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Abstract. Game developers are often faced with very demanding requirements 
on huge numbers of agents moving naturally through increasingly large and  
detailed virtual worlds. With the advent of multi-core architectures, new ap-
proaches to accelerate expensive pathfinding operations are worth being inves-
tigated. Traditional single-processor pathfinding strategies, such as A* and its 
derivatives, have been long praised for their flexibility. We implemented sever-
al parallel versions of such algorithms to analyze their intrinsic behavior, con-
cluding that they either have a large overhead, yield far from optimal paths, do 
not scale up to many cores, or are cache unfriendly. In this paper we propose 
Parallel Ripple Search, a novel parallel pathfinding algorithm that largely 
solves these limitations. It utilizes a high-level graph to assign local search 
areas to CPU cores at 'equidistant' intervals. These cores then use A* flooding 
behavior to expand towards each other, yielding good 'guesstimate points' at 
border touch on. The process does not rely on expensive parallel programming 
synchronization locks, but instead relies on the opportunistic use of node  
collisions among cooperating cores, exploiting the multi-core's shared memory 
architecture. As a result, all cores effectively run at full speed until enough way-
points are found. We show that this approach is a fast, practical and scalable so-
lution, and that it flexibly handles dynamic obstacles in a natural way. 

1   Introduction and Previous Work 

As virtual game worlds grow increasingly larger, pathfinding has once again come 
into the spotlight. The basic motivation for this is that, being a computationally ex-
pensive but indispensable component in many games, any performance gains here 
will typically bring about noticeable improvements. In this line, more attention is 
currently being paid to re-designing pathfinding algorithms, so that they better suit 
current multi-core architectures. 

Classic pathfinding algorithms such as A* and its many derivatives, have been long 
praised by game developers for their flexibility and completeness. A* is a best-first 
search strategy that relies on a cost computing function f(n) = g(n) + h(n) for provid-
ing rough cost estimations of a path running through a node n of a search graph (see 
[10]). Function g(n) represents the currently known cost for reaching node n from the 
start node S, and heuristic estimation function h(n) is often implemented by using a 
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cheap 'guesstimate' of the remaining travel distance, such as a Manhattan or Euclidean 
distance, between node n and the goal node G. This heuristic function effectively 
controls how A* floods its search space. Moreover, h(n) results in optimal paths as 
long as it remains 'admissible', i.e. it never overestimates the true cost for an actual 
path between node n and the goal node G. 

The A* algorithm utilizes the f(n) function to maintain a sorted Open list of most 
promising search candidates while it iterates through the search space, which is also 
its most computationally expensive component. For each iteration, the algorithm will 
remove the most promising candidate and place on the list all its not yet visited 
neighbors. If a neighbor node was already in the Open list, A* will perform a crucial 
'correction step': it determines if a cheaper path was possible through the candidate 
node and, if so, modifies its entry accordingly in the Open list. 

As the flood boundary grows, the algorithm takes increasingly more time to find 
each successive node that forms the desired path. Empirically, the node which is 
halfway down the resulting path is closed at roughly a third of the total time taken to 
find the complete path. This sorting component has also proven a road-block for pa-
rallelization attempts because it institutes a data dependency that would generate a lot 
of communication overhead on distributed processing architectures. Many past at-
tempts have already been made to eliminate this need for sorting on single processor 
architectures such as Iterative Deepening A* (or IDA* for short) (see [9]), but have 
not resulted in easier distributed processing schemes. 

A late addition to the family of A* derivatives, which we used extensively in this 
research, is called Fringe Search (FS); see [2]. Fringe Search avoids the need for a 
sorted candidate list by simply keeping track of all nodes at its search boundary (or 
'fringe') and opening those that are less expensive than a certain threshold value, 
which is iteratively incremented. Although this now forces the algorithm to scan 
through a large unsorted Now list from begin to end, it gains its speed-up by making 
the actual visitations extremely cheap. Each node that has an f(n) value higher than 
the threshold value will simply be moved to a 'Later' list. Each new iteration starts by 
simply swapping the Now and Later lists, and the node/list manipulations themselves 
can be implemented very effectively using simple pointer logic. 

