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ABSTRACT 

While the popularity of mobile games increases 
with advances in processing power of mobile 
devices, multi-player games in fast-paced genres 
using the communication capabilities of these 
mobile devices are still rare, mostly because of the 
significant round trip times of the current mobile 
networks. Effective latency hiding techniques exist 
for LAN and even for WAN connection speeds, 
but these techniques fail in the domain of mobile 
networks, as the latencies can be up to 2 
magnitudes larger than a typical WAN 
configuration. This paper introduces a new high-
latency hiding paradigm based on behavioral 
assumptions, designed to be suitable for racing 
titles. Although these assumptions limit the 
accuracy of predicting unexpected behavior, they 
allow for significant improvements in hiding 
network latency, making it possible to create a 
real-time multi-player race game using today’s 
GPRS network. 

INTRODUCTION 

The widely-spread support for J2ME, Brew and 
other mobile languages created and adopted by 
phone manufacturers opened up the platform to 
third party software developers. This allows the 
creation of ever more complex games as the 

hardware capabilities and speed continue to 
increase. Because the hardware inherently supports 
wireless communications, games could make use of 
these by including multi-player capabilities [1]. 
Depending on their genre, some games pose more 
severe requirements than others on both the 
connection speed and the round trip time. For 
example, chess and other multi-player puzzle 
games are typically less demanding on network 
capabilities, posing no stringent requirements 
regarding round trip times. On the other hand, 
first-person shooters and racing games require 
more bandwidth and lower round trip times for a 
prompt feedback and, ultimately, for the sake of 
the game-play. Sadly, although there is some 
human tolerance for delay, the average round trip 
times in current GPRS mobile networks is far 
above this tolerance level. 

Many multi-player PC/console games, played 
across moderately fast networks, are able to use 
common prediction techniques for anticipating the 
location of other players. However, when using 
high-latency mobile phone networks, more 
advanced techniques are required, in order to hide 
the effect of such high round trip times. This paper 
presents several improvements on the Dead 
Reckoning technique [2], culminating on so-called 
3-way interpolated Dead Reckoning, which copes 
with high latencies by sensibly simplifying the 
domain using behavioral assumptions, effectively 
limiting the degrees of freedom where this is less 
critical. 



 

PROBLEM DESCRIPTION 

Among all game genres, race games are a very 
typical and popular genre. When multi-player races 
are played using PCs or game consoles across a 
local-area network, the high processing power and 
the network speed available make it possible for all 
player’s clients to quite accurately predict and 
visualize the respective cars on their displays. In 
such a setting, uncertainties in the order of a tenth 
of a second are neither critical nor very perceptible 
when implemented using common prediction 
techniques. 

The main reason that makes such prediction 
techniques impractical in a multi-player race 
through a mobile network is the round-trip time, 
i.e. the time between the moment one player, say, 
turns left and the moment the other players receive 
that move through the network, which is in the 
range 2-3 seconds (at least, in the current Dutch 
GPRS network). In practical terms, this means that 
during a racing game, by the time a player receives 
a sent location of some competitor, the latter is 
already considerably further on. The effects of 
latency on a car race game played through 
broadband Internet or through a mobile network 
can better be expressed by a position uncertainty of 
one car length or of one football field, respectively. 
As it is the prediction’s task to predict the position 
within this uncertainty, the latter situation is simply 
unacceptable as inevitable prediction errors become 
too large to mask in a visually plausible way using 
more standard prediction algorithms [3].  

Standard Dead Reckoning prediction 
implementations, for example, consist of 
extrapolating the course of a competitor over a 
period of time based on its last known 2D or 3D 
position and speed. Applied to a mobile car race 
setting with the high latencies mentioned above, 
this delivers rather poor results and output: cars 
overshoot at track curves and, upon arrival of new 
position and speed data, the prediction algorithm 
needs to compensate for huge errors, resulting in 
rather unnatural behavior. As a consequence of this 
time scale, it is of little use attempting to apply any 
jump masking or filtering algorithm to standard 
Dead Reckoning. 

BEHAVIORAL ASSUMPTIONS 

In order to improve the prediction performance and 
its adequacy to the mobile race setting, a number of 
behavioral assumptions can be made. The most 
important assumption is that the main goal of each 
participant in a typical race is to reach the finish in 
the shortest time possible. Although this will not be 
true for every player (e.g. some players might go 
for a lot of upgrades, or perhaps enjoy making nice 
skid marks on the track, if the game allows this), it 
does model an average player for typical race 
games.  

As it is best to follow the ideal track line for the 
best finish time, a good prediction, to appear 
convincing and natural, should assume that each 
simulated car will at least attempt taking curves 
following the best (or ideal) trajectory. If 
afterwards (i.e. upon receiving new data) this 
assumption shows to have been too optimistic, the 
next estimate should be adjusted accordingly, in 
order to compensate for the divergence. 

