
A Semantic Navigation Model for Video Games

Leonard van Driel and Rafael Bidarra

Delft University of Technology,
Mekelweg 4, 2628CD Delft, Netherlands

leonardvandriel@gmail.com, r.bidarra@ewi.tudelft.nl

http://graphics.tudelft.nl/

Abstract. Navigational performance of artificial intelligence (AI) char-
acters in computer games is gaining an increasingly important role in
the perception of their behavior. While recent games successfully solve
some complex navigation problems, there is little known or documented
on the underlying approaches, often resembling a primitive conglomerate
of ad-hoc algorithms for specific situations.

In this paper we develop a generic navigation model which we call
semantics-based, because it enables AI to incorporate a wide variety
of navigation information into the planning of a character’s behavior,
including raw geometry, strategic objects, and locomotion abilities. The
role of semantics in this domain is highlighted and the presentation of
the main components of this semantic navigation model is illustrated
with a variety of examples.

The semantic navigation model has been validated and implemented
within a navigation system for Unreal Engine 3 that requires little level
designer intervention, has a rich interface for AI programmers, and can
be extended with other types of semantic information. It is concluded
that using this navigation model delivers more natural paths, requires
fewer world annotation, and supports dynamic re-planning.

Keywords: navigation, game semantics, game AI.

1 Introduction

Successful improvements in current video games have not been evenly distributed
over the development areas involved. So far, the ongoing trend of enhancing
visual realism has clearly dominated [2]. In contrast, there are relatively few
innovative applications of artificial intelligence (AI) techniques in these games,
and mostly we have seen little improvement over the last decades. It is true
that a small fraction of video games have shown significant sophistication when
compared to the other games at their time. While other game development areas
have pushed rapidly forward, using the most state-of-the-art technologies, game
AI has been said to lag at least 25 years behind the academic level of research [1].
No wonder, therefore, that in recent years there has been an increasing incentive
to help the game industry focus on the challenges of improving game AI [7].

One of the areas in which game AI has been lagging concerns the naviga-
tional capabilities of so-called AI- or non-player characters (NPC). As a part

A. Egges, R. Geraerts, and M. Overmars (Eds.): MIG 2009, LNCS 5884, pp. 146–157, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://graphics.tudelft.nl/

A Semantic Navigation Model for Video Games 147

of the game AI, navigation is typically concerned with spatial search and path
execution (how do you go from A to B?), and it is clearly distinct from the
higher-level decision making process (where to go?, why should you go to B?).
One of the problems faced by navigation in current games is that it has too
often been tightly built up around the A* algorithm, which has stimulated the
development of graph-based navigation algorithms and released an abundance
of A* variants to run optimally under specific resource constraints. Still A* is
only an algorithm and by far not a general solution to navigation [6]. As the
requirements on navigation become more and more complex, devising suitable
heuristics for A* turns very difficult, leaving us with Dijkstra’s algorithm, which
isn’t but a good exercise on dynamic programming. We believe that although
A* or Dijkstra may be good solutions for a large number of isolated problems,
they should not be the starting point of the development of a navigation system.

In our view, navigation is about understanding the direct relation between the
world and a moving character. This implies a significant shift in focus, from the
field of low level search, typically associated with the A* algorithm, to what we
call a semantic perspective, in order to capture and understand the environment
from the point of view of movement and positioning. In the context of this
paper, we define navigation as “the act of guiding a body through space-time”.
In practical terms, navigation deals with the prediction and execution of motion.
In order to predict the outcome of motion, one has to know the navigation space
to look for feasible or optimal paths. Without prediction, navigation would be
based on reflexes only, which is generally referred to as steering. In order to
execute motion, one has to make actual moves based on the planned motion and
react to discrepancies between the internal representation and the world.