Recent path finder parallelization attempts (see [3] and [6]) have mainly focused 
on translating A* variants into shaders, so that they can run on GPUs or similar Vec-
tor Processors. These schemes benefit from either taking work-load off the main 
CPU, or by running pathfinders for a large amount of agents in parallel. Although 
such approaches have been very successful, these also have the drawback that they 
take up precious resources that one would rather devote solely to rendering graphics. 
Also, from a practical point of view, a game-play programmer will have to take ex-
tensive measures to apply such pathfinding approaches without serious disruptions of 
the rendering pipeline. For multi-core architectures, specifically, the world simulation 
and rendering logic are often running in separate threads that are uniquely assigned to 
specific cores. 

A more traditional approach has been to parallelize A* and related algorithms, and 
make them more suitable for distributed computing on CPU clusters and grids  
(see [7], [8] and [12]). Although these attempts have demonstrated beneficial advan-
tages, they also require more 'exotic' hardware and software approaches such as MPI 
(Message Passing Interface) which are highly uncommon on virtually any gaming 
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hardware platform up to this date. For practical purposes, these approaches are thus 
unsuitable and have currently no real relevance in the game development industry. 

In conclusion, there is a definite need for simple and portable variants of the A* al-
gorithm that successfully and efficiently exploit today's multi-core architectures. This 
paper first describes and compares a number of parallel pathfinding implementations, 
focusing on the efficiency of their multi-core use. They all rely on the underlying 
hardware to implicitly perform the necessary synchronizations, without any blocking. 
We then introduce a novel algorithm called Parallel Ripple Search, that can easily 
scale with the number of available CPU cores. It requires no special libraries or hard-
ware interfacing, nor any special synchronization primitives. 

2   Parallel Pathfinding Implementations 

In this section we describe our investigation on a number of parallelized variants of 
A* and Fringe Search, in order to study how they perform on multi-core architectures. 
Please refer to [5] for a detailed discussion of each algorithm, including its pseudo-
code. This study gave us significant insight on how to effectively utilize the compu-
ting potential of these architectures for pathfinding purposes. 

2.1   PBS: Parallel Bidirectional Search 

The most obvious strategy to use two CPU cores for pathfinding is to have them start 
at each path extremity, search towards each other and let them 'meet halfway'; hence 
the name Parallel Bidirectional Search (PBS). As the main strategy of A* is to keep 
opening the most promising node, we can consider all nodes at the boundary of the 
flood area 'most' optimal (although this is not always strictly true). Whenever we hit a 
node flooded by an opposite core, we can immediately complete the path using the 
alternate core's pathfinding meta data. There is no need for expensive mutexes; both 
cores can just check a shared 'break flag' in main memory to see if they should stop 
because the other core found a collision or gave up. 

An example path found using PBS is shown in Figure 1. On the left, we see that a 
collision was detected somewhere halfway, when both cores have done, in parallel, 
virtually the same amount of work. Connecting the two 'half-paths' together yields a 
path that is only slightly more expensive than the most optimal path. Most discrepan-
cies relative to A* are not erroneous when taking the flow of the full path into ac-
count, but rather the result of a different bias because of the reversed search direction. 
The insignificant loss of optimality is due to the fact that PBS stops the search just a 
bit too soon, when it detects a collision. Often, the area around the collision node does 
not get fully flooded, so potentially there might be cheaper nodes in this area, which 
will no longer be discovered. However, this deviation is generally very low given a 
fairly uniform travel cost between neighboring nodes. 

We can, therefore, conclude that, strictly speaking, PBS is no longer optimal, but it 
is still complete, i.e. it will find a path if it exists. In worst-case scenarios where no 
collision occurs, PBS is basically reduced to a normal A* search. 
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Fig. 1. (Left) Using PBS, two cores flood towards each other until a collision is detected. The 
full path is then constructed by linking both 'halves' together at the collision node. (Right) PBS 
path overlaid with the optimal A* path, whereby the red cells denote path deviations. Clearly, 
much less nodes are flooded by PBS than by A*. 