But compensating for this divergence by updating 
the prediction positions with the newly received 
data can be in itself another difficulty. Predicting 
positions of other cars in the race becomes much 
more natural and plausible if the corrections 
required are carried out in a smooth manner. This 
often requires the prediction algorithm to find a 
compromise between correctness and plausibility. 
Every new corrective prediction should be 
gradually applied, avoiding abrupt changes in 
trajectory and/or speed, possibly at the cost of a 
slightly deferred effect. 

A final assumption is a direct consequence of the 
time scale at hand: there is no point in attempting 
to simulate or detect collisions (and similar 
unpredictable fast-paced changes), because what 
both 'colliding drivers' see on their displays is only 
an approximated version of the reality. Therefore, 
if one player collides with another player, the latter 
player would not necessarily collide with the first 
player too at that point in time as these local 
realities do not always coincide exactly. One could 
use an arbitrating server to decide whether or not 
these players did or did not collide; but then again, 
using today’s mobile networks, this information 
would not arrive at the players’ clients before 
about 2-3 seconds, i.e. long after the action could 
achieve any sensible visual feedback.  



 

IMPROVED PREDICTION TECHNIQUES 

Steering and curve behavior 

As highlighted above, standard Dead Reckoning 
fails to properly take curves on the track, as it only 
acts after a large error is detected and this 
information has arrived at other clients. An 
improvement to this consists of projecting the 
predicted position onto the center line of the race 
track. This has a positive visual effect on the global 
race behavior, as the car keeps on track when 
approaching a curve. Such steering, however, bears 
a somewhat monotonous and unnatural 
appearance. A much more convincing result is 
achieved by projecting the predicted position not 
onto the track center line but onto a varied 
approximation of the ideal driving line. 

In addition, the direction of the simulated car can 
be made to steer when approaching a curve. For 
this, we estimate a projected position in the near 
future, in order to query the track’s ideal line 
direction ahead of the current position. This 
direction, together with the current orientation of 
the simulated car, is processed by a proportional-
integral-derivative (PID) controller [4]. As a result, 
the car exhibits a more realistic steering behavior, 
instead of strictly following an artificially rigid 
approach to curves. 

Predicting position and speed 

A possible implementation of standard Dead 
Reckoning would consist of interpolating from the 
current predicted position to a new prediction 
based on more recent received position data by 
means of a spline curve. This curve would 
interpolate over time to a predicted position in the 
near future, using this time to mask prediction 
errors. Combining this correction with other 
factors, like (over-)steering effects to follow the 
track line, could prove difficult to carry out 
correctly, while irregular update arrival periods 
only adds to the problem. A second drawback of 
the spline fitting procedure is its computational 
burden on the (limited) mobile platforms. 
Depending on the complexity of the (pseudo-) 
physics model used, the algorithms described 
below can outperform the spline fitting procedure 
while eliminating much of the problems with 
combining the prediction with other effects. 

Two-way interpolated Dead Reckoning can bring 
up an improvement in prediction quality. It consists 
of running two simulations in parallel, computing 
the actual predicted position by cross-fading 
between the results of two simulations: one 
simulation, (a), based on the most recent data 
received (instant tn), and the other, simulation, (b), 
based on the data received previously to the most 
recent (instant tn-1). The data received and 
processed by these simulations consists of the last-
known position and speed of the car that needs to 
be predicted and is converted (i.e. projected) to 1D 
variables used as parameters to a parametric 
representation of the track’s ideal racing line. The 
actual predicted position output linearly combines 
the results of the two simulations by cross-fading 
from the older simulation (b) to the newest 
simulation (a) over a fixed period of time, typically 
the average of the update frequency. This 
parametric position is mapped back to a 2D 
representation using again the parametric 
representation of the racing line. Initially, the 
weight of simulation (b) is 100% and the weight of 
simulation (a) 0%; throughout the period, these 
weights are progressively reversed, so that at the 
end of the period, simulation (a) predominates.  

As soon as new data is received, no matter if that 
happens before or after the weight of simulation (a) 
has reached 100%, simulation (b) is replaced by a 
weighed average between the previous simulation 
(b) and simulation (a) using their current relative 
weight ratio. Then, simulation (a) is initialized 
using the new data and resets the weight for 
simulation (a) to 0% and for (b) to 100%. As a 
result of this mix between old and new data, abrupt 
changes are avoided in the predicted trajectory and 
speed. The main drawback of this approach is that 
the linear combination of the two simulation 
outcomes can be visually perceptible, turning out 
to be somewhat unnatural. 

The best prediction results were achieved by using 
a three-way interpolated Dead Reckoning 
technique, which extends the two-way technique 
described above in two aspects. First, it performs 
three simultaneous simulations, one with the most 
recent data (instant tn), and two others based on 
the data received previously (on instants tn-1 and tn-

2). In this way, the time span of influence of past 
received data on the prediction is doubled, which 



 

has a rather positive effect on the smoothness of 
the simulation process.  