The main advantages of our semantic navigation model can be summarized
as follows:

– it offers less restrictions to the design process, therefore allowing more com-
plex game AI and a potentially richer and more challenging game play;

– it is based on fairly invariant concepts, which are valid through a variety of
domains and genres providing better reusability;

– from a game development point of view, it provides a better link between
disciplines, whereby both level designers and AI programmers share the same
concepts and can therefore enable them to work together more closely.

In this paper, we first outline the basics of our semantic approach (Section 2), pro-
ceed with the development of the navigation model (Section 3), and then describe
how we have implemented this in a practical setting, together with the results we
obtained (Section 4) and end up drawing some conclusions (Section 5).

2 Game Semantics

Semantics is generally defined as the study of meaning and relations among
signs. In our present scope, game semantics is concerned with the structure and
meaning of game elements, such as level geometry and player characters [9].

148 L. van Driel and R. Bidarra

2.1 Navigation and the Current Lack of Semantic Structure

When designing game AI or a navigation system, explicit semantics become
important because game mechanics needs to be explained, e.g. how should an
AI character respond to a constantly changing world [4]. While human players
can be very flexible in dealing with game semantics, an artificial player requires a
designer that is well aware of this semantics in order to make the AI understand
the game. This becomes apparent with some examples that show the link between
semantics and daily game development. Here we focus on cover finding, because
it is a very important and complex game play element in many modern games.

When a level designer creates the world geometry, he creates floors, walls,
obstacles, and ledges based on specific interaction options between players and
the environment. For example, a rock can be placed in such a way that it provides
excellent cover close to the enemy base, so that an experienced human player
will be able to recognize its tactical significance, while an AI character’s cover
finding algorithm might miss it. Here the understanding of the designer is not
shared by the AI because it lacks a structure to contain such information.

Conversely, in that same level setting, we can imagine the level designer mark-
ing positions that are suitable for taking cover. This does allow the designer to
accurately model the AI behavior for planning covered paths or escaping from a
line of fire. However, it also reduces the AI’s understanding of a covered area to
a set of marks. Here, the designer’s understanding of cover is explained to the
AI in only a restricted form. This AI will be limited to the designers ability to
spot good covered positions. Even worse, such an AI character will be completely
exposed if the level geometry is changed afterward.

As a final example, imagine a player and an AI character having to cooperate
during a fire fight and, say, both have a proper understanding of being exposed
or in cover. At some moment, the latter decides to take cover behind a nearby
rock. However, by arrival it fails to take actual cover, because the player was
already standing there. The AI does not understand how its teammate’s presence
conforms to its understanding of cover, and it is now both fully exposed and
blocking its teammate’s line of fire.

What these examples have in common, is a lack of semantic structure due
to a poor distribution of understanding among game development domains like
level design, game play, and AI.

2.2 Our Approach

The semantics of game elements deals with the multiple domains of game devel-
opment and how different building blocks of the game are understood in each
domain. Here understanding is the relation between meaningful information and
the domain where it is interpreted. Because games cope with a limited storage
space, we can assume that all internal data is meaningful in some way in some
domain. This includes cover markers that are meaningful to the AI, or texture
data that is meaningful to the rendering pipeline, but also the game’s storyline,
which is mostly meaningful to the player, but often not to the AI.

A Semantic Navigation Model for Video Games 149

An important element of a semantic model is the concept, which groups similar
understanding of different data or in different domains. Domains can be level
design, game play programming, but also the AI subsystem. For example, players
base their understanding on the video output and AI on game data, but they
both can have the same understanding of a bridge to cross a river. Here the
bridge is the concept of an accessible surface for crossing a river.

Semantic navigation is an approach to navigation with a focus on the semantic
model of the navigation AI. The key in creating a semantic navigation model
lies in the identification of relevant concepts in the game. Concepts allow us to
define navigation problems and solutions in a domain-invariant way. The latter
is very important, because it allows us to design a navigation system without
the restrictions of tools, languages and hardware resources.