2.2   DFS: Distributed Fringe Search 

Our second attempt towards parallelization speed-up was to use the Fringe Search's 
Now and Later lists to literally distribute 'work' among multiple CPU cores. As men-
tioned above, during each pass through the Now list, Fringe Search performs some 
very simple tests in order to determine if new nodes should be processed. This 
processing mostly involves adding new nodes to the Later list. The main idea behind 
the new algorithm we came to call Distributed Fringe Search (DFS), is thus to distri-
bute the Now List over all available cores, have them process their share, merge the 
individual Later lists, swap this with Now, and start all over again. A nice feature of 
Fringe Search is that the Now and Later lists do not need any sorting, thus distributing 
them is very easy. Also, each core can compute the smallest f(n) value it has found 
locally, so that the master core can collect them and only needs to do a few compari-
sons to determine the cost threshold that should be used next for all cores. 

The main advantage of DFS is that it can utilize more cores effectively, being no 
longer limited to two cores as PBS. Although this is a great strength, it is also its 
Achilles' heel. By distributing nodes 'arbitrarily' over multiple cores, we have lost the 
ability to perform the 'correction step' as a normal A* and/or Fringe Search imple-
mentation would do. This means that it is no longer guaranteed that DFS will find the 
cheapest path, i.e. DFS is not optimal, as we can clearly see in Figure 2. 

Another drawback of DFS is that it is also no longer possible to keep track of the 
'parent-child' relation of nodes during flooding, although this information is needed to 
reconstruct the resulting path. The solution, therefore, is to use a shared buffer in 
which all cores write to signal flooded nodes to each other, and then a separate 
'private' buffer for reach core to store g(n) values to evade race-conditions. The final 
path can then be correctly reconstructed by starting at the goal node G and then 
searching our way back to the start node S by repeatedly traversing towards the 
neighboring node with the lowest g(n) value found in any of the private buffers. Al-
though this sounds discouraging, it is, in practice, not critical; we found surprisingly 
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Fig. 2. (Left) The load-balance achieved by DFS. (Right) With the loss of the corrective proper-
ty, DFS ends up with less than optimal paths. Note that the deviations with the optimal A* path 
are also just a matter of different bias, the actual additional path cost was only roughly 2%. 

few cases of 'over-flooding' (nodes tagged 'Multiple Cores', in Figure 2, left). Mostly, 
nodes only have a single g(n) computed for them, so no expensive floating-point 
comparisons are needed to find the lowest one. 

The overall load-balance seems fairly good (see Figure 2, left), although we have 
noticed that there is always one core that seems to be doing most of the work. That 
core has often flooded most of the areas in which the final path was found, suggesting 
that this is likely due to the A* heuristic function: this function is designed to pull the 
search towards the goal node and, as long as this goes on 'unhindered', it will always 
favor nodes for that particular core. The other cores will often be searching through 
'branches' elsewhere that later on turn out to be dead-ends. 

Conceptually, the DFS approach sounds promising because it allows us to distri-
bute the workload quite naturally over all available cores. In practice, however, the 
results obtained are less spectacular. After some profiling, it turned out that a signifi-
cant amount of time is still wasted on cores waiting for each other, suggesting that the 
load balancing is still far from optimal. 

2.3   PHS: Parallel Hierarchic Search 

Another attractive way to utilize multi-core architectures is to have each core find 
small segments of the total path. Small searches whereby the segment's goal node is 
relatively close to its start node are significantly faster because far less nodes will 
become flooded. In order to do this, however, we need to guess where some way-
points will be located in the search space so that, as it were, we can 'connect the dots' 
between them. This can only be properly done if we employ a high-level graph repre-
sentation of the actual graph to search through. With this high-level graph we can 
roughly guess how the full path will traverse the search space and obtain way-points 
from it; hence the name Parallel Hierarchic Search (PHS). 