The weights of the three simulated courses still 
sum up to 100% at all times, wherein the weight of 
the oldest simulation is linearly decreased over time 
(i.e. it fades out), and the weights of the other two 
simulations, started on successive instants, increase 
(with half this rate); see Figure 1. Rotating the role 
of these three simulations is done upon arrival of 
new data (at instant tn), such that the oldest 
simulation (tn-3) of the three is always merged by a 
linear combination (i.e. weighed average) with the 
second-oldest simulation (tn-2) using their relative 
weights, the result becoming the new oldest 
simulation (tn-2). This simulation gets a new weight 
that is the sum of the two weights that this 
simulation is combined from. The previously 
newest simulation (tn-1) and its weight remain 
unchanged, and it becomes the second-newest 
simulation in the new situation. The previously 
oldest simulation of the three (tn-3) is reinitialized 
with the new data to become newest simulation (tn) 
with an assigned weight of 0%. One last restriction 
is enforced on the newest and second newest 
simulation by disallowing a weight contribution of 
more than 50% each. Although still linear, using 3 
simulations somewhat masks the linearity, making 
the effects much less noticeable. Also, prediction 
errors are resolved much smoother as the newest 
data is less dominating. This comes at a cost of 
slightly larger prediction errors when compared to 
more direct two-way algorithms, but allows for a 

much more natural car behavior, as each of the 
simulations is still based on car (pseudo-)physics, 
while it is between these separate simulations that 
the interpolation is performed.  

A second improvement that can be combined with 
either of the other proposed techniques consists of 
making use of the player’s divergence from 
projection on the ideal racing line. This distance, 
between the actual last known position and its 
projection on the ideal race line, can be used to 
estimate the extra time required to drive back to 
the ideal line, adding a small time penalty to the 
appropriate simulation by temporarily slowing it 
down. This allows handling situations more 
accurately where a competitor (either willingly or 
unwillingly) actually diverts from the assumed 
route, e.g. going off the road.  

RESULTS 

To develop and test the above ideas, a testbed 
application was implemented, supporting the 
comparison of different prediction algorithms in 
real-time. Simulating a simple racing game, the 
tester controlled one black ‘car’. All other cars in 
the simulation used different prediction algorithms 
and were fed identical positional data of the tester’s 
car, after this data had been delayed by a simulated 
mobile network with limited bandwidth, large 
latencies and typical rates for TCP/IP resends after 
packet-loss. Each non-black car implemented a 
different algorithm for predicting the current 
position and speed of the tester’s car, therefore 

 
Figure 1. Combined simulation weights for three-way interpolated Dead Reckoning 



 

allowing their results to be compared. Typical 
results are shown in Figures 2 and 3, where the red 
car represents the use of a standard Dead 
Reckoning (2-D DR) algorithm, and the magenta 
and cyan car represent the proposed projected two-
way and three-way algorithms, respectively. The 
black closed loop represents an ideal driving line 
used for projection. In Figure 2, the tester’s 
objective was to race as fast as possible, a typical 
race game goal. Here the standard 2-D DR 
algorithm produces poor results compared to the 
proposed two-way and three-way algorithms, as it 
drove the simulated car mostly off-track. The 
average error for the two-way algorithm was 
slightly smaller than that for the three-way 
algorithm. However, the three-way algorithm 
produced smoother error correction if the tester 
behaved unexpectedly. 

For Figure 3, the tester deliberately drove the car 
off track, consequently slowing it down. In these 
condition, the 2-D DR algorithm still produced a 
poor result (Although in this particular image the 
red car is quite near the black tester’s car). 
However, the proposed algorithms did not improve 
the prediction results of the magenta and cyan car, 
as the assumptions were not satisfied. Note that 
both the two-way and three-way algorithms 
overshoot the tester’s position. However, the 
three-way algorithm also implemented a speed 
penalty for divergence from the ideal racing line 
(the last proposed improvement). Reacting to the 
green car (i.e. the last known position of the 
tester’s car as known to the prediction cars) being 
off-track, the three-way algorithm improves the 
accuracy of the prediction, as expected, when 
compared to an algorithm without this 
improvement (in this case, the two-way magenta 
car). 

CONCLUSIONS 

Conventional latency hiding techniques like Dead 
Reckoning are not directly applicable to current 
multi-player mobile games, due to the high latency 
of the GPRS network. A new prediction technique 
has been presented that copes with high latencies 
by simplifying the domain using behavioral 
assumptions. This technique has been implemented 
for the domain of multi-player mobile race games, 
and tested against common alternative techniques 
in this domain. The new technique has shown to 
perform rather satisfactorily, outperforming the 
competing alternatives whenever typical behavioral 
assumptions can be made about the specific 
domain. So far, this technique has been 
incorporated into one commercial multi-player race 

 
Figure 2. Testbed comparison of different prediction 

algorithms in on-track conditions 

 

 
Figure 3. Testbed comparison of different prediction 

algorithms in off-track conditions 

 
Figure 4. Scene of the implemented multi-player 

mobile racing game 



 

title for the mobile platform called Razor, by Ex 
Machina, running on the GPRS network; see 
Figure 4 for a scene taken during its development. 
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