As an example, we will look at how we define a spatial area over different
domains. AI systems in general are very single-position oriented, mostly because
a single point in 3D space is a very compact and unambiguous representation.
Therefore a path often consists of a sequence of way-points starting at position
A and ending at B. Instead, a level designer will rarely think of a single spot,
but more of an area that is bound by all kinds of criteria like visibility, distance,
and even shape. While the programmer and the designer have different repre-
sentations, they both indicate the same area. This calls for the concept we will
later on refer to as place. With it, instead of trying to explain each other how
they see it, both can issue a place in their own language, while it is up to the
implementation of place to combine these different representations.

We propose to define a semantic model based on a set of concepts and rep-
resentations. A concept is defined by the relations it has with other concepts,
like how one concept restricts or modifies another. A concept has a representa-
tion for each domain in which it has a relevant meaning. We will refer to the
correspondence between representations of one concept in different domains as
the translation between these representations. It is these translations that make
the semantic model consistent, because it is the translation that will eventually
make a concept valuable; see a schematic example of this in Figure 1.

Fig. 1. Schematic representation of the relation between concept (white), domain (dark
gray), representation (light gray), and translation (arrow) for “the shortest path”

150 L. van Driel and R. Bidarra

Imagine, for example, an AI character that wants to move to a covered position
because of an enemy approaching. The domains here are the behavior system
and a locomotion system. Because the enemy is spotted, the behavior decides
to go to a safe location because it wants to maximize chances of survival. The
locomotion knows that a set of way-points leading to a position of low visibility is
safe. It is the fact that we are able to translate safety in the domain of behavior to
the domain of locomotion, that makes the concept of safety valuable. Generally
such a translation exists and will probably require a way-point graph, cover
evaluation, and a search algorithm.

Whether a translation can be implemented into a navigation system depends
on the design and system limitations. This means that a consistent semantic
model does not necessarily result in a feasible implementation model. We will
refer to the feasibility or quality of such a translation as the alignment of two
representations. In the previous example, if both representations of safety are
well aligned, the locomotion system will offer the behavior system a path that
does maximize the chances of survival.

Defining a general concept in the programming language of a large domain
can be a complicated step, but it can be overcome by sub-dividing concepts and
domains into more specific concepts for smaller domains. While a more specific
concept is less relevant in general, it will have more concrete representations
in a set of sub-domains. This approach leads to a concept hierarchy of general
and specific concepts, which meets both a wide range of domains and the spe-
cific nature of all sub-domains. As we move down the hierarchy, the definition
of concepts becomes more implementation specific. This process of exchanging
generality for ease of representation, will be referred to as mixing. Take, for ex-
ample, the concept of a path, that an AI character can use to move from one
point to another. Instead of trying to directly represent a path, we first introduce
the concept of a way-point, which is a position on the path. Using the concept
of way-points, we can easily implement a path by moving in a straight line from
way-point to way-point. Here the general path concept has been mixed with the
domain specific use of point locations in programming languages.

The implementation of a navigation system that is based on a semantic model,
is in many ways the same as one without it. We still need module interfaces,
search algorithms, data models, and so on. However, by implementing the former
we also create a powerful language that has been explicitly defined through
concepts. Such a language can be used to define complex relations and even new
concepts, without having a direct impact on the implementation. We not only
define these rules of the game implicitly in programming code, but also explicitly
in the semantic model, allowing them to be understood by the AI.

The semantic model provides structure to the implementation in different
ways depending on the extensiveness of the concept hierarchy. This hierarchy
can be used as a basis for the class hierarchy of an object-oriented software
design. The representations of concepts can be used to derive data models for
our classes. The meaning of a representation can be implemented by the functions

A Semantic Navigation Model for Video Games 151

that operate on this data. This allows us to group functionality based on its role
in the semantic model and on the domain it provides meaning for.

A part of the implementation will deal with the translation of representations.
This will determine the alignment of the data. For example, for good alignment
of the path concept, we should either have a static world geometry, or regularly
update the navigation grid. Clearly the alignment and the frequency of this
updating are related.