There are many techniques to obtain such high-level graphs, ranging from manual-
ly adding way-points to automated schemes such as ‘Probabilistic Roadmap Method’; 
see [1], [2] and [11]. For our PHS implementation, we created a grid randomization 
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Fig. 3. A path generated by the PHS algorithm. (Left) Substantially less nodes have been flooded 
than with classic A*, but the resulting path is not as optimal and smooth. (Middle) The high-
level graph and path used to form the resulting path. (Right) The flooding progress per core. 

algorithm with a top-down approach, which generates 'chambers' that are linked with 
smaller corridors, which are then filled with randomly placed obstacles. This enabled 
us to easily generate lots of correct high-level hierarchies so that we could run large 
test batches. 

Each node in the high-level graph is linked to a corresponding anchor node in the 
actual graph that needs to be searched. The first step in the PHS algorithm is to find a 
path through the high-level graph and then finding sub-paths connecting the consecu-
tive anchor nodes. Doing this will, however, never result in an immediately natural 
looking path because the anchor nodes might be needlessly off course. So a 
'beautification' step is applied by constructing new way-points halfway at the found 
path segments (by just picking the middle node of the path-segments sequence of 
solution nodes). The idea behind this is that it will help us find 'short-cuts' between 
the high-level way-point anchor nodes. We found that just a single beautification 
iteration already yields quite acceptable results. 

Parallelizing the algorithm is basically a matter of having the master core generate 
the way-points, and then letting all the cores try to construct the path segments. To 
enable the cores to gain access to the path segments information buffer, we are forced 
to employ a more expensive 'critical section' which is provided by the operating sys-
tem. This will allow safe access to selecting a path segment and returning a pointer to 
found path segment solutions (cores are not allowed to clear these solutions until all 
processing has been completed, so that the master core can safely access them). We 
can give each core its own copy of the graph so that there will be no cache collisions 
during the searches themselves. 

Figure 3 shows an example of a path generated using the PHS algorithm. We can 
clearly see that PHS only floods nodes in the near vicinity of the final path and does 
not fan out into a 'leaf' shaped flood space as A* would do. The algorithm was about 
1.6 times faster than a classic A* approach, but this came with a penalty: the resulting 
path has a noticeably higher cost, and has a less 'smooth' appearance. In the middle of 
the figure we can see that the high-level path is distanced quite far away from the 
optimal path, as could be expected. Finally, on the right we see that the load balancing 
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is fairly acceptable. A lot of nodes have been flooded by multiple cores, but this is 
again due to the second phase smoothing. Because cores will process new path seg-
ments when they are done with the previous one, we will see some nodes being 
flooded by different cores in different phases. 

In general, the results obtained with PHS are rather divergent. In some cases we 
can obtain very good speed-ups, and in other cases we do not. The overall path quality 
leaves a lot to be desired; often the paths will stray quite a bit from the optimal path, 
further contributing to increase the search duration. 

3   Algorithm Evaluation and Comparison 

In all preceding experiments, no special attempts have been made to 'optimize' the 
parallel algorithms, other than those dictated by common sense. Moreover, they all 
use established basic libraries, such as the C++ Standard Template Library (STL), 
expressly chosen for their stability rather than for their performance. 

We obtained our measurements from a total of 2000 samples, by finding 100 ran-
dom paths in 20 random maps. For each sample, we measured the time taken to find a 
path between 2 randomly selected nodes from a 400 by 400 8-way connected uniform 
grid, internally represented by a directed graph. An Euclidean distance was used as 
A* search heuristic. Each sample was repeated 5 times for each algorithm so that 
cache content would 'stabilize'. The best result of all the taken samples was then taken 
as the ultimate measurement result. All threads and processes were running on highest 
priorities. All samples have been taken on a 2.4 GHz Intel Core2 Quad CPU running 
Windows XP Pro SP2. 

