: Proceedings of the 28th

Annual Conference on Computer Graphics and
Interactive Techniques, pages 301–308, New York, NY,
USA, 2001. ACM.

[15] PixelActive. Cityscape 1.8.
http://pixelactive3d.com/Products/CityScape,
2010.

[16] J. Schneider, T. Boldte, and R. Westermann.
Real-Time Editing, Synthesis, and Rendering of Infinite
Landscapes on GPUs. In Vision, Modeling and
Visualization 2006, November 2006.

[17] R. M. Smelik, K. J. de Kraker, T. Tutenel, R. Bidarra,
and S. A. Groenewegen. A Survey of Procedural
Methods for Terrain Modelling. In Proceedings of the
CASA Workshop on 3D Advanced Media In Gaming
And Simulation (3AMIGAS), Amsterdam, The
Netherlands, June 2009.

[18] R. M. Smelik, T. Tutenel, K. J. de Kraker, and
R. Bidarra. Declarative Terrain Modeling for Military
Training Games. To be published in International
Journal of Computer Game Technology (IJCGT), 2010.

[19] R. M. Smelik, T. Tutenel, K. J. de Kraker, and
R. Bidarra. Interactive Creation of Virtual Worlds
Using Procedural Sketching. In S. Seipel and H. Lensch,
editors, Proceedings of Eurographics 2010: Short
Papers. Eurographics Association, May 2010.

[20] R. M. Smelik, T. Tutenel, K. J. de Kraker, and
R. Bidarra. SketchaWorld: A Declarative Framework
for Procedural Modeling of Virtual Worlds. Submitted
for publication, 2010.

[21] S. Stachniak and W. Stuerzlinger. An Algorithm for
Automated Fractal Terrain Deformation. Computer
Graphics and Artificial Intelligence, 1:64–76, May 2005.

[22] O. Stava, B. Beneš, M. Brisbin, and J. Křivánek.
Interactive Terrain Modeling Using Hydraulic Erosion.
In M. Gross and D. James, editors, Eurographics /
SIGGRAPH Symposium on Computer Animation,
pages 201–210, Dublin, Ireland, 2008. Eurographics
Association.

[23] B. Weber, P. Müller, P. Wonka, and M. Gross.
Interactive Geometric Simulation of 4D Cities.
Proceedings of Eurographics 2009, 28:481–492, April
2009.

[24] H. Zhou, J. Sun, G. Turk, and J. Rehg. Terrain
Synthesis from Digital Elevation Models. IEEE
Transactions on Visualization and Computer Graphics,
13(4):834–848, July-Aug. 2007.