3 Semantic Navigation Model

Navigation is a fundamental AI component in the action-adventure games genre.
It supports many AI components and plays a principal role in connecting the
general AI to the game world. In general, navigation deals with the problem of
guiding objects, more specifically finding paths.

Although the area of navigation originates in search algorithms and system
design, we choose to approach it from an abstract, conceptual level, before we
advance towards its design and implementation level. Because navigation is not
a goal by itself, we start by identifying the domains that define the semantics
for our model. Next we group all representations in the domain set into concepts
that will form the basis of our navigation model.

3.1 Domains

Our design of a semantic navigation model starts by investigating the domains
that relate to navigation, because it is within these domains that the initial
need for navigation arises. This investigation is based on a simplified view on
today’s game development process [5][10]. Our choice of domains covers the key
domains relevant to ensure a wide applicability, rather than attempting to fit all
development process details into one single model.

We will deal with two classes of domains, namely game development and sys-
tem components. Within game development, there are two domains particularly
interested in navigation: the level designer and the AI programmer.

The level designer creates the level geometry and places a variety of special
objects and markers in this environment. From his perspective, it is important
to understand how the design affects the behavior of an AI character, limiting its
behavior or creating opportunities. A level designer, therefore, requires a visual
representations of concepts that provide feedback during the design process.

The AI programmer, in turn, designs the behavior of the AI using a pro-
gramming language. From his perspective, concepts will mostly be represented
by a single name referring to, for example, an object-oriented class. For the AI
programmer, it is important that concepts refer to real-life behavior and naviga-
tion. The AI programmer will further rely on graphical representations for both
debugging purposes and the visual representation used by the level designer.

In the class of system components, we distinguish the domains of higher AI and
motion control. The higher AI is a general decision making component, which

152 L. van Driel and R. Bidarra

deals with decisions that are unrelated to navigation, like strategy, intuition, and
emotion. The higher AI uses implicit descriptions of a path, e.g. by specifying
the start and end positions. It is mostly concerned with understanding the link
between its goals and such specifications. In order to plan its actions, the higher
AI must also understand the cost of trying to reach these goals.

The motion control component coordinates a character’s movement in terms
of animation and physics simulation. Therefore, it has to understand how a route
can be traversed based on some explicit definition like a sequence of way-points.
While motion control has a subjective role compared to the higher AI, it does
take part in the feedback from the world to the higher AI.

3.2 Concepts

The initial process of identifying representations and shaping concepts has been
performed in previous research [3], which was geared towards the development of
an action-adventure game. Based on that experience, we now derive our semantic
model in a top-down fashion, starting at the top of its concept hierarchy with the
trivial concept of navigation. From there, we look for implementation invariant
concepts that describe navigation across all relevant domains.

Path and space. The first sub-division in the concept hierarchy is one rather
abstract, as we define the concept of navigation based on the sub-concepts of
path and space. A path is a way for a character to move about in the game
world. As the higher AI formulates goals, it needs a way of expressing them in
navigational terms.

The navigation space is the collection of all possible paths to navigate, in-
cluding all traversible surface, open doors, and accessible switches. The explicit
definition of this collection is important to test path existence and to quantify
path quality. We define a navigation problem as an optimization problem over
the navigation space (e.g. the safest path away from danger).

World and ability. The game world is the collection of all game elements, in-
cluding level geometry, movable objects, and characters. The player is presented
with a representation of this world, ‘dressed’ in pretty textures, particle effects,
etc. For the purpose of navigation, one has to ‘look through’ this dressing and
see the elements that matter to navigation, i.e. the navigation space. Although
conceptualizing the game world is a simple step, it is important to group all
views on this same world into a single concept. The concept of space describes
the game world from the perspective of an AI character. This world is primarily
created by the level designer, who shapes the geometry and places obstacles and
passages, and it is generic in the way it will be used by both human players and
AI. It is therefore the perspective of the AI character that filters the world to
this concept of space.