Because Fringe Search plays such a prevalent role in our experiments, wherever 
possible we have used this algorithm as an A* alternative. Therefore, Fringe Search 
has also been included in all measurements so that we can clearly tell if the speed-up 
is due to the parallelization, and not just the fact that Fringe Search was used instead 
of a classic A* implementation. 

The measurement results are shown in Figure 4. For very short paths the results are 
mixed, which probably means that the parallelization overhead is too high compared 
to the amount of work that has to be done. As the path length increases, the paralle-
lized algorithms start to outperform the classic A* implementation extensively. Still, 
PHS is the 'main loser', as it has the worst overall performance, probably due to re-
quiring a mutex and 'beautification' iteration. It has also by far the worst path cost 
overhead, ranging from 20% up to 45%. For DFS, we can conclude that it is only 
worthwhile on longer paths; otherwise, the normal Fringe Search implementation still 
(slightly) outperforms it. It is apparently only for the longer paths that cores manage 
to get work done without interfering too much with each other's caches, which makes 
sense because the flooded areas will be much larger and further spaced apart. DFS can 
yield up to 2,2 speed-up relative to a classic A* implementation. As expected, its 
qualitative output is hampered by the fact that DFS has lost its corrective property in a 
far more significant degree than that of PBS: it has up to 4% additional path cost. For 
PBS, the loss of its corrective property is only accumulated near the area of the colli-
sion node, which is generally very small. This clearly makes PBS a winner on all 
fronts: up to an impressive speed-up of 6,7 relative to A*, while generating paths that, 
on average, are less than 1% more expensive than the optimal A* path. 
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Fig. 4. (Left) Overview of average pathfinding duration. Note how PBS can outperform a clas-
sic A* implementation almost 7 times. (Right) Overview of average path cost overhead, rela-
tive to the length of the optimal path found by classic A*.  (PHS results are omitted, as they can 
raise up to 45%). 

The analysis of all these results is summarized in Table 1. We conclude that: 

1.  Cache penalties have by far the largest impact on these algorithms' performance on 
multi-core architectures. The longer we can prevent cores to flood nodes in each 
other's areas, the better the performance will be. PBS clearly does this best because 
both cores start their search at the maximum possible distance apart from each other. 

2. High-level graphs tend to 'malform' paths interpolated from them, and require quite 
some 'post-processing' to smoothen them out. 

3. High-level paths can seriously thwart the path finder when dynamic obstacles are 
in the way. 

4   PRS: Parallel Ripple Search 

In this section, we present a novel algorithm called Parallel Ripple Search (PRS), 
which capitalizes on the results of the experiments above, in order to combine the 
strengths of all those algorithms while minimizing their weaknesses. 

4.1   Algorithm 

Parallel Ripple Search requires a high-level graph to guess where the final path will 
be located in the search space, and uses it to position the cores at roughly equidistant 
way-points. However, in contrast to PHS, the cores will now find path segments by 
doing a normal A*-like flood towards their nearest neighbors instead. Like ripples in 
a pond, at some point their flood boundaries will overlap and we can use these colli-
sions to link the path-segments together into the full path. 

The high potential of PRS is that when we find enough collisions, we can 'short-
circuit' and find connecting paths through previously flooded areas (for which we 
know that a path must exist). There is a good chance that these areas might still be 
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Table 1. Summary of strengths and weaknesses of the 3 parallel pathfinding implementations 

 PBS: 
Parallel Bidirectional 
Search 

DFS: 
Distributed Fringe 
Search 

PHS: 
Parallel Hierarchy 
Search 

Speed increase over classic A* 2,5 – 6,7 1,6 – 2,2 1,2 – 1,6 

Path cost overhead < 1% 3% – 4% 20% – 45% 

Scalability Bad: 2 cores only 2 or more 2 or more (but 
potentially much more 
effective than DFS) 

Extra memory required Low High Medium 

Load-balancing Very easy: both cores 
always run at full 
speed 

Hard, so we are 
always bound by the 
slowest CPU core 

Medium, the quality 
of the high-level 
graph will 
automatically improve 
this 

Cache 'friendliness' Very friendly Very unfriendly Fairly friendly 

Implementation Very easy and 
intuitive 

More involved, needs 
many more 
synchronization 
moments, requires 
special techniques to 
optimize 

Fairly easy (closer to 
'classic' 
parallelization). 

Other Any A* variant can be 
used 

– Requires high-level 
graph 

 
(partially) lingering in a core's cache, so that accesses can be fast. This algorithm is 
also able to deal with dynamic obstacles a lot better than PHS could. If way-points 
turn out to be (partially) blocked, then this will just mean that adjacent ripples will not 
collide (not now, at least). So although it might take longer before a collision occurs 
with a ripple located further away, we will no longer run the risk of pulling the path in 
weird directions. Another advantage of this new approach is that we can utilize many 
more cores; basically one for each segment of the high-level path, thus overcoming 
the main restriction of PBS. 

The cores that flood from the start node S and goal node G process what we could 
call the 'essential' ripples: we call them the essential cores, as opposed to all other 
non-essential cores. In a worst-case scenario whereby none of the non-essential rip-
ples ever collide with the essential ones, PRS will basically have degraded to a paral-
lel bidirectional search (PBS), which was shown to perform very well.  

The entire algorithm is roughly described by the following steps: 

 Find a high-level path P between start node S and goal node G. 
 Two cores are assigned to the way-points at both ends (S and G) of path P. 
 Depending on the number of edges in path P we try to assign other cores at 

fairly equidistant way-points, these cores will form the 'non-essential 
ripples'. 

 Phase 1: All cores start flooding the search space until enough collisions 
have been found to form a complete path: 
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 Essential cores search towards each other's local start node 
(basically like PBS). 

 The remaining non-essential cores search towards the local start 
nodes of their direct neighbors. 

 The master core will examine all the reports from the cores and determines 
which cores need to generate their path segments between which collision 
nodes. Note that some cores might have become superfluous, or may need to 
be linked in a non-sequential order (it can happen!) 

 Phase 2: All relevant cores construct their local paths and report these back 
to the master core. 

 The master core assembles the final path. 
 All cores perform a final clean-up. 

During phase 1, the essential cores basically perform a normal Fringe Search towards 
the way-points of their neighbor cores. Their searches start, of course, at either start 
node S or goal node G, and not at the start or goal way-points of the high-level path. 
The search will continue until either a path can be constructed, or until there are no 
more nodes available which means we have to give up. Collisions with the 'non-
essential' cores are analyzed to determine if a full path can be constructed, but they 
will not stop the cores. With some luck, we might be able to by-pass some non-
essential cores, or maybe link up directly with the other essential core itself. 

The 'non-essential' cores use a slightly different heuristic for cost estimation func-
tion. This function is initially biased to flood towards the local start nodes of the adja-
cent cores: 

 

 h(n) = min(Estimate(LocalSi-1, n), Estimate(LocalSi+1, n)) 
 

Estimate() is a cost estimation function, such as the Euclidean distance. As soon as a 
first collision with a direct neighbor has been detected, we switch to a normal heuris-
tic that will only flood in the opposite direction, towards the other neighbor's local 
start node. Once we have collided with that one as well, but determined that a full-
path is not yet constructed, we just keep flooding with the original heuristic function 
again. This will make the flood boundary expand in all directions again which in turn 
might find other collisions that prove to be more beneficial. Only when a non-
essential core runs out of nodes will it abort the search. This event does not explicitly 
have to be reported back to the master core in any way, it might just mean that our 
initial guess using the high-level path was 'wrong', and that the non-essential core 
started its search in an area that became isolated due to dynamic obstacles. 

Once enough collisions have been detected and the master core has determined 
which cores will take part in the full path we can start phase 2. During this phase it is 
up to the corresponding cores to construct their local sections of the final full path. 
Synchronization between cores can all be done using spin-locks to ensure that there is 
no unintentional operating system overhead. Now, for essential cores it is very easy to 
construct their local path segments. As discussed earlier, the A* algorithm keeps track 
of a 'parent node' for each node that it floods in order to link back towards its original 
start node. We thus only need to look-up the collision node and follow the parent 
links back to what will either be the original start node S or goal node G. 
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Fig. 5. Path generated with the PRS algorithm. (Left) comparison with the classic A*. (Middle) 
The high-level path used, and the way-points used to start off the non-essential cores. (Right) 
Each core has flooded roughly the same amount of nodes. The yellow nodes indicated collisions. 