We also introduce the concept of ability, from an AI’s perspective, defined as a
means of a character to change itself and the world for navigation purposes. The
most common ability is walking, which changes the position of a character. An

A Semantic Navigation Model for Video Games 153

AI character becomes more versatile by adding navigation abilities like jumping,
opening doors or pushing objects. While the game world remains the same, an
increase of abilities makes the AI perceive a richer world with more paths.

Place and metric. In order for an AI character to move, it has to somehow
specify its intentions or desired state, for example the desire to be in a safe
location. Although it might not be a specific location that the AI has in mind,
there must be some way of anchoring the navigation to the world geometry.
Therefore we introduce the concept of place, which is a sub-set of space. A place
can be a single explicit location, but also a disjoint area.

A navigation solution is always restricted to some part of the environment,
for example, related to the current or future position of a character. The place
concept defines such a part of the environment, ranging from a single point to a
large or scattered area. Using places, we can restrict the solution set by defining
where the path begins and ends, and restricting the path as a whole.

The concept of place offers the AI character a large variety of paths and
possibilities, through which it can roam freely using its abilities. However, when
the AI has a clear goal, it typically searches for a single, optimal path. In order
to evaluate places and paths, we introduce the concept of metric. A metric is
a function that maps a place or path onto a real value. This makes places and
paths comparable and allows for a definition of optimality.

In order for the higher AI to specify what navigation can do for its goals, it has
to express them in terms of a metric. For example, to find the shortest path, a
metric of distance is needed. In practice, these goals require much more complex
metrics which measure not only distance, but also cover, visibility, and health
change. Such metrics can be achieved by combining several primitive metrics
into a single real value, for example using linear combinations or thresholds.

In the domains of level design and AI programming, the visualization of a
metric is most important. For a level designer, it is not only important to see
the possible paths to navigate, but also which ones will be preferred by the AI,
and under which circunstances. For example when placing objects that provide
cover, it is important to see how the AI will evaluate these places.

4 Practice

The semantic model presented in the previous section offers a generic approach
to navigation in video games, transparently dealing with semantics on various
domains. In this section, we develop a further refinement of our semantic model
toward an actual implementation based on more specific system requirements,
and provide the link between concepts and software. Finally, we briefly evaluate
our semantic approach and reflect on the advantages of a semantic model for
navigation.

4.1 Refining the Model

Our generic approach allowed us to think of navigation without the restrictions of
system design, implementation, and hardware. It is the platform on which video

154 L. van Driel and R. Bidarra

games run that enforces these restrictions, not games or AI itself. Therefore, in
order to progress in the areas of games and AI, it is important to meet these
restrictions in the end, instead of starting with them.

Moving from a generic semantic model to a navigation system implemen-
tation, we introduce new concepts that gradually mix generic concepts with
implementation concepts. Here we respect the domains of game developers and
system components, while we express their representations in a programming
language. It is important here, not to confuse the system components with the
actual implementation.

World and ability. Our characters move by walking or jumping, and it is thus
the surface of the level geometry that is of interest to navigation. To represent
both the geometry and the topology of this surface in the higher AI domain, we
take a cell-decomposition approach to construct a graph of spatial nodes that can
cover the curved plane of the level geometry, which is similar to a navigation mesh
[8]. Here the graph captures the topology, by defining links between locations
where a set of paths can be traversed. Each node is accompanied with a 2D
convex area that locally represents the geometry. We will refer to this graph
representation as the mesh.

To translate between the geometric world representation and the mesh rep-
resentation, we use collision traces to sample space. First the level geometry is
decomposed into 2D areas, and convex sub-areas, called tiles, are traced out.
Next the edges adjacent tiles are connected though links, which are also con-
structed based on collision traces. Because our collision traces are relatively
cheap, we were able to implement a real-time translation, which is able to cope
with slow but complex changes in the level geometry.