 

Fig. 6. Example of how the PRS algorithm still manages to bypass unexpected obstacles on the 
high-level path (middle). In this case, two cores did not manage to collide with each other 
(right) and thus only the other cores contributed to the resulting path. A comparison with the 
classic A* implementation (left) shows that both paths were virtually identical. 

For non-essential cores we need to employ a different approach. We cannot use the 
parent links because these will always lead us back to the local start node at the loca-
tion of the corresponding high-level path anchor node. As discussed previously for 
PHS, we need a smoothing phase in an attempt to 'iron out' the potential outlier that is 
the high-level path node itself. Especially if dynamic obstacles blocked our way, we 
need to make sure that the high-level path will not pull the resulting path way off 
course. For this, we do a new pathfinding session in order to find a suitable path  
between the two collision nodes that will ultimately 'bridge the gap' between the 
neighbors of the core. We can, however, significantly speed up this process by simply 
limiting the flood area to nodes that have been flooded before. This information is 
often directly available via 'visited flags' in the nodes themselves and thus the only 
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extra cost is the pathfinding session itself. Note that, because the flood areas will 
ideally be relatively small, a large amount of data will already be in the core's cache, 
thus making such re-visits a very fast process. Once all local path segments have been 
obtained, the master core simply needs to copy them into a single buffer, making sure 
that no duplicate entries from the collision nodes are copied. 

The overall implementation time of PRS was significantly longer compared to 
PBS, but not as long as that of DFS, provided that we already have the means for 
generating high-level paths. PRS requires more synchronization moments, and we do 
need to keep track on how to safely access memory without having race conditions 
causing real problems. The cores always share one memory pool in which they will 
write their unique core IDs for each node they flood. In this way, other cores can 
detect when they trod on each other toes and handle collisions. If we limit the size of 
the IDs to a single byte we can be sure enough that writing them is 'atomic' and the 
chance on race conditions is actually very small. And even then, if this does happen, 
the cores are bound to detect the collision during their next iterations as they further 
flood into each others 'body mass'. 

Figure 5 shows an example of a path obtained with the PRS algorithm, 60% faster 
than a classic A*. The differences between both paths are small, mainly due to the 
fact that the high-level path has managed to make a very good 'guess'. PRS is also 
more robust and can much better handle unexpected obstacles on the high-level path, 
as shown in Figure 6. The quality of the paths is in general good, although they are 
still influenced by the orientation of the high-level path. 

4.2   Performance 

We have repeated for PRS the experimental measurements described in Section 3. As 
PBS was clearly the best alternative so far, we will limit the discussion here to Fringe 
Search, PBS and PRS in order to keep a clear overview. 

From Figure 7 we conclude that PBS is still a very strong candidate on short to 
medium path lengths. Above roughly 200 nodes, PRS finally starts to capitalize on the 
fact that it can utilize more than two cores, at which the speed-up factor is in the range 
2,5–10 compared to classic A*. Up to that point, PRS has too much overhead and/or 
cannot utilize all its cores when not enough way-points are found in the high-level 
graph. Regarding path quality, we can see that PRS generates paths that are on aver-
age about 4% more expensive. This deviation is partially due to the fact that the algo-
rithm relies on the collisions to be favorable (which is, of course, not always the 
case), and also on the Fringe Search threshold relaxation, an 'artificial increment' in 
the FS’s f(n) threshold for opening new nodes, so that it expands faster outwards; see 
[4]. Also, in contrast to classic A*, we do not explicitly search for better nodes around 
collision nodes. The cost overhead for PBS is very low, less than 1% on average, 
which makes it an excellent alternative for short to medium length paths. The fact that 
PRS seems to have a 'constant' overhead factor indicates that, although the algorithm 
is 'probabilistic' in nature, it is still able to make good enough 'guesses' on a consistent 
basis. This is directly linked to the quality of the high-level graphs, which is therefore 
an essential component of any successful PRS implementation. 
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Fig. 7. (Left) Comparison of average pathfinding duration. (Right) Comparison of average cost 
overhead. The cost overhead remains fairly constant for all variants. 