An ability is represented by the higher AI as a set of rules to test a sub-
space for applicability. For example, walking has rules about the steepness, the
floor and the width of the collision cylinder that can be placed on top of the
floor. Besides walking, we also introduced the abilities of crouching, jumping,
and walking under all angles; see Figure 2. These are all simple variations on the
rules of walking.

Abilities are used to identify convex areas and links for the mesh. This is a
relation between ability and world, which allows a character specific view on the
world. Each application of an ability in a specific location is an instantiation
of this ability, to which we will refer as an action. An action is represented by
an ability and a specification of where and how it is performed. This leads us
to another representation of the mesh, namely as a set of related actions. This
representation is of interest in the domain of motion control, because it represents
all possible moves a character can make in a certain location, assuming the piece-
wise independence of motion steps.

Place and metric. We restrict the concept of place to the representations of a
single location, a mesh element, or a set of places (on which one can perform the
operations union, intersection or difference). Although restrictive, this notion is
sufficiently rich for navigation while avoiding complex geometric evaluation.

A Semantic Navigation Model for Video Games 155

Fig. 2. Screen shot of a spider-like AI
character traversing a path (red line)
across connected cubes (green). The
walkable areas (blue) of the mesh are
based on the character’s ability to walk
under all angles.

Fig. 3. Screen shot depicting the
mesh nodes (red/blue) surrounding
two cubes (green). The mesh is col-
ored according to the vision of the AI
character (gray) standing in the middle
(red is high visibility).

Our approach offers metrics to evaluate e.g. distance, visibility, cover, and
also operators on metrics. The distance metric evaluates a link by its Euclidean
length and an area by its average diameter. To evaluate the visibility metric,
we sample points on a link or in an area, and move a phantom character to
the position of these samples to perform a set of ray casts from the eyes of an
enemy character to the phantom body. Figure 3 shows a screen shot of the visual
representation of the visibility metric.

Based on the visibility metric, we define cover by evaluating local visibility
change, e.g. by assuming that positions with good cover are well hidden and close
to other high visibility positions. To create more complex metrics, we use the
operator metric to combine primitive metrics like distance and visibility. Here
we found linear combination and maximum component to be most useful.

Places become a powerful tool for defining paths when we create places based
on a metric. For example, an AI character that is under attack needs a covered
position to recover. By providing a path that leads to a covered place, we have
the AI character move to safety.

Path. The concept of path is the combining element of the navigation system.
It is represented by the higher AI as a navigation problem based on a place and
metric, and by the motion controller as a solution based on a sequence of actions.
The translation from problem to solution is the search for a feasible path, which
we approach by performing A* graph search on the mesh graph. The problem is
defined by a start and end place, and a metric. The graph search start and end
node are determined by evaluating start and end place. The area nodes and link
edges weight are based on the metric. Finally a sequence of actions is derived by
fitting an action to each area and link.

156 L. van Driel and R. Bidarra

Fig. 4. While placing level components (green), the level designer is made constantly
aware of the navigation space. Convex walkable areas (orange) are connected through
walk links (purple) and jump links (yellow).

4.2 Results

A prototype navigation system based on our semantic navigation model has
been built as an AI sub-system for the Unreal Engine 3. This prototype focuses
on navigation for action-adventure games. The AI system in these games has to
provide resistance in combat situations and assist in the story line. This includes
on-surface navigation in a 3D world with strategic and scripted paths of a high
quality. Navigation instructions were generated by a state-based system, and
motion instructions were executed by a physics-based motion system.

Previously, designing a game environment did not only require the designer
to place geometry, but also to iteratively add annotations for the AI followed by
run-time testing of player and AI movement and interaction. By implementing
real-time concept translation in our prototype, designers gain insight in the AI’s
abilities and understanding while shaping the game environment; see Figure 4.
This allows for much less annotation and testing during the design phase.