5   Conclusion and Future Work 

We have implemented a number of parallel pathfinding algorithms in order to investi-
gate their behavior and performance in multi-core architectures. We concluded that all 
these algorithms exhibit one or more weaknesses, for example, they either have a 
large overhead, yield far from optimal paths, do not easily scale up to many cores, or 
are cache unfriendly. The latter was found to be crucial, as currently available multi-
core CPUs have good cache look-ahead prediction, as long as shared pages do not get 
written into too often. In other words, data separation is key to efficient pathfinding 
for these architectures. 

In this paper we proposed Parallel Ripple Search (PRS), a novel parallel pathfind-
ing algorithm that largely solves the above limitations. Basically, the algorithm em-
ploys (i) two 'essential cores' to flood at the path extremities (like Parallel Bidirectional 
Search does), and (ii) all other available 'non-essential cores' to flood local search 
areas, starting at 'equidistant' intervals on a high-level path. These cores then use A* 
flooding behavior to expand towards each other, yielding good 'guesstimate points' at 
border touch on. As a result, all cores effectively run at full speed until enough way-
points have been found.  

Like most other parallel algorithms, PRS sacrifices some path quality for speed: it 
runs roughly 2,5 up to 10 times faster than a classic A* implementation, with only an 
average minor penalty of 4% in path cost. This inevitable loss of optimality justifies 
the use of the Fringe Search variant, which is instrumental to further improve perfor-
mance by means of its threshold relaxation: not only is more work done in parallel, it 
also expands flood boundaries faster, resulting in earlier collisions. 

The PRS algorithm does not rely on any expensive parallel programming synchro-
nization locks or mutexes, but instead relies on the opportunistic use of node colli-
sions among cooperating cores, exploiting the multi-core's shared memory architec-
ture. As a result, PRS is easily portable to different platforms that provide Symmetric 
Multiprocessing architectures and/or embedded systems that do not provide concur-
rent programming primitives other than threads.  

< 
50

50
 .

. 
99

10
0 

..
 1

49

15
0 

..
 1

99

20
0 

..
 2

49

25
0 

..
 2

99

30
0 

..
 3

49

35
0 

..
 3

99

>=
 4

00

N
o 

P
at

h

0

10

20

30

40

50

60

70

Average Path Find Duration

A*

FS
PBS

PRS

Path Length (nodes)

D
u

ra
tio

n
 (m

ill
is

e
co

n
d

s)

< 
50

50
 .

. 
99

10
0 

..
 1

49

15
0 

..
 1

99

20
0 

..
 2

49

25
0 

..
 2

99

30
0 

..
 3

49

35
0 

..
 3

99

>=
 4

00

0

1

2

3

4

5

6

Cost Overhead

FS

PBS
PRS

Path Length (nodes)

E
xt

ra
 C

o
s

t (
%

)



Parallel Ripple Search – Scalable and Efficient Pathfinding for Multi-core Architectures 303 

Future research should focus on, at least, two directions. First, it would be worth-
while improving the quality of the high-level path, enabling PRS to make better 
guesstimates on where the non-essential cores should best start flooding from. 
Second, new performance gains should be achieved by further reducing cache colli-
sions between cores, e.g. by re-arranging the memory location of nodes to better re-
flect their real-world topology. 

In short, the PRS algorithm (i) is a fast and practical pathfinding solution for large 
and complex maps, (ii) it flexibly handles dynamic obstacle in a natural way, and (iii) 
it guarantees good scalability facing the increasing amount of cores of present day 
hardware. 
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