While many concepts are already present in our engine, the explicit definition
of these concepts allows a much sharper separation of scripted AI and motion
control. The introduction of new concepts and the wrapping of the existing
concepts made the AI system modular, so that it can be configured by simply
adding and removing concepts, thus improving reusability.

In turn, navigation has been separated from the higher AI, improving robust-
ness and making the higher AI less dependent on the low-level routines that
perform the navigation. High-level AI behavior can be designed using high-level
concepts that describe a characters behavior, giving programmers a natural un-
derstanding of the concepts, and supporting design of higher-level behaviors
without being distracted by low-level issues.

5 Conclusion

In this paper we argued that most current navigation subsystems in games are
too biased towards very particular applications, their design strongly suffering
from contamination by implementation aspects as graph search, terrain specifics,

A Semantic Navigation Model for Video Games 157

etc. We have presented a hierarchically structured semantic model that helps
defining rich and clear semantics in the design of a navigation system. This
model provides a set of basic concepts that apply to generic navigation systems
in action-adventure games. This approach leads to better aligned representa-
tions in the domains of game development and system components. We believe
that the development of game AI for navigation can significantly profit from a
semantic navigation model like the one we have described. This semantic naviga-
tion model has been validated and implemented within a navigation prototype
system for Unreal Engine 3 that requires little level designer intervention, has
a rich interface for AI programmers, and can be extended with other types of
semantic information. It is concluded that using this navigation model deliv-
ers more natural paths, requires fewer world annotation, and supports dynamic
re-planning. Our prototype system confirmed that game AI development based
on a semantic model is perfectly compatible with the performance requirements
related to limited CPU and memory usage.

References

1. Baekkelund, C.: Academic AI Research and Relations with the Games Industry.
In: AI Game Programming Wisdom 3, Charles River Media (2006)

2. Buro, M., Furtak, T.: RTS Games as Test-Bed for Real-Time Research. In: Invited
Paper at the Workshop on Game AI, pp. 481–484 (2003)

3. van Driel, L.: Semantic navigation in video games. MSc thesis, Delft University of
Technology (2008)

4. Heckel, F.W.P., Youngblood, G.M., Hale, D.H.: Influence Points for Tactical Infor-
mation in Navigation Meshes. In: Proceedings of Fourth International Conference
on the Foundations of Digital Games, Port Canaveral, FL, April 26-30, pp. 79–85
(2009)

5. Mesdaghi, S., Stephens, N.: The 2005 Report of the IGDA’s Artificial Intelligence
Interface Standards Committee. In: IGDA (2005)

6. Reese, B., Stout, B.: Finding a Pathfinder. In: Proceedings of the AAAI Spring
Symposium on Artificial Intelligence and Computer Games (1999)

7. Savage, F.: What are the Hard Problems in Game Development? In: Proceedings
of the 3rd Annual Academic Days on Game Development in Computer Science
Education, Miami, FL, 28 February-3 March (2008)

8. Tozour, P.: Building a Near-Optimal Navigation Mesh. In: AI Game Programming
Wisdom, Charles River Media, pp. 171–185 (2002)

9. Tutenel, T., Bidarra, R., Smelik, R.M., de Kraker, K.J.: The role of semantics in
games and simulations. ACM Computers in Entertainment 6(4), a57 (2008)

10. Yue, B., de Byl, P.: The state of the art in game AI standardisation. In: Cy-
berGames 2006: Proceedings of the 2006 international conference on Game research
and development, pp. 41–46 (2006)

	A Semantic Navigation Model for Video Games
	Introduction
	Game Semantics
	Navigation and the Current Lack of Semantic Structure
	Our Approach

	Semantic Navigation Model
	Domains
	Concepts
	Path and space.
	World and ability.
	Place and metric.

	Practice
	Refining the Model
	World and ability.
	Place and metric.
	Path.

	Results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

